JP2004047912A - Sucking device and vacuum processing device - Google Patents

Sucking device and vacuum processing device Download PDF

Info

Publication number
JP2004047912A
JP2004047912A JP2002206482A JP2002206482A JP2004047912A JP 2004047912 A JP2004047912 A JP 2004047912A JP 2002206482 A JP2002206482 A JP 2002206482A JP 2002206482 A JP2002206482 A JP 2002206482A JP 2004047912 A JP2004047912 A JP 2004047912A
Authority
JP
Japan
Prior art keywords
substrate
suction device
electrodes
support
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002206482A
Other languages
Japanese (ja)
Other versions
JP2004047912A5 (en
Inventor
Ken Maehira
前平 謙
Ko Fuwa
不破 耕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2002206482A priority Critical patent/JP2004047912A/en
Publication of JP2004047912A publication Critical patent/JP2004047912A/en
Publication of JP2004047912A5 publication Critical patent/JP2004047912A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sucking device capable of sucking a warped substrate. <P>SOLUTION: The warp of the substrate to be fixed to this sucking device is measured beforehand, and of the front surface and back surface of a supporting body 11, the front surface 12 is formed into a curved shape recessed at a position where the back surface of the substrate is raised and raised inversely at a position where it is recessed so that the back surface of the substrate can be tightly adhered to the front surface 12. The electrodes 15a and 15b of fixed film thickness are arranged on the front surface 12, the film thickness of a protective layer 17 formed on the surface of the electrodes 15a and 15b is also fixed, the three-dimensional shapes of a virtual surface 13 where the surface of the electrodes 15a and 15b is positioned and the virtual surface where the surface of the protective layer 17 is positioned are equal to the front surface 12, and thus the substrate is tightly adhered to the surface of the protective layer 17. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、吸着装置に関し、特に、反りのある基板、または、デバイスを片面に形成することで発生する平面応力によって反りのある基板を吸着する技術を提供する。
【0002】
【従来の技術】
図13、図14の符号121は従来技術の吸着装置を示している。この吸着装置121は、絶縁材料からなる支持体125と、それぞれ複数本の第一、第二の電極126、127とを有している。
【0003】
図13は第一、第二の電極126、127を説明するための平面図である。
第一、第二の電極126、127は所定間隔を空けて交互に並べられた状態で支持体125表面に配置されている。
【0004】
第一の電極126の一端は、第一の電極126に垂直に配置された細長の第一の接続端子123にそれぞれ接続されており、結果として、全ての第一の電極126は互いに接続されている。同様に、第二の電極127も、細長の第二の接続端子124によって互いに接続されている。
【0005】
図14は図13のX−X切断線断面図に相当し、支持体125の第一、第二の電極126、127は配置された側の面には絶縁層130が形成されており、第一、第二の電極126、127の表面と、第一、第二の電極126、127間に位置する支持体125の表面は絶縁層130に密着している。
【0006】
この吸着装置121に保持対象物を吸着させるには、先ず、吸着装置121を真空雰囲気に置き、基板を吸着装置121の絶縁層130表面に載置する。
第一、第二の電極126、127はそれぞれ静電チャック電源122に接続されており、静電チャック電源122を起動し、第一、第二の電極126、127に対し、それぞれ正負の電圧を印加する。
【0007】
基板は吸着装置121の表面方向に静電力を受け、基板の裏面全面が吸着装置121表面に吸着され、結果として基板が吸着装置121に固定される。
このような吸着装置121は、基板に薄膜、あるいはデバイスを形成する工程で、基板を保持、搬送するために広く用いられている。
ところで、高周波デバイスに代表されるように、デバイスの微小化、軽量化が近年盛んであり、それに伴ない、基板の薄膜化が進んでいる。
【0008】
基板の反り量は、基板の厚みと面方向の大きさによって異なるが、特に、基板の膜厚が薄い場合、基板の剛性が小さいので、成膜やデバイスの形成の工程の前後で温度変化が生じると、熱応力によって基板が大きく反りかえってしまう。
従来の吸着装置では、反りが生じた基板との密着性が悪く、そのような基板を静電吸着することは困難であった。
【0009】
【発明が解決しようとする課題】
本発明は上記従来技術の要求に応じるために創作されたものであり、その目的は、膜厚の薄く、反りが生じた基板を確実に吸着可能な吸着装置を提供することにある。
【0010】
【課題を解決するための手段】
吸着装置の吸着力をf、基板と吸着装置との間の距離dとした場合の両者の関係は下記式(1)
式(1)……f 1/d
で表され、距離が離れると2乗分の1の割合で吸着力が小さくなることを示している。
【0011】
即ち、基板の反りが大きくなると、基板と吸着装置との間の距離が増大するため、吸着力が小さくなると考えられる。
本発明者等は、基板の反りと吸着力との関係を確認するために、下記に示す条件で「吸着力」の試験を行った。
【0012】
〔吸着力〕
基板として、最大反り量がそれぞれ異なるシリコンウェハーを複数枚用意した。
真空雰囲気中で、図13、14に示すような吸着装置の表面にシリコンウェハーを載置した後、吸着装置に接続された電源を起動し、シリコンウェハーを吸着させた状態で、シリコンウェハーに取り付けたフックを垂直方向に引き上げ、シリコンウェハーが吸着装置から離脱するときの張力をロードセルによって測定した。
【0013】
尚、各シリコンウェハーの膜厚は100μmであり、吸着装置のシリコンウェハーを吸着させる吸着面の平面度は5μm以下であった。
測定結果を図12に示す。図12の横軸は基板(シリコンウェハー)の最大反り量d(単位:mm)を示し、縦軸は測定された張力であり、吸着装置が基板を吸着する吸着力(単位:kPa)を示している。
【0014】
図12から明かなように、基板の最大反り量dが1mm以上になると、吸着力が0.01Pa以下となっている。この吸着装置では、絶縁層の、正負の電圧を印加する第一、第二の電極上の膜厚は無視できる程度に薄く、1mmは、電極と基板との間の最大距離に等しい。
【0015】
吸着力が0.01Pa以下では、基板を安定して保持することが不可能であるので、第一、第二の電極の表面から基板までの距離を1mm以下にすれば、基板の安定して保持することが可能なことがわかる。
また、1mm以上の反りのある基板を平面矯正することで生ずる内部応力、あるいは、基板の割れを防ぐことからも、電極表面から基板までの距離を1mm以下に抑えることが必要である。
【0016】
基板の反り量は、基板の種類、サイズ、厚みやプロセス条件等で変化するので、基板の種類、サイズ、厚みやプロセス条件が同じであれば、基板の反り量が一定である。従って、吸着対象の基板の反りを予め測定し、その反りを有する基板と接触可能なように、吸着装置を形成しておくと、吸着力を強くすることができると予想される。
【0017】
上記知見に基づいてなされた請求項1記載の発明は、支持体と、前記支持体上を引き回された所定膜厚の電極とを有し、前記電極に電圧を印加し、吸着対象の基板を静電吸着するように構成された吸着装置であって、前記支持体の厚みは、前記基板の反りの形状に応じて異なる大きさに形成され、反りを有する前記基板を該吸着装置上に載置したときに、前記基板と前記吸着装置の表面とが接触し、静電吸着させると、前記基板が前記吸着装置上に密着するように構成された吸着装置である。
尚、支持体の厚みとは、基準となる平面に対して支持体を平行配置したときに、その平面から支持体表面までの距離のことである。
請求項2記載の発明は、平面を有する支持体と、前記平面上を引き回された電極とを有し、前記電極に電圧を印加し、吸着対象の基板を静電吸着するように構成された吸着装置であって、前記電極の膜厚は、前記基板の反りに応じて異なる厚みに形成され、反りを有する前記基板を該吸着装置上に載置したときに、前記基板と前記吸着装置の表面とが接触し、静電吸着させると、前記基板が前記吸着装置上に密着するように構成された吸着装置である。
請求項3記載の発明は、請求項1又は請求項2のいずれか1項記載の吸着装置であって、保護層を有し、前記電極の表面は前記保護層で覆われ、前記電極の表面から、前記保護層表面までの高さが一定に形成された吸着装置である。
請求項4記載の発明は、平面を有する支持体と、前記平面上に引き回された所定膜厚の電極とを有し、前記電極に電圧を印加し、吸着対象の基板を静電吸着するように構成された吸着装置であって、前記電極の表面を覆う保護層を有し、前記保護層の前記電極上の膜厚は、前記基板の反りに応じて異なる厚みに形成され、反りを有する前記基板を該吸着装置上に載置したときに、前記基板と前記吸着装置の表面とが接触し、静電吸着させると、前記基板が前記吸着装置上に密着するように構成された吸着装置である。
請求項5記載の発明は、上下左右に変形可能な支持体と、前記支持体上に設けられた電極とを有する吸着装置である。
請求項6記載の発明は、真空槽と、請求項1乃至請求項5のいずれか1項記載の吸着装置とを有し、前記吸着装置は前記真空槽内に配置され、前記基板は前記真空槽内で前記吸着装置に密着される真空処理装置である。
【0018】
上記電極を互いに絶縁した正電極と負電極に分け、正電極に正の電圧を印加し、負電極に負の電圧を印加すると、静電吸着力の他グラディエント力も生じうるからシリコン基板のような導電性基板だけではなく、ガラス基板のような絶縁性の基板も密着させることができる。
吸着装置がいずれか一方の極性の電極のみを有する場合は、真空槽が他方の極性の電極とし、吸着装置の電極に正又は負の電圧を印加し、真空槽に負又は正の電圧を印加すれば、静電吸着力を発生させることができる。
【0019】
吸着装置に、冷却管のような冷却手段やヒータのような加熱手段を内蔵させる、または、吸着装置の近傍に冷却手段や加熱手段を配置しておき、吸着装置を加熱又は冷却すると、熱伝導により基板が加熱又は冷却される。本発明では、基板と吸着装置との密着性が高いので、効率良く基板の加熱又は冷却を行うことができる。
上述した実験結果に従うと、第一、第二の電極の表面から基板までの距離を1mm以下が望ましく、従って、保護層の電極上の厚みは1mm以下であることが望ましい。
【0020】
【発明の実施の形態】
以下で図面を参照し、本発明の実施形態について説明する。
図1の符号1は本発明の一実施形態の真空処理装置であるスパッタリング装置を示しており、図2の符号5はそのスパッタリング装置1で成膜処理される基板を示している。
【0021】
基板5の表面には、この真空処理装置1で処理する前に、蒸着やスパッタリング等の方法で予め薄膜19が形成されており、薄膜19が形成されたときの応力によって、基板5に反りが生じている。
【0022】
その反りは、例えば、基板5を薄膜19側から観察した場合に、その中央部分が凹み、逆に、周辺部分がめくれ上がるようになっている。逆に、基板5を裏面、即ち、吸着装置10に載置される被載置面18側から観察した場合には、その被載置面18は中央部分が盛り上がり、周辺部分が凹んだ曲面になっている。
【0023】
図3の符号10は、上述した基板5を保持するための本発明第一例の吸着装置を示しており、この吸着装置10は、支持体11と、第一、第二の電極15a、15bと、保護層17とを有している。
支持体11はセラミックのような柔軟性を有しない絶縁材料、あるいは樹脂のような柔軟性を持った材料が板状に形成されて構成されている。
【0024】
支持体11の表面及び裏面のうち、その表面12は、基板5の被載置面18と接触可能な形状に形成されている。即ち、支持体11の表面12は、被載置面18を接触させた場合に、基板5の被載置面18が盛り上がる位置では凹み、凹む位置では逆に盛り上がるような曲面になっている。
【0025】
第一、第二の電極15a、15bは、支持体11の表面12に形成された所定膜厚の銅薄膜がパターニングされて構成されている。ここでは、各電極15a、15bの膜厚は一定になっている。
第一、第二の電極15a、15bは、例えば、図13に示すように交互に並べられた状態で配置されており、第一、第二の電極15a、15bとの間はそれぞれ所定間隔が空けられ、第一、第二の電極15a、15bは互いに絶縁されている。
【0026】
保護層17は二酸化ケイ素(SiO)のような絶縁材料の薄膜で構成され、各電極15a、15bの表面に一定膜厚で形成されている。ここでは、保護層17は各電極15a、15bの表面だけを覆うように形成され、電極15a、15bの側面及び、電極15a、15b間に位置する支持体11の表面12はそれぞれ露出している。
【0027】
図4の符号13は、各電極15a、15bの表面が位置する仮想的な面を示し、同図の符号14は各保護層17表面が位置する仮想的な面を示している。
上述したように、各電極15a、15bの膜厚は一定になっているから、電極15a、15b表面が位置する仮想的な面13は、支持体11の表面12の立体形状と等しく、また、各保護層17の膜厚は一定であり、電極15a、15bの表面から保護層17表面までの高さも一定であるから、各保護層17の表面が位置する仮想的な面14は、電極15a、15bが位置する仮想的な面13の立体形状と等しく、即ち、支持体11の表面12の立体形状とも等しくなっている。
【0028】
各保護層17の表面が位置する仮想的な面14を基板の載置面14とし、該載置面14の凹んだ部分に、被載置面18の盛り上がった部分を接触させ、盛り上がった部分に被載置面18の凹んだ部分を接触させれば、基板5は変形することなく、その被載置面18が載置面14に接触した状態で吸着装置10に載せられる。
【0029】
支持体11の裏面は平坦になっており、その裏面を基準面とすると、基準面から支持体11の表面12までの高さ、即ち、支持体11の厚みwは、表面12が凹んだ位置では小さく、表面12が盛り上がった位置では大きくなっている。
即ち、第一例の吸着装置10では支持体11を位置に応じて異なる厚みwに形成し、かつ、その表面12に一定膜厚の電極15a、15bと、一定膜厚の保護層17を形成することで、吸着装置10の載置面14は、基板の反りに対応する形状になっている。
【0030】
真空処理装置1は真空槽2と、上述した吸着装置10とを有している。真空槽2内の底壁側には台9が配置されており、台9の表面は平坦な水平面になっている。吸着装置10は、支持体11の裏面が、台9の表面に密着するよう配置されているから、吸着装置10は水平になっている。
【0031】
真空槽2内の天井側にはターゲット3が水平配置されており、真空層2に接続された真空排気系8によって真空槽2内に真空雰囲気を形成した後、該真空雰囲気を維持した状態で、真空槽2内に基板5を搬入し、該基板5を吸着装置10の載置面14に載せると、基板5は水平配置され、ターゲット3と対向する。
【0032】
この基板5はシリコン基板のような導電性基板で構成されており、第一、第二の電極15a、15bに接続された静電チャック電源7を起動し、第一、第二の電極15a、15bに正負の電圧を印加すると、静電吸着力によって基板5が吸着装置10に吸着され、基板5の被載置面18が吸着装置10に強く密着する。
【0033】
吸着装置10の支持体11内部には、加熱手段であるヒータが設けられており、予めヒータによって吸着装置10が所定温度に昇温しているので、基板5は熱伝導によって昇温する。この吸着装置10には、不図示のセンサーが取り付けられており、このセンサーが基板5の温度を測定し、ヒータの通電量を制御することで、基板5が温度制御される。
【0034】
ターゲット3は真空槽2外に配置されたスパッタ電源6に接続されており、真空槽2内にアルゴンガス(Ar)のようなスパッタガスを所定量導入しながら、真空槽2内の真空雰囲気を維持し、その状態でスパッタ電源6を起動し、ターゲット3に直流電圧を印加すると、ターゲット3がスパッタされ、温度制御された状態の基板5の表面に薄膜が成長する。
【0035】
その薄膜が所定膜厚まで成長したところで、スパッタリングを停止して、成膜工程を終了する。静電チャック電源7を停止させると、基板5への吸着力が解除され、成膜後の基板5を吸着装置10から持ち上げることができる。
【0036】
以上は、保護層17を電極15a、15b表面のみに配置する場合について説明したが、本発明はこれに限定されるものではない。
図5の符号20は、第一例の吸着装置の保護層に代え、第一、第二の電極25a、25bの表面及び側面と、第一、第二の電極25a、25b間に位置する支持体21表面とを覆う保護層を有する吸着装置を示しており、この吸着装置20の支持体21と、第一、第二の電極25a、25bは第一例の吸着装置10と同じである。
【0037】
保護層27も、第一例の吸着装置と同様に、電極25a、25b上の膜厚は一定になっているので、保護層27表面に上述した基板を接触させることができる。
更に、保護層を有さない吸着装置も本発明に含まれる。
【0038】
図6の符号30は、第一例の吸着装置10の保護層を形成しない状態の吸着装置を示している。保護層を有する場合は、基板が電極と直接接触しないため、導電性基板を直接吸着装置に載せることが可能であったが、この吸着装置30は電極35a、35b表面が直接基板に接触するため、少なくとも、基板の被載置面が絶縁性である必要がある。
【0039】
以上は、支持体11の厚みを位置によって変え、かつ、一定膜厚の電極15a、15bを形成する場合について説明したが、本発明はこれに限定されるものではない。
図7の符号40は本発明第二例の吸着装置を示している。この吸着装置40は支持体41と、第一、第二の電極45a、45bと、保護層47とを有している。
【0040】
支持体41は柔軟性を有しない絶縁性材料が、厚みが一定な板状に形成されて構成されており、その表面及び裏面は平坦になっている。
第一、第二の電極45a、45bは支持体41の同じ面に配置されている。
【0041】
上述したような反りが生じた基板5をこの吸着装置40に載せる場合、各電極45a、45bは被載置面18の盛り上がった部分が対応する位置では厚みwが小さく、被載置面18の凹んだ部分が対応する位置ではwが大きくなっており、仮に、保護層47が形成されていないとすると、全ての電極45a、45b表面が被載置面18に接触するようになっている。
【0042】
保護層47は各電極45a、45b表面のみに形成されており、各保護層47の膜厚は一定になっているので、保護層47の表面に基板5を載せると、全ての保護層47の表面が基板5の被載置面18に接触する。
【0043】
第一、第二の電極45a、45bはそれぞれ複数本あり、第一、第二の電極45a、45bは交互にならべられているので、各保護層47表面を被載置面18に接触させた状態で、第一、第二の電極45a、45bに正負の電圧を印加すると、基板5が吸着装置40に強く密着される。
【0044】
以上は、保護層47を電極45a、45b表面のみに配置する場合について説明したが、本発明はこれに限定されるものではなく、図8の符号50に示す吸着装置のように、第二例の吸着装置の保護層に代え、第一、第二の電極55a、55bの表面及び側面と、第一、第二の電極55a、55b間に位置する支持体51表面とを覆う保護層57を形成しても良い。
【0045】
この保護層57は、図5に示した吸着装置20と同様に、電極55a、55b上の膜厚が一定になっているので、保護層57表面に上述した基板を接触させることができる。
【0046】
更に、保護層を有しない吸着装置も本発明に含まれる。図9の符号60は、第二例の吸着装置40の保護層を形成しない状態の吸着装置を示しており、この吸着装置60は第二例の吸着装置40と同様の支持体61と第一、第二の電極65a、65bとで構成されている。
この吸着装置60は、図6に示した吸着装置30と同様に、電極65a、65b表面が直接基板に接触するため、少なくとも、基板の被載置面が絶縁性である必要がある。
【0047】
以上は、電極の厚み又は支持体の厚みのいずれか一方を基板の反りに対応するように位置毎に変化させる場合について説明したが、本発明はこれに限定されるものではない。
図10の符号70は本発明第三例の吸着装置を示している。この吸着装置70は、支持体71と、第一、第二の電極75a、75bと、保護層77とを有している。
【0048】
支持体71は柔軟性を有しない絶縁性材料が、厚みが一定な板状に形成されて構成されており、その表面及び裏面は平坦になっている。
第一、第二の電極75a、75bは所定膜厚に形成され、支持体71の同じ面にそれぞれ配置されている。ここでは、各電極75a、75bは一定膜厚になっている。保護層77は、少なくとも第一、第二の電極75a、75bの表面を覆うように配置されている。
【0049】
ここでは、保護層77は第一、第二の電極75a、75bの表面及び側面と、第一、第二の電極75a、75b間に位置する支持体71表面とを覆うように形成されている。
上述したような反りが生じた基板5をこの保護層77表面に載せる場合、電極75a、75bの厚みと、保護層77の電極75a、75b上の厚みwの合計は、基板5の被載置面18が盛り上がった位置では小さく、被載置面18が凹んだ位置では大きくなっている。
【0050】
支持体71表面から保護層47の表面までの高さは、第一、第二の電極75a、75b間の位置では、電極75a、75b上の位置と同じ高さ、又は、それよりも低くなっているので、基板5を保護層47表面に乗せたときに、基板5の被載置面18が電極75a、75b上の位置で保護層47の表面と接触するようになっている。
【0051】
第一、第二の電極75a、75bはそれぞれ複数本あり、互いに交互に並べられているので、基板5の被載置面18を保護層77表面に接触させた状態で、第一、第二の電極75a、75bに正負の電圧を印加すると、基板5がこの吸着装置70に強く密着される。
【0052】
以上は、保護層77が、電極75a、75bの表面及び側面と、電極75a、75b間の支持体71表面とを覆う場合について説明したが、本発明はこれに限定されるものではなく、第三例の吸着装置70の保護層77に代え、保護層を各電極の表面のみを覆うように形成しても良い。
【0053】
以上は、支持体を柔軟性を有しない絶縁材料で構成する場合について説明したが、本発明はこれに限定されるものではない。
図11(a)の符号95は本発明の一実施形態の搬送装置を示している。
この搬送装置95は吸着装置80と、移動手段96とを有している。
【0054】
吸着装置80は、支持体86と、第一、第二の電極85a、85bと、保護層87とを有している。
第一、第二の電極85a、85bは支持体86表面にそれぞれ配置され、保護層87は、少なくとも各電極85a、85bの表面を覆うように形成されている。ここでは、保護層87は、各電極85a、85bの表面及び側面と、第一、第二の電極85a、85b間に位置する支持体86の表面を覆うように形成されている。
【0055】
支持体86と保護層87は樹脂やゴムのような柔軟性を有する絶縁材料がシート状に形成されて構成され、また、第一、第二の電極85a、85bは、支持体86及び保護層87の変形を妨げない程度に膜厚の薄い銅薄膜のような金属薄膜で構成されている。従って、支持体86と保護層87とで構成される積層体81は変形可能になっている。
【0056】
移動手段96は棒状の支持手段89を複数本有している、吸着装置80は保護層87が配置された面が下側に向けられ、支持体86の表面が上側に向けられており、支持体86表面に各支持手段89の下端がそれぞれ取りつけられている。
【0057】
支持手段89の上端は、移動手段96の不図示の移動機構に接続されており、移動機構によって各支持手段89を同じ方向に移動させると、吸着装置80は支持手段89と共に移動するようになっている。
図11(a)の符号90はエッチングや成膜等の処理によって反りが生じた基板を示している。
【0058】
各支持手段89は支持体86を含む吸着装置80が変形する動きに追従して水平方向と垂直方向に移動可能になっているので、支持手段89と共に吸着装置80を基板90上方に配置し、支持手段89を下降させて吸着装置80を基板90上に載せると、吸着装置80は支持手段89に妨げられることなく変形し、吸着装置80が基板90の表面、即ち、保護層87の表面が基板90の被載置面92に接触する。
【0059】
吸着装置80が被載置面92に接触したところで、各支持手段89を吸着装置80に対して相対的に固定すると、吸着装置80も固定される。第一、第二の電極85a、85bは不図示の電源に接続されており、この電源を起動し、第一、第二の電極85a、85bにそれぞれ正負の電圧を印加すると、基板90が吸着装置80に強く密着される。
【0060】
その状態で、各支持手段89を上方に移動すると、基板90が吸着装置80に密着された状態で持ち上げられ、次いで、各支持手段89を同じ方向に水平移動させると、吸着装置80と共に基板90も搬送される。
【0061】
以上は、第一、第二の電極85a、85bが保護層87に覆われた場合について説明したが、本発明はこれに限定されるものではなく、例えば、柔軟性を有する絶縁膜からなる支持体の表面に、第一、第二の電極を形成し、第一、第二の電極を支持体表面で露出させてもよい。
【0062】
以上は、第一、第二の電極を銅薄膜で構成する場合について説明したが、本発明はこれに限定されず、アルミニウム等他の金属の薄膜で構成しても良いし、更に、金属に限定されるものでもなく、カーボンなどの導電性材料で構成しても良い。
【0063】
また、本発明の吸着装置を備えた真空処理装置として、スパッタリング装置について説明したが、本発明はこれに限られるものではなく、例えばCVD装置等の成膜装置や、あるいはエッチング装置、搬送機構等に本発明の吸着装置を用いることもできる。
【0064】
また、本発明の吸着装置に吸着される基板の種類も特に限定されるものではなく、基板としては、ガラス基板、樹脂製のフィルム基板等の絶縁性基板、あるいは、シリコン基板等の導電性基板も吸着可能である。
【0065】
【発明の効果】
反りが生じた基板を静電吸着する際に、吸着力を大きくできる。
【図面の簡単な説明】
【図1】本発明の一実施形態の吸着装置を備えた真空処理装置の構成を説明する図
【図2】本発明の吸着装置に吸着される基板を説明する断面図
【図3】本発明の吸着装置の第一例を説明する断面図
【図4】電極及び保護層の表面と、支持体表面との関係を説明するための図
【図5】本発明の第一例の吸着装置の変形例を説明する断面図
【図6】本発明の第一例の吸着装置の他の変形例を説明する断面図
【図7】本発明の吸着装置の第二例を説明する断面図
【図8】本発明の第二例の吸着装置の変形例を説明する断面図
【図9】本発明の第二例の吸着装置の他の変形例を説明する断面図
【図10】本発明の吸着装置の第三例を説明する断面図
【図11】(a)、(b):本発明の搬送装置の一例を、その搬送工程と共に説明する工程図
【図12】基板の反り量と吸着力との関係を説明するグラフ
【図13】従来の吸着装置を説明する平面図
【図14】従来の吸着装置を説明する断面図
【符号の説明】
1……スパッタリング装置(真空処理装置)  5……基板  10……吸着装置  11……支持体  25a、25b……電極  17……保護層  支持体の厚み……W
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a suction device, and more particularly to a technique for suctioning a warped substrate or a warped substrate due to plane stress generated by forming a device on one side.
[0002]
[Prior art]
Reference numeral 121 in FIGS. 13 and 14 denotes a conventional suction device. The suction device 121 has a support 125 made of an insulating material and a plurality of first and second electrodes 126 and 127, respectively.
[0003]
FIG. 13 is a plan view for explaining the first and second electrodes 126 and 127. FIG.
The first and second electrodes 126 and 127 are arranged on the surface of the support 125 in a state of being alternately arranged at predetermined intervals.
[0004]
One end of the first electrode 126 is connected to an elongated first connection terminal 123 arranged vertically to the first electrode 126, and as a result, all the first electrodes 126 are connected to each other. I have. Similarly, the second electrodes 127 are connected to each other by the elongated second connection terminals 124.
[0005]
FIG. 14 corresponds to a cross-sectional view taken along line XX of FIG. 13, in which an insulating layer 130 is formed on a surface of the support 125 on which the first and second electrodes 126 and 127 are arranged. The surfaces of the first and second electrodes 126 and 127 and the surface of the support 125 located between the first and second electrodes 126 and 127 are in close contact with the insulating layer 130.
[0006]
In order to cause the suction device 121 to adsorb the object to be held, first, the suction device 121 is placed in a vacuum atmosphere, and the substrate is placed on the surface of the insulating layer 130 of the suction device 121.
The first and second electrodes 126 and 127 are connected to the electrostatic chuck power supply 122, respectively, and activate the electrostatic chuck power supply 122 to apply positive and negative voltages to the first and second electrodes 126 and 127, respectively. Apply.
[0007]
The substrate receives an electrostatic force in the direction of the surface of the suction device 121, and the entire back surface of the substrate is suctioned to the surface of the suction device 121, and as a result, the substrate is fixed to the suction device 121.
Such a suction device 121 is widely used for holding and transporting a substrate in a process of forming a thin film or a device on the substrate.
By the way, as typified by high-frequency devices, miniaturization and weight reduction of devices have been actively pursued in recent years, and accordingly, the thickness of substrates has been reduced.
[0008]
The amount of warpage of the substrate varies depending on the thickness of the substrate and the size in the plane direction. Particularly, when the thickness of the substrate is small, the rigidity of the substrate is small, so that the temperature change before and after the film formation and device formation steps. If this occurs, the substrate will warp significantly due to thermal stress.
In a conventional suction device, adhesion to a warped substrate is poor, and it has been difficult to electrostatically suction such a substrate.
[0009]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made to meet the above-mentioned demands of the related art, and an object of the present invention is to provide a suction device capable of reliably sucking a substrate having a small thickness and a warp.
[0010]
[Means for Solving the Problems]
When the suction force of the suction device is f and the distance d between the substrate and the suction device is d, the relationship between the two is as follows:
Formula (1): f 1 / d2
It indicates that when the distance increases, the suction force decreases by a factor of 1/2.
[0011]
That is, it is considered that when the warpage of the substrate increases, the distance between the substrate and the suction device increases, so that the suction force decreases.
The present inventors conducted a test of “adsorption power” under the following conditions in order to confirm the relationship between substrate warpage and adsorption power.
[0012]
(Adsorption power)
A plurality of silicon wafers having different maximum warpages were prepared as substrates.
After placing the silicon wafer on the surface of the suction device as shown in FIGS. 13 and 14 in a vacuum atmosphere, start the power supply connected to the suction device and attach the silicon wafer to the silicon wafer in a state where the silicon wafer is sucked. The hook was pulled up in the vertical direction, and the tension when the silicon wafer was detached from the suction device was measured by a load cell.
[0013]
The thickness of each silicon wafer was 100 μm, and the flatness of the suction surface of the suction device for suctioning the silicon wafer was 5 μm or less.
FIG. 12 shows the measurement results. The horizontal axis in FIG. 12 indicates the maximum warp d (unit: mm) of the substrate (silicon wafer), and the vertical axis indicates the measured tension, which indicates the suction force (unit: kPa) at which the suction device suctions the substrate. ing.
[0014]
As is clear from FIG. 12, when the maximum warp d of the substrate is 1 mm or more, the suction force is 0.01 Pa or less. In this adsorption device, the thickness of the insulating layer on the first and second electrodes to which positive and negative voltages are applied is so small that it can be ignored, and 1 mm is equal to the maximum distance between the electrode and the substrate.
[0015]
If the suction force is 0.01 Pa or less, it is impossible to stably hold the substrate. Therefore, if the distance from the surface of the first and second electrodes to the substrate is 1 mm or less, the substrate can be stably held. It can be seen that it can be held.
Further, in order to prevent internal stress caused by flattening a substrate having a warp of 1 mm or more or cracking of the substrate, it is necessary to suppress the distance from the electrode surface to the substrate to 1 mm or less.
[0016]
The amount of warpage of the substrate varies depending on the type, size, thickness, process conditions, and the like of the substrate. Therefore, if the type, size, thickness, and process conditions of the substrate are the same, the amount of warpage of the substrate is constant. Therefore, it is expected that if the warpage of the substrate to be suctioned is measured in advance and the suction device is formed so as to be able to come into contact with the warped substrate, the suction force can be increased.
[0017]
The invention according to claim 1, which has been made based on the above-mentioned knowledge, has a support, and an electrode having a predetermined film thickness routed on the support, and applies a voltage to the electrode to form a substrate to be adsorbed. Wherein the thickness of the support is formed in different sizes according to the shape of the warpage of the substrate, and the substrate having the warp is placed on the suction device. The suction device is configured such that when the substrate is placed, the substrate comes into contact with the surface of the suction device, and the substrate is brought into close contact with the suction device when electrostatically attracted.
In addition, the thickness of the support means the distance from the plane to the surface of the support when the support is arranged parallel to a reference plane.
The invention according to claim 2 has a support having a flat surface, and an electrode routed on the flat surface, and is configured to apply a voltage to the electrode and electrostatically attract a substrate to be attracted. Wherein the film thickness of the electrode is formed to have a different thickness in accordance with the warpage of the substrate, and when the warped substrate is placed on the suction device, the substrate and the suction device are disposed. The substrate is a suction device configured to be brought into contact with the surface of the device and electrostatically attracted to cause the substrate to come into close contact with the suction device.
According to a third aspect of the present invention, there is provided the adsorption device according to any one of the first and second aspects, further comprising a protective layer, wherein a surface of the electrode is covered with the protective layer, and a surface of the electrode is provided. And the height from the surface to the surface of the protective layer is constant.
According to a fourth aspect of the present invention, there is provided a support having a flat surface, and an electrode having a predetermined thickness routed on the flat surface, and a voltage is applied to the electrode to electrostatically attract a substrate to be attracted. It is a suction device configured as described above, having a protective layer covering the surface of the electrode, the film thickness of the protective layer on the electrode is formed to a different thickness according to the warpage of the substrate, the warpage When the substrate having the substrate is placed on the suction device, the substrate is brought into contact with the surface of the suction device, and when the substrate is electrostatically suctioned, the suction is configured such that the substrate comes into close contact with the suction device. Device.
According to a fifth aspect of the present invention, there is provided an adsorption apparatus having a support which can be deformed vertically and horizontally, and an electrode provided on the support.
The invention according to claim 6 has a vacuum chamber and the suction device according to any one of claims 1 to 5, wherein the suction apparatus is disposed in the vacuum chamber, and the substrate is a vacuum chamber. This is a vacuum processing device that is closely attached to the suction device in a tank.
[0018]
If the above electrode is divided into a positive electrode and a negative electrode that are insulated from each other, and a positive voltage is applied to the positive electrode and a negative voltage is applied to the negative electrode, a gradient force can be generated in addition to the electrostatic attraction force, such as a silicon substrate Not only a conductive substrate but also an insulating substrate such as a glass substrate can be adhered.
When the suction device has only one polarity electrode, the vacuum chamber is the other polarity electrode, and a positive or negative voltage is applied to the suction device electrode, and a negative or positive voltage is applied to the vacuum chamber. Then, an electrostatic attraction force can be generated.
[0019]
In the adsorption device, a cooling device such as a cooling pipe or a heating device such as a heater is built in, or a cooling device or a heating device is arranged in the vicinity of the adsorption device. Heats or cools the substrate. In the present invention, since the adhesion between the substrate and the suction device is high, the substrate can be efficiently heated or cooled.
According to the above experimental results, the distance from the surface of the first and second electrodes to the substrate is desirably 1 mm or less, and therefore, the thickness of the protective layer on the electrode is desirably 1 mm or less.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Reference numeral 1 in FIG. 1 indicates a sputtering apparatus which is a vacuum processing apparatus according to an embodiment of the present invention, and reference numeral 5 in FIG. 2 indicates a substrate on which a film is formed by the sputtering apparatus 1.
[0021]
Before processing by the vacuum processing apparatus 1, a thin film 19 is formed on the surface of the substrate 5 by a method such as evaporation or sputtering, and the substrate 5 is warped by the stress generated when the thin film 19 is formed. Has occurred.
[0022]
The warp is such that, for example, when the substrate 5 is observed from the thin film 19 side, the central portion is depressed, and conversely, the peripheral portion is turned up. Conversely, when the substrate 5 is observed from the back surface, that is, from the mounting surface 18 side on which the suction device 10 is mounted, the mounting surface 18 has a curved surface in which the central portion rises and the peripheral portion is concave. Has become.
[0023]
Reference numeral 10 in FIG. 3 indicates a suction device according to a first example of the present invention for holding the substrate 5 described above. The suction device 10 includes a support 11 and first and second electrodes 15a and 15b. And a protective layer 17.
The support body 11 is formed by forming a flexible insulating material such as ceramic or a flexible material such as resin into a plate shape.
[0024]
Of the front and back surfaces of the support 11, the front surface 12 is formed in a shape that can contact the mounting surface 18 of the substrate 5. That is, the surface 12 of the support 11 has a curved surface such that when the mounting surface 18 is brought into contact with the mounting surface 18, the mounting surface 18 of the substrate 5 is concave when the mounting surface 18 is raised, and conversely when the mounting surface 18 is recessed.
[0025]
The first and second electrodes 15 a and 15 b are configured by patterning a copper thin film having a predetermined thickness formed on the surface 12 of the support 11. Here, the film thickness of each of the electrodes 15a and 15b is constant.
For example, the first and second electrodes 15a and 15b are arranged in a state of being alternately arranged as shown in FIG. 13, and a predetermined interval is provided between the first and second electrodes 15a and 15b, respectively. The first and second electrodes 15a and 15b are insulated from each other.
[0026]
The protective layer 17 is made of silicon dioxide (SiO2), And is formed with a constant thickness on the surface of each of the electrodes 15a and 15b. Here, the protective layer 17 is formed so as to cover only the surfaces of the electrodes 15a and 15b, and the side surfaces of the electrodes 15a and 15b and the surface 12 of the support 11 located between the electrodes 15a and 15b are exposed. .
[0027]
Reference numeral 13 in FIG. 4 indicates a virtual surface where the surface of each of the electrodes 15a and 15b is located, and reference numeral 14 in FIG. 4 indicates a virtual surface where the surface of each protective layer 17 is located.
As described above, since the thickness of each of the electrodes 15a and 15b is constant, the virtual surface 13 where the surfaces of the electrodes 15a and 15b are located is equal to the three-dimensional shape of the surface 12 of the support 11, and Since the thickness of each protective layer 17 is constant and the height from the surfaces of the electrodes 15a and 15b to the surface of the protective layer 17 is also constant, the virtual surface 14 where the surface of each protective layer 17 is located is , 15b are equal to the three-dimensional shape of the virtual surface 13 where the support 11 is located, ie, the three-dimensional shape of the surface 12 of the support 11 is also equal.
[0028]
The imaginary surface 14 on which the surface of each protective layer 17 is located is the mounting surface 14 of the substrate, and the raised portion of the mounting surface 18 is brought into contact with the recessed portion of the mounting surface 14, and the raised portion When the recessed portion of the mounting surface 18 is brought into contact with the substrate 5, the substrate 5 is placed on the suction device 10 while the mounting surface 18 is in contact with the mounting surface 14 without being deformed.
[0029]
The back surface of the support 11 is flat, and when the back surface is used as a reference surface, the height from the reference surface to the front surface 12 of the support 11, that is, the thickness w of the support 11.1Is small at the position where the surface 12 is concave, and is large at the position where the surface 12 is raised.
That is, in the suction device 10 of the first example, the support 11 is provided with different thicknesses w depending on the position.1By forming electrodes 15a and 15b having a constant thickness and a protective layer 17 having a constant thickness on the surface 12, the mounting surface 14 of the suction device 10 has a shape corresponding to the warpage of the substrate. It has become.
[0030]
The vacuum processing device 1 has a vacuum tank 2 and the above-described adsorption device 10. A table 9 is arranged on the bottom wall side in the vacuum chamber 2, and the surface of the table 9 is a flat horizontal surface. Since the suction device 10 is arranged such that the back surface of the support 11 is in close contact with the surface of the base 9, the suction device 10 is horizontal.
[0031]
A target 3 is horizontally arranged on the ceiling side in the vacuum chamber 2, and after a vacuum atmosphere is formed in the vacuum chamber 2 by a vacuum exhaust system 8 connected to the vacuum layer 2, the vacuum atmosphere is maintained. When the substrate 5 is carried into the vacuum chamber 2 and the substrate 5 is mounted on the mounting surface 14 of the suction device 10, the substrate 5 is horizontally disposed and faces the target 3.
[0032]
The substrate 5 is formed of a conductive substrate such as a silicon substrate, and activates the electrostatic chuck power supply 7 connected to the first and second electrodes 15a and 15b, and starts the first and second electrodes 15a and 15b. When a positive or negative voltage is applied to 15b, the substrate 5 is attracted to the attraction device 10 by the electrostatic attraction force, and the mounting surface 18 of the substrate 5 is strongly adhered to the attraction device 10.
[0033]
A heater serving as a heating means is provided inside the support 11 of the suction device 10, and the substrate 5 is heated by heat conduction because the temperature of the suction device 10 is previously raised to a predetermined temperature by the heater. A sensor (not shown) is attached to the suction device 10, and the sensor measures the temperature of the substrate 5 and controls the amount of current supplied to the heater, whereby the temperature of the substrate 5 is controlled.
[0034]
The target 3 is connected to a sputtering power source 6 arranged outside the vacuum chamber 2, and a vacuum atmosphere in the vacuum chamber 2 is introduced while a predetermined amount of a sputtering gas such as argon gas (Ar) is introduced into the vacuum chamber 2. If the DC voltage is applied to the target 3 by activating the sputtering power source 6 in this state, the target 3 is sputtered and a thin film grows on the surface of the substrate 5 in a temperature-controlled state.
[0035]
When the thin film has grown to a predetermined thickness, the sputtering is stopped and the film forming process is completed. When the electrostatic chuck power supply 7 is stopped, the suction force on the substrate 5 is released, and the substrate 5 after film formation can be lifted from the suction device 10.
[0036]
Although the case where the protective layer 17 is disposed only on the surfaces of the electrodes 15a and 15b has been described above, the present invention is not limited to this.
Reference numeral 20 in FIG. 5 denotes a support positioned between the surfaces and side surfaces of the first and second electrodes 25a and 25b and the first and second electrodes 25a and 25b instead of the protective layer of the suction device of the first example. This shows an adsorption device having a protective layer covering the surface of the body 21. The support 21 of the adsorption device 20 and the first and second electrodes 25a and 25b are the same as those of the adsorption device 10 of the first example.
[0037]
The protective layer 27 also has a constant film thickness on the electrodes 25a and 25b as in the suction device of the first example, so that the above-described substrate can be brought into contact with the surface of the protective layer 27.
Further, the present invention includes an adsorption device having no protective layer.
[0038]
Reference numeral 30 in FIG. 6 indicates the suction device in the state where the protective layer of the suction device 10 of the first example is not formed. When the protective layer is provided, the conductive substrate can be directly placed on the suction device because the substrate does not directly come into contact with the electrodes. However, this suction device 30 is used because the surfaces of the electrodes 35a and 35b directly contact the substrate. At least, the mounting surface of the substrate needs to be insulative.
[0039]
The case where the thickness of the support 11 is changed depending on the position and the electrodes 15a and 15b having a constant thickness are formed has been described above, but the present invention is not limited to this.
Reference numeral 40 in FIG. 7 indicates a suction device according to the second embodiment of the present invention. The suction device 40 has a support 41, first and second electrodes 45a and 45b, and a protective layer 47.
[0040]
The support body 41 is formed by forming an insulative material having no flexibility in a plate shape having a constant thickness, and the front and back surfaces thereof are flat.
The first and second electrodes 45a and 45b are arranged on the same surface of the support 41.
[0041]
When the warped substrate 5 is placed on the suction device 40, the electrodes 45a and 45b have thicknesses w at positions where the raised portions of the placement surface 18 correspond.2Is small, and w is at a position corresponding to the concave portion of the placement surface 18.2If the protective layer 47 is not formed, the surfaces of all the electrodes 45a and 45b come into contact with the mounting surface 18.
[0042]
Since the protective layer 47 is formed only on the surface of each of the electrodes 45a and 45b, and the thickness of each protective layer 47 is constant, when the substrate 5 is placed on the surface of the protective layer 47, The surface contacts the mounting surface 18 of the substrate 5.
[0043]
Since there are a plurality of first and second electrodes 45a and 45b, and the first and second electrodes 45a and 45b are alternately arranged, the surface of each protective layer 47 is brought into contact with the mounting surface 18. When positive and negative voltages are applied to the first and second electrodes 45a and 45b in this state, the substrate 5 is strongly adhered to the suction device 40.
[0044]
The case where the protective layer 47 is disposed only on the surface of the electrodes 45a and 45b has been described above. However, the present invention is not limited to this, and the second example, such as the adsorption device indicated by reference numeral 50 in FIG. Of the first and second electrodes 55a and 55b, and the surface of the support body 51 located between the first and second electrodes 55a and 55b. It may be formed.
[0045]
Since the protective layer 57 has a uniform film thickness on the electrodes 55a and 55b, similarly to the suction device 20 shown in FIG. 5, the above-described substrate can be brought into contact with the surface of the protective layer 57.
[0046]
Further, the present invention includes an adsorption device having no protective layer. Reference numeral 60 in FIG. 9 denotes an adsorption device in a state where the protective layer of the adsorption device 40 of the second example is not formed, and the adsorption device 60 has a support 61 and a first member similar to the adsorption device 40 of the second example. , Second electrodes 65a and 65b.
In the suction device 60, as in the case of the suction device 30 shown in FIG. 6, since the surfaces of the electrodes 65a and 65b are in direct contact with the substrate, it is necessary that at least the mounting surface of the substrate is insulative.
[0047]
The case where one of the thickness of the electrode and the thickness of the support is changed for each position so as to correspond to the warpage of the substrate has been described above, but the present invention is not limited to this.
Reference numeral 70 in FIG. 10 indicates a suction device according to a third embodiment of the present invention. This adsorption device 70 has a support 71, first and second electrodes 75 a and 75 b, and a protective layer 77.
[0048]
The support 71 is made of an insulative material having no flexibility and is formed in a plate shape having a constant thickness, and its front and rear surfaces are flat.
The first and second electrodes 75a and 75b are formed to have a predetermined thickness and are arranged on the same surface of the support 71, respectively. Here, each of the electrodes 75a and 75b has a constant film thickness. The protective layer 77 is disposed so as to cover at least the surfaces of the first and second electrodes 75a and 75b.
[0049]
Here, the protective layer 77 is formed so as to cover the surfaces and side surfaces of the first and second electrodes 75a and 75b and the surface of the support 71 located between the first and second electrodes 75a and 75b. .
When the substrate 5 having the warp as described above is placed on the surface of the protective layer 77, the thickness of the electrodes 75a and 75b and the thickness w of the protective layer 77 on the electrodes 75a and 75b3Is small at the position where the mounting surface 18 of the substrate 5 is raised, and is large at the position where the mounting surface 18 is concave.
[0050]
The height from the surface of the support 71 to the surface of the protective layer 47 is the same height as the position on the electrodes 75a and 75b or lower at the position between the first and second electrodes 75a and 75b. Therefore, when the substrate 5 is placed on the surface of the protective layer 47, the mounting surface 18 of the substrate 5 comes into contact with the surface of the protective layer 47 at a position on the electrodes 75a and 75b.
[0051]
Since the first and second electrodes 75a and 75b are plural in number and are arranged alternately with each other, the first and second electrodes 75a and 75b are arranged in a state where the mounting surface 18 of the substrate 5 is in contact with the surface of the protective layer 77. When positive and negative voltages are applied to the electrodes 75a and 75b, the substrate 5 is strongly adhered to the suction device 70.
[0052]
Although the case where the protective layer 77 covers the surfaces and side surfaces of the electrodes 75a and 75b and the surface of the support 71 between the electrodes 75a and 75b has been described above, the present invention is not limited to this. Instead of the protective layer 77 of the three suction devices 70, the protective layer may be formed so as to cover only the surface of each electrode.
[0053]
The case where the support is made of an insulating material having no flexibility has been described above, but the present invention is not limited to this.
Reference numeral 95 in FIG. 11A indicates a transport device according to an embodiment of the present invention.
The transfer device 95 has a suction device 80 and a moving unit 96.
[0054]
The suction device 80 has a support 86, first and second electrodes 85a and 85b, and a protective layer 87.
The first and second electrodes 85a and 85b are respectively disposed on the surface of the support 86, and the protective layer 87 is formed so as to cover at least the surface of each of the electrodes 85a and 85b. Here, the protective layer 87 is formed so as to cover the surfaces and side surfaces of the electrodes 85a and 85b and the surface of the support 86 located between the first and second electrodes 85a and 85b.
[0055]
The support 86 and the protective layer 87 are formed by forming a flexible insulating material such as resin or rubber into a sheet shape, and the first and second electrodes 85a and 85b are formed of the support 86 and the protective layer. 87 is made of a metal thin film such as a copper thin film having a thickness small enough not to hinder deformation. Therefore, the laminate 81 including the support 86 and the protective layer 87 is deformable.
[0056]
The moving means 96 has a plurality of rod-shaped support means 89, and the suction device 80 has a surface on which the protective layer 87 is disposed facing downward, and a surface of the support 86 facing upward. The lower end of each support means 89 is attached to the surface of the body 86.
[0057]
The upper end of the supporting means 89 is connected to a moving mechanism (not shown) of the moving means 96. When each supporting means 89 is moved in the same direction by the moving mechanism, the suction device 80 moves together with the supporting means 89. ing.
Reference numeral 90 in FIG. 11A indicates a substrate on which warpage has occurred due to processing such as etching or film formation.
[0058]
Since each support means 89 is movable in the horizontal and vertical directions following the deformation of the suction device 80 including the support 86, the suction device 80 is arranged together with the support means 89 above the substrate 90, When the support device 89 is lowered and the suction device 80 is placed on the substrate 90, the suction device 80 is deformed without being hindered by the support device 89, and the suction device 80 is turned on the surface of the substrate 90, that is, the surface of the protective layer 87. It comes into contact with the mounting surface 92 of the substrate 90.
[0059]
When the support device 89 is fixed relative to the suction device 80 when the suction device 80 comes into contact with the mounting surface 92, the suction device 80 is also fixed. The first and second electrodes 85a and 85b are connected to a power supply (not shown). When the power supply is started and positive and negative voltages are applied to the first and second electrodes 85a and 85b, the substrate 90 is attracted. It is strongly adhered to the device 80.
[0060]
In this state, when each supporting means 89 is moved upward, the substrate 90 is lifted in a state in which the substrate 90 is in close contact with the suction device 80. Next, when each supporting means 89 is horizontally moved in the same direction, Is also transported.
[0061]
The case where the first and second electrodes 85a and 85b are covered with the protective layer 87 has been described above. However, the present invention is not limited to this. For example, a support made of a flexible insulating film may be used. First and second electrodes may be formed on the surface of the body, and the first and second electrodes may be exposed on the surface of the support.
[0062]
In the above, the case where the first and second electrodes are formed of a copper thin film has been described. However, the present invention is not limited to this, and may be formed of a thin film of another metal such as aluminum. It is not limited, and may be made of a conductive material such as carbon.
[0063]
Also, a sputtering apparatus has been described as a vacuum processing apparatus provided with the adsorption apparatus of the present invention. However, the present invention is not limited to this. For example, a film forming apparatus such as a CVD apparatus, an etching apparatus, a transport mechanism, and the like. The adsorption device of the present invention can also be used.
[0064]
The type of the substrate to be adsorbed by the adsorption device of the present invention is not particularly limited, and the substrate may be an insulating substrate such as a glass substrate, a resin film substrate, or a conductive substrate such as a silicon substrate. Can also be adsorbed.
[0065]
【The invention's effect】
When electrostatically attracting the warped substrate, the attraction force can be increased.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a configuration of a vacuum processing apparatus including an adsorption device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a substrate sucked by the suction device of the present invention.
FIG. 3 is a cross-sectional view illustrating a first example of the suction device of the present invention.
FIG. 4 is a diagram for explaining the relationship between the surface of an electrode and a protective layer and the surface of a support.
FIG. 5 is a cross-sectional view illustrating a modification of the suction device according to the first embodiment of the present invention.
FIG. 6 is a cross-sectional view illustrating another modification of the suction device of the first example of the present invention.
FIG. 7 is a cross-sectional view illustrating a second example of the suction device of the present invention.
FIG. 8 is a cross-sectional view illustrating a modified example of the suction device of the second example of the present invention.
FIG. 9 is a cross-sectional view illustrating another modified example of the suction device of the second example of the present invention.
FIG. 10 is a sectional view illustrating a third example of the suction device of the present invention.
FIGS. 11A and 11B are process diagrams illustrating an example of the transfer device of the present invention together with the transfer process.
FIG. 12 is a graph illustrating the relationship between the amount of substrate warpage and the attraction force.
FIG. 13 is a plan view illustrating a conventional suction device.
FIG. 14 is a cross-sectional view illustrating a conventional suction device.
[Explanation of symbols]
1 ... sputtering apparatus (vacuum processing apparatus) 5 ... substrate 10 ... adsorption apparatus 11 ... supports 25a and 25b ... electrodes 17 ... protective layer / thickness of support W1

Claims (6)

支持体と、前記支持体上を引き回された所定膜厚の電極とを有し、前記電極に電圧を印加し、吸着対象の基板を静電吸着するように構成された吸着装置であって、
前記支持体の厚みは、前記基板の反りの形状に応じて異なる大きさに形成され、
反りを有する前記基板を該吸着装置上に載置したときに、前記基板と前記吸着装置の表面とが接触し、静電吸着させると、前記基板が前記吸着装置上に密着するように構成された吸着装置。
A suction device, comprising: a support, an electrode having a predetermined thickness drawn around the support, and applying a voltage to the electrode to electrostatically suction a substrate to be suctioned. ,
The thickness of the support is formed in different sizes depending on the shape of the warpage of the substrate,
When the substrate having the warp is placed on the suction device, the substrate comes into contact with the surface of the suction device, and when electrostatically adsorbed, the substrate is configured to be in close contact with the suction device. Adsorption equipment.
平面を有する支持体と、前記平面上を引き回された電極とを有し、前記電極に電圧を印加し、吸着対象の基板を静電吸着するように構成された吸着装置であって、
前記電極の膜厚は、前記基板の反りに応じて異なる厚みに形成され、
反りを有する前記基板を該吸着装置上に載置したときに、前記基板と前記吸着装置の表面とが接触し、静電吸着させると、前記基板が前記吸着装置上に密着するように構成された吸着装置。
A suction device configured to have a support having a flat surface and an electrode routed on the flat surface, apply a voltage to the electrode, and electrostatically suction a substrate to be suctioned,
The thickness of the electrode is formed to a different thickness according to the warpage of the substrate,
When the substrate having the warp is placed on the suction device, the substrate comes into contact with the surface of the suction device, and when electrostatically adsorbed, the substrate is configured to be in close contact with the suction device. Adsorption equipment.
保護層を有し、前記電極の表面は前記保護層で覆われ、前記電極の表面から、前記保護層表面までの高さが一定に形成された請求項1又は請求項2のいずれか1項記載の吸着装置。3. The device according to claim 1, further comprising a protective layer, wherein a surface of the electrode is covered with the protective layer, and a height from the surface of the electrode to the surface of the protective layer is formed to be constant. The adsorption device according to the above. 平面を有する支持体と、前記平面上に引き回された所定膜厚の電極とを有し、前記電極に電圧を印加し、吸着対象の基板を静電吸着するように構成された吸着装置であって、
前記電極の表面を覆う保護層を有し、
前記保護層の前記電極上の膜厚は、前記基板の反りに応じて異なる厚みに形成され、
反りを有する前記基板を該吸着装置上に載置したときに、前記基板と前記吸着装置の表面とが接触し、静電吸着させると、前記基板が前記吸着装置上に密着するように構成された吸着装置。
A suction device configured to have a support having a flat surface and an electrode of a predetermined thickness routed on the flat surface, apply a voltage to the electrode, and electrostatically suction a substrate to be suctioned. So,
Having a protective layer covering the surface of the electrode,
The thickness of the protective layer on the electrode is formed to a different thickness according to the warpage of the substrate,
When the substrate having the warp is placed on the suction device, the substrate comes into contact with the surface of the suction device, and when electrostatically adsorbed, the substrate is configured to be in close contact with the suction device. Adsorption equipment.
上下左右に変形可能な支持体と、前記支持体上に設けられた電極とを有する吸着装置。An adsorption device having a support that can be deformed up, down, left, and right, and an electrode provided on the support. 真空槽と、請求項1乃至請求項5のいずれか1項記載の吸着装置とを有し、前記吸着装置は前記真空槽内に配置され、前記基板は前記真空槽内で前記吸着装置に密着される真空処理装置。A vacuum tank, and the suction device according to any one of claims 1 to 5, wherein the suction device is disposed in the vacuum tank, and the substrate is in close contact with the suction device in the vacuum tank. Vacuum processing equipment.
JP2002206482A 2002-07-16 2002-07-16 Sucking device and vacuum processing device Pending JP2004047912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002206482A JP2004047912A (en) 2002-07-16 2002-07-16 Sucking device and vacuum processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002206482A JP2004047912A (en) 2002-07-16 2002-07-16 Sucking device and vacuum processing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007193618A Division JP4774025B2 (en) 2007-07-25 2007-07-25 Adsorption device, transfer device

Publications (2)

Publication Number Publication Date
JP2004047912A true JP2004047912A (en) 2004-02-12
JP2004047912A5 JP2004047912A5 (en) 2005-09-22

Family

ID=31711453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002206482A Pending JP2004047912A (en) 2002-07-16 2002-07-16 Sucking device and vacuum processing device

Country Status (1)

Country Link
JP (1) JP2004047912A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068331A (en) * 2005-08-31 2007-03-15 Tsukuba Seiko Co Ltd Static electricity holding device, transfer method using device, application method of coating film, and molding mold
JP2010182866A (en) * 2009-02-05 2010-08-19 Nikon Corp Electrostatic attraction holding device, aligner, exposure method, and method of manufacturing device
CN107591356A (en) * 2017-10-13 2018-01-16 深圳中科飞测科技有限公司 Wafer mounting apparatus and its application method
JP2018142647A (en) * 2017-02-28 2018-09-13 株式会社Screenホールディングス Substrate processing apparatus and substrate holding device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422153A (en) * 1990-05-17 1992-01-27 Tokyo Electron Ltd Electrostatic attraction equipment
JP2000031253A (en) * 1998-07-10 2000-01-28 Komatsu Ltd Substrate processing device and method
JP2000124299A (en) * 1998-10-16 2000-04-28 Hitachi Ltd Manufacture of semiconductor device and semiconductor manufacturing apparatus
JP2000174105A (en) * 1998-12-03 2000-06-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor wafer holding device
JP2001035907A (en) * 1999-07-26 2001-02-09 Ulvac Japan Ltd Chuck device
JP2002026113A (en) * 2000-07-10 2002-01-25 Toshiba Corp Hot plate and method of manufacturing semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0422153A (en) * 1990-05-17 1992-01-27 Tokyo Electron Ltd Electrostatic attraction equipment
JP2000031253A (en) * 1998-07-10 2000-01-28 Komatsu Ltd Substrate processing device and method
JP2000124299A (en) * 1998-10-16 2000-04-28 Hitachi Ltd Manufacture of semiconductor device and semiconductor manufacturing apparatus
JP2000174105A (en) * 1998-12-03 2000-06-23 Nippon Telegr & Teleph Corp <Ntt> Semiconductor wafer holding device
JP2001035907A (en) * 1999-07-26 2001-02-09 Ulvac Japan Ltd Chuck device
JP2002026113A (en) * 2000-07-10 2002-01-25 Toshiba Corp Hot plate and method of manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068331A (en) * 2005-08-31 2007-03-15 Tsukuba Seiko Co Ltd Static electricity holding device, transfer method using device, application method of coating film, and molding mold
JP2010182866A (en) * 2009-02-05 2010-08-19 Nikon Corp Electrostatic attraction holding device, aligner, exposure method, and method of manufacturing device
JP2018142647A (en) * 2017-02-28 2018-09-13 株式会社Screenホールディングス Substrate processing apparatus and substrate holding device
CN107591356A (en) * 2017-10-13 2018-01-16 深圳中科飞测科技有限公司 Wafer mounting apparatus and its application method

Similar Documents

Publication Publication Date Title
JP4030350B2 (en) Split electrostatic chuck
JP4703050B2 (en) Substrate dechuck method and apparatus
US8295026B2 (en) Electrostatic chuck and substrate processing apparatus having same
JP4396892B2 (en) Electrostatic chuck for substrate stage and processing system
KR101060774B1 (en) Temperature control method of an electrode unit, a substrate processing apparatus, and an electrode unit
JP6526795B2 (en) Substrate holding method
JP3374033B2 (en) Vacuum processing equipment
KR20150053775A (en) Portable electrostatic chuck carrier for thin substrates
JP4774025B2 (en) Adsorption device, transfer device
JP4278046B2 (en) Electrostatic chuck with heater mechanism
JP4009006B2 (en) Hot plate
JP2001127041A (en) Plasma processor for board, and plasma processing method
JP3423186B2 (en) Processing method
JP2004047912A (en) Sucking device and vacuum processing device
JP4518712B2 (en) Tray-type multi-chamber substrate processing equipment
JP2004055585A (en) Device and method for plasma treatment
JPH11111829A (en) Electrostatic sucking hot plate vacuum-treatment apparatus and method for vacuum treatment
JP6851202B2 (en) Board holder, vertical board transfer device and board processing device
JPH06275708A (en) Electrostatic chuck
JPH11233600A (en) Electrostatic attractor and vacuum processor using the same
JPH07193117A (en) Board holding device
JP4467836B2 (en) Deposition method
JP2004063827A (en) Attraction unit, vacuum processing device, and attraction method
TWI677764B (en) Method of processing a substrate and substrate carrier system
JP2000150628A (en) Substrate placement device and vacuum process device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050419

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050419

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070725

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080422