JP2004068746A - 直噴火花点火式内燃機関 - Google Patents

直噴火花点火式内燃機関 Download PDF

Info

Publication number
JP2004068746A
JP2004068746A JP2002231195A JP2002231195A JP2004068746A JP 2004068746 A JP2004068746 A JP 2004068746A JP 2002231195 A JP2002231195 A JP 2002231195A JP 2002231195 A JP2002231195 A JP 2002231195A JP 2004068746 A JP2004068746 A JP 2004068746A
Authority
JP
Japan
Prior art keywords
cavity
internal combustion
combustion engine
type internal
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002231195A
Other languages
English (en)
Other versions
JP4122890B2 (ja
Inventor
Yuichi Iriya
入矢 祐一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002231195A priority Critical patent/JP4122890B2/ja
Publication of JP2004068746A publication Critical patent/JP2004068746A/ja
Application granted granted Critical
Publication of JP4122890B2 publication Critical patent/JP4122890B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

【課題】機関の回転条件などに関わらず安定した適正混合気を点火プラグ近傍に形成する。
【解決手段】ピストン4の上面にキャビティ12を形成し、吸気通路に設けられるスワール制御弁によって、シリンダ内壁を流れる大径スワール流と、キャビティ12内壁を流れる小径スワール流とを形成させて、2つのスワール流の圧力分布差により円筒形状の上昇流を発生させる。インジェクタ13は、燃焼室5の吸気通路7の下部に設けられ、上昇流の内側に到達するようなペネトレーションで燃料を噴射する。噴射された噴霧は、上昇流内の空気と混合して燃焼に適した混合気を形成し、点火プラグ11の近傍に輸送され燃焼が行われる。
【選択図】 図5

Description

【0001】
【発明の属する技術分野】
本発明は、筒内に燃料を直接噴射して火花点火燃焼を行う直噴火花点火式内燃機関に関する。
【0002】
【従来の技術】
従来から直噴火花点火式内燃機関として、シリンダ内に燃料噴射を行うインジェクタが燃焼室上部の略中央に配置されるものと、インジェクタが燃焼室の吸気側の側部に配置されるものとがある。
そして、インジェクタが吸気側の側部に配置されるものとしては、インジェクタから噴射された噴霧がガス流動によって点火プラグ近傍に運搬されるエアガイド方式と、ピストン上面に形成されたキャビティを介してスワールガス流動によって点火プラグ近傍に運搬されるウォールガイド方式との2つの方式がある。
【0003】
また、特開2000−45781号公報には、シリンダ内にスワール流を形成し、インジェクタからスワール流の中心に向かって燃料を噴射し、成層混合気を点火プラグ近傍に運搬して燃焼を行うことが開示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、燃焼室上部の略中央にインジェクタを取り付けるものでは、点火プラグと近接して取り付けるため、燃焼した際にインジェクタ先端部の温度が高くなってしまうために、コーキング(噴孔中の燃料成分が劣化してデポジットとなる現象)を生じ、燃料噴射特性が変化してしまうという問題があり、また、点火プラグに燃料噴霧が被り易いという問題があった。
【0005】
また、従来のエアガイド方式では、機関の回転条件などの変化によりシリンダ内のガス流が変化するために、全回転領域において点火プラグ近傍に安定した混合気を形成し難く、且つ燃料噴射後は時間の経過と共に噴霧が拡散するために早い時期において点火しなければならず、特に高回転領域では適正な点火時期の設定がし難いという問題があった。
【0006】
また、従来のウォールガイド方式では、ピストン上面に形成されたキャビティ内に燃料を噴射し、キャビティを利用して点火プラグ近傍に混合気を運搬しているため、特にキャビティ内に噴霧が入りにくい高回転領域では適切な混合気を形成し難く、且つキャビティ内に入った燃料が気化不足の場合には、スモークやHC(炭化水素)の増加に繋がるという問題があった。
【0007】
また、特開2000−45781号公報に記載の発明では、エアガイド方式と同様、機関の回転条件などの変化によりシリンダ内のガス流が変化するために、全回転領域において点火プラグ近傍に安定した適正混合気を形成し難く、且つ燃料噴射後は時間の経過と共に噴霧が拡散するために点火時期を早くしなければならず、高回転領域では適正な点火時期に設定し難いという問題があった。
【0008】
本発明は上記問題を解決するためになされたものであり、機関の回転条件などに関わらず安定した適正混合気を点火プラグ近傍に形成することを目的とする。
【0009】
【課題を解決するための手段】
そのため本発明の直噴火花点火式内燃機関では、ピストン上面に設けられたキャビティ内と燃焼室内とにそれぞれスワール流を発生させ、2つのスワール流の圧力分布差により円筒形状の上昇流を発生させて、点火プラグ近傍に燃焼に適切な混合気を運搬する。
【0010】
【発明の効果】
本発明によれば、回転条件などに関わらず安定した適正混合気を点火プラグ近傍に形成することができるため、燃焼効率が良く、適正な点火時期を設定でき、且つスモークやHCの発生を抑えることができるという効果がある。
【0011】
【発明の実施の形態】
以下、図面に基づき本発明の実施形態について説明する。図1は、本発明の実施形態に係る直噴火花点火式内燃機関を示す図であり、(イ)は断面図、(ロ)は平面図である。図2は、スワール流が発生している状態を示す図であり、(イ)は断面図、(ロ)は平面図である。なお、図1と図2(ロ)以外の機関1には吸気バルブ6、吸気通路7、排気バルブ8、排気通路9、スワール制御弁10が示されていないが、図の右側を吸気側、左側を排気側として示すこととする。
【0012】
図1の機関1は、シリンダヘッド2とシリンダブロック3とピストン4とから燃焼室5が画成され、吸気バルブ6を介して吸気通路7から燃焼室5へ新気を導入し、排気バルブ8を介して燃焼室5から排気通路9へ排気を排出する構成である。燃料噴射を行うインジェクタ13は、燃焼室5の吸気側の側部に設けられており、シリンダ軸中心の下向きに配置されている。
【0013】
吸気通路(吸気ポート)7は途中から2つに分かれて形成されており、そのうちの1つにスワール制御弁10が設けられている(図1(ロ)参照)。このスワール制御弁10を閉じることによって、燃焼室5内にスワール流を形成できる(図2参照)。
なお図3に示す通り、比較的低回転かつ低負荷の成層運転領域では全域でスワール流を利用しての燃焼を行うためにスワール制御弁10を閉じ、それ以外の領域ではスワール制御弁10を開くように制御される。
【0014】
図1の燃焼室5はペントルーフ状に形成され、その上部の略中央には点火プラグ11が、シリンダの軸中心と一致するように配置されている。燃焼室5の形状と対応して、ペントルーフ状に形成されたピストン4の上面にはキャビティ12が、点火プラグ11を向いて開口するように形成されている。
キャビティ12は、中心部にシリンダの軸方向に突出した凸部12aが設けられ外周側で窪む略ドーナツ形状をしている。この形状によってキャビティ12内に形成されるスワール流の強さが決まる。
【0015】
図2に示すようにスワール流は、吸気通路7に設けられたスワール制御弁10を閉じ、空気がシリンダの内壁に沿って流動することで形成される大径のものと、キャビティ12の内壁に沿って流動することで形成される小径のものとの2つが形成される。
ここで、大径と小径とのスワール流を形成する場合に、その作用について図4と図5とを用いて説明する。図4の(イ)は大径と小径とのスワール流が発生している状態を示し、(ロ)はシリンダ軸中心からの距離における大径と小径とのスワール流の圧力分布を示している。図5は、大径と小径とのスワール流による円筒形状の上昇流が発生している状態を示す図であり、(イ)は断面図、(ロ)は平面図を示している。
【0016】
図4(ロ)に示す通り、大径スワール流はシリンダの内壁を沿って流れるために、外側の圧力は高く、内側の圧力は低い。一方、小径スワール流はシリンダ内壁の径より小さいキャビティ12の内壁に沿って流れるために、キャビティ12の範囲内において、外側の圧力は大径スワール流よりも高く、内側の圧力はほぼ同等となる。
【0017】
このため、2つのスワール流の間に圧力分布差が生じ、ピストン4のキャビティ12の範囲内における、小径スワール流と大径スワール流との圧力差ΔPによって、キャビティ12側から点火プラグ11へ向かって円筒形状の上昇流が発生する(図5(イ))。この上昇流の強さは、小径スワール流と大径スワール流との圧力差ΔPに応じて強くなる。そしてこの時、大径スワール流と小径スワール流との間には、上昇流のエアカーテンが形成される。
【0018】
そして、図2を再度参照して、インジェクタ13が燃焼室の吸気側の側部より斜め下向きに燃料を噴射する。インジェクタ13は、コントロールユニット(図示せず)によって燃料噴射の開始時期及び終了時期が定められる。ここで、インジェクタ13の燃料噴射開始時期は、吸気バルブ6を閉じ、シリンダ内に水平のスワール流を形成し、上昇流を発生させてから燃料を噴射する必要があるために、吸気バルブ6が閉じた時期以降となる。
【0019】
インジェクタ13から噴射された燃料噴霧は、図5(イ)に示す円筒形状の上昇流の内側に到達し、小径スワール流の空気と混合して、燃焼に適した混合気を形成する。
次に、インジェクタ13から噴射される噴霧のペネトレーション(貫徹力)について図6を用いて説明する。
【0020】
噴霧は、その先端部が点火プラグ11の軸中心からキャビティ12の排気側の外縁部までの距離Wの位置(ペネトレーションの最大値)までの範囲となるように噴射される。なお、燃料噴射は、大径スワール流と小径スワール流とが形成された状態で行われるため、噴霧がペネトレーションの最大値を超えて排気側のシリンダ内壁まで進行することはない。
【0021】
ここで、噴霧の広がり角度とペネトレーションとの条件について、図7を用いて説明する。図7において、噴霧の広がり角度をα、噴霧のペネトレーションをP、シリンダボア径をD、キャビティ12の外縁部の直径をd、シリンダの水平方向においてインジェクタ13の先端から点火プラグ11の点火位置までの傾きをφ、インジェクタ13の傾きをθで示している。
【0022】
インジェクタ13から噴射される噴霧の広がり角度αは、以下の条件を満たすようにしている。
α/2<(θ+φ)・・・(1a)
α/2<tan−1(d*cosθ/D)・・・(1b)
ここで(1a)は、横方向から見て(図7(イ))、燃料噴霧が点火プラグ11に直接被らないための条件である。(1b)は、縦方向から見て(図7(ロ))、燃料噴霧の広がり角度αが、キャビティ12の径dの範囲を超えないときの条件である。
【0023】
また、噴霧のペネトレーションPは、噴霧の先端部がキャビティ12の軸中心からキャビティ12の排気側の外縁部までの範囲内であることから、次の範囲内に設定される。
(D−d)/(2*cosθ)<P<(D+d)/(2*cosθ)・・・(2)
これらの条件を満たすようにすれば、噴霧がキャビティ12の範囲内に噴射され、図5に示すように、大径スワール流の内側に円筒形状の上昇流が形成された際に適正な混合気が形成され、点火プラグ11近傍に混合気を運搬することができる。そして、大径スワール流と小径スワール流との間に形成されるエアカーテンによって、エアカーテンの外側(大径スワール流)は空燃比がリーン(酸素過剰状態)の状態、エアカーテンの内側(小径スワール流)は空燃比がリッチ(燃料過剰状態)の状態にすることができる。
【0024】
次に、燃料の噴射タイミング、特に噴射終了時期について図8と図9とを用いて説明する。
図8は、燃料噴射終了時期の状態を示す図であり、(イ)はインジェクタ13から噴射される燃料噴霧を示す図、(ロ)はシリンダの水平方向からキャビティ12の吸気側の外縁部までの角度を示す図である。図9は、インジェクタ13の燃料噴射タイミングを示す図である。なお、図中のTDCは上死点、BDCは下死点を示す。
【0025】
燃料噴射タイミングについて、インジェクタ13の燃料噴射の開始時期は、図9のA点で示す吸気バルブ6の閉時期以降である。これは燃料が噴射されるときに、シリンダ内に大径と小径との水平なスワール流が発生していなければならず、仮に吸気バルブ6が開いた状態で燃料噴射した場合には、スワール流が傾いた状態で形成されてしまうために、所望の状態での燃焼運転が行えなくなるためである。
【0026】
一方、インジェクタ13の燃料噴射の終了時期は、図8(イ)に示す通り、燃料噴霧の下端部がキャビティ12の吸気側の外縁部に干渉する直前の時期である。これは、噴霧がキャビティ12の吸気側の外縁部に当たると、所望の状態で混合気が形成されないために、燃費が低下するためである。
これを図8(ロ)に示すように、噴霧の下端部がキャビティ12の吸気側の外縁部の点Tに干渉する時までピストン4が上昇したとき、インジェクタ13の先端から点Tまでの線とシリンダの水平方向の線との角度をβ(IT)とすると、インジェクタ13の取り付け角θ、噴霧の広がり角度αとの関係は次のようになる。
【0027】
θ+α/2<β(IT)・・・(3)
すなわち、図9のB点はこの境界点(θ+α/2=β(IT))を示しており、この直前までに燃料噴射が行われる。
燃料噴射が終了した後は、ピストン4が上死点に向けて移動し、圧縮を行う。この時、図5に示すように、吸気した空気によって形成された大径スワール流と小径スワール流とが維持され、2つのスワール流の圧力分布差によって生じる円筒形状の上昇流が形成され、且つ燃料噴射によってキャビティ12の範囲内に燃焼に適した混合気が点火プラグ11近傍に運搬される。
【0028】
図10は、燃焼を行っている状態を示す図である。点火プラグ11の近傍に運搬された混合気は燃焼に適した状態となっている。そして、コントロールユニットによって点火時期が定められた点火プラグ11が、この混合気に着火して燃焼を行う。燃焼した後には排気バルブ8を開いて排気通路9から排気を排出し、吸気バルブ6を開いて吸気通路7から空気を導入して上述した行程を繰り返す。
【0029】
本実施形態によれば、吸気通路7に設けられて、シリンダ内にスワール流を生成するスワール流生成手段(スワール制御弁)10を備える一方、キャビティ12は、その内部にスワール流生成手段10により燃焼室5内に形成されるスワール流より小径のスワール流を形成し、かつ2つのスワール流の圧力分布差により、円筒形状の上昇流を発生させる、点火プラグ11に対応する位置に中心を持つ略円形状であり、インジェクタ13は、その燃料噴霧が円筒形状の上昇流の内側を指向し、かつ到達するようなペネトレーションを有する。このため、高回転領域においても安定した成層混合気が形成でき、燃焼効率のより適正な点火時期を設定することができ、且つスモークやHCの発生を抑えることができる。
【0030】
また本実施形態によれば、インジェクタ13の燃料噴射開始時期は、吸気バルブ6の閉時期以降とした。このため、シリンダ内に2つの水平なスワール流を形成することができ、これらの圧力差によって円筒形状の上昇流を発生させ、燃焼に適切な混合気を点火プラグ11近傍に形成することができる。
また本実施形態によれば、噴霧のペネトレーションは、式(1a),(1b),(2)により、筒内ボア径Dに対して所定量とした。このため、噴霧をエアカーテン内に十分に納められるペネトレーションにすることができる。
【0031】
次に第2の実施形態として、シリンダ内のボア径Dに対するピストン4のキャビティ12の外縁部の直径dと、ボア径Dに対するキャビティ12の深さkとの関係について図4と図11〜図14とを用いて説明する。
図4(ロ)に示す通り、小径スワール流と大径スワール流との圧力分布差によって、キャビティ12の範囲内に発生する上昇流の強さが決まる。どの程度の圧力分布差と上昇流とが生じるかは、シリンダ内のボア径Dに対するキャビティ12の直径dの大きさが影響を与える。
【0032】
本実施形態において、シリンダ内のボア径Dとキャビティ12の直径dとは、次の関係を満たすようにする。
0.5≦d/D≦0.6・・・(4)
これは点火時における点火プラグ11近傍の成層混合気濃度の可燃範囲を空燃比で10〜14.4の範囲とし、成層時における外側の平均空燃比を40とし、キャビティ12内の体積v、シリンダ全体の体積Vとした場合に、次の関係が得られる。
【0033】
(10/40)V≦v≦(14.4/40)V・・・(4a)
これをシリンダ全体の体積Vに対するキャビティ12内の体積vで表すと次のようなる。
1/4 ≦ v/V ≦ 9/25・・・(4b)
この関係をピストン4の直径Dとキャビティ12の直径dとの関係から求めると次のように表せる。
【0034】
(1/2)≦(d/D)≦(3/5)・・・(4c)
この関係から前述の(4)の関係が得られる。
次に、この関係を図12と図13とを用いて説明する。図12は、シリンダ内に大径スワール流と小径スワール流とが発生している場合の、シリンダ軸中心からの圧力分布を示す図であり、キャビティ12の外縁部の直径dの異なるピストン4での圧力分布を示す図である。図13は、2つのスワール流が発生しているときの上昇流を生成する圧力差比と、ボア径Dとキャビティ12の径dとの比との関係を示す図である。なお圧力差比とは、従来のウォールガイドのスワール時での上昇流を生成する圧力差を100%としたときの圧力差の割合を示している。
【0035】
図13において、圧力差比が64%以上のとき、すなわちスワール流の弱化時の圧力差比が36%減少した状態までは燃焼の安定性が確保できていることが分かっている。この時のキャビティ12の径dとボア径Dとの比(d/D)は0.6であり、これ以下の値であれば、すなわちキャビティ12の径dが小さければ安定した状態で燃焼が行うことができる。従って、安定した燃焼が確保できるボア径Dとキャビティ12の径dとは次の関係を満たすようにする。
【0036】
d/D≦0.6・・・(5)
次に、キャビティ12の深さkと小径スワール流との関係について図14を用いて説明する。図14の関係は実験によって求められ、横軸はキャビティ12の深さkと径dとの比(k/d)、縦軸は深さkと径dとの比(k/d)が0.4のときに小径スワール流の速度を1とした比を示す。
【0037】
図示の通り、安定した燃焼を行う最低限度は、小径スワール流の速度比(縦軸の値)が0.7のときであり、確実に安定した燃焼を行うには深さkと径dとの比(k/d)が約0.2以上であることが必要である。すなわち、次の関係が必要である。
k/d≧0.2・・・(6)
この条件を満たせばシリンダ内においてピストン4のキャビティ12から点火プラグ11へ向かう円筒形状の上昇流が発生することを示している。
【0038】
本実施形態によれば、キャビティ12の径dと深さkとは、式(4)によりシリンダ内ボア径Dに対して所定量とした。このため、シリンダ内に適度な強度のエアカーテンを形成することができ、成層混合気を形成することができる。
次に第3の実施形態として、キャビティ12の形状と、ピストン4のキャビティ12の外縁部の高さとを変えた場合について、図15を用いて説明する。
【0039】
図15(イ)において、キャビティ12は、中心部に山形の凸部12aが形成され外周側は窪んでいる略ドーナツ形状をしている。図15(ロ)では、キャビティ12は、中心部に略テーパーのある円柱状の凸部12bが形成され外周側は窪んでいる略ドーナツ形状をしている。
本実施形態によれば、キャビティ12は、中心部に凸部(12aまたは12b)が設けられ外周側で窪む略ドーナツ形状とした。このため、キャビティ12内の小径スワール流の流速を強め、十分な強度のエアカーテンを形成し、キャビティ12内に成層混合気を形成することができる。
【0040】
また本実施形態によれば、キャビティ12の底から外縁部までの高さは、吸気側の高さhに対して排気側の高さHの方を高くしている。すなわち、次の関係となっている。
H>h・・・(7)
このため、キャビティ12内でのスワール流の形成が良好となり、燃焼に適切な混合気が形成されて点火プラグ11近傍に運搬されるために、安定した燃焼を行うことができる。
【0041】
次に第4の実施形態として、点火プラグ11の先端部の位置について図16を用いて説明する。図16は、ピストン4が上死点にある状態を示している。
燃焼室5の上端部から点火プラグ11の点火位置までの距離をL1、点火位置からピストン4が上死点にあるときのキャビティ12の底までの距離をL2とした場合に、L1とL2とが略等しくなるように点火プラグ11を配置する。すなわち、次の関係となる。
【0042】
L1≒L2・・・(8)
なお、この時、キャビティ12の凸部12aが点火プラグ11と当たらないようにする。
本実施形態によれば、点火プラグ11の先端部は、ピストン4が上死点の位置にある場合に、キャビティ12内に入るように突き出している。このため、成層混合気の中心付近で点火できることにより、安定した燃焼を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る直噴火花点火式内燃機関を示す図
【図2】スワール流が発生している状態を示す図
【図3】スワール制御弁の開閉する領域を示す図
【図4】大径と小径とのスワール流の圧力分布を示す図
【図5】上昇流が発生している状態を示す図
【図6】噴霧のペネトレーションを示す図
【図7】噴霧の噴霧角とペネトレーションとの条件を示す図
【図8】燃料噴射終了時期の状態を示す図
【図9】インジェクタの燃料噴射タイミングを示す図
【図10】燃焼を行っている状態を示す図
【図11】ボア径、キャビティの径、キャビティの深さを示す図
【図12】スワール流とが発生している場合の圧力分布を示す図
【図13】スワール流が発生しているときの上昇流を生成する圧力差比と、ボア径とキャビティの径との比との関係を示す図
【図14】キャビティの深さと小径スワール流との関係を示す図
【図15】キャビティの形状と、ピストンのキャビティの外縁部の高さとを変えた場合の図
【図16】点火プラグの先端部の位置を示す図
【符号の説明】
1 直噴火花点火式内燃機関
2 シリンダヘッド
3 シリンダブロック
4 ピストン
5 燃焼室
6 吸気バルブ
7 吸気通路
8 排気バルブ
9 排気通路
10 スワール制御弁
11 点火プラグ
12 キャビティ
12a、12b 凸部
13 インジェクタ

Claims (8)

  1. 燃焼室上部の略筒内軸中心に点火プラグを有し、ピストン上面にキャビティを有し、燃焼室の吸気側の側部より斜め下向きに燃料を噴射するインジェクタを有する直噴火花点火式内燃機関において、
    吸気通路に設けられて、筒内にスワール流を生成するスワール流生成手段を備える一方、
    前記キャビティは、その内部に前記スワール流生成手段により燃焼室内に形成されるスワール流より小径のスワール流を形成し、かつ2つのスワール流の圧力分布差により、円筒形状の上昇流を発生させる、点火プラグに対応する位置に中心を持つ略円形状であり、
    前記インジェクタは、その燃料噴霧が前記円筒形状の上昇流の内側を指向し且つ到達するようなペネトレーションを有することを特徴とする直噴火花点火式内燃機関。
  2. 前記インジェクタの燃料噴射開始時期は、吸気バルブの閉時期以降であることを特徴とする請求項1記載の直噴火花点火式内燃機関。
  3. 前記インジェクタの燃料噴射終了時期は、噴霧の下端部が前記キャビティの外縁部に当たらない時期にすることを特徴とする請求項1または請求項2記載の直噴火花点火式内燃機関。
  4. 前記キャビティの径と深さとは、筒内ボア径に対して所定量とすることを特徴とする請求項1〜請求項3のいずれか1つに記載の直噴火花点火式内燃機関。
  5. 前記キャビティは、中心部に凸部が設けられ外周側で窪む略ドーナツ形状であることを特徴とする請求項1〜請求項4のいずれか1つに記載の直噴火花点火式内燃機関。
  6. 前記噴霧のペネトレーションは、筒内ボア径に対して所定量とすることを特徴とする請求項4記載の直噴火花点火式内燃機関。
  7. 前記キャビティの外縁部の高さは、吸気側に対して排気側の方が高いことを特徴とする請求項1〜請求項6のいずれか1つに記載の直噴火花点火式内燃機関。
  8. 前記点火プラグは、前記ピストンが上死点の位置にある場合に、前記キャビティ内に入るように突き出していることを特徴とする請求項1〜請求項7のいずれか1つに記載の直噴火花点火式内燃機関。
JP2002231195A 2002-08-08 2002-08-08 直噴火花点火式内燃機関 Expired - Fee Related JP4122890B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002231195A JP4122890B2 (ja) 2002-08-08 2002-08-08 直噴火花点火式内燃機関

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002231195A JP4122890B2 (ja) 2002-08-08 2002-08-08 直噴火花点火式内燃機関

Publications (2)

Publication Number Publication Date
JP2004068746A true JP2004068746A (ja) 2004-03-04
JP4122890B2 JP4122890B2 (ja) 2008-07-23

Family

ID=32017034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002231195A Expired - Fee Related JP4122890B2 (ja) 2002-08-08 2002-08-08 直噴火花点火式内燃機関

Country Status (1)

Country Link
JP (1) JP4122890B2 (ja)

Also Published As

Publication number Publication date
JP4122890B2 (ja) 2008-07-23

Similar Documents

Publication Publication Date Title
JP4280928B2 (ja) 直接噴射火花点火内燃機関
JP4722129B2 (ja) 筒内噴射式火花点火内燃機関
KR100941193B1 (ko) 통내 분사형 불꽃 점화식 내연기관
JP2002201946A (ja) 筒内直接燃料噴射式火花点火エンジン
JP2002188447A (ja) 筒内直接噴射式内燃機関
JPH07119507A (ja) 筒内噴射式火花点火機関
JP4069750B2 (ja) 筒内直噴火花点火式内燃機関
JP2002295260A (ja) 火花点火式直噴エンジン
JP2000104551A (ja) 直接噴射ガソリンエンジン
JP2000170537A (ja) 筒内噴射式エンジン
KR100579065B1 (ko) 통내분사식 내연기관 및 그의 점화제어방법
JPH07102976A (ja) 筒内噴射式火花点火機関
JP2007162631A (ja) 内燃機関の制御装置
JP5006905B2 (ja) 筒内噴射式火花点火内燃機関
JP3767125B2 (ja) 筒内噴射式内燃機関のピストン
JPWO2002020957A1 (ja) 筒内噴射式火花点火機関
JP4122890B2 (ja) 直噴火花点火式内燃機関
JP2004162577A (ja) 筒内噴射式火花点火内燃機関
JPH11210472A (ja) 筒内直噴式火花点火エンジンの燃焼室構造
JP2004332554A (ja) 直憤式火花点火機関
JP4134735B2 (ja) 筒内直噴火花点火式内燃機関の制御装置
JP3622498B2 (ja) 筒内噴射式火花点火機関
JP2005155395A (ja) 筒内直接噴射式内燃機関
JP2004316568A (ja) 筒内直接噴射式内燃機関
JPH10339145A (ja) 筒内直接噴射式火花点火エンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080408

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080421

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees