JP2004040356A - 半導体集積回路及びマイクロプロセッサ - Google Patents
半導体集積回路及びマイクロプロセッサ Download PDFInfo
- Publication number
- JP2004040356A JP2004040356A JP2002193072A JP2002193072A JP2004040356A JP 2004040356 A JP2004040356 A JP 2004040356A JP 2002193072 A JP2002193072 A JP 2002193072A JP 2002193072 A JP2002193072 A JP 2002193072A JP 2004040356 A JP2004040356 A JP 2004040356A
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- correction data
- power supply
- analog
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Analogue/Digital Conversion (AREA)
- Microcomputers (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
【課題】用途に応じて使い勝手の良好な変換特性を選択可能な、A/D変換器などのアナログ回路を内蔵した半導体集積回路を提供する。
【解決手段】半導体集積回路(1)は、中央処理装置(3)、不揮発性メモリ(9)及びアナログ回路(7,8)を有する。不揮発性メモリは、電源投入に応答してアナログ回路の特性を初期化する第1補正データ(37)を格納する第1メモリ領域(35)と、特性初期化後に中央処理装置の命令実行によってアナログ回路の特性にオフセットを与える第2補正データ(38)を格納する第2メモリ領域(36)とを含む。第1補正データによる適正に補正された初期特性のままでも、第2補正データによる用途に応じたオフセットを積極的に与えた特性でも、使い勝手の良い変換特性を選択することができる、半導体集積回路を実現可能となる。
【選択図】 図1
【解決手段】半導体集積回路(1)は、中央処理装置(3)、不揮発性メモリ(9)及びアナログ回路(7,8)を有する。不揮発性メモリは、電源投入に応答してアナログ回路の特性を初期化する第1補正データ(37)を格納する第1メモリ領域(35)と、特性初期化後に中央処理装置の命令実行によってアナログ回路の特性にオフセットを与える第2補正データ(38)を格納する第2メモリ領域(36)とを含む。第1補正データによる適正に補正された初期特性のままでも、第2補正データによる用途に応じたオフセットを積極的に与えた特性でも、使い勝手の良い変換特性を選択することができる、半導体集積回路を実現可能となる。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、中央処理装置、不揮発性メモリ及びアナログ回路を1個の半導体チップ上に有した半導体集積回路に関し、特にアナログ回路における誤差の補正に関するもので、例えば機器組み込み用の半導体集積回路、更にはマイクロプロセッサに適用して有効な技術に関する。
【0002】
【従来の技術】
半導体集積回路に含まれるアナログ回路としては、D/A(digital to analog)変換器や局部D/A変換器を有したA/D(analog to digital)変換器がある。そのようなD/A変換器は、ラダー抵抗回路網のような抵抗分圧回路を有し、この抵抗分圧回路は、電源電圧源と接地電圧源との間の電位差を抵抗分圧してデジタル値に応ずる分圧電圧を形成するようになっている。したがって、前記抵抗分圧回路を構成する全ての抵抗が高精度に形成されていれば、一定の変換精度が保証されたD/A変換を実現可能である。
【0003】
しかしながら、半導体集積回路では、半導体製造プロセスに起因する抵抗値のばらつきが原因で、オフセット誤差やフルスケール誤差などの相対誤差が生じてしまう為、実際には、抵抗値の微調整や抵抗回路網全体の合せ込みにより相対誤差の補正を行うことで、一定の変換精度を保証している。
【0004】
相対誤差の補正に着目した従来技術として、特開平9−260593号公報には、半導体集積回路外部から半導体集積回路内の不揮発性メモリ部に書き込んだ記憶データにより、複数の可変抵抗回路を直列接続して構成された抵抗分圧回路の可変抵抗回路ごとの抵抗値を調整して、相対誤差全般に対する補正を可能とした技術が開示されている。特開平6−204873号公報には、A/D変換器外部に設けられた入力端子から範囲変更設定用の信号を与えることにより、抵抗分圧回路と接地電圧源端子及び電源電圧源端子との間にそれぞれ設けられた可変抵抗回路の抵抗値を選択することで、オフセット誤差及びフルスケール誤差を各々調整して、A/D変換範囲を変更可能とした技術が開示されている。
【0005】
【発明が解決しようとする課題】
本発明者は、半導体集積回路に内蔵されたD/A変換器若しくは局部D/A変換器を有したA/D変換器の使い勝手を向上させるという観点より、オフセット誤差やフルスケール誤差を低減させること、オフセット誤差若しくはフルスケール誤差の一方または双方に対して積極的にオフセットを与えることで所望の変換特性を得ること、について検討した。
【0006】
これによれば、発明者は、半導体集積回路に含まれたアナログ回路であるD/A変換器若しくは局部D/A変換器を有するA/D変換器において、半導体集積回路の利用者(以下ユーザと記す)が半導体集積回路の製造者(以下メーカと記す)によって保証された変換精度でアナログ回路を常に利用可能とする為には、半導体集積回路に電源投入した時点でD/A変換器の相対誤差を常に初期化することが望ましいということを見出した。また、相対誤差が補正された状態で半導体集積回路がメーカからユーザに供給された後、補正済みの相対誤差に対して人為的な調整を加えることの必要性が本発明者によって認識された。すなわち、半導体集積回路に含まれたD/A変換器またはD/A変換器を内蔵したA/D変換器の変換特性を、例えば、ガス、電力の残量表示装置のように、本来の残量値に対してあるオフセットを持たせて表示することが応用システム装置自体の仕様を満足しうる場合など、用途に応じた変換特性に変更可能したいという要求も考えられる。
【0007】
前記公知技術においては、上記検討事項の両者をともに解決する為の内容は開示されていない。
【0008】
本発明の目的は、用途に応じて使い勝手の良好なD/A変換器やA/D変換器などのアナログ回路を内蔵した半導体集積回路、更にはマイクロプロセッサを提供することにある。
【0009】
本発明の別の目的は、電源投入に応答して予め定めた初期状態に相対誤差を設定する機能と、半導体集積回路の応用システム装置への組み込み後でもオフセット誤差若しくはフルスケール誤差の一方または双方にオフセットを容易に与えること可能な機能と、を両方有した、D/A変換器若しくはD/A変換器を有するA/D変換器をアナログ回路として含む半導体集積回路を提供することである。
【0010】
本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
【0011】
【課題を解決するための手段】
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
【0012】
〔1〕すなわち、本発明に関わる半導体集積回路は、中央処理装置(3)、前記中央処理装置によりアクセス可能な不揮発性メモリ(9)及びアナログ回路(7,8)を1個の半導体チップ上に有する。前記不揮発性メモリは第1メモリ領域(35)及び第2メモリ領域(36)を含む。前記第1メモリ領域は、電源投入に応答して、前記アナログ回路の特性を決定する初期値として利用される第1補正データ(37)を格納する。前記第2メモリ領域は、電源投入に応答した前記アナログ回路への初期値設定後に、前記中央処理装置の命令実行によって、前記アナログ回路の特性を変更するために利用される第2補正データ(38)を格納する。
【0013】
上記した手段によれば、前記第1メモリ領域にはメーカが出荷前に予め定めた初期値のような第1補正データが格納されることになり、電源投入に応答して、アナログ回路の特性を初期化することができる。更に、前記第2メモリ領域にはアナログ回路の特性にオフセットを与えるような第2補正データが格納されることになり、電源投入に応答した前記第1補正データによる前記アナログ回路の特性が決定された後、前記中央処理装置の命令実行により、前記アナログ回路の特性を、前記第1補正データにより決定された初期特性から、残量表示装置などの実際の用途に応じた特性に変更できる。これにより、適正に補正された初期特性のままでも、用途に応じたオフセットを積極的に与えた特性でも、特別な手段を必要とすることなく容易に、使い勝手の良い特性を選択することができる、D/A変換器やA/D変換器などのアナログ回路を内蔵した半導体集積回路を実現可能となる。
【0014】
本発明の具体的な様態としては、前記第1補正データは、前記アナログ回路自体の電源電圧側におけるフルスケール誤差と接地電源側におけるオフセット誤差とのうち一方または双方を補正可能なデータである。また、前記第2補正データは、前記第1補正データに対して両極性を有する複数のデータである。これにより、オフセット誤差やフルスケール誤差に対して予め補正を行った状態に対して、正負いずれの極性にもオフセットを与えることが可能である為、寒冷地や熱帯などの仕向地の違いにより必要とされるオフセットの極性が異なる複数の特性を使用環境に応じて変更しなければならない場合であっても柔軟に適応できる、幅広い用途の、D/A変換器やA/D変換器などのアナログ回路を内蔵した半導体集積回路を実現可能となる。
【0015】
前記アナログ回路は、例えば、電源電圧端子(24)、外部から与えられた信号により抵抗値の変更を可能とした電源電圧側の可変抵抗回路(30)、外部から与えられたデジタル値により分圧ノードの選択を可能とした抵抗分圧回路(31)、外部から与えられた信号により抵抗値の変更を可能とした接地電源側の可変抗回路(32)及び接地電圧端子(25)が順次直列接続されたD/A変換器(8)または前記D/A変換器を局部D/A変換器(23)として有する逐次変換方式のA/D変換器(7)である。前記D/A変換器として、前記電源電圧側の可変抵抗回路又は接地電源側の可変抗回路のいずれか一方を有する構成でもよい。
【0016】
前記アナログ回路は、例えば、前記第1メモリ領域から読み出された前記第1補正データが格納可能にされると共に前記第2メモリ領域から読み出された第2補正データが格納可能にされるレジスタ手段(20)を有する。前記レジスタ手段に格納された第1補正データ又は第2補正データは前記可変抵抗回路の抵抗値を選択させる。
【0017】
〔2〕別の観点による発明は、半導体集積回路の不揮発性メモリに書き込まれたデータに着目する。本発明に関わる半導体集積回路は、中央処理装置、前記中央処理装置によりアクセス可能な不揮発性メモリ及びアナログ回路を1個の半導体チップ上に有する。前記不揮発性メモリは、電源投入に応答して、前記アナログ回路の特性を決定する初期値として利用される第1補正データ及び電源投入に応答した前記アナログ回路への初期値設定後に前記中央処理装置の命令実行によって、前記アナログ回路の特性を変更するために利用される第2補正データを有する。
【0018】
前記第1補正データは、前記アナログ回路自体の電源電圧側におけるフルスケール誤差と、接地電源側におけるオフセット誤差と、のうち一方または双方を補正可能なデータである。
【0019】
前記第2補正データは、前記第1補正データに対して両極性を有する複数のデータである。
【0020】
上記した手段によれば、前記半導体集積回路の前記不揮発性メモリが第1メモリ領域及び第2メモリ領域を含む場合と同様の効果が得られる。
【0021】
【発明の実施の形態】
図2には本発明に係る半導体集積回路の一例としてシングルチップ・マイクロコンピュータ(又はシングルチップマイクロプロセッサ)1の構成が例示されている。特に制限されないが、前記シングルチップ・マイクロコンピュータ1は、公知のCMOS製造プロセスによって単結晶シリコン基板などの一つの半導体基板(半導体チップ)上に形成される。
【0022】
図2に示されるように、前記シングルチップ・マイクロコンピュータ1は、特に制限されないが、クロック発振器2、中央処理装置(以下CPUと記す)3、内蔵ランダム・アクセス・メモリ(RAM)4、外部ホストコントローラと前記CPU3とのパラレルインターフェース回路とされるホストインタフェース5、シリアル通信回路とされるシリアルコミュニケーションインタフェース6、アナログ・デジタル変換器(以下A/D変換器と記す)7、デジタル・アナログ変換器(以下D/A変換器と記す)8、内蔵リード・オンリー・メモリ(以下ROMと記す)9、システム暴走監視回路とされるウォッチドッグタイマ10、波形出力及び波形周期測定回路とされるフリーランニングタイマ11、汎用タイマ回路とされるタイマ12、パルス幅変調回路とされるPWMタイマ13及び複数の信号の入出力回路とされる複数のポート(ポート1〜9)14を含む。
【0023】
前記CPU3とこれらの回路モジュール(4〜14)はアドレスバス15及びデータバス16によって結合され、前記CPU3により前記これらの回路モジュール(4〜14)がアクセス可能とされる。
【0024】
前記CPU3が前記回路モジュール(4〜14)の何れかをアクセスする場合、前記CPU3はアクセスの対象とされる前記回路モジュールに割り当てられたアドレスを選択するためのアドレス信号を前記アドレスバス15へ発生する。この時、データリードモードであるなら、アクセスの対象とされる前記回路モジュールは前記データバス16にデータを出力し、前記CPU3は前記データバス16を介してそのデータを取り込む。一方、データライトモードであるなら、前記CPU3は前記データバス16へ所望のデータを出力し、上記アクセスの対象とされる前記回路モジュールは前記データバス16を介してそのデータを取り込む。
【0025】
前記CPU3は、特に制限されないが、処理すべきプログラム内に定義された命令が格納される命令レジスタ、前記命令レジスタに格納された命令をデコードする命令デコーダ、前記命令デコーダから出力される制御信号に従ってその動作が制御される命令実行部とを含む。前記命令実行部は、算術演算や論理演算を実行する算術論理演算器、汎用レジスタ、プログラム内の次に実行されるべき命令の命令アドレスに関するデータを格納するプログラムカウンタ等を有する。なお、前記の命令レジスタ、命令デコーダ、命令実行部、算術論理演算器、汎用レジスタ及びプログラムカウンタは、図面の簡素化のため、上記図2には描かれていないが、当業者には当然に理解されるであろう。
【0026】
アナログ回路の1つとして搭載されている前記A/D変換器7は、特に制限されないが、逐次変換方式により入力アナログ信号をデジタル信号に変換する機能を有し、各種レジスタ、局部D/A変換部及びコントロール回路を含む。
【0027】
もう1つのアナログ回路として搭載されている前記D/A変換器8は、特に制限されないが、前記データバス16を介して入力されたデジタル信号をアナログ信号に変換する機能を有し、各種レジスタ及びコントロール回路を含む。
【0028】
前記ROM9は、前記CPU3で実行されるプログラムを格納するためのプログラムメモリとされ、特に制限されないが、電気的に消去及びプログラムが可能な不揮発性記憶装置、例えば、一括消去型のフラッシュ型EEPROMなどのフラッシュメモリによって構成される。
【0029】
図3には前記A/D変換器7の一例が例示される。図3に示されるように、前記A/D変換器7は、特に制限されないが、バスインターフェイス17、モジュールデータバス18、コントロールレジスタ19、トリミングレジスタ20、データレジスタ21、逐次変換レジスタ22、局部D/A変換部23、アナログ回路の電源電圧端子(AVcc)24、アナログ回路の接地電圧端子25(AVss)、コントロール回路26、コンパレータ27、サンプル・ホールド回路28及びマルチプレクサ29を含み、逐次変換方式によりアナログ・デジタル変換を行う。
【0030】
前記アナログ回路の電源電圧端子24及びアナログ回路の接地電圧端子25は、図1に示されるように、前記半導体集積回路1の前記アナログ回路以外のディジタル回路(2−6、9−14等)の電源電圧端子(DVcc)101及び接地電圧端子(DVss)102とは異なる。すなわち、デジタル回路の動作によって発生される電源ノイズが上記アナログ回路の動作に影響を与えないようにするため、アナログ回路用の電源電圧端子24及び接地電圧端子25とデジタル回路用の電源電圧端子101及び接地電圧端子102とは分離される。
【0031】
次に、上記各回路ブロック(17〜29)の機能を説明する。
【0032】
前記モジュールデータバス18は、特に制限されないが、前記A/D変換器7の内部データバスであり、前記バスインターフェイス17を介して前記データバス16と結合されている。
【0033】
前記コントロール/ステータスレジスタ19は、特に制限されないが、前記CPU3により、A/D変換の制御を行うコントロールデータが格納可能にされる機能を有する。また、前記コントロール回路26により、A/D変換の状態を示すステータスデータが格納可能にされる機能を有する。
【0034】
前記トリミングレジスタ20は、特に制限されないが、前記CPU3により、前記局部D/A変換部23の変換特性を決定する補正データが格納可能にされる機能を有する。
【0035】
前記データレジスタ21は、特に制限されないが、前記逐次比較レジスタ22により、A/D変換を行った結果であるリザルトデータが格納可能にされる機能を有する。
【0036】
前記マルチプレクサ29は、特に制限されないが、前記コントロール回路26により与えられた制御信号に従い、入力アナログ信号AN0〜AN7のうち1つを選択して出力する機能を有する。
【0037】
前記サンプル・ホールド回路28は、特に制限されないが、前記マルチプレクサ29により出力された入力アナログ信号の刻々と変化する状態を、前記コントロール回路26により与えられたクロック信号φ/2〜φ/16に同期して、一時的に保持する機能を有する。
【0038】
前記局部D/A変換部23は、特に制限されないが、前記逐次比較レジスタ22により与えられたデジタル値を、前記電源電圧端子(AVcc)24と前記接地電圧端子(AVss)25とによって与えられた電圧範囲のアナログ電圧出力に、前記トリミングレジスタ20が保有する補正データによって決められた変換特性に従って、デジタル・アナログ変換を行う機能を有する。
【0039】
前記コンパレータ27は前記サンプル・ホールド回路28で保持された入力アナログ信号と前記局部D/A変換部23より出力されたアナログ電圧出力との電圧比較を行い、比較結果信号を出力する機能を有する。
【0040】
前記コントロール回路26は、特に制限されないが、変換開始トリガS1又は外部トリガ入力S2からの変換開始要求により、前記コントロール/ステータスレジスタ19が保有する前記コントロールデータの内容に基づき、入力アナログ信号AN0〜AN7に対するアナログ・デジタル変換の実行制御を行う機能を有する。また、割り込み信号S3を用いて前記CPU3に対してアナログ・デジタル変換の終了を通知する機能を有する。
【0041】
前記逐次比較型レジスタ22は、特に制限されないが、前記コントロール回路26の制御に基づいて、前記局部D/A変換部23にデジタル・アナログ変換用のデジタル値を比較終了まで繰り返し与える機能を有する。また、比較終了時のデジタル値を、A/D変換の結果である前記リザルトデータとして前記データレジスタ21に格納する機能を有する。
【0042】
ここで図3のA/D変換器の全体的なアナログ・デジタル変換動作を説明する。
【0043】
この例においては、先ず、変換対象となる前記入力アナログ信号や変換時間となる前記クロック信号などを指定する前記コントロールデータが、前記CPU3により前記コントロール/ステータスレジスタ19に格納される。次に、前記コントロールデータに基づいて、前記コントロール回路26により前記入力アナログ信号AN0〜AN7のうち1つが変換対象入力アナログ信号として選択される。前記変換開始トリガS1又は前記外部トリガ入力S2により変換開始が要求されると、前記コントロールデータにより指定された前記クロック信号φ/2〜φ/16に同期して前記変換対象入力アナログ信号の電圧値が前記サンプル・ホールド回路28に一時的に保持される。これにより、前記変換対象入力アナログ信号の変換開始要求に応答した電圧値が一義的に決定する。この電圧値と前記局部D/A変換器23の前記アナログ電圧出力とを前記コンパレータ27により比較する。前記アナログ電圧出力は、前記トリミングレジスタ20が保有する補正データによって予め決定された変換特性に基づいて、前記逐次比較レジスタ22により与えられたデジタル値をデジタル・アナログ変換したものである。アナログ・デジタル変換が終了するまで、前記コントロール回路26、前記逐次比較レジスタ22及び前記局部D/A変換器23により前記アナログ電圧出力の更新が繰り返えし行われ、更新されるごとに前記コンパレータ27による比較が行われる。アナログ・デジタル変換が終了した時点で前記逐次比較レジスタ22が保有していたデジタル値は、アナログ・デジタル変換結果として前記データレジスタ21に格納される。前記割り込み信号S3により前記CPU3に変換終了が通知されると、前記CPU3はアナログ・デジタル変換結果である前記リザルトデータを前記データレジスタ21より読み出し、アナログ・デジタル変換動作が完了する。
【0044】
前記A/D変換器7の変換特性、即ち、前記局部D/A変換部23の変換特性は、前記トリミングレジスタ20が保有する補正データにより決められる。その補正データは前記ROM9が保存し、前記CPU3の命令実行により前記トリミングレジスタ20に格納される。
【0045】
以下、前記補正データにより変換特性が可変にされる前記局部D/A変換部23について詳細な説明を行う。
【0046】
図1には前記局部D/A変換器23の一例が例示される。前記局部D/A変換器23は、特に制限されないが、前記電源電圧端子(AVcc)24、フルスケールトリミング部30、抵抗分圧回路31、オフセットトリミング部32、前記接地電圧端子(AVss)25、パワースイッチ33及び増幅器34を含む。前記フルスケールトリミング部30、前記抵抗分圧回路31、前記オフセットトリミング部32及び前記パワースイッチ33は、前記電源電圧端子(AVcc)24と前記接地電圧端子(AVss)25との間に直列接続される。
【0047】
前記抵抗分圧回路31は、特に制限されないが、複数の抵抗素子R1〜R254が直列接続された抵抗列を有し、前記抵抗列の分圧ノードが複数のスイッチ素子SW0〜SW254によって選択可能にされる。前記複数のスイッチ素子SW0〜SW254は、前記逐次比較レジスタ22が保有するデジタル値に基づき、選択的に開閉制御される。前記デジタル値に基づいて前記抵抗分圧回路31から出力される分圧電圧は、前記増幅器34の入力端子INに接続される。
【0048】
前記増幅器34は、特に制限されないが、前記入力端子INから入力されたアナログ電圧を増幅して出力端子OUTより出力する機能を有する。
【0049】
前記オフセットトリミング部32は、特に制限されないが、可変抵抗R0及び前記可変抵抗R0の抵抗値を選択制御するセレクタ32Aを含む。前記可変抵抗R0は、特に制限されないが、図4に例示された如く、抵抗素子ROFF00〜ROFF14の15個の抵抗素子が直列接続された抵抗列の各抵抗素子の両端と、前記接地電圧端子(AVss)25とを、16個のスイッチ素子SWOFF00〜SWOFF15により選択的に接続することで、16通りの抵抗値の中から1つを選択可能な機能を有する。前記セレクタ32Aは、特に制限されないが、図4に例示された如く、前記トリミングレジスタ20の4ビットの補正データフィールドOFF0〜OFF3の値に基づいて、前記可変抵抗R0の16個の前記スイッチ素子のうち1つを選択してオンさせる制御信号を出力するデコード論理機能を有する。
【0050】
前記フルスケールトリミング部32は、特に制限されないが、可変抵抗R255及び前記可変抵抗R255の抵抗値を選択制御するセレクタ30Aを含む。前記可変抵抗R255は、特に制限されないが、図5に例示された如く、抵抗素子RFUL00〜RFUL14の15個の抵抗素子が直列接続された抵抗列の各抵抗素子の両端と、前記電源電圧端子(AVcc)24とを、16個のスイッチ素子SWFUL00〜SWFUL15により選択的に接続することで、16通りの抵抗値の中から1つを選択可能な機能を有する。前記セレクタ30Aは、特に制限されないが、図5に例示された如く、前記トリミングレジスタ20の4ビットの補正データフィールドFUL0〜FUL3の値に基づいて、前記可変抵抗R255の16個の前記スイッチ素子のうち1つを選択してオンさせる制御信号を出力するデコード論理機能を有する。
【0051】
前記オフセットトリミング部32は、前記抵抗分圧回路31の前記スイッチ素子SW0を選択した時、前記抵抗分圧回路31から前記増幅器34の前記入力端子INに与えられる電圧レベルを、接地電圧AVssに対して決定するという意味で、前記抵抗分圧回路30のオフセット電圧の決定を行う回路である。前記フルスケールトリミング部30は、そのようにして決定される前記接地電圧AVss側の電圧を基準として、前記抵抗分圧回路31の前記スイッチ素子SW254を選択した時、前記抵抗分圧回路31から前記増幅器34の前記入力端子INに与えられる電圧レベルを、電源電圧AVccに対して決定するという意味で、前記抵抗分圧回路30のフルスケール電圧の調整を行う回路として位置付けられる。
【0052】
この例に従えば、図4に例示されるように、前記オフセットトリミング部32において選択可能な前記可変抵抗R0の抵抗値は16刻みとされ、前記トリミングレジスタ20の4ビットの前記補正データフィールドOFF0〜OFF3の値に応じて前記セレクタ32Aのデコード論理により前記16個のスイッチ素子SWOFF00〜SWOFF15のうち1つをオン状態にして、1つ刻みの抵抗値を選択可能にされる。これによって抵抗値が決定された可変抵抗R0が、前記抵抗分圧回路31と前記接地電圧端子(AVss)25との間に介在されることにより、前記接地電圧AVss対して−8(LSB)〜+7(LSB)に相当する前記オフセット電圧を1(LSB)単位で前記抵抗分圧回路31に与えることが可能となる。−8(LSB)〜+7(LSB)は±0(LSB)を基準とする補正レベルを意味し、正確には、前記A/D変換器7における最下位ビットに応ずる変換精度の補正レベルを意味する。
【0053】
同様に、前記フルスケールトリミング部30おいても、図5に例示される如く、選択可能な前記可変抵抗R255の抵抗値が16刻みとされ、前記トリミングレジスタ20の4ビットの前記補正FUL0〜FUL3の値に応じた前記セレクタ30Aのデコード論理により前記16個のスイッチ素子SWFUL00〜SWFUL15のうち1つをオン状態にして、1つ刻みの抵抗値が選択される。これによって抵抗値が選択された前記可変抵抗R255が、前記抵抗分圧回路31と電源電圧端子(AVcc)24との間に介在されることにより、前記電源電圧AVccに対して−7(LSB)〜+8(LSB)に相当する範囲で前記抵抗分圧回路31の前記フルスケール電圧が1(LSB)単位で調整可能となる。−7(LSB)〜+8(LSB)は±0(LSB)を基準とする補正レベルを意味し、正確には、前記A/D変換器7における最下位ビットに応ずる変換精度の補正レベルを意味する。
【0054】
前記補正データフィールドOFF0〜OFF3及びFUL0〜FUL3は、図6に例示されるマッピングを有する。
【0055】
前記トリミングレジスタ20に格納される前記補正データを記憶する前記ROM9は、例えば、図7に例示されるような第1メモリ領域35及び第2メモリ領域36を保存領域として有する。前記第1メモリ領域35は、特に制限されないが、前記オフセット誤差及びフルスケール誤差のそれぞれを予め定められた初期補正レベルに補正可能な1組の第1補正データ37が保存される領域である。前記第2メモリ領域36は、特に制限されないが、前記第1補正データ37により与えられる前記補正レベルを中心として両極性を有する複数の前記補正レベルに応ずるデータテーブル構造の前記第2補正データ38が、前記オフセット誤差及び前記フルスケール誤差ごとにそれぞれ保存される領域である。
【0056】
前記第2メモリ領域36に構成される前記第2補正データテーブル38A,38Bは、前記オフセット誤差及び前記フルスケール誤差に対して±0(LSB)の補正レベルとなる前記補正データを中心に、+側に補正可能な+補正データと、−側に補正可能な−補正データが、前記補正レベルに応じて配列される。例えば、図7に例示される如く、前記オフセット誤差用第2補正データテーブル38Aでは、±0(LSB)の前記補正レベルに応ずる前記補正データH’02がアドレスH’0108に格納される。+補正側には前記補正レベルの+1変化に応ずる前記+補正データが配列され、−補正側には前記補正レベルの−1変化に応ずる前記−補正データが配列される。また、前記フルスケール誤差補正用第2補正データテーブル38Bでは、±0(LSB)の前記補正レベルに応ずる前記補正データH’01がアドレスH’0128に格納される。同様に、+補正側には前記補正レベルの−1変化に応ずる前記+補正データが配列され、−補正側には前記補正レベルの+1変化に応ずる前記+補正データが配列される。前記補正レベルが+1変化され前記可変抵抗R0の抵抗値が大きくなると、前記オフセット電圧は高くなるため、前記オフセット誤差は+側に補正される。逆に、前記補正レベルが+1変化され前記可変抵抗R255の抵抗値が大きくなると、前記フルスケール電圧は低くなるため、前記フルスケール誤差は−側に補正される。よって、+補正データと−補正データの補正レベルに対する極性は前記フルスケール誤差用第2補正テーブル38Bと前記オフセット誤差用第2補正データテーブル38Aでは反対になっている。
【0057】
前記第1メモリ領域35は、記第第2補正データテーブル38A,38Bにおいて、±0(LSB)の補正レベルに応ずる前記補正データが、オフセット用第1補正データ37A及び前記フルスケール誤差用第1補正データ37Bに別々に格納される。
【0058】
前記局部D/A変換部23において、前記オフセット誤差及び前記フルスケール誤差のそれぞれを補正してデジタル・アナログ変換精度を決定するということは、即ち、前記局部D/A変換部23を局部D/Aとして逐次変換方式のアナログ・デジタル変換を行う前記A/D変換器7において、アナログ・デジタル変換精度を決定することとして位置付けられる。
【0059】
図8に前記A/D変換器7の変換精度補正手順を示す。図8において、特に制限されないが、先ず、前記半導体集積回路1に対して、前記ROM9として内蔵されたフラッシュメモリテストであるプローブ検査1P1及びプローブ検査2P2が行われる。
【0060】
次に、前記プローブ検査1P1及び前記プローブ検査2P2を合格した前記半導体集積回路1に対してロジックテストであるプローブ検査3P3が行われ、前記A/D変換器7の変換精度の実力値が実測される。この例に従えば、図8に示されるように、前記A/D変換器7の変換精度は、−2(LSB)の前記オフセット誤差と、+1(LSB)の前記フルスケール誤差とを有することとなる。ここで、前記オフセット誤差−2(LSB)を±0(LSB)に補正する前記オフセット電圧は+2(LSB)と算出される。図4に例示される如く、前記オフセット電圧を+2(LSB)にするために前記オフセットトリミング部32に与えられる4ビットの前記補正データフィールドOFF0〜OFF3の値はB’0010である。このため、図7に例示される如く、B’0010を下位4ビットとし、上位4ビットを全て0としたH’02が前記オフセット誤差用第1補正データ37Aとして前記ROM9の前記第1メモリ領域35のアドレスH’FF00に書き込まれ、保存される。同様に、前記フルスケール誤差の実測値+1(LSB)を補正する前記フルスケール電圧−1(LSB)が算出される。図5に例示される如く、前記フルスケール電圧を−1(LSB)にするために前記フルスケールトリミング部32に与えられる前記補正データフィールドFUL0〜FUL3の値はB’0001であるので、図7に例示される如く、H’01が前記フルスケール誤差用第1補正データ37Bとして前記前記ROM9の前記第1メモリエリアのアドレスH’FF01に書き込まれ、保存される。
【0061】
同時に、図7に例示される如く、前記オフセット誤差用第2補正データテーブル38Aにおいて±0(LSB)の前記補正レベルに応ずる前記補正データが保存されると予め定められたアドレスH’0108に、前記オフセット誤差用第1補正データ37Aと同じ前記補正データH’02が書き込まれる。この±0(LSB)の前記補正レベルに応ずる前記補正データH’02を基準として、−8〜+7(LSB)の前記補正レベルに応ずる前記補正データが一義的に決められ、前記オフセット誤差用第2補正データテーブル38Aの該当するアドレスに書き込まれ、保存される。同様に、前記フルスケール誤差用第2補正データテーブル38Bにおいて±0(LSB)の前記補正レベルに応ずる前記補正データが保存されると予め定められたアドレスH’0128に、前記フルスケール誤差用第1補正データ37Bと同じ前記補正データH’01が書き込まれる。この±0(LSB)の前記補正レベルに応ずる前記補正データH’01を基準として、−7〜+8(LSB)の前記補正レベルに応ずる前記補正データが一義的に決められ、前記フルスケール誤差用第2補正データテーブル38Bの該当するアドレスに書き込まれ、保存される。
【0062】
このようにして前記第1補正データ37及び前記第2補正データ38が前記ROM9の前記第1メモリ領域35及び前記第2メモリ領域に前記書き込まれた後、半導体製造プロセスの最後となる組み立て後検査F0が行われる。前記組み立て後検査F0における前記半導体集積回路1への電源投入時に応答して、前記半導体集積回路1に予めプログラムされたパワーオンリセットが実行される。前記パワーオンリセットの実行中に、前記第1補正データ37は、前記ROM9の前記第1メモリ領域35から前記データバス16を介して前記CPU3に自動的に読み込まれる。前記CPU3に読み込まれた前記第1補正データ37は、前記データバス16、前記バスインターフェイス17及びモジュールデータバス18を介して、前記A/D変換器7の前記トリミングレジスタ20に格納される。この時、図7に例示される如く、前記オフセット誤差用第1補正データ37A及び前記フルスケール誤差補正用第1補正データ37Bは各々が8ビットの合計16ビットであり、図6に例示される如く、前記トリミングレジスタ20は8ビットであるため、前記オフセット誤差用第1補正データ37Aの下位4ビットを上位4ビットに、前記フルスケール誤差用第1補正データ37Bの下位4ビットを下位4ビットにした、8ビットに前記CPU3でデータフォーマット変更されてから前記第1補正データ37として前記トリミングレジスタ20に格納される。尚、電源投入とは、上記アナログ回路用の電源電圧端子24及び接地電圧端子25とデジタル回路用の電源電圧端子101及び接地電圧端子102のそれぞれに所望の電源電位或いは接地電位が、図示されないシステム電源回路から供給されることを意味する。
【0063】
前記トリミングレジスタ20への前記第1補正データ37の格納に応答して、前記オフセット誤差用第1補正データ37Aに基づき前記オフセットトリミング部32の可変抵抗R0の抵抗値が決定される。同様に、前記フルスケール誤差用第1補正データ37Bに基づき前記フルスケールトリミング部30の可変抵抗R255の抵抗値が決定される。これにより前記局部D/A変換部23の前記オフセット誤差及び前記フルスケール誤差が±0(LSB)の前記補正レベルに補正された状態で、前記A/D変換器7の変換精度が再度実測される。図8に例示される如く、実測結果として±0(LSB)の補正レベルに補正された変換精度が得られる。この±0(LSB)の補正レベルが前記A/D変換器7の出荷時の初期補正レベル、即ち、前記A/D変換器の出荷時変換精度となる。この前記パワーオンリセットにおける前記A/D変換器7に対する自動補正動作は、前記半導体集積回路1に電源が投入された際には常に行われる動作である。これにより、前記半導体集積回路1の出荷後に前記A/D変換器7の変換精度、即ち、変換特性がどのような状態であったとしても、前記ユーザは、電源投入時に常に、前記出荷時変換精度の状態から前記A/D変換器7を使用開始することが可能となる。
【0064】
また、図8には、前記A/D変換器7において、電源投入に応答した前記初期補正レベルへの補正が完了した後、ユーザプログラムUPGの実行により前記オフセット誤差及び前記フルスケール誤差のそれぞれに+1(LSB)の前記補正レベルに応ずるオフセットを与えた出荷後補正レベルに前記変換特性を変更して、特定の処理を行う動作の例が示されている。
【0065】
その動作の詳細は図9のフローチャートに例示されている通りである。図9によれば、特に制限されないが、電源投入に応答した前記パワーオンリセットが指示されると(ST1)、前記初期補正レベルに応ずる前記第1補正データ37A,37Bの自動転送が行われ(ST2)、前記A/D変換器7が前記初期補正レベルに補正された後、前記パワーオンリセットが解除される。前記パワーオンリセットが解除されると、前記CPU3により予め前記ROM9に書き込まれた前記ユーザプログラムUPGの実行が開始される。前記ユーザプログラムUPGのメインプログラムMPGの実行途中で、設定サブルーチンが実行される(ST3)と、先ず、前記ROM9の前記第2メモリ領域36に保存された前記オフセット誤差用第2補正データテーブル38AのアドレスH’0109に格納された+1(LSB)に応ずる前記補正データH’03の読み込みが、前記CPU3により、前記データバス16を介して行われる(ST4)。同様に、前記フルスケール誤差用前記第2補正データテーブル38BのアドレスH’0127に格納された+1(LSB)に応ずる前記補正データH’00の読み込みが、前記CPU3により、前記データバス16を介して行われる(ST5)。前記CPU3により読み込まれた前記第2補正データデータテーブル38A,38Bに対して、前記パワーオンリセット時に前記第1補正データ37A,37Bに対して行われたのと同様のデータファーマット変更が行われ(ST6)、前記第2補正データ38はH’30となる。データフォーマット変更処理ST6が完了した後、前記CPU3による前記データバス16、前記バスインターフェイス17及びモジュールデータバス18を介した前記A/D変換器7の前記トリミングレジスタ20への前記第2補正データ38の書き込みが行われる(ST7)。これにより前記A/D変換器7の変換特性変更がなされ、前記設定サブルーチン処理ST3が完了すると、前記メインプログラムMPGの実行に戻る。
【0066】
その後、前記メインプログラムMPG実行中のアナログ・デジタル変換要求割り込みST8の発生に応答して、前記A/D変換器7を用いた処理動作である残量測定サブルーチンが実行される(ST9)。前記残量測定サブルーチン処理ST9では、先ず、前記A/D変換器7によりアナログ・デジタル変換が開始される(ST10)。次に、前記アナログ・デジタル変換処理ST10の終了に応答して、前記CPU3によるアナログ・デジタル変換結果の読み込みが行われる(ST11)。アナログ・デジタル変換結果の読み込み処理ST11が終了すると、前記CPU3によりアナログ・デジタル変換結果を用いた残量計算が行われ(ST12)、計算結果が残量表示される(ST13)。例えば、図9に例示される如く、使用量に相当する前記アナログ・デジタル変換結果が+2〜±0(LSB)であった場合、100−2=98と残量が計算され、98が残量として表示される。前記残量測定サブルーチン処理ST9が完了すると、再び前記メインプログラムMPGの実行に戻る。これにより、前記オフセット誤差及び前記フルスケール誤差の補正が行われた出荷時の前記初期補正レベルに対して、用途に応じて正負いずれの極性にもオフセットを与えることができる。例えば、前記オフセット誤差及び前記フルスケール誤差の双方に対して+1(LSB)の前記補正レベルに応ずるオフセットを与えた前記A/D変換器7を残量測定に用いた場合、実際の使用量が99でも変換結果は100であり、残量を100−100=0と計算して残量0と表示する。これにより、実際の残量が0になるよりも前に使用者に警告をうながすことが可能な残量測定装置が実現できる。
【0067】
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
【0068】
例えば、以上の説明では変換精度に含まれるオフセット誤差及びフルスケール誤差の両方を補正可能なA/D変換器は一例であり、どちらか一方のみを補正可能な局部D/A変換部の補正回路、補正データを記憶する不揮発性メモリの領域及び補正データによる変換精度の補正が可能なA/D変換器に適用されてもよい。また、半導体集積回路のアナログ回路が逐次変換型のA/D変換器は一例であり、並列比較型のA/D変換器、D/A変換器又はその他アナログ回路に適用されてもよい。また、不揮発性メモリの補正データを保存する領域の広さや、補正用の回路が有する補正範囲についても必要に応じて自由に変更すればよい。また、回路図、ブロック図に示した信号の正論理/負論理についても必要に応じて自由に変更すればよい。
【0069】
以上の説明では主として本発明者によってなされた発明をその背景となった利用分野であるシングルチップ・マイクロコンピュータに適用した場合について説明した。本発明はそれに限定せず、その他のシリコン・オン・チップ(SOC)形態及びシステム・オン・チップ形態の半導体集積回路に広く適用可能である。
【0070】
本発明は、少なくともA/D変換器、D/A変換器を有するものに適用可能である。
【0071】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。
【0072】
すなわち、本発明に関わる半導体主回路は、第1メモリ領域に格納された第1補正データを用いて、電源投入応答したアナログ回路の特性初期化を自動的に行うことができる。また、第2メモリ領域に格納された第2補正データを用いて、アナログ回路の初期特性を、残量表示装置などの実際の用途に応じたオフセットを与えた特性にプログラム上で変更することができる。これにより、適正に補正された初期特性のままでも、用途に応じたオフセットを積極的に与えた特性でも、特別な手段を必要とすることなく容易に、使い勝手の良いアナログ回路の特性を選択して使用することができる。更に、第2補正データが初期値に対して両極性有していることで、寒冷地や熱帯などの仕向地の違いにより必要とされるオフセットの極性が異なる複数の特性を使用環境に応じて変更しなければならない場合であっても柔軟に適応できる。
【図面の簡単な説明】
【図1】本発明に係る局部D/A変換部の一例を示すブロック図である。
【図2】本発明に係るシングルチップ・マイクロコンピュータの一例を示すブロック図である。
【図3】本発明に係るA/D変換器の一例を示すブロック図である。
【図4】本発明に係るオフセットトリミング部の一例を示す回路図である。
【図5】本発明に係るフルスケールトリミング部の一例を示す回路図である。
【図6】本発明に係るトリミングレジスタの一例を示す説明図である。
【図7】本発明に係るROMの第1メモリ領域及び第2メモリ領域の一例を示す説明図である。
【図8】本発明に係るA/D変換器の変換特性を初期化する動作を例示するフローチャートである。
【図9】本発明に係るA/D変換器の変換特性を変更する動作を例示するフローチャートである。
【符号の説明】
1 シングルチップ・マイクロコンピュータ
3 中央処理装置(CPU)
4 内蔵ランダム・アクセス・メモリ(RAM)
7 A/D変換器
8 D/A変換器
9 内蔵リード・オンリ・メモリ(ROM)
20 トリミングレジスタ
22 逐次比較レジスタ
23 局部D/A変換部
24 電源電圧端子(AVcc)
25 接地電圧端子(AVss)
26 コントロール回路
27 コンパレータ
28 サンプル・ホールド回路
29 マルチプレクサ
AN0〜AN7 入力アナログ信号
30 フルスケールトリミング部
R255 可変抵抗回路
30A セレクタ
RFUL00〜RFUL14 抵抗
SWFUL00〜SWFUL15 スイッチ素子
FUL0〜FUL3 補正データフィールド
31 抵抗分圧回路
R1〜R254 抵抗
SW0〜SW254 スイッチ素子
32 オフセットトリミング回路
R0 可変抵抗回路
32A セレクタ
ROFF00〜ROFF14 抵抗
SWOFF00〜SWOFF15 スイッチ素子
OFF0〜OFF3 補正データフィールド
35 第1メモリ領域
36 第2メモリ領域
37 第1補正データ
37A オフセット誤差補正用第1補正データ
37B フルスケール誤差補正用第1補正データ
38 第2補正データ
38A オフセット誤差補正用第2補正データテーブル
38B フルスケール誤差補正用第2補正データテーブル
【発明の属する技術分野】
本発明は、中央処理装置、不揮発性メモリ及びアナログ回路を1個の半導体チップ上に有した半導体集積回路に関し、特にアナログ回路における誤差の補正に関するもので、例えば機器組み込み用の半導体集積回路、更にはマイクロプロセッサに適用して有効な技術に関する。
【0002】
【従来の技術】
半導体集積回路に含まれるアナログ回路としては、D/A(digital to analog)変換器や局部D/A変換器を有したA/D(analog to digital)変換器がある。そのようなD/A変換器は、ラダー抵抗回路網のような抵抗分圧回路を有し、この抵抗分圧回路は、電源電圧源と接地電圧源との間の電位差を抵抗分圧してデジタル値に応ずる分圧電圧を形成するようになっている。したがって、前記抵抗分圧回路を構成する全ての抵抗が高精度に形成されていれば、一定の変換精度が保証されたD/A変換を実現可能である。
【0003】
しかしながら、半導体集積回路では、半導体製造プロセスに起因する抵抗値のばらつきが原因で、オフセット誤差やフルスケール誤差などの相対誤差が生じてしまう為、実際には、抵抗値の微調整や抵抗回路網全体の合せ込みにより相対誤差の補正を行うことで、一定の変換精度を保証している。
【0004】
相対誤差の補正に着目した従来技術として、特開平9−260593号公報には、半導体集積回路外部から半導体集積回路内の不揮発性メモリ部に書き込んだ記憶データにより、複数の可変抵抗回路を直列接続して構成された抵抗分圧回路の可変抵抗回路ごとの抵抗値を調整して、相対誤差全般に対する補正を可能とした技術が開示されている。特開平6−204873号公報には、A/D変換器外部に設けられた入力端子から範囲変更設定用の信号を与えることにより、抵抗分圧回路と接地電圧源端子及び電源電圧源端子との間にそれぞれ設けられた可変抵抗回路の抵抗値を選択することで、オフセット誤差及びフルスケール誤差を各々調整して、A/D変換範囲を変更可能とした技術が開示されている。
【0005】
【発明が解決しようとする課題】
本発明者は、半導体集積回路に内蔵されたD/A変換器若しくは局部D/A変換器を有したA/D変換器の使い勝手を向上させるという観点より、オフセット誤差やフルスケール誤差を低減させること、オフセット誤差若しくはフルスケール誤差の一方または双方に対して積極的にオフセットを与えることで所望の変換特性を得ること、について検討した。
【0006】
これによれば、発明者は、半導体集積回路に含まれたアナログ回路であるD/A変換器若しくは局部D/A変換器を有するA/D変換器において、半導体集積回路の利用者(以下ユーザと記す)が半導体集積回路の製造者(以下メーカと記す)によって保証された変換精度でアナログ回路を常に利用可能とする為には、半導体集積回路に電源投入した時点でD/A変換器の相対誤差を常に初期化することが望ましいということを見出した。また、相対誤差が補正された状態で半導体集積回路がメーカからユーザに供給された後、補正済みの相対誤差に対して人為的な調整を加えることの必要性が本発明者によって認識された。すなわち、半導体集積回路に含まれたD/A変換器またはD/A変換器を内蔵したA/D変換器の変換特性を、例えば、ガス、電力の残量表示装置のように、本来の残量値に対してあるオフセットを持たせて表示することが応用システム装置自体の仕様を満足しうる場合など、用途に応じた変換特性に変更可能したいという要求も考えられる。
【0007】
前記公知技術においては、上記検討事項の両者をともに解決する為の内容は開示されていない。
【0008】
本発明の目的は、用途に応じて使い勝手の良好なD/A変換器やA/D変換器などのアナログ回路を内蔵した半導体集積回路、更にはマイクロプロセッサを提供することにある。
【0009】
本発明の別の目的は、電源投入に応答して予め定めた初期状態に相対誤差を設定する機能と、半導体集積回路の応用システム装置への組み込み後でもオフセット誤差若しくはフルスケール誤差の一方または双方にオフセットを容易に与えること可能な機能と、を両方有した、D/A変換器若しくはD/A変換器を有するA/D変換器をアナログ回路として含む半導体集積回路を提供することである。
【0010】
本発明の前記並びにその他の目的と新規な特徴は本明細書の記述及び添付図面から明らかになるであろう。
【0011】
【課題を解決するための手段】
本願において開示される発明のうち代表的なものの概要を簡単に説明すれば下記の通りである。
【0012】
〔1〕すなわち、本発明に関わる半導体集積回路は、中央処理装置(3)、前記中央処理装置によりアクセス可能な不揮発性メモリ(9)及びアナログ回路(7,8)を1個の半導体チップ上に有する。前記不揮発性メモリは第1メモリ領域(35)及び第2メモリ領域(36)を含む。前記第1メモリ領域は、電源投入に応答して、前記アナログ回路の特性を決定する初期値として利用される第1補正データ(37)を格納する。前記第2メモリ領域は、電源投入に応答した前記アナログ回路への初期値設定後に、前記中央処理装置の命令実行によって、前記アナログ回路の特性を変更するために利用される第2補正データ(38)を格納する。
【0013】
上記した手段によれば、前記第1メモリ領域にはメーカが出荷前に予め定めた初期値のような第1補正データが格納されることになり、電源投入に応答して、アナログ回路の特性を初期化することができる。更に、前記第2メモリ領域にはアナログ回路の特性にオフセットを与えるような第2補正データが格納されることになり、電源投入に応答した前記第1補正データによる前記アナログ回路の特性が決定された後、前記中央処理装置の命令実行により、前記アナログ回路の特性を、前記第1補正データにより決定された初期特性から、残量表示装置などの実際の用途に応じた特性に変更できる。これにより、適正に補正された初期特性のままでも、用途に応じたオフセットを積極的に与えた特性でも、特別な手段を必要とすることなく容易に、使い勝手の良い特性を選択することができる、D/A変換器やA/D変換器などのアナログ回路を内蔵した半導体集積回路を実現可能となる。
【0014】
本発明の具体的な様態としては、前記第1補正データは、前記アナログ回路自体の電源電圧側におけるフルスケール誤差と接地電源側におけるオフセット誤差とのうち一方または双方を補正可能なデータである。また、前記第2補正データは、前記第1補正データに対して両極性を有する複数のデータである。これにより、オフセット誤差やフルスケール誤差に対して予め補正を行った状態に対して、正負いずれの極性にもオフセットを与えることが可能である為、寒冷地や熱帯などの仕向地の違いにより必要とされるオフセットの極性が異なる複数の特性を使用環境に応じて変更しなければならない場合であっても柔軟に適応できる、幅広い用途の、D/A変換器やA/D変換器などのアナログ回路を内蔵した半導体集積回路を実現可能となる。
【0015】
前記アナログ回路は、例えば、電源電圧端子(24)、外部から与えられた信号により抵抗値の変更を可能とした電源電圧側の可変抵抗回路(30)、外部から与えられたデジタル値により分圧ノードの選択を可能とした抵抗分圧回路(31)、外部から与えられた信号により抵抗値の変更を可能とした接地電源側の可変抗回路(32)及び接地電圧端子(25)が順次直列接続されたD/A変換器(8)または前記D/A変換器を局部D/A変換器(23)として有する逐次変換方式のA/D変換器(7)である。前記D/A変換器として、前記電源電圧側の可変抵抗回路又は接地電源側の可変抗回路のいずれか一方を有する構成でもよい。
【0016】
前記アナログ回路は、例えば、前記第1メモリ領域から読み出された前記第1補正データが格納可能にされると共に前記第2メモリ領域から読み出された第2補正データが格納可能にされるレジスタ手段(20)を有する。前記レジスタ手段に格納された第1補正データ又は第2補正データは前記可変抵抗回路の抵抗値を選択させる。
【0017】
〔2〕別の観点による発明は、半導体集積回路の不揮発性メモリに書き込まれたデータに着目する。本発明に関わる半導体集積回路は、中央処理装置、前記中央処理装置によりアクセス可能な不揮発性メモリ及びアナログ回路を1個の半導体チップ上に有する。前記不揮発性メモリは、電源投入に応答して、前記アナログ回路の特性を決定する初期値として利用される第1補正データ及び電源投入に応答した前記アナログ回路への初期値設定後に前記中央処理装置の命令実行によって、前記アナログ回路の特性を変更するために利用される第2補正データを有する。
【0018】
前記第1補正データは、前記アナログ回路自体の電源電圧側におけるフルスケール誤差と、接地電源側におけるオフセット誤差と、のうち一方または双方を補正可能なデータである。
【0019】
前記第2補正データは、前記第1補正データに対して両極性を有する複数のデータである。
【0020】
上記した手段によれば、前記半導体集積回路の前記不揮発性メモリが第1メモリ領域及び第2メモリ領域を含む場合と同様の効果が得られる。
【0021】
【発明の実施の形態】
図2には本発明に係る半導体集積回路の一例としてシングルチップ・マイクロコンピュータ(又はシングルチップマイクロプロセッサ)1の構成が例示されている。特に制限されないが、前記シングルチップ・マイクロコンピュータ1は、公知のCMOS製造プロセスによって単結晶シリコン基板などの一つの半導体基板(半導体チップ)上に形成される。
【0022】
図2に示されるように、前記シングルチップ・マイクロコンピュータ1は、特に制限されないが、クロック発振器2、中央処理装置(以下CPUと記す)3、内蔵ランダム・アクセス・メモリ(RAM)4、外部ホストコントローラと前記CPU3とのパラレルインターフェース回路とされるホストインタフェース5、シリアル通信回路とされるシリアルコミュニケーションインタフェース6、アナログ・デジタル変換器(以下A/D変換器と記す)7、デジタル・アナログ変換器(以下D/A変換器と記す)8、内蔵リード・オンリー・メモリ(以下ROMと記す)9、システム暴走監視回路とされるウォッチドッグタイマ10、波形出力及び波形周期測定回路とされるフリーランニングタイマ11、汎用タイマ回路とされるタイマ12、パルス幅変調回路とされるPWMタイマ13及び複数の信号の入出力回路とされる複数のポート(ポート1〜9)14を含む。
【0023】
前記CPU3とこれらの回路モジュール(4〜14)はアドレスバス15及びデータバス16によって結合され、前記CPU3により前記これらの回路モジュール(4〜14)がアクセス可能とされる。
【0024】
前記CPU3が前記回路モジュール(4〜14)の何れかをアクセスする場合、前記CPU3はアクセスの対象とされる前記回路モジュールに割り当てられたアドレスを選択するためのアドレス信号を前記アドレスバス15へ発生する。この時、データリードモードであるなら、アクセスの対象とされる前記回路モジュールは前記データバス16にデータを出力し、前記CPU3は前記データバス16を介してそのデータを取り込む。一方、データライトモードであるなら、前記CPU3は前記データバス16へ所望のデータを出力し、上記アクセスの対象とされる前記回路モジュールは前記データバス16を介してそのデータを取り込む。
【0025】
前記CPU3は、特に制限されないが、処理すべきプログラム内に定義された命令が格納される命令レジスタ、前記命令レジスタに格納された命令をデコードする命令デコーダ、前記命令デコーダから出力される制御信号に従ってその動作が制御される命令実行部とを含む。前記命令実行部は、算術演算や論理演算を実行する算術論理演算器、汎用レジスタ、プログラム内の次に実行されるべき命令の命令アドレスに関するデータを格納するプログラムカウンタ等を有する。なお、前記の命令レジスタ、命令デコーダ、命令実行部、算術論理演算器、汎用レジスタ及びプログラムカウンタは、図面の簡素化のため、上記図2には描かれていないが、当業者には当然に理解されるであろう。
【0026】
アナログ回路の1つとして搭載されている前記A/D変換器7は、特に制限されないが、逐次変換方式により入力アナログ信号をデジタル信号に変換する機能を有し、各種レジスタ、局部D/A変換部及びコントロール回路を含む。
【0027】
もう1つのアナログ回路として搭載されている前記D/A変換器8は、特に制限されないが、前記データバス16を介して入力されたデジタル信号をアナログ信号に変換する機能を有し、各種レジスタ及びコントロール回路を含む。
【0028】
前記ROM9は、前記CPU3で実行されるプログラムを格納するためのプログラムメモリとされ、特に制限されないが、電気的に消去及びプログラムが可能な不揮発性記憶装置、例えば、一括消去型のフラッシュ型EEPROMなどのフラッシュメモリによって構成される。
【0029】
図3には前記A/D変換器7の一例が例示される。図3に示されるように、前記A/D変換器7は、特に制限されないが、バスインターフェイス17、モジュールデータバス18、コントロールレジスタ19、トリミングレジスタ20、データレジスタ21、逐次変換レジスタ22、局部D/A変換部23、アナログ回路の電源電圧端子(AVcc)24、アナログ回路の接地電圧端子25(AVss)、コントロール回路26、コンパレータ27、サンプル・ホールド回路28及びマルチプレクサ29を含み、逐次変換方式によりアナログ・デジタル変換を行う。
【0030】
前記アナログ回路の電源電圧端子24及びアナログ回路の接地電圧端子25は、図1に示されるように、前記半導体集積回路1の前記アナログ回路以外のディジタル回路(2−6、9−14等)の電源電圧端子(DVcc)101及び接地電圧端子(DVss)102とは異なる。すなわち、デジタル回路の動作によって発生される電源ノイズが上記アナログ回路の動作に影響を与えないようにするため、アナログ回路用の電源電圧端子24及び接地電圧端子25とデジタル回路用の電源電圧端子101及び接地電圧端子102とは分離される。
【0031】
次に、上記各回路ブロック(17〜29)の機能を説明する。
【0032】
前記モジュールデータバス18は、特に制限されないが、前記A/D変換器7の内部データバスであり、前記バスインターフェイス17を介して前記データバス16と結合されている。
【0033】
前記コントロール/ステータスレジスタ19は、特に制限されないが、前記CPU3により、A/D変換の制御を行うコントロールデータが格納可能にされる機能を有する。また、前記コントロール回路26により、A/D変換の状態を示すステータスデータが格納可能にされる機能を有する。
【0034】
前記トリミングレジスタ20は、特に制限されないが、前記CPU3により、前記局部D/A変換部23の変換特性を決定する補正データが格納可能にされる機能を有する。
【0035】
前記データレジスタ21は、特に制限されないが、前記逐次比較レジスタ22により、A/D変換を行った結果であるリザルトデータが格納可能にされる機能を有する。
【0036】
前記マルチプレクサ29は、特に制限されないが、前記コントロール回路26により与えられた制御信号に従い、入力アナログ信号AN0〜AN7のうち1つを選択して出力する機能を有する。
【0037】
前記サンプル・ホールド回路28は、特に制限されないが、前記マルチプレクサ29により出力された入力アナログ信号の刻々と変化する状態を、前記コントロール回路26により与えられたクロック信号φ/2〜φ/16に同期して、一時的に保持する機能を有する。
【0038】
前記局部D/A変換部23は、特に制限されないが、前記逐次比較レジスタ22により与えられたデジタル値を、前記電源電圧端子(AVcc)24と前記接地電圧端子(AVss)25とによって与えられた電圧範囲のアナログ電圧出力に、前記トリミングレジスタ20が保有する補正データによって決められた変換特性に従って、デジタル・アナログ変換を行う機能を有する。
【0039】
前記コンパレータ27は前記サンプル・ホールド回路28で保持された入力アナログ信号と前記局部D/A変換部23より出力されたアナログ電圧出力との電圧比較を行い、比較結果信号を出力する機能を有する。
【0040】
前記コントロール回路26は、特に制限されないが、変換開始トリガS1又は外部トリガ入力S2からの変換開始要求により、前記コントロール/ステータスレジスタ19が保有する前記コントロールデータの内容に基づき、入力アナログ信号AN0〜AN7に対するアナログ・デジタル変換の実行制御を行う機能を有する。また、割り込み信号S3を用いて前記CPU3に対してアナログ・デジタル変換の終了を通知する機能を有する。
【0041】
前記逐次比較型レジスタ22は、特に制限されないが、前記コントロール回路26の制御に基づいて、前記局部D/A変換部23にデジタル・アナログ変換用のデジタル値を比較終了まで繰り返し与える機能を有する。また、比較終了時のデジタル値を、A/D変換の結果である前記リザルトデータとして前記データレジスタ21に格納する機能を有する。
【0042】
ここで図3のA/D変換器の全体的なアナログ・デジタル変換動作を説明する。
【0043】
この例においては、先ず、変換対象となる前記入力アナログ信号や変換時間となる前記クロック信号などを指定する前記コントロールデータが、前記CPU3により前記コントロール/ステータスレジスタ19に格納される。次に、前記コントロールデータに基づいて、前記コントロール回路26により前記入力アナログ信号AN0〜AN7のうち1つが変換対象入力アナログ信号として選択される。前記変換開始トリガS1又は前記外部トリガ入力S2により変換開始が要求されると、前記コントロールデータにより指定された前記クロック信号φ/2〜φ/16に同期して前記変換対象入力アナログ信号の電圧値が前記サンプル・ホールド回路28に一時的に保持される。これにより、前記変換対象入力アナログ信号の変換開始要求に応答した電圧値が一義的に決定する。この電圧値と前記局部D/A変換器23の前記アナログ電圧出力とを前記コンパレータ27により比較する。前記アナログ電圧出力は、前記トリミングレジスタ20が保有する補正データによって予め決定された変換特性に基づいて、前記逐次比較レジスタ22により与えられたデジタル値をデジタル・アナログ変換したものである。アナログ・デジタル変換が終了するまで、前記コントロール回路26、前記逐次比較レジスタ22及び前記局部D/A変換器23により前記アナログ電圧出力の更新が繰り返えし行われ、更新されるごとに前記コンパレータ27による比較が行われる。アナログ・デジタル変換が終了した時点で前記逐次比較レジスタ22が保有していたデジタル値は、アナログ・デジタル変換結果として前記データレジスタ21に格納される。前記割り込み信号S3により前記CPU3に変換終了が通知されると、前記CPU3はアナログ・デジタル変換結果である前記リザルトデータを前記データレジスタ21より読み出し、アナログ・デジタル変換動作が完了する。
【0044】
前記A/D変換器7の変換特性、即ち、前記局部D/A変換部23の変換特性は、前記トリミングレジスタ20が保有する補正データにより決められる。その補正データは前記ROM9が保存し、前記CPU3の命令実行により前記トリミングレジスタ20に格納される。
【0045】
以下、前記補正データにより変換特性が可変にされる前記局部D/A変換部23について詳細な説明を行う。
【0046】
図1には前記局部D/A変換器23の一例が例示される。前記局部D/A変換器23は、特に制限されないが、前記電源電圧端子(AVcc)24、フルスケールトリミング部30、抵抗分圧回路31、オフセットトリミング部32、前記接地電圧端子(AVss)25、パワースイッチ33及び増幅器34を含む。前記フルスケールトリミング部30、前記抵抗分圧回路31、前記オフセットトリミング部32及び前記パワースイッチ33は、前記電源電圧端子(AVcc)24と前記接地電圧端子(AVss)25との間に直列接続される。
【0047】
前記抵抗分圧回路31は、特に制限されないが、複数の抵抗素子R1〜R254が直列接続された抵抗列を有し、前記抵抗列の分圧ノードが複数のスイッチ素子SW0〜SW254によって選択可能にされる。前記複数のスイッチ素子SW0〜SW254は、前記逐次比較レジスタ22が保有するデジタル値に基づき、選択的に開閉制御される。前記デジタル値に基づいて前記抵抗分圧回路31から出力される分圧電圧は、前記増幅器34の入力端子INに接続される。
【0048】
前記増幅器34は、特に制限されないが、前記入力端子INから入力されたアナログ電圧を増幅して出力端子OUTより出力する機能を有する。
【0049】
前記オフセットトリミング部32は、特に制限されないが、可変抵抗R0及び前記可変抵抗R0の抵抗値を選択制御するセレクタ32Aを含む。前記可変抵抗R0は、特に制限されないが、図4に例示された如く、抵抗素子ROFF00〜ROFF14の15個の抵抗素子が直列接続された抵抗列の各抵抗素子の両端と、前記接地電圧端子(AVss)25とを、16個のスイッチ素子SWOFF00〜SWOFF15により選択的に接続することで、16通りの抵抗値の中から1つを選択可能な機能を有する。前記セレクタ32Aは、特に制限されないが、図4に例示された如く、前記トリミングレジスタ20の4ビットの補正データフィールドOFF0〜OFF3の値に基づいて、前記可変抵抗R0の16個の前記スイッチ素子のうち1つを選択してオンさせる制御信号を出力するデコード論理機能を有する。
【0050】
前記フルスケールトリミング部32は、特に制限されないが、可変抵抗R255及び前記可変抵抗R255の抵抗値を選択制御するセレクタ30Aを含む。前記可変抵抗R255は、特に制限されないが、図5に例示された如く、抵抗素子RFUL00〜RFUL14の15個の抵抗素子が直列接続された抵抗列の各抵抗素子の両端と、前記電源電圧端子(AVcc)24とを、16個のスイッチ素子SWFUL00〜SWFUL15により選択的に接続することで、16通りの抵抗値の中から1つを選択可能な機能を有する。前記セレクタ30Aは、特に制限されないが、図5に例示された如く、前記トリミングレジスタ20の4ビットの補正データフィールドFUL0〜FUL3の値に基づいて、前記可変抵抗R255の16個の前記スイッチ素子のうち1つを選択してオンさせる制御信号を出力するデコード論理機能を有する。
【0051】
前記オフセットトリミング部32は、前記抵抗分圧回路31の前記スイッチ素子SW0を選択した時、前記抵抗分圧回路31から前記増幅器34の前記入力端子INに与えられる電圧レベルを、接地電圧AVssに対して決定するという意味で、前記抵抗分圧回路30のオフセット電圧の決定を行う回路である。前記フルスケールトリミング部30は、そのようにして決定される前記接地電圧AVss側の電圧を基準として、前記抵抗分圧回路31の前記スイッチ素子SW254を選択した時、前記抵抗分圧回路31から前記増幅器34の前記入力端子INに与えられる電圧レベルを、電源電圧AVccに対して決定するという意味で、前記抵抗分圧回路30のフルスケール電圧の調整を行う回路として位置付けられる。
【0052】
この例に従えば、図4に例示されるように、前記オフセットトリミング部32において選択可能な前記可変抵抗R0の抵抗値は16刻みとされ、前記トリミングレジスタ20の4ビットの前記補正データフィールドOFF0〜OFF3の値に応じて前記セレクタ32Aのデコード論理により前記16個のスイッチ素子SWOFF00〜SWOFF15のうち1つをオン状態にして、1つ刻みの抵抗値を選択可能にされる。これによって抵抗値が決定された可変抵抗R0が、前記抵抗分圧回路31と前記接地電圧端子(AVss)25との間に介在されることにより、前記接地電圧AVss対して−8(LSB)〜+7(LSB)に相当する前記オフセット電圧を1(LSB)単位で前記抵抗分圧回路31に与えることが可能となる。−8(LSB)〜+7(LSB)は±0(LSB)を基準とする補正レベルを意味し、正確には、前記A/D変換器7における最下位ビットに応ずる変換精度の補正レベルを意味する。
【0053】
同様に、前記フルスケールトリミング部30おいても、図5に例示される如く、選択可能な前記可変抵抗R255の抵抗値が16刻みとされ、前記トリミングレジスタ20の4ビットの前記補正FUL0〜FUL3の値に応じた前記セレクタ30Aのデコード論理により前記16個のスイッチ素子SWFUL00〜SWFUL15のうち1つをオン状態にして、1つ刻みの抵抗値が選択される。これによって抵抗値が選択された前記可変抵抗R255が、前記抵抗分圧回路31と電源電圧端子(AVcc)24との間に介在されることにより、前記電源電圧AVccに対して−7(LSB)〜+8(LSB)に相当する範囲で前記抵抗分圧回路31の前記フルスケール電圧が1(LSB)単位で調整可能となる。−7(LSB)〜+8(LSB)は±0(LSB)を基準とする補正レベルを意味し、正確には、前記A/D変換器7における最下位ビットに応ずる変換精度の補正レベルを意味する。
【0054】
前記補正データフィールドOFF0〜OFF3及びFUL0〜FUL3は、図6に例示されるマッピングを有する。
【0055】
前記トリミングレジスタ20に格納される前記補正データを記憶する前記ROM9は、例えば、図7に例示されるような第1メモリ領域35及び第2メモリ領域36を保存領域として有する。前記第1メモリ領域35は、特に制限されないが、前記オフセット誤差及びフルスケール誤差のそれぞれを予め定められた初期補正レベルに補正可能な1組の第1補正データ37が保存される領域である。前記第2メモリ領域36は、特に制限されないが、前記第1補正データ37により与えられる前記補正レベルを中心として両極性を有する複数の前記補正レベルに応ずるデータテーブル構造の前記第2補正データ38が、前記オフセット誤差及び前記フルスケール誤差ごとにそれぞれ保存される領域である。
【0056】
前記第2メモリ領域36に構成される前記第2補正データテーブル38A,38Bは、前記オフセット誤差及び前記フルスケール誤差に対して±0(LSB)の補正レベルとなる前記補正データを中心に、+側に補正可能な+補正データと、−側に補正可能な−補正データが、前記補正レベルに応じて配列される。例えば、図7に例示される如く、前記オフセット誤差用第2補正データテーブル38Aでは、±0(LSB)の前記補正レベルに応ずる前記補正データH’02がアドレスH’0108に格納される。+補正側には前記補正レベルの+1変化に応ずる前記+補正データが配列され、−補正側には前記補正レベルの−1変化に応ずる前記−補正データが配列される。また、前記フルスケール誤差補正用第2補正データテーブル38Bでは、±0(LSB)の前記補正レベルに応ずる前記補正データH’01がアドレスH’0128に格納される。同様に、+補正側には前記補正レベルの−1変化に応ずる前記+補正データが配列され、−補正側には前記補正レベルの+1変化に応ずる前記+補正データが配列される。前記補正レベルが+1変化され前記可変抵抗R0の抵抗値が大きくなると、前記オフセット電圧は高くなるため、前記オフセット誤差は+側に補正される。逆に、前記補正レベルが+1変化され前記可変抵抗R255の抵抗値が大きくなると、前記フルスケール電圧は低くなるため、前記フルスケール誤差は−側に補正される。よって、+補正データと−補正データの補正レベルに対する極性は前記フルスケール誤差用第2補正テーブル38Bと前記オフセット誤差用第2補正データテーブル38Aでは反対になっている。
【0057】
前記第1メモリ領域35は、記第第2補正データテーブル38A,38Bにおいて、±0(LSB)の補正レベルに応ずる前記補正データが、オフセット用第1補正データ37A及び前記フルスケール誤差用第1補正データ37Bに別々に格納される。
【0058】
前記局部D/A変換部23において、前記オフセット誤差及び前記フルスケール誤差のそれぞれを補正してデジタル・アナログ変換精度を決定するということは、即ち、前記局部D/A変換部23を局部D/Aとして逐次変換方式のアナログ・デジタル変換を行う前記A/D変換器7において、アナログ・デジタル変換精度を決定することとして位置付けられる。
【0059】
図8に前記A/D変換器7の変換精度補正手順を示す。図8において、特に制限されないが、先ず、前記半導体集積回路1に対して、前記ROM9として内蔵されたフラッシュメモリテストであるプローブ検査1P1及びプローブ検査2P2が行われる。
【0060】
次に、前記プローブ検査1P1及び前記プローブ検査2P2を合格した前記半導体集積回路1に対してロジックテストであるプローブ検査3P3が行われ、前記A/D変換器7の変換精度の実力値が実測される。この例に従えば、図8に示されるように、前記A/D変換器7の変換精度は、−2(LSB)の前記オフセット誤差と、+1(LSB)の前記フルスケール誤差とを有することとなる。ここで、前記オフセット誤差−2(LSB)を±0(LSB)に補正する前記オフセット電圧は+2(LSB)と算出される。図4に例示される如く、前記オフセット電圧を+2(LSB)にするために前記オフセットトリミング部32に与えられる4ビットの前記補正データフィールドOFF0〜OFF3の値はB’0010である。このため、図7に例示される如く、B’0010を下位4ビットとし、上位4ビットを全て0としたH’02が前記オフセット誤差用第1補正データ37Aとして前記ROM9の前記第1メモリ領域35のアドレスH’FF00に書き込まれ、保存される。同様に、前記フルスケール誤差の実測値+1(LSB)を補正する前記フルスケール電圧−1(LSB)が算出される。図5に例示される如く、前記フルスケール電圧を−1(LSB)にするために前記フルスケールトリミング部32に与えられる前記補正データフィールドFUL0〜FUL3の値はB’0001であるので、図7に例示される如く、H’01が前記フルスケール誤差用第1補正データ37Bとして前記前記ROM9の前記第1メモリエリアのアドレスH’FF01に書き込まれ、保存される。
【0061】
同時に、図7に例示される如く、前記オフセット誤差用第2補正データテーブル38Aにおいて±0(LSB)の前記補正レベルに応ずる前記補正データが保存されると予め定められたアドレスH’0108に、前記オフセット誤差用第1補正データ37Aと同じ前記補正データH’02が書き込まれる。この±0(LSB)の前記補正レベルに応ずる前記補正データH’02を基準として、−8〜+7(LSB)の前記補正レベルに応ずる前記補正データが一義的に決められ、前記オフセット誤差用第2補正データテーブル38Aの該当するアドレスに書き込まれ、保存される。同様に、前記フルスケール誤差用第2補正データテーブル38Bにおいて±0(LSB)の前記補正レベルに応ずる前記補正データが保存されると予め定められたアドレスH’0128に、前記フルスケール誤差用第1補正データ37Bと同じ前記補正データH’01が書き込まれる。この±0(LSB)の前記補正レベルに応ずる前記補正データH’01を基準として、−7〜+8(LSB)の前記補正レベルに応ずる前記補正データが一義的に決められ、前記フルスケール誤差用第2補正データテーブル38Bの該当するアドレスに書き込まれ、保存される。
【0062】
このようにして前記第1補正データ37及び前記第2補正データ38が前記ROM9の前記第1メモリ領域35及び前記第2メモリ領域に前記書き込まれた後、半導体製造プロセスの最後となる組み立て後検査F0が行われる。前記組み立て後検査F0における前記半導体集積回路1への電源投入時に応答して、前記半導体集積回路1に予めプログラムされたパワーオンリセットが実行される。前記パワーオンリセットの実行中に、前記第1補正データ37は、前記ROM9の前記第1メモリ領域35から前記データバス16を介して前記CPU3に自動的に読み込まれる。前記CPU3に読み込まれた前記第1補正データ37は、前記データバス16、前記バスインターフェイス17及びモジュールデータバス18を介して、前記A/D変換器7の前記トリミングレジスタ20に格納される。この時、図7に例示される如く、前記オフセット誤差用第1補正データ37A及び前記フルスケール誤差補正用第1補正データ37Bは各々が8ビットの合計16ビットであり、図6に例示される如く、前記トリミングレジスタ20は8ビットであるため、前記オフセット誤差用第1補正データ37Aの下位4ビットを上位4ビットに、前記フルスケール誤差用第1補正データ37Bの下位4ビットを下位4ビットにした、8ビットに前記CPU3でデータフォーマット変更されてから前記第1補正データ37として前記トリミングレジスタ20に格納される。尚、電源投入とは、上記アナログ回路用の電源電圧端子24及び接地電圧端子25とデジタル回路用の電源電圧端子101及び接地電圧端子102のそれぞれに所望の電源電位或いは接地電位が、図示されないシステム電源回路から供給されることを意味する。
【0063】
前記トリミングレジスタ20への前記第1補正データ37の格納に応答して、前記オフセット誤差用第1補正データ37Aに基づき前記オフセットトリミング部32の可変抵抗R0の抵抗値が決定される。同様に、前記フルスケール誤差用第1補正データ37Bに基づき前記フルスケールトリミング部30の可変抵抗R255の抵抗値が決定される。これにより前記局部D/A変換部23の前記オフセット誤差及び前記フルスケール誤差が±0(LSB)の前記補正レベルに補正された状態で、前記A/D変換器7の変換精度が再度実測される。図8に例示される如く、実測結果として±0(LSB)の補正レベルに補正された変換精度が得られる。この±0(LSB)の補正レベルが前記A/D変換器7の出荷時の初期補正レベル、即ち、前記A/D変換器の出荷時変換精度となる。この前記パワーオンリセットにおける前記A/D変換器7に対する自動補正動作は、前記半導体集積回路1に電源が投入された際には常に行われる動作である。これにより、前記半導体集積回路1の出荷後に前記A/D変換器7の変換精度、即ち、変換特性がどのような状態であったとしても、前記ユーザは、電源投入時に常に、前記出荷時変換精度の状態から前記A/D変換器7を使用開始することが可能となる。
【0064】
また、図8には、前記A/D変換器7において、電源投入に応答した前記初期補正レベルへの補正が完了した後、ユーザプログラムUPGの実行により前記オフセット誤差及び前記フルスケール誤差のそれぞれに+1(LSB)の前記補正レベルに応ずるオフセットを与えた出荷後補正レベルに前記変換特性を変更して、特定の処理を行う動作の例が示されている。
【0065】
その動作の詳細は図9のフローチャートに例示されている通りである。図9によれば、特に制限されないが、電源投入に応答した前記パワーオンリセットが指示されると(ST1)、前記初期補正レベルに応ずる前記第1補正データ37A,37Bの自動転送が行われ(ST2)、前記A/D変換器7が前記初期補正レベルに補正された後、前記パワーオンリセットが解除される。前記パワーオンリセットが解除されると、前記CPU3により予め前記ROM9に書き込まれた前記ユーザプログラムUPGの実行が開始される。前記ユーザプログラムUPGのメインプログラムMPGの実行途中で、設定サブルーチンが実行される(ST3)と、先ず、前記ROM9の前記第2メモリ領域36に保存された前記オフセット誤差用第2補正データテーブル38AのアドレスH’0109に格納された+1(LSB)に応ずる前記補正データH’03の読み込みが、前記CPU3により、前記データバス16を介して行われる(ST4)。同様に、前記フルスケール誤差用前記第2補正データテーブル38BのアドレスH’0127に格納された+1(LSB)に応ずる前記補正データH’00の読み込みが、前記CPU3により、前記データバス16を介して行われる(ST5)。前記CPU3により読み込まれた前記第2補正データデータテーブル38A,38Bに対して、前記パワーオンリセット時に前記第1補正データ37A,37Bに対して行われたのと同様のデータファーマット変更が行われ(ST6)、前記第2補正データ38はH’30となる。データフォーマット変更処理ST6が完了した後、前記CPU3による前記データバス16、前記バスインターフェイス17及びモジュールデータバス18を介した前記A/D変換器7の前記トリミングレジスタ20への前記第2補正データ38の書き込みが行われる(ST7)。これにより前記A/D変換器7の変換特性変更がなされ、前記設定サブルーチン処理ST3が完了すると、前記メインプログラムMPGの実行に戻る。
【0066】
その後、前記メインプログラムMPG実行中のアナログ・デジタル変換要求割り込みST8の発生に応答して、前記A/D変換器7を用いた処理動作である残量測定サブルーチンが実行される(ST9)。前記残量測定サブルーチン処理ST9では、先ず、前記A/D変換器7によりアナログ・デジタル変換が開始される(ST10)。次に、前記アナログ・デジタル変換処理ST10の終了に応答して、前記CPU3によるアナログ・デジタル変換結果の読み込みが行われる(ST11)。アナログ・デジタル変換結果の読み込み処理ST11が終了すると、前記CPU3によりアナログ・デジタル変換結果を用いた残量計算が行われ(ST12)、計算結果が残量表示される(ST13)。例えば、図9に例示される如く、使用量に相当する前記アナログ・デジタル変換結果が+2〜±0(LSB)であった場合、100−2=98と残量が計算され、98が残量として表示される。前記残量測定サブルーチン処理ST9が完了すると、再び前記メインプログラムMPGの実行に戻る。これにより、前記オフセット誤差及び前記フルスケール誤差の補正が行われた出荷時の前記初期補正レベルに対して、用途に応じて正負いずれの極性にもオフセットを与えることができる。例えば、前記オフセット誤差及び前記フルスケール誤差の双方に対して+1(LSB)の前記補正レベルに応ずるオフセットを与えた前記A/D変換器7を残量測定に用いた場合、実際の使用量が99でも変換結果は100であり、残量を100−100=0と計算して残量0と表示する。これにより、実際の残量が0になるよりも前に使用者に警告をうながすことが可能な残量測定装置が実現できる。
【0067】
以上本発明者によってなされた発明を実施形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることは言うまでもない。
【0068】
例えば、以上の説明では変換精度に含まれるオフセット誤差及びフルスケール誤差の両方を補正可能なA/D変換器は一例であり、どちらか一方のみを補正可能な局部D/A変換部の補正回路、補正データを記憶する不揮発性メモリの領域及び補正データによる変換精度の補正が可能なA/D変換器に適用されてもよい。また、半導体集積回路のアナログ回路が逐次変換型のA/D変換器は一例であり、並列比較型のA/D変換器、D/A変換器又はその他アナログ回路に適用されてもよい。また、不揮発性メモリの補正データを保存する領域の広さや、補正用の回路が有する補正範囲についても必要に応じて自由に変更すればよい。また、回路図、ブロック図に示した信号の正論理/負論理についても必要に応じて自由に変更すればよい。
【0069】
以上の説明では主として本発明者によってなされた発明をその背景となった利用分野であるシングルチップ・マイクロコンピュータに適用した場合について説明した。本発明はそれに限定せず、その他のシリコン・オン・チップ(SOC)形態及びシステム・オン・チップ形態の半導体集積回路に広く適用可能である。
【0070】
本発明は、少なくともA/D変換器、D/A変換器を有するものに適用可能である。
【0071】
【発明の効果】
本願において開示される発明のうち代表的なものによって得られる効果を簡単に説明すれば下記の通りである。
【0072】
すなわち、本発明に関わる半導体主回路は、第1メモリ領域に格納された第1補正データを用いて、電源投入応答したアナログ回路の特性初期化を自動的に行うことができる。また、第2メモリ領域に格納された第2補正データを用いて、アナログ回路の初期特性を、残量表示装置などの実際の用途に応じたオフセットを与えた特性にプログラム上で変更することができる。これにより、適正に補正された初期特性のままでも、用途に応じたオフセットを積極的に与えた特性でも、特別な手段を必要とすることなく容易に、使い勝手の良いアナログ回路の特性を選択して使用することができる。更に、第2補正データが初期値に対して両極性有していることで、寒冷地や熱帯などの仕向地の違いにより必要とされるオフセットの極性が異なる複数の特性を使用環境に応じて変更しなければならない場合であっても柔軟に適応できる。
【図面の簡単な説明】
【図1】本発明に係る局部D/A変換部の一例を示すブロック図である。
【図2】本発明に係るシングルチップ・マイクロコンピュータの一例を示すブロック図である。
【図3】本発明に係るA/D変換器の一例を示すブロック図である。
【図4】本発明に係るオフセットトリミング部の一例を示す回路図である。
【図5】本発明に係るフルスケールトリミング部の一例を示す回路図である。
【図6】本発明に係るトリミングレジスタの一例を示す説明図である。
【図7】本発明に係るROMの第1メモリ領域及び第2メモリ領域の一例を示す説明図である。
【図8】本発明に係るA/D変換器の変換特性を初期化する動作を例示するフローチャートである。
【図9】本発明に係るA/D変換器の変換特性を変更する動作を例示するフローチャートである。
【符号の説明】
1 シングルチップ・マイクロコンピュータ
3 中央処理装置(CPU)
4 内蔵ランダム・アクセス・メモリ(RAM)
7 A/D変換器
8 D/A変換器
9 内蔵リード・オンリ・メモリ(ROM)
20 トリミングレジスタ
22 逐次比較レジスタ
23 局部D/A変換部
24 電源電圧端子(AVcc)
25 接地電圧端子(AVss)
26 コントロール回路
27 コンパレータ
28 サンプル・ホールド回路
29 マルチプレクサ
AN0〜AN7 入力アナログ信号
30 フルスケールトリミング部
R255 可変抵抗回路
30A セレクタ
RFUL00〜RFUL14 抵抗
SWFUL00〜SWFUL15 スイッチ素子
FUL0〜FUL3 補正データフィールド
31 抵抗分圧回路
R1〜R254 抵抗
SW0〜SW254 スイッチ素子
32 オフセットトリミング回路
R0 可変抵抗回路
32A セレクタ
ROFF00〜ROFF14 抵抗
SWOFF00〜SWOFF15 スイッチ素子
OFF0〜OFF3 補正データフィールド
35 第1メモリ領域
36 第2メモリ領域
37 第1補正データ
37A オフセット誤差補正用第1補正データ
37B フルスケール誤差補正用第1補正データ
38 第2補正データ
38A オフセット誤差補正用第2補正データテーブル
38B フルスケール誤差補正用第2補正データテーブル
Claims (12)
- 中央処理装置、前記中央処理装置によりアクセス可能な不揮発性メモリ及びアナログ回路を1個の半導体チップ上に有し、
前記不揮発性メモリは、
電源投入に応答して、前記アナログ回路の特性を決定する初期値として利用される第1補正データを格納する第1メモリ領域と、
電源投入に応答した前記アナログ回路への初期値設定後に、前記中央処理装置の命令実行によって、前記アナログ回路の特性を変更するために利用される第2補正データを格納する第2メモリ領域と、
を含んで成るものであることを特徴とする半導体集積回路。 - 前記第1補正データは、前記アナログ回路自体の電源電圧側におけるフルスケール誤差と、前記アナログ回路自体の接地電源側におけるオフセット誤差と、のうち一方または双方を補正可能なデータであることを特徴とする請求項1記載の半導体集積回路。
- 前記第2補正データは、前記第1補正データに対して両極性を有する複数のデータであることを特徴とする請求項1記載の半導体集積回路。
- 前記アナログ回路は、
電源端子と、
外部から与えられた信号により抵抗値の変更を可能とした電源電圧側の第1可変抵抗回路と、
外部から与えられたデジタル値により分圧ノードの選択を可能とした抵抗分圧回路と、
外部から与えられた信号により抵抗値の変更を可能とした接地電源側の第2可変抵抗回路と、
接地端子と、を有し
前記第1可変抵抗回路、前記抵抗分圧回路及び前記第2可変抵抗回路が前記電源端子と前記接地端子との間に順次直列接続されて成るD/A変換器を含むことを特徴とする請求項1記載の半導体集積回路。 - 前記アナログ回路は、
電源端子と、
外部から与えられた信号により抵抗値の変更を可能とした電源電圧側の可変抵抗回路と、
外部から与えられたデジタル値により分圧ノードの選択を可能とした抵抗分圧回路と、
接地端子と、を有し
前記可変抵抗回路及び前記抵抗分圧回路が前記電源端子と前記接地端子との間に順次直列接続されて成るD/A変換器を含むことを特徴とする請求項1記載の半導体集積回路。 - 前記アナログ回路は、
電源端子と、
外部から与えられたデジタル値により分圧ノードの選択を可能とした抵抗分圧回路と、
外部から与えられた信号により抵抗値の変更を可能とした接地電圧側の可変抵抗回路と、
接地端子と、を有し
前記抵抗分圧回路及び前記可変抵抗回路が前記電源端子と前記接地端子との間に順次直列接続されて成るD/A変換器を含むことを特徴とする請求項1記載の半導体集積回路。 - 前記アナログ回路は、前記第1メモリ領域から読み出された前記第1補正データが格納可能にされると共に前記第2メモリ領域から読み出された第2補正データが格納可能にされるレジスタ手段を有し、
前記レジスタ手段に格納された第1補正データ又は第2補正データは前記可変抵抗回路の抵抗値を選択させることを特徴とする請求項4乃至6の何れか1項に記載の半導体集積回路。 - 前記アナログ回路は、前記D/A変換器を、局部D/A変換器として有する、逐次変換方式型のA/D変換器であることを特徴とする請求項4乃至6の何れか1項に記載の半導体集積回路。
- 中央処理装置、前記中央処理装置によりアクセス可能な不揮発性メモリ及びアナログ回路を1個の半導体チップ上に有し、
前記不揮発性メモリは、電源投入に応答して、前記アナログ回路の特性を決定する初期値として利用される第1補正データと、
電源投入に応答した前記アナログ回路への初期値設定後に、前記中央処理装置の命令実行によって、前記アナログ回路の特性を変更するために利用される第2補正データと、
を含んで成るものであることを特徴とする半導体集積回路。 - 前記第1補正データは、前記アナログ回路自体の電源電圧側におけるフルスケール誤差と、接地電源側におけるオフセット誤差と、のうち一方または双方を補正可能なデータであることを特徴とする請求項9の半導体集積回路。
- 前記第2補正データは、前記第1補正データに対して両極性を有する複数のデータであることを特徴とする請求項9の半導体集積回路。
- 第1電源端子と、
第2電源端子と
中央処理装置と、
上記中央処理装置によって実行されるプログラムと補正データとが格納される電気的に消去及び書き込み可能な不揮発性記憶装置と、
上記第1及び上記第2電源端子の間に結合された可変抵抗回路及び抵抗分圧回路と、前記可変抵抗回路の抵抗値を制御するデータが格納されるレジスタとを含むA/D変換回路と、を半導体基板上に有し、
前記補正データに含まれる第1データが、電源投入に応答して、初期値として前記レジスタに設定され、
前記補正データに含まれる第2データが、前記中央処理装置のプログラムの実行によって、補正値として前記レジスタに設定される、
ことを特徴とするマイクロプロセッサ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002193072A JP2004040356A (ja) | 2002-07-02 | 2002-07-02 | 半導体集積回路及びマイクロプロセッサ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002193072A JP2004040356A (ja) | 2002-07-02 | 2002-07-02 | 半導体集積回路及びマイクロプロセッサ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004040356A true JP2004040356A (ja) | 2004-02-05 |
Family
ID=31702122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002193072A Pending JP2004040356A (ja) | 2002-07-02 | 2002-07-02 | 半導体集積回路及びマイクロプロセッサ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004040356A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005294713A (ja) * | 2004-04-05 | 2005-10-20 | Seiko Instruments Inc | 半導体集積回路 |
JP2008131763A (ja) * | 2006-11-21 | 2008-06-05 | Rohm Co Ltd | 電圧生成回路、それを用いたスイッチングレギュレータの制御回路ならびに電子機器 |
US7486559B2 (en) | 2006-04-26 | 2009-02-03 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor memory device |
JP2012043877A (ja) * | 2010-08-17 | 2012-03-01 | Seiko Epson Corp | 集積回路装置及び電子機器 |
-
2002
- 2002-07-02 JP JP2002193072A patent/JP2004040356A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005294713A (ja) * | 2004-04-05 | 2005-10-20 | Seiko Instruments Inc | 半導体集積回路 |
JP4510498B2 (ja) * | 2004-04-05 | 2010-07-21 | セイコーインスツル株式会社 | 半導体集積回路 |
US7486559B2 (en) | 2006-04-26 | 2009-02-03 | Kabushiki Kaisha Toshiba | Non-volatile semiconductor memory device |
JP2008131763A (ja) * | 2006-11-21 | 2008-06-05 | Rohm Co Ltd | 電圧生成回路、それを用いたスイッチングレギュレータの制御回路ならびに電子機器 |
JP2012043877A (ja) * | 2010-08-17 | 2012-03-01 | Seiko Epson Corp | 集積回路装置及び電子機器 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7433790B2 (en) | Automatic reference voltage trimming technique | |
US6283628B1 (en) | Intelligent input/output temperature sensor and calibration method therefor | |
KR100247184B1 (ko) | 온칩 아날로그 소자의 디지탈 조정 | |
US9778978B2 (en) | Memory device and memory system with sensor | |
JPH0346014A (ja) | マイクロプロセッサ及びプログラム可能な内部クロックを備える情積回路 | |
JPS58120137A (ja) | 電子体温計 | |
JP3162197B2 (ja) | 伝達関数を物理的に実現するシステム及びそのシステムを具現する方法 | |
US9690726B2 (en) | Peripheral register parameter refreshing | |
JP2004040356A (ja) | 半導体集積回路及びマイクロプロセッサ | |
JP2004310930A (ja) | 不揮発性半導体記憶装置 | |
TWI517552B (zh) | 振盪器校正電路與方法以及積體電路 | |
KR100600219B1 (ko) | Vdc 출력을 디지털량으로서 관측할 수 있고, vdc출력 전압을 조정할 수 있는 반도체 집적 회로 | |
JP2013142648A (ja) | センサ出力補正回路、センサ出力補正装置、シーケンス制御回路及びシーケンス制御方法 | |
US4755967A (en) | Programmable synchronous sequential state machine or sequencer having decision variable input mapping circuit responsive to feedback signals | |
US20230268011A1 (en) | Piecewise linear and trimmable temperature sensor | |
CN107884095B (zh) | 测温装置中的自动校准电路结构及自动校准方法 | |
JP2005274372A (ja) | 温度検出装置 | |
CN115509295A (zh) | 具有自动温度补偿功能的实时时钟芯片系统 | |
JP4641045B2 (ja) | 半導体集積回路及びマイクロコンピュータ | |
TW201830260A (zh) | 微控制器周邊裝置組態 | |
US20210203346A1 (en) | Pinstrap detection circuit | |
WO2010070736A1 (ja) | プログラマブルデバイス制御装置およびその方法 | |
TWI779634B (zh) | 用來進行記憶體校準之方法、系統單晶片積體電路以及非暫態計算機可讀取媒體 | |
JPH09113431A (ja) | 材料試験機 | |
JPS5942920B2 (ja) | 演算器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070213 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070612 |