JP2004053785A - 多心光ファイバのモードフィールド径拡大方法および拡大装置 - Google Patents

多心光ファイバのモードフィールド径拡大方法および拡大装置 Download PDF

Info

Publication number
JP2004053785A
JP2004053785A JP2002209140A JP2002209140A JP2004053785A JP 2004053785 A JP2004053785 A JP 2004053785A JP 2002209140 A JP2002209140 A JP 2002209140A JP 2002209140 A JP2002209140 A JP 2002209140A JP 2004053785 A JP2004053785 A JP 2004053785A
Authority
JP
Japan
Prior art keywords
optical fiber
burner
core optical
field diameter
mode field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002209140A
Other languages
English (en)
Other versions
JP3948360B2 (ja
JP2004053785A5 (ja
Inventor
Eiichiro Yamada
山田 英一郎
Kazuto Saito
斎藤 和人
Mitsuaki Tamura
田村 充章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002209140A priority Critical patent/JP3948360B2/ja
Publication of JP2004053785A publication Critical patent/JP2004053785A/ja
Publication of JP2004053785A5 publication Critical patent/JP2004053785A5/ja
Application granted granted Critical
Publication of JP3948360B2 publication Critical patent/JP3948360B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】多心光ファイバをTEC処理する一括加熱で、光ファイバの所定範囲を均一に加熱することができる多心光ファイバのモードフィールド径拡大方法および拡大装置を提供する。
【解決手段】複数の光ファイバを平行一列に並べた多心光ファイバ11をバーナ17で一括加熱することにより、コア部に添加されているドーパントを熱拡散させる多心光ファイバのモードフィールド径拡大方法であって、多心光ファイバ11の両側に火炎巻き込み防止部材16を配置して加熱する。また、バーナ17には、加熱面に多心光ファイバの軸方向に複数個のガス噴出口18を配列するとともに複数個のガス噴出口18を光ファイバの軸方向と平行に複数列配列した形状のものが用いられる。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、多心光ファイバをバーナで一括加熱することにより、コア部に添加されているドーパントを熱拡散させて、多心光ファイバのモードフィールド径を拡大する方法および装置に関するものである。
【0002】
【従来の技術】
近年、波長多重伝送用光ファイバやラマン増幅用光ファイバ等のモードフィールド径を小さくした高機能光ファイバを、モードフィールド径(他に、「コア径」で表現する場合もある)が比較的大きい通常のシングルモード光ファイバと組合わせたハイブリッド光ファイバの開発が進められている。
【0003】
光ファイバのモードフィールド径が異なる前記の高機能光ファイバと、通常のシングルモード光ファイバの接続では、単に融着接続したのみでは実用的な接続損失が得るのが難しい。このため、融着接続部を追加加熱処理して、コア部のドーパントをクラッド部側に熱拡散させ、接続部のモードフィールド径を一致させて滑らかな接続形状にする方法(Thermally−diffused Expanded Core、以下、TECという)が知られている(例えば、特許2618500号公報参照)。
【0004】
また、光ファイバ内に誘電体多層膜フィルタを挿入した光部品あるいは光コネクタ部品で、光ファイバ端のモードフィールド径が小さいと接続損失が増加する傾向がある。このため、光が出入りする光ファイバ端を部分的にTEC処理して、光ファイバ端のモードフィールド径を部分的に拡大することが知られている(例えば、特開平2―266307号公報、特開平4―69604号公報参照)。
【0005】
図11は上述のTEC処理の一例を示す図である。図11(A)は、モードフィールド径の異なる光ファイバ同士を融着接続した後にTEC処理する例を示す図、図11(B)は、光ファイバの中間部分をTEC処理してモードフィールド径を拡大しフィルタを形成する例を示す図である。図中、1a,1bは光ファイバ、2はガラスファイバ部(クラッド部)、3a,3bはコア部、4はファイバ被覆部、5は融着接続部、6はバーナ、7はモードフィールド径拡大部、8は誘電体多層膜フィルタ、9は基板、10は接着樹脂を示す。
【0006】
互いに融着接続される光ファイバ1aと1bは、ガラスファイバ部(クラッド部)2の外径は同じであるが、コア部3aと3bのモードフィールド径(上記公報ではコア径としている)およびその比屈折率差が異なる。光ファイバ1aと1bは、接続端面を対向配置させた後、アーク放電等により接続端面を溶融して突合せ融着接続される。単に融着接続しただけでは、図11(A)に示すように融着接続部5において、光ファイバ1aのコア部3aと光ファイバ1bのコア部3bとのモードフィールド径の違いにより、接続が不連続となり接続損失が大きくなる。
【0007】
これを改善するために、燃焼ガスを用いたマイクロトーチまたはバーナ6で、融着接続部5の近傍を追加加熱しTEC処理する。この加熱は、光ファイバ1a,1b自身は溶融しないが、コア部3a,3bに添加されている屈折率を上げるドーパントがクラッド部側に熱拡散する温度と時間で行なわれる。この加熱により、コア部3a,3bに添加されているドーパントがクラッド部2側に熱拡散して、コア部3a,3bの融着接続部におけるモードフィールド径が拡大され、拡大部7で示すように滑らかな接続形状が得られる。
【0008】
なお、モードフィールド径が小さくドーパント濃度が高い方の光ファイバ1aは、モードフィールド径が大きくドーパント濃度が低い方の光ファイバ1bより、ドーパントが多く熱拡散する。したがって、光ファイバ1a側のモードフィールド径が、光ファイバ1b側より大きくテーパ状に拡大されて、不連続状態を軽減する。このような異種光ファイバ同士を融着接続する場合は、上述したTEC処理を行なうことで、モードフィールド径の小さい光ファイバを、他方の光ファイバのモードフィールド径に徐々に近づけ、接続損失を低減できることが明らかになっている。
【0009】
また、図11(B)に示すように、光ファイバ1aの中間部分を予め加熱してTEC処理しておき、モードフィールド径拡大部7を形成しておく。この後、TEC処理した部分を基板9に接着樹脂10で接着固定し、モードフィールド径拡大部7の中央部分に回転砥石等で所定幅の切り込みを入れ、この切り込み部分に誘電体多層膜フィルタ8を挿着することにより、損失を低減したフィルタ収納光ファイバとすることができる。また、モードフィールド径拡大部7の中央部分で分断して、その端部を光コネクタフェルールに挿着することにより、接続端のモードフィールド径を拡大した光コネクタを形成することができる。
【0010】
さらに、モードフィールド径を拡大した切断端部に、モードフィールド径が大きい光ファイバ1bを機械的接合あるいは融着することにより、モードフィールド径に一致させた状態で接続することができる。この場合も、モードフィールド径の違いにより、接続が不連続となり接続損失が大きくなるのを低減することができる。さらに、このような加熱によるTEC処理は、同種の光ファイバ同士の接続でも、融着接続部分のコア径を拡大して偏心等による接続損失を低減することに有効であることが知られている(例えば、特開昭61−117508号公報参照)。
【0011】
【発明が解決しようとする課題】
上述のTEC処理は、通常、マイクロトーチまたはバーナを用いて行なわれ、所定領域を加熱するために光ファイバの軸方向に、マイクロトーチを相対移動させている。また、複数個のマイクロトーチまたはバーナを対向配置して光ファイバを加熱している。さらに、平行一列に並べた多心の光ファイバを同時に加熱するために、光ファイバの配列方向に複数のマイクロトーチまたはバーナを配置する例(例えば、特許第2693649号公報参照)が知られている。また、多心テープファイバの幅寸法に対応した形状のものを用いる例(特開平8−82721号公報参照)も知られている。
【0012】
TEC処理は、光ファイバの所定領域におけるコア部のドーパントがクラッド部に熱拡散するのに適切な温度と時間で加熱する必要がある。光ファイバ融点以下で加熱されるが、加熱が適切に行なわれないと、加熱部分が軟化して光ファイバの自重で弛みを生じることがある。弛みによる変形が残ると損失増加の一因となる。
【0013】
また、バーナの火炎は、不均一な温度分布と広がりを有し、また、外部環境により炎にゆらぎが生じ、一定した加熱状態に管理するのが難しい。特に、8心、12心、24心といった多心光ファイバを一括して加熱処理する場合、バーナの火炎は、多心光ファイバを外側から包み込むような状態となる。このため、外側に配列された光ファイバは、内側に配列された光ファイバより加熱量が多くなり均一に加熱されない。この結果、多心光ファイバの外側と内側でTEC処理に差が生じ、各光ファイバの接続損失が一様に低減されず、バラツキが生じるというような問題がある。
【0014】
TEC処理における上記のような問題に対して、加熱用のバーナの構成が大きく影響する。しかし、上述した従来のバーナは、いずれも加熱範囲が限定的であり、多心光ファイバを均一に加熱するのが難しく、また、所望の温度分布を得るのが難しい。
【0015】
本発明は、上述した実情に鑑みてなされたもので、多心光ファイバをTEC処理する一括加熱で、光ファイバの所定範囲を均一に加熱することができる多心光ファイバのモードフィールド径拡大方法および拡大装置を提供することを課題とする。
【0016】
【課題を解決するための手段】
本発明の多心光ファイバのモードフィールド径拡大方法は、複数の光ファイバを平行一列に並べた多心光ファイバをバーナで一括加熱することにより、コア部に添加されているドーパントを熱拡散させる多心光ファイバのモードフィールド径拡大方法であって、多心光ファイバの両側に火炎巻き込み防止部材を配置して加熱することを特徴とする。
【0017】
また、本発明の多心光ファイバのモードフィールド径拡大装置は、複数の光ファイバを平行一列に並べた多心光ファイバをバーナで一括加熱することにより、コア部に添加されているドーパントを熱拡散させる多心光ファイバのモードフィールド径拡大装置であって、多心の光ファイバの両側に位置するように火炎巻き込み防止部材を配設したことを特徴とする。バーナは、加熱面に光ファイバの軸方向に複数個のガス噴出口が配列されるとともに複数個のガス噴出口が前記光ファイバの軸方向と平行に複数列配列されている。
【0018】
【発明の実施の形態】
図1により本発明の概略を説明する。図1(A)はTEC処理の加熱方法の概略を説明する図、図1(B)はバーナの上向き加熱形態を示す図、図1(C)はバーナの下向き加熱形態を示す図である。図中、11は多心光ファイバ、11aは中央側の光ファイバ、11bは両端の光ファイバ、12は裸ファイバ部、13はファイバ被覆部、14は融着接続部、15は光ファイバの加熱領域(TEC領域)、16は火炎巻き込み防止部材、17はバーナ、18はガス噴出口、19はファイバフォルダ、20はファイバクランプを示す。
【0019】
本発明で対象とする多心光ファイバ11とは、複数本の単心光ファイバ心線を平行一列に並べた形態、および、予め複数本の単心光ファイバ心線を平行一列に並べて共通被覆で一体化した形態の光ファイバテープ心線である。多心光ファイバ11は、例えば、融着接続に引き続いて融着接続部14をTEC処理するために、図1(A)に示すような形態でモードフィールド径拡大装置にセットされる。前記装置は、バーナ17、ファイバフォルダ19、ファイバクランプ20を備えている。バーナ17は、図1(B)に示すように多心光ファイバ11の下側に配置し、多心光ファイバ11に向けて上向きに加熱する形態と、図1(C)に示すように多心光ファイバ11の上側に配置し、多心光ファイバ11に向けて下向きに加熱する形態とすることができる。
【0020】
TEC処理を行なう場合、先ず、多心光ファイバ11の融着接続部14がバーナ17の中心に位置するようにファイバクランプ20で多心光ファイバ11の両側を固定する。ファイバクランプ20に引張り力を加え、多心光ファイバ11に適度の張力を付与した後、張力を付与した状態で内側のファイバフォルダ19によりファイバ被覆部13の端部を固定し、次いで、ファイバクランプ20に加えた前記張力を解放する。この張力付与により、加熱中に多心光ファイバが弛まないようにすることができる。
【0021】
本発明で使用するバーナ17は、図1(B)に示すように、多心光ファイバ11の軸方向(長手方向)に複数個のガス噴出口18を配列するとともに、このガス噴出口18の列を光ファイバの軸方向と平行に複数列配列して構成される。軸方向に配列するガス噴出口18の数および配列長は、多心光ファイバ11の所定の加熱領域(TEC領域)15をカバーする範囲で設けることができる。また、軸方向と平行に設ける配列数は、加熱する多心光ファイバ11の心線数やファイバ間隔によって、適宜増減させることができる。さらに、複数個のガス噴出口18の配列パターンを変えることにより、任意の加熱温度分布とすることも可能である。
【0022】
本発明では、前記のバーナ17で、多心光ファイバ11の配列方向の両側に火炎巻き込み防止部材16を配置して加熱することを特徴としている。この火炎巻き込み防止部材16は、例えば、多心光ファイバ11の両端の光ファイバ11bにファイバ間隔程度に近接して平行に配置される。この火炎巻き込み防止部材16は、例えば、金属、ガラス、セラミック等の各種の耐熱材で形成されたロッド形状のものが用いられる。好ましくは、光ファイバと熱伝導等が近いガラス、セラミック材で形成したものがよい。
【0023】
図1(B)の例のように、バーナ17を多心光ファイバ11の下面側に位置させ上向きで加熱する場合、バーナ火炎は多心光ファイバ11の中央側から外側に向かい、両端を巻き込むようにして生じる。したがって、火炎巻き込み防止部材16がない場合、両端の光ファイバ11bは中央側の光ファイバ11aより多い加熱量で加熱されることになる。しかし、上記のように、両端の光ファイバの外側に近接して火炎巻き込み防止部材16を平行に配置することにより、両端の光ファイバ11bへのバーナ火炎の巻き込みが緩和され、中央側光ファイバ11aの加熱量との差を小さくすることができる。
【0024】
図1(C)の例のように、バーナ17を多心光ファイバ11の上面側に位置させ下向きで加熱する場合、図1(B)の上向き加熱よりバーナ火炎の両端での巻き込みは軽減される。しかし、バーナ火炎は、多心光ファイバ11の中央側から外側に向かい、同様に両端の光ファイバ11bを巻き込むように生じる。このため、図1(B)の場合と同様に、火炎巻き込み防止部材16がない場合、両端の光ファイバ11bは中央側の光ファイバ11aより多い加熱量で加熱されることになる。したがって、両端の光ファイバ11bの外側に近接して火炎巻き込み防止部材16を平行に配置することにより、両端の光ファイバ11bへのバーナ火炎の巻き込みが緩和され、中央側の光ファイバ11aの加熱量との差を小さくすることができる。
【0025】
バーナ17は軸方向に複数個のガス噴出口18を配列した構成であるので、多心光ファイバの所定範囲を加熱することができ、従来のように軸方向に移動させる必要はない。しかし、バーナ17を多心光ファイバ11の軸方向(長手方向)に後述する揺動機構により揺動させることにより、加熱範囲を拡大してTEC領域を拡大することができる。また、揺動速度等を制御することにより、軸方向に均一な温度分布で加熱したりTEC領域のテーパ形状を調整することもできる。
【0026】
なお、本発明によるモードフィールド径拡大のための加熱方法は、図11(A)に示した多心光ファイバの融着接続部のTEC処理、および、図11(B)に示した多心光ファイバ中間部のTEC処理のいずれにも適用することができる。
【0027】
図2は、本発明に用いられるバーナの一例を示す図で、図2(A)は上面図、図2(B)はa−a断面図、図2(C)は右側面図である。図中、17はバーナ、17aは加熱面、17bはバーナ本体、17cはガス導入室、17dはガス導入ポート、18はガス噴出口を示す。
【0028】
バーナ17は耐熱性の金属等で、例えば、1cm以下の立方体形状で形成され、バーナ本体17bにガス導入ポート17dを取付けて構成される。なお、バーナ17の大きさは、多心光ファイバの心数等によって異なり、特に1cm以下に限定されるものではない。バーナ本体17bの内部は、ガス導入室17cで形成され、光ファイバを加熱する加熱面17aには、上述した複数個のガス噴出口18がガス導入室17cに連通して設けられる。ガス噴出口18は、例えば、直径0.3mm程度の孔で、0.7mm〜1.0mm程度のピッチで光ファイバの軸方向および軸方向に直交する方向にマトリックス状に設けられる。
【0029】
図3は第1の実施の形態を示し、火炎巻き込み防止部材に光ファイバを用いた例を示す。図3(A)は別途用意した光ファイバを炎巻き込み防止部材として用いる例を示す図、図3(B)は多心光ファイバの両端の光ファイバを火炎巻き込み防止部材とする例を示す図、図3(C)は加熱状態を示す図である。図中の符号は、図1で用いたのと同じ符号を用いることにより説明を省略する。
【0030】
図3(A)において、多心光ファイバ11は、ファイバ被覆部13の端部をファイバフォルダ19(押さえ部材を省略して示している)で固定され、モードフィールド径の拡大を行なおうとする裸ファイバ部12の中心部にバーナ17を配してセットされる。火炎巻き込み防止部材16には短い単心のダミーファイバを使用し、両端の光ファイバ11bに近接して配置する。なお、バーナ17は、図では多心光ファイバ11の下側に配した上向き加熱の例を示したが、上側に配して下向き加熱としてもよい。
【0031】
図3(B)においては、図3(A)と同様に多心光ファイバ11をファイバフォルダ19で固定するが、多心光ファイバ11の両端の光ファイバを火炎巻き込み防止部材16として使用する。したがって、図3(A)のように、火炎巻き込み防止部材16としての単心のダミーファイバを別途準備する必要がない。しかし、多心光ファイバ11の両端の光ファイバ11bは、1つ内側の光ファイバとなり、実際の両端の光ファイバは、光信号の伝送には使用しないダミーファイバとして扱うこととなる。
【0032】
図3(C)は、従来の加熱状態と本発明の加熱状態の違いを示す図である。(イ)図は、従来の上向き加熱の例で、両端の光ファイバ11bにはバーナ火炎が巻き込み、内側の光ファイバ11aより強く加熱され、内側と両側の光ファイバで加熱が不均一となり、TEC処理に差が生じる。(ロ)図は、従来の下向き加熱の例であるが、(イ)図の上向き加熱に比べて両端の光ファイバ11bへのバーナ火炎の巻き込みが少なく、加熱の不均一は軽減される。しかし、両端の光ファイバ11bは内側の光ファイバ11aより強く加熱されることに変わりはない。
【0033】
(ハ)図は、本発明による図3(A)および図3(B)で示した両端の光ファイバ11bに近接して、ダミーファイバの火炎巻き込み防止部材16を配置した上向き加熱の例である。この場合、ダミーファイバの火炎巻き込み防止部材16により、両端の光ファイバ11bに対するバーナ火炎の巻き込みが緩和され、内側と両側の光ファイバにおける加熱の不均一を緩和することができる。(ニ)図は、本発明による下向き加熱の例で、上記(ハ)図の上向き加熱の場合より、さらに加熱の不均一を軽減することができる。
【0034】
図4および図5は第2の実施の形態を示し、火炎巻き込み防止部材にロッド形状のものを用いる例を示す。図4(A)は火炎巻き込み防止部材をファイバフォルダと一体的に設ける例を示す図、図4(B)は火炎巻き込み防止部材をファイバフォルダに着脱可能に設ける例を示す図、図4(C)は火炎巻き込み防止部材をバーナと一体的に設ける例を示す図、図5(A)は加熱状態を示す図、図5(B)は火炎巻き込み防止部材の各種の形状例を示す図である。図中の符号は、図1で用いたのと同じ符号を用いることにより説明を省略する。
【0035】
図4(A)においては、ロッド形状の火炎巻き込み防止部材16がファイバフォルダ19の一方に一体的に設けられている。多心光ファイバ11のモードフィールド径の拡大を行なおうとする裸ファイバ部12を、ファイバフォルダ19で固定したとき、両端の光ファイバ11bに近接して火炎巻き込み防止部材16が自動的に配置される。加熱時には、両端の光ファイバ11bに対するバーナ火炎の巻き込みを自動的に緩和することができる。
【0036】
図4(B)においては、ロッド形状の火炎巻き込み防止部材16がファイバフォルダ19に着脱可能に設けられている。多心光ファイバ11のモードフィールド径の拡大を行なおうとする裸ファイバ部12を、ファイバフォルダ19で固定するとともに、両端の光ファイバ11bに近接して火炎巻き込み防止部材16を必要に応じて配置固定する。加熱時には、両端の光ファイバ11bに対するバーナ火炎の巻き込みを緩和することができる。
【0037】
図4(C)においては、ロッド形状の火炎巻き込み防止部材16が支持アーム16aを介してバーナ17と一体的に設けられている。多心光ファイバ11のモードフィールド径の拡大を行なおうとする裸ファイバ部12を、ファイバフォルダ19で固定した後、バーナ17を所定位置に移動させることにより、両端の光ファイバ11bに近接して火炎巻き込み防止部材16が自動的に配置される。加熱時には、両端の光ファイバ11bに対するバーナ火炎の巻き込みを自動的に緩和することができる。
【0038】
図5(A)は、本発明によるロッド形状の火炎巻き込み防止部材16を用いた際の加熱状態を示し、(イ)図は上向き加熱の例を示し、(ロ)図は下向き加熱の例を示している。何れの例においても、両端の光ファイバ11bに近接して配置したロッド形状の火炎巻き込み防止部材16により、両端の光ファイバ11bに対するバーナ火炎の巻き込みが緩和され、内側と両側の光ファイバにおける加熱の不均一を緩和することができる。なお、(ロ)図の下向き加熱の場合、(イ)図の上向き加熱の場合より、両端へのバーナ火炎の巻き込みが少なく、さらに加熱の不均一を軽減することができる。
【0039】
図5(B)は、ロッド形状の火炎巻き込み防止部材16に、各種形状のものが用いられる例を示す図である。(イ)図は断面が円形の例を示し、(ロ)図は断面が矩形の例を示し、(ハ)図は断面が三角形の例を示し、(ニ)図は断面が菱形の例を示している。何れの形状においても、加熱される光ファイバ断面積以上の断面積を有し、両端の光ファイバ11bに対するバーナ火炎の巻き込みを緩和し、内側と両側の光ファイバの加熱の不均一を軽減して、TEC処理に差が生じないようにすることができる。
【0040】
図6は第3の実施の形態を示し、火炎巻き込み防止部材に断面凹形状の基板を用いる例を示す。図6(A)は下向き加熱する例を示す図、図6(B)は火炎巻き込み防止部材を支持基板として使用する例を示す図、図6(C)は加熱状態を示す図である。図中の符号は、図1で用いたのと同じ符号を用いることにより説明を省略する。
【0041】
図6(A)において、火炎巻き込み防止部材16は断面凹形状の基板を用いて形成され、ファイバ被覆部13の一部に跨る軸方向長さを有している。この火炎巻き込み防止部材16は、例えば、多心光ファイバ11の下面側にファイバフォルダ19の下部側に設けた支持アーム(図示せず)等により支持される。多心光ファイバ11のモードフィールド径の拡大を行なおうとする裸ファイバ部12を、ファイバフォルダ19で固定したとき、火炎巻き込み防止部材16の両側突壁16bが両端の光ファイバ11bに近接して配置される。加熱時には、両端の光ファイバ11bに対するバーナ火炎の巻き込みを自動的に緩和することができる。
【0042】
図6(B)は、図6(A)において加熱時に使用した火炎巻き込み防止部材16をそのまま基板として用いる例を示している。加熱処理された裸ファイバ部12は火炎巻き込み防止部材16の平端部に載置されて、接着樹脂21により接着一体化される。加熱が融着接続部のTEC処理である場合、火炎巻き込み防止部材16は、TEC処理後に融着接続部の補強基板として用いられる。また、加熱処理が図11(B)で示したフィルタ形成部である場合、TEC処理後に火炎巻き込み防止部材16を支持基板として接着樹脂21で一体化する。この後、TEC処理された中央部分に切り込みを入れ、この切り込み部分に誘電体多層膜フィルタを挿入する。なお、火炎巻き込み防止部材16をそのまま基板として用いない場合は、軸方向長さを短く形成した形状のものであってもよい。
【0043】
図6(C)は、本発明による火炎巻き込み防止部材16に断面凹形状の基板を用いた際の加熱状態を示し、(イ)図は上向き加熱の例を示し、(ロ)図は下向き加熱の例を示している。何れの例においても、両端の光ファイバ11bに近接して配置した火炎巻き込み防止部材16により、両端の光ファイバ11bに対するバーナ火炎の巻き込みが緩和され、内側と両側の光ファイバにおける加熱の不均一を緩和することができる。なお、(ロ)図の下向き加熱の場合、(イ)図の上向き加熱の場合より、両端へのバーナ火炎の巻き込みが少なく、さらに加熱の不均一を軽減することができる。
【0044】
図7は、モードフィールド径が5.7μmで比屈折率差1.3%の8心の多心光ファイバに対して、一括加熱でTEC処理した一例を示す図である。実線で示すデータは、図3(C−ロ)の火炎巻き込み防止部材を用いず下向き加熱によりTEC処理した場合の拡大されたモードフィールド径である。点線のデータは、図3(C−ニ)の火炎巻き込み防止部材を用いた下向き加熱によりTEC処理した場合の拡大されたモードフィールド径である。
【0045】
多心光ファイバの心線番号を左から1〜8としたとき、火炎巻き込み防止部材を用いない場合は、両端の1番と8番の光ファイバに対する加熱量が大きく、モードフィールド径も2番〜7番の内側の光ファイバに比べてバラツキの差が大きくなっている。一方、火炎巻き込み防止部材を用いた場合は、両端の1番と8番の光ファイバに対するバーナ火炎の巻き込みが軽減され、モードフィールド径が小さくなり、2番〜7番の内側の光ファイバとの差を少なくすることができた。以上の結果から、多心光ファイバの両端の光ファイバに近接して火炎巻き込み防止部材を配置することにより、各心線間でのモードフィールド径の差が±0.5μm以下に軽減することができる。
【0046】
次に、図8,図9,図10により、本発明の具体的なモードフィールド径拡大装置の駆動機構と動作方法について説明する。図8は光ファイバの支持機構を示し、図中、11は多心光ファイバ、12は裸ファイバ部、13はファイバ被覆部、14は融着接続部、19はファイバフォルダ、19aはファイバフォルダ台、20はファイバクランプ、20aはファイバクランプ台、17はバーナ、22はベース台、23は摺動台、24は摺動溝、25は滑車、26は錘、27はエアボンベ、28はエアバルブ、29は配管、30はエア制御装置を示す。図9はバーナの駆動機構を示し、図中、31はバーナ保持部、31aはバーナ保持部台、32は上下方向駆動台、32aは摺動溝、33は保持アーム、33aは保持アーム台、34は前後方向駆動台、34aは摺動溝、35はガイド部、36,37は駆動モータ、38はベース台、39はガスボンベ、40は酸素ボンベ、41は配管、42はガス流量制御弁、43はガス流量制御装置、44は制御装置を示す。図10はバーナの動作フローを示す図である。
【0047】
図8において、多心光ファイバ11のTEC処理を必要とする融着接続部14を、バーナ17の下方に位置するように、多心光ファイバ11のファイバ被覆部13をファイバクランプ20で把持固定する。ファイバクランプ20は、ファイバクランプ台20aに取付けられ、ベース台22に設けられた摺動台23の摺動溝24に沿って、ファイバクランプ台20aと共に摺動可能となっている。ファイバクランプ台20aは、滑車25と錘26により外方向に引張り力が付与されると共に、摺動台23上でエア圧力により移動制御されるようになっている。制御用のエアは、エアボンベ27からエアバルブ28、配管29を経て供給され、エア供給の制御は、エア制御装置30でエアバルブ28を制御して行なわれる。
【0048】
多心光ファイバ11の両側をファイバクランプ20で把持固定した後、ファイバクランプ台20aの移動をフリー状態とすることにより、多心光ファイバ11には、錘26による引張り力が加えられる。この後、多心光ファイバ11に引張り力が加えられた状態で、ファイバフォルダ台19a上に設けられたファイバフォルダ19で、多心光ファイバ11のファイバ被覆部13の端部を把持固定する。ファイバフォルダ19で多心光ファイバ11を固定した後は、エア制御装置30により多心光ファイバ11への引張り力を解放する。
【0049】
多心光ファイバ11が上記の如くにセットされたら、バーナ17の位置調整と加熱が開始される。図9において、バーナ17は、バーナ保持部台31aに設けられたバーナ保持部31に取付け支持されている。バーナ保持部台31aは、駆動モータ36により上下方向駆動台32の摺動溝32aに沿って上下方向(矢印Yで示す)に移動可能とされている。上下方向駆動台32は、保持アーム台33aに設けられた保持アーム33により支持されている。保持アーム台33aは、駆動モータ37により摺動溝34aに沿って前後方向駆動台34上を前後方向(矢印Xで示す)に移動可能とされている。
【0050】
また、前後方向駆動台34は、ベース台38上にガイド部35により横方向(紙面と直交する方向で、便宜的に矢印Zで示す)に移動可能とされる。また、前後方向駆動台34は、ベース台38上を横方向に駆動するための駆動モータ(図示せず)によって駆動制御される。
【0051】
バーナ17には、バーナ保持部31を介して燃焼ガスが供給される。燃焼ガスには、プロパン、アセチレン、水素等のガスと酸素ガスの混合ガスが用いられ、ガスボンベ39および酸素ボンベ40から配管41を経て供給される。これらのガスは、ガス流量制御装置43によりガス流量制御弁42を調節して、所定量供給される。なお、ガス流量制御装置43および駆動モータ36,37等は、コンピュータを用いた制御装置44により制御される。
【0052】
次に、図10に示すバーナの動作フローにより、前記機構の動作を説明する。先ず、スタートのステップS1で、制御装置44に設定条件を入力または読込ます。次いで、ステップS2でバーナの点火位置への移動命令が発せられ、ステップS3で点火座標位置への移動が完了したら、バーナを点火し加熱スタート命令が発せられる。
【0053】
バーナが点火されたら、ステップS4で制御装置44に入力された設定条件に基づいてバーナに供給されるガス流量が所定値に調節される。ガス流量の調節が終了すると、ステップS5でバーナの加熱位置への移動命令が発せられ、バーナの現在位置とバーナの加熱座標位置までの移動量を算出し、駆動モータを駆動してバーナを加熱座標位置に移動させる。
【0054】
ステップS6で点火座標位置への移動が完了したら、設定に基づいて所定時間だけ光ファイバを加熱する。所定時間の加熱が終了すると、ステップS7でバーナの退避座標位置への移動命令が発せられる。この移動命令により、バーナの現在位置とバーナの退避座標位置までの移動量を算出し、駆動モータを駆動してバーナを退避座標位置に移動させる。
【0055】
ステップS8でバーナが退避座標位置への移動が完了していれば、ステップS9でバーナのガス流量がゼロにされ、次いで、ステップS10で装置が停止される。
【0056】
【発明の効果】
以上の説明から明らかなように、本発明によれば、多心光ファイバを一括して加熱処理する場合、全心をほぼ均一に加熱することが可能となり、多心光ファイバの全心でモードフィールド径拡大のバラツキを少なくすることができる。
【図面の簡単な説明】
【図1】本発明の概略を説明する図である。
【図2】本発明の実施に用いるバーナの一例を示す図である。
【図3】本発明の第1の実施の形態を説明する図である。
【図4】本発明の第2の実施の形態を示す図である。
【図5】本発明の第2の実施の形態における加熱状態を示す図である。
【図6】本発明の第3の実施の形態を説明する図である。
【図7】本発明と従来のTEC処理後のモードフィールド径拡大のバラツキを比較する図である。
【図8】本発明における光ファイバの支持機構を説明する図である。
【図9】本発明におけるバーナの駆動機構を説明する図である。
【図10】本発明におけるバーナの動作フローを示す図である
【図11】従来のモードフィールド径の拡大方法を説明する図である。
【符号の説明】
11…多心光ファイバ、11a…中央側の光ファイバ、11b…両端の光ファイバ、12…裸ファイバ部、13…ファイバ被覆部、14…融着接続部、15…光ファイバの加熱領域(TEC領域)、16…火炎巻き込み防止部材、16a…支持アーム、16b…突壁、17…バーナ、18…ガス噴出口、19…ファイバフォルダ、19a…ファイバフォルダ台、20…ファイバクランプ、20a…ファイバクランプ台、21…接着樹脂、22…ベース台、23…摺動台、24…摺動溝、25…滑車、26…錘、27…エアボンベ、28…エアバルブ、29…配管、30…エア制御装置、31…バーナ保持部、31a…バーナ保持部台、32…上下方向駆動台、32a…摺動溝、33…保持アーム、33a…保持アーム台、34…前後方向駆動台、34a…摺動溝、35…ガイド部、36,37…駆動モータ、38…ベース台、39…ガスボンベ、40…酸素ボンベ、41…配管、42…ガス流量制御弁、43…ガス流量制御装置、44…制御装置。

Claims (15)

  1. 複数の光ファイバを平行一列に並べた多心光ファイバをバーナで一括加熱することにより、コア部に添加されているドーパントを熱拡散させる多心光ファイバのモードフィールド径拡大方法であって、前記多心光ファイバの両側に火炎巻き込み防止部材を配置して加熱することを特徴とする多心光ファイバのモードフィールド径拡大方法。
  2. 前記バーナの加熱面に、前記多心光ファイバの軸方向に複数個のガス噴出口を配列するとともに前記複数個のガス噴出口を前記光ファイバの軸方向と平行に複数列配列することを特徴とする請求項1に記載の多心光ファイバのモードフィールド径拡大方法。
  3. 前記バーナは、前記多心光ファイバの上方に配置し、前記バーナの加熱面を下方に向けて加熱することを特徴とする請求項1または2に記載の多心光ファイバのモードフィールド径拡大方法。
  4. 前記バーナを、光ファイバ加熱中に前記多心光ファイバの軸方向に揺動することを特徴とする請求項1〜3のいずれか1項に記載の多心光ファイバのモードフィールド径拡大方法。
  5. 前記火炎巻き込み防止部材に、ダミーファイバを用いることを特徴とする請求項1〜4のいずれか1項に記載の多心光ファイバのモードフィールド径拡大方法。
  6. 前記火炎巻き込み防止部材に、ロッド形状のものを用いることを特徴とする請求項1〜4のいずれか1項に記載の多心光ファイバのモードフィールド径拡大方法。
  7. 前記ロッド形状の火炎巻き込み防止部材を、前記多心光ファイバの支持台に一体的に設けることを特徴とする請求項6に記載の多心光ファイバのモードフィールド径拡大方法。
  8. 前記ロッド形状の火炎巻き込み防止部材を、前記多心光ファイバの支持台に取外し可能に設けることを特徴とする請求項6に記載の多心光ファイバのモードフィールド径拡大方法。
  9. 前記ロッド形状の火炎巻き込み防止部材を、前記バーナに一体的に設けることを特徴とする請求項6に記載の多心光ファイバのモードフィールド径拡大方法。
  10. 前記火炎巻き込み防止部材に、断面凹形状の基板を用いることを特徴とする請求項1〜4のいずれか1項に記載の光ファイバのモードフィールド径拡大方法。
  11. モードフィールド径の拡大後、前記断面凹形状の火炎巻き込み防止部材を、モードフィールド径拡大部の支持基板または補強基板とすることを特徴とする請求項10に記載の光ファイバのモードフィールド径拡大方法。
  12. 複数の光ファイバを平行一列に並べた多心光ファイバをバーナで一括加熱することにより、コア部に添加されているドーパントを熱拡散させる多心光ファイバのモードフィールド径拡大装置であって、前記多心の光ファイバの両側に位置するように火炎巻き込み防止部材を配設したことを特徴とする多心光ファイバのモードフィールド径拡大装置。
  13. 前記バーナは、加熱面に前記多心光ファイバの軸方向に複数個のガス噴出口が配列されるとともに前記複数個のガス噴出口が前記光ファイバの軸方向と平行に複数列配列されていることを特徴とする請求項12に記載の多心光ファイバのモードフィールド径拡大方法。
  14. 前記バーナを前記多心光ファイバの上方に配置し、前記バーナの加熱面を下方に向けて加熱するようにしたことを特徴とする請求項12または13に記載の多心光ファイバのモードフィールド径拡大装置。
  15. 前記バーナを、光ファイバ加熱中に前記光ファイバの軸方向に揺動させるように構成したことを特徴とする請求項12〜14のいずれか1項に記載の多心光ファイバのモードフィールド径拡大装置。
JP2002209140A 2002-07-18 2002-07-18 多心光ファイバのモードフィールド径拡大方法および拡大装置 Expired - Fee Related JP3948360B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002209140A JP3948360B2 (ja) 2002-07-18 2002-07-18 多心光ファイバのモードフィールド径拡大方法および拡大装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002209140A JP3948360B2 (ja) 2002-07-18 2002-07-18 多心光ファイバのモードフィールド径拡大方法および拡大装置

Publications (3)

Publication Number Publication Date
JP2004053785A true JP2004053785A (ja) 2004-02-19
JP2004053785A5 JP2004053785A5 (ja) 2007-04-19
JP3948360B2 JP3948360B2 (ja) 2007-07-25

Family

ID=31933068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002209140A Expired - Fee Related JP3948360B2 (ja) 2002-07-18 2002-07-18 多心光ファイバのモードフィールド径拡大方法および拡大装置

Country Status (1)

Country Link
JP (1) JP3948360B2 (ja)

Also Published As

Publication number Publication date
JP3948360B2 (ja) 2007-07-25

Similar Documents

Publication Publication Date Title
EP1293812B1 (en) Apparatus and method for heating optical fiber using electric discharge
US8490435B2 (en) Optical fiber end processing method and optical fiber end processing apparatus
JP3763358B2 (ja) 光ファイバのモードフィールド径拡大方法および拡大装置
JP2003098378A (ja) 光ファイバ融着接続部の加熱方法および加熱装置ならびに光ファイバアレイ
US6565269B2 (en) Systems and methods for low-loss splicing of optical fibers having a high concentration of fluorine to other types of optical fiber
JP3746619B2 (ja) 光ファイバの融着接続方法
KR100817987B1 (ko) 광 파이버 모재의 연신 방법 및 연신 장치
JP3948360B2 (ja) 多心光ファイバのモードフィールド径拡大方法および拡大装置
JPH04130305A (ja) ファイバ光カプラの作成方法
JP2004325990A (ja) 異径光ファイバの融着接続方法および融着接続機
JPH11142681A (ja) 1×nファイバ光カプラ/スプリッタ
JP2004157355A (ja) 光ファイバのモードフィールド径拡大装置
US20230378710A1 (en) System And Method For Manufacturing All-Fiber Side-Pump Combiners With Plurality of Pumps
JPH02118606A (ja) ファイバ形カプラの製造方法
JP3847271B2 (ja) 光ファイバカプラ製造装置及び製造方法
JP2002250836A (ja) 光ファイバの融着接続方法
JP2004309878A (ja) 光ファイバのモードフィールド径拡大方法と拡大装置
JPH0882721A (ja) 多心光ファイバテープケーブルの融着接続部加熱装置
JP3753993B2 (ja) 高濃度のフッ素を有する光ファイバを他のタイプの光ファイバに低損失接続するためのシステムおよび方法
EP1343035B1 (en) System for low-loss splicing of optical fibers having a high concentration of fluorine to other types of optical fiber
JP2862091B2 (ja) 光フアイバカプラの製造装置
JP2931610B2 (ja) 光ファイバカプラの製造方法
JP2003315598A (ja) 放電による一括融着接続方法および一括融着接続装置
US20100086263A1 (en) Method of Splicing Microstructured Optical Fibers
JP2002189142A (ja) 光ファイバ加熱装置及び光ファイバ接続方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Ref document number: 3948360

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees