JP2004040108A - Thin film transistor with ldd structure and its manufacturing method - Google Patents

Thin film transistor with ldd structure and its manufacturing method Download PDF

Info

Publication number
JP2004040108A
JP2004040108A JP2003270766A JP2003270766A JP2004040108A JP 2004040108 A JP2004040108 A JP 2004040108A JP 2003270766 A JP2003270766 A JP 2003270766A JP 2003270766 A JP2003270766 A JP 2003270766A JP 2004040108 A JP2004040108 A JP 2004040108A
Authority
JP
Japan
Prior art keywords
ldd
source
drain
thin film
film transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003270766A
Other languages
Japanese (ja)
Inventor
An Shih
安 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TPO Displays Corp
Original Assignee
Toppoly Optoelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppoly Optoelectronics Corp filed Critical Toppoly Optoelectronics Corp
Publication of JP2004040108A publication Critical patent/JP2004040108A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin film transistor with LDD structure and its manufacturing method which can reduce hot electron effects, current leak, and punch through. <P>SOLUTION: A thin film transistor with a single LDD structure is provided. A single LDD structure 224 is positioned between a source/drain structure 2211 and 2221. The single LDD structure 224 has a first side face adjacent to a first structure of the source/drain structure and a second side face essentially separated from a second structure of the source/drain structure by a semiconductor material 223. The other thin film transistor having a first LDD structure and a second LDD structure which is adjacent to the first LDD structure is also provided. Manufacturing processes of such thin film transistors are disclosed. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、薄膜トランジスタに関し、さらに詳しくは、そのLDD(Lightly Doped Drain)構造に関する。また、本発明は、そのような薄膜トランジスタのLDD構造を製造する方法に関する。 The present invention relates to a thin film transistor, and more particularly, to an LDD (Lightly Doped Drain) structure thereof. The invention also relates to a method for manufacturing such a thin film transistor LDD structure.

 集積回路の開発進歩にともない、電子デバイスの小型化が進められている。薄膜トランジスタ(TFT)は、よく知られているように、TFT液晶ディスプレイ(TFT−LCD)の画素制御のための基本デバイスとして広く用いられている。小型化の結果、各TFTのソースとドレイン間のチャネルが、さらに狭くなっていく。そこで、ショートチャネル現象が発生し易くなる。このようなショートチャネル現象は、ゲート電圧がゼロの場合であっても、意図しないTFTのオン状態を発生させるおそれがある。従って、トランジスタのスイッチ機能が損なわれてしまう。また、チャネルにおける電界強度は、チャネルが狭いため増加する。そこで、ドレイン近傍におけるホットエレクトロンは、半導体のエネルギギャップと比べてより高いエネルギを有することになる。価電子帯の電子は、ホットエレクトロンに衝突されて伝導帯に押し上げられ、このことによって、多くの電子−ホール対が生成される。このような現象は、ホットエレクトロン効果と呼ばれている。 電子 With the development of integrated circuits, electronic devices are being miniaturized. As is well known, a thin film transistor (TFT) is widely used as a basic device for controlling pixels of a TFT liquid crystal display (TFT-LCD). As a result of the miniaturization, the channel between the source and the drain of each TFT is further narrowed. Therefore, the short channel phenomenon easily occurs. Such a short channel phenomenon may cause an unintended ON state of the TFT even when the gate voltage is zero. Therefore, the switching function of the transistor is impaired. The electric field strength in the channel increases because the channel is narrow. Therefore, the hot electrons near the drain have higher energy than the energy gap of the semiconductor. The electrons in the valence band are bombarded by hot electrons and are pushed up into the conduction band, thereby generating many electron-hole pairs. Such a phenomenon is called a hot electron effect.

 TFT−LCDにおいて、TFTは主にガラス基板上に形成される。ガラス基板は、一般的に熱に弱く、LCDガラス板の上にTFTを形成するプロセスは、低温工程によらなければならない。ホットッレクトロン効果を最小とするために、LDD(Lightly Doped Drain)構造を有する低温ポリシリコン薄膜トランジスタ(LTPS−TFT)が開発された。このようなLTPS−TFTの中でも、ゲートとドレインがオーバラップしたLDD(gate-drain overlapped LDD; GO−LDD)構造が広く用いられている。 TFT In a TFT-LCD, a TFT is mainly formed on a glass substrate. Glass substrates are generally sensitive to heat, and the process of forming TFTs on LCD glass plates must rely on low temperature steps. To minimize the hot-lectron effect, a low-temperature polysilicon thin film transistor (LTPS-TFT) having an LDD (Lightly Doped Drain) structure has been developed. Among such LTPS-TFTs, a gate-drain overlapped LDD (GO-LDD) structure in which a gate and a drain overlap is widely used.

 N型LTPS−TFTの製造工程が、図1(a)〜1(g)に示されている。図1(a)において、シリコン酸化膜緩衝層11と真性アモルファスシリコン(intrinsic amorphous silicon;i−a−Si)層が、連続してガラス基板10の上に形成される。そして、i−a−Si層が、レーザアニーリングによって真性ポリシリコン(intrinsic polysilicon;i−poly−Si)層12に変えられる。そして、マイクロフォトリソグラフィとエッチング処理によって、i−poly−Si層12が部分的にエッチングされて、図1(b)に示すように、所望のポリシリコン構造120が形成される。図1(c)に示すように、ポリシリコン構造120の上にフォトレジストが形成され、マスク13が形成される。そして、イオン注入工程においてイオン注入が行われて、マスク13に覆われていないポリシリコン構造12の部分に2つのN型領域121,122が形成される。2つのN型領域121,122は、NチャネルTFTのソース/ドレインとなる。フォトレジスト13除去の後、図1(d)に示すように、例えば二酸化膜シリコンによるゲート絶縁層14が、図1(c)に示す構造の上に形成される。 FIGS. 1 (a) to 1 (g) show a manufacturing process of an N-type LTPS-TFT. In FIG. 1A, a silicon oxide film buffer layer 11 and an intrinsic amorphous silicon (ia-Si) layer are continuously formed on a glass substrate 10. Then, the ia-Si layer is changed to an intrinsic polysilicon (i-poly-Si) layer 12 by laser annealing. Then, the i-poly-Si layer 12 is partially etched by microphotolithography and etching to form a desired polysilicon structure 120 as shown in FIG. 1B. As shown in FIG. 1C, a photoresist is formed on the polysilicon structure 120, and a mask 13 is formed. Then, ion implantation is performed in the ion implantation step, and two N-type regions 121 and 122 are formed in portions of the polysilicon structure 12 not covered by the mask 13. The two N-type regions 121 and 122 serve as the source / drain of the N-channel TFT. After the removal of the photoresist 13, as shown in FIG. 1D, a gate insulating layer 14 of, for example, silicon dioxide is formed on the structure shown in FIG. 1C.

 図1(e)に示すように、図1(d)に示す構造の上にゲート用導電層をスパッタリング成膜し、パターニングを行って、ゲート絶縁層14の上にゲート電極15が形成される。そして、ポリシリコン構造120に微量のN型ドーパントを供給するためのマスクとしてゲート電極15を用いて、低濃度イオン注入を行い、2つのLDD領域123,124が、それぞれソース/ドレイン領域121,122に近接して形成される。図1(f)に示すように、層間の誘電体層17が、図1(e)に示す構造の上に形成される。そして、必要な個数のコンタクトホール18がゲート電極とソース/ドレイン領域に向けて形成される。そして、図1(g)に示すように、図1(f)に示す構造の上に導電体層がスパッタリング成膜され、コンタクトホールが埋められ、ゲート配線190とソース/ドレイン配線191がパターニングされて形成される。 As shown in FIG. 1E, a gate conductive layer is formed by sputtering on the structure shown in FIG. 1D and patterned to form a gate electrode 15 on the gate insulating layer 14. . Then, low-concentration ion implantation is performed using the gate electrode 15 as a mask for supplying a small amount of N-type dopant to the polysilicon structure 120, and the two LDD regions 123 and 124 are formed in the source / drain regions 121 and 122 respectively. Formed in the vicinity of As shown in FIG. 1F, an interlayer dielectric layer 17 is formed on the structure shown in FIG. 1E. Then, a required number of contact holes 18 are formed toward the gate electrode and the source / drain regions. Then, as shown in FIG. 1G, a conductor layer is formed by sputtering on the structure shown in FIG. 1F, the contact holes are filled, and the gate wiring 190 and the source / drain wiring 191 are patterned. Formed.

 ゲートとドレインがオーバラップしたLDD(GO−LDD)構造は、ドレイン領域の近傍で電界強度を下げることになり、ホットエレクトロンの効果の影響をわずかに下げることになる。 (4) In the LDD (GO-LDD) structure in which the gate and the drain overlap, the electric field intensity is reduced in the vicinity of the drain region, and the effect of the hot electron effect is slightly reduced.

 しかしながら、高分解能ディスプレイの要求の増加によって、回路は、従来以上にさらに複雑になっている。すなわち、電子デバイスの数は、個々の電子デバイスの占める空間を減らさなければならないほど増加している。従って、トランジスタのチャネルはさらに狭くなっていく。また、LDD領域はチャネルをさらに短くしており、ソース/ドレイン領域近傍の欠乏層領域は接近して、互いに接触しそうなほどである。そのため、上述した図1に示されるようなLDD構造を有する薄膜トランジスタにおいては、電子デバイスを劣化させる電流リークとパンチスルーの問題が発生する可能性がある。上記の現象は小型化への開発にとって重要な問題である。 However, with the increasing demand for high resolution displays, circuits have become more complex than ever. That is, the number of electronic devices is increasing so that the space occupied by individual electronic devices must be reduced. Therefore, the channel of the transistor becomes narrower. Further, the LDD region has a shorter channel, and the depletion layer regions near the source / drain regions are close to each other and almost in contact with each other. Therefore, in the thin film transistor having the LDD structure as shown in FIG. 1 described above, there is a possibility that a problem of a current leak and a punch-through that deteriorates an electronic device may occur. The above phenomena are important issues for miniaturization development.

 本発明は、上記課題を解消するものであって、ホットエレクトロン、電流リーク、及びパンチスルーを低減させた薄膜トランジスタを提供することを目的とする。また、ホットエレクトロン、電流リーク、及びパンチスルーを低減させるLDD構造を有する薄膜トランジスタの製造方法を提供することを目的とする。 The object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a thin film transistor in which hot electrons, current leak, and punch-through are reduced. Another object is to provide a method for manufacturing a thin film transistor having an LDD structure that reduces hot electrons, current leakage, and punch-through.

 上記課題を達成するために、本発明は、薄膜トランジスタであって、半導体物質で形成された半導体層と、ソース/ドレイン構造と、LDD構造と、ゲート構造と、絶縁層とを備えている。半導体層は、多結晶シリコンのような半導体物質によって、ガラス基板上に形成されている。ソース構造とドレイン構造が互いに離れて半導体層の中にソース/ドレイン構造として形成されている。単一LDD構造は、ソース/ドレイン構造の間に配置され、ソース/ドレイン構造の第1の構造に隣接した第1の側面と、ソース/ドレイン構造の第2の構造に対して本質的に半導体物質で隔てられた第2の側面とを有している。絶縁層は、半導体層とゲート構造の間に配置され、ゲート構造をソース/ドレイン構造とLDD構造から絶縁している。 In order to achieve the above object, the present invention is a thin film transistor, which includes a semiconductor layer formed of a semiconductor material, a source / drain structure, an LDD structure, a gate structure, and an insulating layer. The semiconductor layer is formed on a glass substrate using a semiconductor material such as polycrystalline silicon. A source structure and a drain structure are formed as a source / drain structure in a semiconductor layer apart from each other. The single LDD structure is disposed between the source / drain structure and is substantially semiconductor with respect to a first side adjacent to the first structure of the source / drain structure and to a second structure of the source / drain structure. A second side separated by a substance. The insulating layer is disposed between the semiconductor layer and the gate structure, and insulates the gate structure from the source / drain structure and the LDD structure.

 本発明の一実施形態において、単一LDD構造は、ゲートとドレインが重なりを有するLDD(GO−LDD)である。ソース/ドレイン構造の第1の構造がドレイン構造であり、ソース/ドレイン構造の第2の構造がソース構造である。 In one embodiment of the present invention, the single LDD structure is an LDD (GO-LDD) having a gate and a drain overlapping. The first structure of the source / drain structure is a drain structure, and the second structure of the source / drain structure is a source structure.

 本発明の他の一実施形態において、薄膜トランジスタがN型であり、前記LDD構造がPイオン、Asイオン、PHイオン、AsHイオン、及びこれらの組合せの中から選択されたドーピング物質を含んでいる。 In another embodiment of the present invention, the thin film transistor is N-type, and the LDD structure includes a doping material selected from P ions, As ions, PH x ions, AsH x ions, and combinations thereof. I have.

 また、本発明は、薄膜トランジスタであって、半導体層と、ソース構造とドレイン構造とからなるソース/ドレイン構造と、第1のLDD構造と、第2のLDD構造と、ゲート構造と、絶縁層とを備えている。半導体層は、半導体物質で形成されている。ソース/ドレイン構造の各構造は、互いに離れて半導体層に形成されている。第1のLDD構造は、ソース/ドレイン構造の間に配置され、そのソース/ドレイン構造の第1の構造に隣接した第1の側面と、その第1の側面の反対側に第2の側面を有している。第2のLDD構造は、第1のLDD構造の第2の側面に隣接した第3の側面と、ソース/ドレイン構造の第2の構造に対して本質的に前記半導体物質で隔てられた第4の側面とを有している。ゲート構造は、半導体層の上方に形成されている。絶縁層は、半導体層とゲート構造の間に配置され、ゲート構造をソース/ドレイン構造及びLDD構造から絶縁している。 Further, the present invention is a thin film transistor, including a semiconductor layer, a source / drain structure including a source structure and a drain structure, a first LDD structure, a second LDD structure, a gate structure, and an insulating layer. It has. The semiconductor layer is formed of a semiconductor material. Each structure of the source / drain structure is formed in the semiconductor layer apart from each other. The first LDD structure is disposed between the source / drain structures and has a first side adjacent to the first structure of the source / drain structure and a second side opposite the first side. Have. The second LDD structure includes a third side adjacent to the second side of the first LDD structure and a fourth side separated by the semiconductor material with respect to the second structure of the source / drain structure. Side. The gate structure is formed above the semiconductor layer. The insulating layer is disposed between the semiconductor layer and the gate structure, and insulates the gate structure from the source / drain structure and the LDD structure.

 本発明の一実施形態において、第1及び第2の各LDD構造は、ゲートとドレインが重なりを有するLDD(GO−LDD)である。また、薄膜トランジスタはN型であり、第1のLDD構造はPイオン、Asイオン、PHイオン、AsHイオン、及びこれらの組合せの中から選択されたドーピング物質を含んでおり、第2のLDD構造はBイオン、BHイオン、Bイオン、及びこれらの組合せの中から選択されたドーピング物質を含んでいる。 In one embodiment of the present invention, each of the first and second LDD structures is an LDD (GO-LDD) having a gate and a drain overlapping. In addition, the thin film transistor is N-type, the first LDD structure includes a doping material selected from P ions, As ions, PH x ions, AsH x ions, and a combination thereof, and the second LDD structure includes The structure includes a doping material selected from B ions, BH x ions, B 2 H x ions, and combinations thereof.

 本発明の他の一実施形態において、薄膜トランジスタは、第3のLDD構造と第4のLDD構造とをさらに備えている。第3のLDD構造は、ソース/ドレイン構造の間に配置され、そのソース/ドレイン構造の第2の構造に隣接した第5の側面と、その第5の側面の反対側に第6の側面を有している。第4のLDD構造は、第3のLDD構造の第6の側面に隣接した第7の側面と、第2のLDD構造に対して本質的に前記半導体物質で隔てられた第8の側面とを有している。第3のLDD構造はPイオン、Asイオン、PHイオン、AsHイオン、及びこれらの組合せの中から選択されたドーピング物質を含んでおり、第4のLDD構造はBイオン、BHイオン、Bイオン、及びこれらの組合せの中から選択されたドーピング物質を含んでいる。 In another embodiment of the present invention, the thin film transistor further includes a third LDD structure and a fourth LDD structure. The third LDD structure is disposed between the source / drain structure and has a fifth side adjacent to the second structure of the source / drain structure and a sixth side opposite the fifth side. Have. The fourth LDD structure includes a seventh side adjacent to the sixth side of the third LDD structure and an eighth side essentially separated by the semiconductor material with respect to the second LDD structure. Have. The third LDD structure includes a doping material selected from P ions, As ions, PH x ions, AsH x ions, and combinations thereof, and the fourth LDD structure includes B ions, BH x ions, B 2 H x ions, and contains a doping material selected from among these combinations.

 本発明の他の一実施形態において、少なくとも第1及び第3のLDD構造の一部が、第2及び第4のLDD構造及びソース/ドレイン構造によって覆われていない。 In another embodiment of the present invention, at least a part of the first and third LDD structures is not covered by the second and fourth LDD structures and the source / drain structure.

 本発明の他の一実施形態において、第1のLDD構造が前記第2のLDD構造及びソース/ドレイン構造の第1の構造によって囲まれており、第3のLDD構造が第4のLDD構造及びソース/ドレイン構造の第2の構造によって囲まれている。 In another embodiment of the present invention, a first LDD structure is surrounded by a first of the second LDD structure and a source / drain structure, and a third LDD structure is a fourth LDD structure. It is surrounded by the second structure of the source / drain structure.

 また、本発明は、薄膜トランジスタの製造方法であって、以下の工程を備えている。ゲート絶縁層が半導体層の上に形成され、ゲート構造がゲート絶縁層の上に形成される。次に、ソース/ドレイン構造がチャネル領域で互いに隔てられて半導体層に形成される。次に、第1のLDD構造を形成するために、第1のドーピング物質が、チャネル領域の第1の端部に半導体層の表面から第1の角度の第1の方向で注入される。また、第1のLDD構造に接触している第2のLDD構造を形成するために、第2のドーピング物質が、チャネル領域の前記第1の端部に半導体層の表面から第2の角度の第2の方向で注入される。 The present invention is also a method of manufacturing a thin film transistor, and includes the following steps. A gate insulating layer is formed over the semiconductor layer, and a gate structure is formed over the gate insulating layer. Next, source / drain structures are formed in the semiconductor layer separated from each other by a channel region. Next, a first doping material is implanted into the first end of the channel region at a first angle at a first angle from the surface of the semiconductor layer to form a first LDD structure. Also, a second doping material is applied to the first end of the channel region at a second angle from the surface of the semiconductor layer to form a second LDD structure in contact with the first LDD structure. Injected in a second direction.

 本発明の一実施形態において、第1のドーピング物質は、Pイオン、Asイオン、PHイオン、AsHイオン、及びこれらの組合せの中から選択され、第2のドーピング物質は、Bイオン、BHイオン、Bイオン、及びこれらの組合せの中から選択される。 In one embodiment of the present invention, the first doping material is selected from P ions, As ions, PH x ions, AsH x ions, and combinations thereof, and the second doping material is B ions, BH ions. x ions, B 2 H x ions, and combinations thereof.

 本発明の他の一実施形態において、第1のドーピング物質を注入する工程が、ゲート構造をマスクとして用いてチャネルに対して行われ、また、第3のLDD構造が、第1のLDD構造が形成される時、チャネル領域における第1の端部の反対側の第2の端部に同時に形成される。 In another embodiment of the present invention, the step of injecting the first doping material is performed on the channel using the gate structure as a mask, and the third LDD structure is the first LDD structure. When formed, they are formed simultaneously at a second end of the channel region opposite the first end.

 本発明の他の一実施形態において、薄膜トランジスタの製造方法は、第3のLDD構造に接触している第4のLDD構造を形成するために、半導体層の表面から第3の角度の第3の方向でチャネル領域の第2の端部に第3のドーピング物質を注入する工程をさらに備えている。 In another embodiment of the present invention, a method of fabricating a thin film transistor includes forming a third LDD structure in contact with a third LDD structure to form a third LDD structure at a third angle from a surface of the semiconductor layer. Implanting a third doping material into the second end of the channel region in the direction.

 好ましくは、第1の角度は実質的に90゜であり、第2、及び第3の各角度は0゜より大きく30゜より小さい。 {Preferably, the first angle is substantially 90 °, and each of the second and third angles is greater than 0 ° and less than 30 °.

 好ましくは、第3のドーピング物質は、第2のドーピング物質と同じものである。 Preferably, the third doping substance is the same as the second doping substance.

 本発明の他の一実施形態において、ゲート構造は、ゲート電極とその電極のそばのスペーサ構造を含み、第1のドーピング物質を注入する工程は、前記スペーサ構造が除去されてから行われる。 In another embodiment of the present invention, the gate structure includes a gate electrode and a spacer structure near the electrode, and the step of injecting the first doping material is performed after the spacer structure is removed.

 以下、本発明の一実施形態に係る薄膜トランジスタのLDD構造とその製造方法について、図面を参照して説明する。本発明は、ソース/ドレイン領域の近傍における欠乏層領域の接触可能性を防止する目的で、ソース/ドレイン欠乏層領域が、従来例と異なり互いに接近しないような単一LDD構造を有するTFTを提供する。このようなTFTの2つの例とその製造工程を、図2(a)〜2(f)、図図3(a)〜3(f)に示す。 Hereinafter, an LDD structure of a thin film transistor according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to the drawings. The present invention provides a TFT having a single LDD structure in which the source / drain depletion layer regions do not approach each other unlike the conventional example in order to prevent the possibility of contact between the depletion layer regions near the source / drain regions. I do. FIGS. 2 (a) to 2 (f) and FIGS. 3 (a) to 3 (f) show two examples of such a TFT and the manufacturing process thereof.

 図2(a)に示すように、バッファ(緩衝)層21がガラス基板20の上に形成される。続いて、真性アモルファスシリコン(i−a−Si)層がバッファ層21の上に形成され、i−a−Si層がレーザアニーリングによって真性ポリシリコン(i−poly−Si)層22に変換される。フォトレジスト層がポリシリコン層22の上に形成され、図2(b)に示すように、マイクロフォトリソグラフィとエッチングの工程によってマスク23が形成される。また、図2(b)に示すように、このマスク23から露出したポリシリコン層22の部位に、N型のイオン注入を行う工程によって、2つのN型領域221,222が形成される。2つのN型領域221,222は互いにチャネル領域223によって隔てられている。次に、図2(c)に示すように、フォトレジストマスク23が除去される。 (2) As shown in FIG. 2A, a buffer (buffer) layer 21 is formed on the glass substrate 20. Subsequently, an intrinsic amorphous silicon (ia-Si) layer is formed on the buffer layer 21, and the ia-Si layer is converted into an intrinsic polysilicon (i-poly-Si) layer 22 by laser annealing. . A photoresist layer is formed on the polysilicon layer 22, and a mask 23 is formed by microphotolithography and etching steps as shown in FIG. Further, as shown in FIG. 2B, two N-type regions 221 and 222 are formed in the portion of the polysilicon layer 22 exposed from the mask 23 by performing N-type ion implantation. The two N-type regions 221 and 222 are separated from each other by a channel region 223. Next, as shown in FIG. 2C, the photoresist mask 23 is removed.

 図2(d)に示すように、図2(c)に示す構造の上にゲート絶縁層25が形成される。図2(e)に示すように、チャネル223よりもわずかに幅の狭いゲート電極26が、チャネル領域223の端部がゲート電極26によって覆われずに露出するように、ゲート絶縁層25の上にパターニングとエッチングの工程によって形成される。そして、ゲート電極26をマスクとして、低濃度イオン注入が行われ、マスクから露出したポリシリコン層22の部位に低濃度のN型ドーパントが供給されて、単一LDD構造224がポリシリコン層22に形成される。図2(f)に示すように、N型領域221,222は、結果的に高濃度に不純物注入がなされ、ソース/ドレイン領域2211,2221が形成される。その後、層関誘電体層、コンタクトホール、ゲートとソース/ドレインの配線、及びその他の必要な構造が図2(f)に示す構造の上に形成され、TFTが完成される。 (2) As shown in FIG. 2 (d), a gate insulating layer 25 is formed on the structure shown in FIG. 2 (c). As shown in FIG. 2E, the gate electrode 26 slightly narrower than the channel 223 is formed on the gate insulating layer 25 so that the end of the channel region 223 is exposed without being covered by the gate electrode 26. Is formed by a patterning and etching process. Then, low concentration ion implantation is performed using the gate electrode 26 as a mask, and a low concentration N-type dopant is supplied to the portion of the polysilicon layer 22 exposed from the mask, so that the single LDD structure 224 is added to the polysilicon layer 22. It is formed. As shown in FIG. 2F, the N-type regions 221 and 222 are consequently implanted with a high concentration of impurities, so that source / drain regions 2211 and 221 are formed. Thereafter, a layer-related dielectric layer, contact holes, gate and source / drain wiring, and other necessary structures are formed on the structure shown in FIG. 2F, and the TFT is completed.

 単一LDD構造を有するTFTの製造工程の他の例を説明する。まず、図3(a)に示すように、バッファ層31がガラス基板30の上に形成される。続いて、真性アモルファスシリコン(i−a−Si)層がバッファ層31の上に形成され、i−a−Si層がレーザアニーリングによって真性ポリシリコン(i−poly−Si)層32に変換される。図3(b)に示すように、ゲート絶縁層33がポリシリコン層32の上に形成され、そのゲート絶縁層33の上にゲート構造34がパターニングされる。さらに、図3(c)に示すように、誘電体層が図3(b)に示す構造の上に形成され、スペーサ又は側壁35がゲート構造34の横にマイクロフォトリソグラフィとエッチングの工程によって形成される。ゲート電極34とその横のスペーサ/側壁35は、その後のN型イオン注入工程におけるドーピングのマスクとして用いられる。 Another example of the manufacturing process of the TFT having the single LDD structure will be described. First, as shown in FIG. 3A, a buffer layer 31 is formed on a glass substrate 30. Subsequently, an intrinsic amorphous silicon (ia-Si) layer is formed on the buffer layer 31, and the ia-Si layer is converted into an intrinsic polysilicon (i-poly-Si) layer 32 by laser annealing. . As shown in FIG. 3B, a gate insulating layer 33 is formed on the polysilicon layer 32, and a gate structure 34 is patterned on the gate insulating layer 33. Further, as shown in FIG. 3 (c), a dielectric layer is formed on the structure shown in FIG. 3 (b), and spacers or sidewalls 35 are formed next to the gate structure 34 by microphotolithography and etching steps. Is done. The gate electrode 34 and the spacer / sidewall 35 beside it are used as a doping mask in a subsequent N-type ion implantation step.

 図3(d)に示すように、マスクから露出したポリシリコン層32の部位に、2つのN型領域321,322が形成される。2つのN型領域321,322はチャネル領域323によって互いに隔てられている。図3(e)に示すように、N型領域322に隣接する部位のスペーサ35が取り除かれ、チャネル領域323の端部が露出される。図3(f)に示すように、ゲート電極34と残っているスペーサ35をマスクとして、低濃度イオン注入が行われ、マスクから露出したポリシリコン層32の部位に低濃度のN型ドーパントが供給されて、単一LDD構造324がポリシリコン層32に形成される。N型領域は同時に高濃度に不純物注入がなされ、ソース/ドレイン領域3211,3221が形成される。その後、前述の実施形態と同様の必要な工程が行われる。 よ う As shown in FIG. 3D, two N-type regions 321 and 322 are formed in the portion of the polysilicon layer 32 exposed from the mask. The two N-type regions 321 and 322 are separated from each other by a channel region 323. As shown in FIG. 3E, the spacer 35 at a portion adjacent to the N-type region 322 is removed, and the end of the channel region 323 is exposed. As shown in FIG. 3F, low concentration ion implantation is performed using the gate electrode 34 and the remaining spacer 35 as a mask, and a low concentration N-type dopant is supplied to the portion of the polysilicon layer 32 exposed from the mask. As a result, a single LDD structure 324 is formed in the polysilicon layer 32. Impurity implantation is simultaneously performed on the N-type region at a high concentration, so that source / drain regions 3211 and 3221 are formed. Thereafter, necessary steps similar to those of the above-described embodiment are performed.

 上述したそれぞれのTFTは単一LDD構造を有するので、ソース/ドレインの近傍の欠乏層領域間の距離は、2つのLDD構造を有するものと比べて、幾分増加している。そこで、従来例におけるホットエレクトロン、電流リーク、及びパンチスルーの影響がかなり低減される。上述の製造工程は、特に、ドライバ回路、及びその他の応用回路において好適である。 (4) Since each of the above-described TFTs has a single LDD structure, the distance between the depletion layer regions near the source / drain is somewhat increased as compared with that having two LDD structures. Thus, the effects of hot electrons, current leakage, and punch-through in the conventional example are significantly reduced. The above manufacturing process is particularly suitable for driver circuits and other application circuits.

 画素ユニットに関して、TFTの動作モードに対応するために、本発明はLDD構造のそばにP型領域を追加して問題解決を図る。このようなTFTを製造する工程が、図4(a)〜4(h)、図5(a)〜5(h)に示されている。 Regarding the pixel unit, in order to support the operation mode of the TFT, the present invention solves the problem by adding a P-type region near the LDD structure. The steps of manufacturing such a TFT are shown in FIGS. 4 (a) to 4 (h) and FIGS. 5 (a) to 5 (h).

 図4(a)に示すように、バッファ層41がガラス基板40の上に形成される。続いて、真性アモルファスシリコン(i−a−Si)層がバッファ層41の上に形成され、i−a−Si層がレーザアニーリングによって真性ポリシリコン(i−poly−Si)層42に変換される。図4(b)に示すように、フォトレジスト層がポリシリコン層42の上に形成され、マイクロフォトリソグラフィとエッチングの工程によってマスク43が形成される。このマスク43から露出したポリシリコン層42の部位に、N型のイオン注入を行う工程によって、図4(c)に示すように、2つのN型領域421,422が形成される。2つのN型領域421,422は互いにチャネル領域423によって隔てられている。その後、フォトレジストマスク43が除去される。 4) As shown in FIG. 4A, the buffer layer 41 is formed on the glass substrate 40. Subsequently, an intrinsic amorphous silicon (ia-Si) layer is formed on the buffer layer 41, and the ia-Si layer is converted into an intrinsic polysilicon (i-poly-Si) layer 42 by laser annealing. . As shown in FIG. 4B, a photoresist layer is formed on the polysilicon layer 42, and a mask 43 is formed by a microphotolithography and etching process. As shown in FIG. 4C, two N-type regions 421 and 422 are formed in the portion of the polysilicon layer 42 exposed from the mask 43 by performing N-type ion implantation. The two N-type regions 421 and 422 are separated from each other by a channel region 423. After that, the photoresist mask 43 is removed.

 図4(d)に示すように、図4(c)に示す構造の上に、例えば二酸化シリコンによって、ゲート絶縁層45が形成される。図4(e)に示すように、チャネル423よりもわずかに幅の狭いゲート電極46が、チャネル領域423の両端部がゲート電極46によって覆われずに露出するように、ゲート絶縁層45の上にパターニングとエッチングの工程によって形成される。そして、ゲート電極46をマスクとして、低濃度イオン注入が行われ、マスクから露出したポリシリコン層42の部位に低濃度のN型ドーパントが供給されて、図4(f)に示すように、2つのLDD構造425,426がポリシリコン層42に形成される。N型領域421,422は、結果的に高濃度に不純物注入がなされ、ソース/ドレイン領域4211,4221が形成される。 4) As shown in FIG. 4D, a gate insulating layer 45 is formed on the structure shown in FIG. As shown in FIG. 4E, the gate electrode 46 slightly narrower than the channel 423 is formed on the gate insulating layer 45 so that both ends of the channel region 423 are exposed without being covered by the gate electrode 46. Is formed by a patterning and etching process. Then, low-concentration ion implantation is performed using the gate electrode 46 as a mask, and a low-concentration N-type dopant is supplied to the portion of the polysilicon layer 42 exposed from the mask, as shown in FIG. Two LDD structures 425, 426 are formed in the polysilicon layer 42. As a result, impurities are implanted into the N-type regions 421 and 422 at a high concentration, and source / drain regions 4211 and 4221 are formed.

 さらに、ゲート電極46をマスクとして、P型ドーピング物質をポリシリコン層42に注入する2回のイオン注入工程が行われる。一回目は、図4(g)に示すように、ポリシリコン層42の表面420から第1の角度だけ傾いた方向Aから行われ、2回目は、図4(h)に示すように、ポリシリコン層42の表面420から第2の角度だけ傾いた方向Bから行われる。左右に傾いた第1及び第2の角度の大きさは、例えば、同じ角度とすることができ、0゜から30゜の間の値をとることができる。このようにして、P型LDD領域427、428が2つのLDD構造425,426の直近に隣接して形成される。その後、前述の実施形態と同様に必要な工程が行われる。傾けたイオン注入により、ドーパントの濃度分布が漸近的に変化するので、チャネル領域とソース/ドレイン領域を結びつける欠乏層領域の幅が減少して電流リーク及びパンチスルーが低減するようになっている。 {Circle around (2)} Using the gate electrode 46 as a mask, two ion implantation steps of implanting a P-type doping material into the polysilicon layer 42 are performed. The first time is performed from a direction A inclined by a first angle from the surface 420 of the polysilicon layer 42 as shown in FIG. 4G, and the second time is performed as shown in FIG. This is performed from the direction B inclined by the second angle from the surface 420 of the silicon layer 42. The magnitude of the first and second angles inclined left and right can be, for example, the same angle and can take a value between 0 ° and 30 °. In this way, P-type LDD regions 427 and 428 are formed immediately adjacent to the two LDD structures 425 and 426. After that, necessary steps are performed as in the above-described embodiment. Since the concentration distribution of the dopant is asymptotically changed by the inclined ion implantation, the width of the depletion layer region connecting the channel region and the source / drain region is reduced, so that current leakage and punch-through are reduced.

 次に、TFTのさらに製造工程の他の例を説明する。このTFTは二重層LDD構造を有する。図5(a)に示すように、バッファ層51がガラス基板50の上に形成される。続いて、真性アモルファスシリコン(i−a−Si)層がバッファ層51の上に形成され、i−a−Si層がレーザアニーリングによって真性ポリシリコン(i−poly−Si)層52に変換される。図5(b)に示すように、ゲート絶縁層53がポリシリコン層52の上に形成され、そのゲート絶縁層53の上にゲート電極54がパターニングされる。さらに、図5(c)に示すように、誘電体層が図5(b)に示す構造の上に形成され、その誘電体層からマイクロフォトリソグラフィとエッチングの工程によってパターン形成してゲート電極54の横にスペーサ又は側壁55が形成される。ゲート電極54とその横のスペーサ/側壁55は、図5(c)に示すように、N型イオン注入工程におけるドーピングのマスクとして用いられる。 Next, another example of the manufacturing process of the TFT will be described. This TFT has a double layer LDD structure. As shown in FIG. 5A, a buffer layer 51 is formed on a glass substrate 50. Subsequently, an intrinsic amorphous silicon (ia-Si) layer is formed on the buffer layer 51, and the ia-Si layer is converted into an intrinsic polysilicon (i-poly-Si) layer 52 by laser annealing. . As shown in FIG. 5B, a gate insulating layer 53 is formed on the polysilicon layer 52, and a gate electrode 54 is patterned on the gate insulating layer 53. Further, as shown in FIG. 5C, a dielectric layer is formed on the structure shown in FIG. 5B, and a pattern is formed from the dielectric layer by a microphotolithography and etching process to form the gate electrode 54. Are formed next to the spacer or side wall 55. As shown in FIG. 5C, the gate electrode 54 and the spacer / side wall 55 beside it are used as a doping mask in the N-type ion implantation step.

 図5(d)に示すように、マスクから露出したポリシリコン層52の部位に、2つのN型領域521,522が形成される。2つのN型領域521,522はチャネル領域523によって互いに隔てられている。次に、図5(e)に示すように、N型領域322に隣接する部位のスペーサ/側壁35が完全に取り除かれ、チャネル領域523の両方の端部が露出される。ゲート電極54をマスクとして、低濃度イオン注入が行われ、マスクから露出したポリシリコン層52の部位に低濃度のN型ドーパントが供給されて、図5(f)に示すように、2つのLDD構造525,526がポリシリコン層52に形成される。 (5) As shown in FIG. 5 (d), two N-type regions 521 and 522 are formed in the portion of the polysilicon layer 52 exposed from the mask. The two N-type regions 521 and 522 are separated from each other by a channel region 523. Next, as shown in FIG. 5E, the spacer / sidewall 35 adjacent to the N-type region 322 is completely removed, and both ends of the channel region 523 are exposed. Using the gate electrode 54 as a mask, low-concentration ion implantation is performed, and a low-concentration N-type dopant is supplied to a portion of the polysilicon layer 52 exposed from the mask, thereby forming two LDDs as shown in FIG. Structures 525 and 526 are formed in the polysilicon layer 52.

 さらに、ゲート電極54をマスクとして、P型ドーピング物質をポリシリコン層52に注入する2回のイオン注入工程が行われる。一回目は、図5(g)に示すように、ポリシリコン層52の表面520から第1の角度だけ傾いた方向Aから行われ、2回目は、図5(h)に示すように、ポリシリコン層52の表面520から第2の角度だけ傾いた方向Bから行われる。左右に傾いた第1及び第2の角度の大きさは、例えば、同じ角度とすることができ、0゜から30゜の間の値をとることができる。このようにして、P型LDD領域527、528が2つのLDD構造525,526の直近に隣接して形成される。この実施形態においては、P型領域525,526がLDD構造525,526を取り囲んでいる。その後、前述の実施形態と同様の引き続きの工程が、誘電体層、ゲート及びソース/ドレインの配線などを形成するために行われる。 {Circle around (2)} Using the gate electrode 54 as a mask, two ion implantation steps of implanting a P-type doping material into the polysilicon layer 52 are performed. The first time is performed from a direction A inclined by a first angle from the surface 520 of the polysilicon layer 52 as shown in FIG. 5 (g), and the second time is performed as shown in FIG. This is performed from a direction B inclined by a second angle from the surface 520 of the silicon layer 52. The magnitude of the first and second angles inclined left and right can be, for example, the same angle and can take a value between 0 ° and 30 °. In this way, P-type LDD regions 527 and 528 are formed immediately adjacent to the two LDD structures 525 and 526. In this embodiment, P-type regions 525, 526 surround LDD structures 525, 526. Thereafter, subsequent steps similar to those of the above-described embodiment are performed to form a dielectric layer, gate and source / drain wiring, and the like.

 上述のイオン注入工程は、例えば、イオンシャワ工程に替えても良い。上述した実施形態において、ゲート導電体は、クロムCr、タングステンW、モリブデンMo、タンタルTa、アアルミニウムAl、又は銅Cuのスパッタ成膜によって形成され、その厚みは約100nmである。バッファ層は、一般に約600nmの厚みを有し、窒化シリコン、二酸化シリコン、又はこれらの組合せであり、プラズマを用いた化学蒸着(PECVD)で形成される。層間誘電体層は一般に、約600nmの厚みを有し、二酸化シリコンであり、プラズマを用いた化学蒸着(PECVD)で形成される。ゲート絶縁層は、一般に、約100nmの厚みを有し、二酸化シリコンであり、プラズマを用いた化学蒸着(PECVD)で形成される。 The above-described ion implantation step may be replaced with, for example, an ion shower step. In the above-described embodiment, the gate conductor is formed by sputtering of chromium Cr, tungsten W, molybdenum Mo, tantalum Ta, aluminum aluminum, or copper Cu, and has a thickness of about 100 nm. The buffer layer typically has a thickness of about 600 nm, is silicon nitride, silicon dioxide, or a combination thereof, and is formed by plasma enhanced chemical vapor deposition (PECVD). The interlayer dielectric layer typically has a thickness of about 600 nm, is silicon dioxide, and is formed by plasma enhanced chemical vapor deposition (PECVD). The gate insulating layer typically has a thickness of about 100 nm, is silicon dioxide, and is formed by plasma enhanced chemical vapor deposition (PECVD).

 上述した実施形態において、約100nmの厚みのアモルファスシリコン層が、レーザアニーリング/結晶化工程によってポリシリコン層を形成するために用いられている。好ましくは、レーザアニーリング/結晶化工程の前に、アモルファスシリコン層は、高温炉において400゜、30分の脱水素処理を行うのがよい。レーザアニーリング/結晶化工程において、レーザアニーリング/結晶化工程を行うためのエネルギは、350mJ/cmで少なくとも100ショット行うように選ばれる。 In the embodiment described above, an amorphous silicon layer having a thickness of about 100 nm is used for forming a polysilicon layer by a laser annealing / crystallization process. Preferably, before the laser annealing / crystallization step, the amorphous silicon layer is subjected to a dehydrogenation treatment at 400 ° C. for 30 minutes in a high-temperature furnace. In the laser annealing / crystallization step, the energy for performing the laser annealing / crystallization step is selected to perform at least 100 shots at 350 mJ / cm 2 .

 さらに、上述のイオン注入工程においてドーパントの濃度は、N型ドーパントについては1×1014〜2×1015cm−2であり、P型ドーパントについては約1×1012である。P型ドーパントは、Bイオン、BHイオン、Bイオン、及びこれらの組合せの中から選択できる。また、N型ドーパントは、Pイオン、Asイオン、PHイオン、AsHイオン、及びこれらの組合せの中から選択できる。コンタクトホールは、反応性エッチッグ工程によって形成される。 Further, in the above-described ion implantation process, the concentration of the dopant is 1 × 10 14 to 2 × 10 15 cm −2 for the N-type dopant and about 1 × 10 12 for the P-type dopant. The P-type dopant can be selected from B ions, BH x ions, B 2 H x ions, and combinations thereof. Further, N-type dopant, P ions, As ions, PH x ions, AsH x ions, and can be selected from among these combinations. The contact hole is formed by a reactive etching process.

 現状において、最も実際的で好ましい実施形態によって本発明が説明されているが、本発明は、上記に開示した実施形態に限定されるものではない。種々の変形、及び同様の構成が、そのような変形と同様の構造の全てを含むように広く解釈される。 At present, the present invention has been described by the most practical and preferred embodiments, but the present invention is not limited to the embodiments disclosed above. Various modifications and similar arrangements are to be interpreted broadly to include all such and similar structures.

従来のLDD構造を有するTFTの製造工程を概念的に示す断面図。Sectional drawing which shows notionally the manufacturing process of the TFT which has the conventional LDD structure. 従来のLDD構造を有するTFTの製造工程を概念的に示す断面図。Sectional drawing which shows notionally the manufacturing process of the TFT which has the conventional LDD structure. 従来のLDD構造を有するTFTの製造工程を概念的に示す断面図。Sectional drawing which shows notionally the manufacturing process of the TFT which has the conventional LDD structure. 従来のLDD構造を有するTFTの製造工程を概念的に示す断面図。Sectional drawing which shows notionally the manufacturing process of the TFT which has the conventional LDD structure. 従来のLDD構造を有するTFTの製造工程を概念的に示す断面図。Sectional drawing which shows notionally the manufacturing process of the TFT which has the conventional LDD structure. 従来のLDD構造を有するTFTの製造工程を概念的に示す断面図。Sectional drawing which shows notionally the manufacturing process of the TFT which has the conventional LDD structure. 従来のLDD構造を有するTFTの製造工程を概念的に示す断面図。Sectional drawing which shows notionally the manufacturing process of the TFT which has the conventional LDD structure. 本発明の一実施形態に係る、単一LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 3 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a single LDD structure according to one embodiment of the present invention. 本発明の一実施形態に係る、単一LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 3 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a single LDD structure according to one embodiment of the present invention. 本発明の一実施形態に係る、単一LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 3 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a single LDD structure according to one embodiment of the present invention. 本発明の一実施形態に係る、単一LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 3 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a single LDD structure according to one embodiment of the present invention. 本発明の一実施形態に係る、単一LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 3 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a single LDD structure according to one embodiment of the present invention. 本発明の一実施形態に係る、単一LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 3 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a single LDD structure according to one embodiment of the present invention. 本発明の一実施形態に係る他の例である、単一LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 4 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a single LDD structure, which is another example according to one embodiment of the present invention. 本発明の一実施形態に係る他の例である、単一LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 4 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a single LDD structure, which is another example according to one embodiment of the present invention. 本発明の一実施形態に係る他の例である、単一LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 4 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a single LDD structure, which is another example according to one embodiment of the present invention. 本発明の一実施形態に係る他の例である、単一LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 4 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a single LDD structure, which is another example according to one embodiment of the present invention. 本発明の一実施形態に係る他の例である、単一LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 4 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a single LDD structure, which is another example according to one embodiment of the present invention. 本発明の一実施形態に係る他の例である、単一LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 4 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a single LDD structure, which is another example according to one embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention. 本発明の一実施形態に係るさらに他の例である、二重層LDD構造を有するTFTの製造工程を概念的に示す断面図。FIG. 9 is a cross-sectional view conceptually showing a manufacturing process of a TFT having a double-layer LDD structure, which is still another example according to an embodiment of the present invention.

符号の説明Explanation of reference numerals

 22,32,42,52 半導体層
 25,33,45,53  絶縁層
 26,34,46  ゲート構造
 35,55  スペーサ構造
 221,222,321,322,421,422,521,522  ソース/ドレイン構造
 223,323,423,523  チャンネル領域
 224,324  単一LDD構造
 425,426,427,428,525,526,527,528  LDD構造
22, 32, 42, 52 Semiconductor layer 25, 33, 45, 53 Insulating layer 26, 34, 46 Gate structure 35, 55 Spacer structure 221, 222, 321, 322, 421, 422, 521, 522 Source / drain structure 223 , 323, 423, 523 Channel region 224, 324 Single LDD structure 425, 426, 427, 428, 525, 526, 527, 528 LDD structure

Claims (14)

 薄膜トランジスタであって、
 半導体物質で形成された半導体層と、
 前記半導体層において互いに離れて形成されたソース構造及びドレイン構造からなるソース/ドレイン構造と、
 前記ソース/ドレイン構造の間に配置され、そのソース/ドレイン構造の第1の構造に隣接した側面と、そのソース/ドレイン構造の第2の構造に対して本質的に前記半導体物質で隔てられた側面とを有する単一LDD構造と、
 前記半導体層の上方に形成されたゲート構造と、
 前記半導体層とゲート構造の間に配置されゲート構造を前記ソース/ドレイン構造及びLDD構造から絶縁する絶縁層と、を備えていることを特徴とする薄膜トランジスタ。
A thin film transistor,
A semiconductor layer formed of a semiconductor material;
A source / drain structure including a source structure and a drain structure formed apart from each other in the semiconductor layer;
A source / drain structure disposed between and adjacent to a first side of the source / drain structure adjacent the first structure and essentially separated by the semiconductor material from a second side of the source / drain structure; A single LDD structure having side surfaces;
A gate structure formed above the semiconductor layer;
An insulating layer disposed between the semiconductor layer and the gate structure to insulate the gate structure from the source / drain structure and the LDD structure.
 前記単一LDD構造が、ゲートとドレインが重なりを有するLDD(GO−LDD)である請求項1に記載の薄膜トランジスタ。 The thin film transistor according to claim 1, wherein the single LDD structure is an LDD (GO-LDD) having a gate and a drain overlapping.  前記ソース/ドレイン構造の第1の構造がドレイン構造であり、前記ソース/ドレイン構造の第2の構造がソース構造である請求項1に記載の薄膜トランジスタ。 2. The thin film transistor according to claim 1, wherein the first structure of the source / drain structure is a drain structure, and the second structure of the source / drain structure is a source structure.  前記薄膜トランジスタがN型であり、前記LDD構造がPイオン、Asイオン、PHイオン、AsHイオン、及びこれらの組合せの中から選択されたドーピング物質を含んでいる請求項1に記載の薄膜トランジスタ。 The thin film transistor is an N type, the LDD structure P ions, As ions, PH x ions, AsH x ions, and a thin film transistor according to claim 1 which contains a doping material selected from among these combinations.  薄膜トランジスタであって、
 半導体物質で形成された半導体層と、
 前記半導体層において互いに離れて形成されたソース構造及びドレイン構造からなるソース/ドレイン構造と、
 前記ソース/ドレイン構造の間に配置され、そのソース/ドレイン構造の第1の構造に隣接した第1の側面と、その第1の側面の反対側に第2の側面を有する第1のLDD構造と、
 前記第1のLDD構造の前記第2の側面に隣接した第3の側面と、前記ソース/ドレイン構造の第2の構造に対して本質的に前記半導体物質で隔てられた第4の側面とを有する第2のLDD構造と、
 前記半導体層の上方に形成されたゲート構造と、
 前記半導体層とゲート構造の間に配置されゲート構造を前記ソース/ドレイン構造及びLDD構造から絶縁する絶縁層と、を備えていることを特徴とする薄膜トランジスタ。
A thin film transistor,
A semiconductor layer formed of a semiconductor material;
A source / drain structure including a source structure and a drain structure formed apart from each other in the semiconductor layer;
A first LDD structure disposed between the source / drain structures and having a first side surface adjacent to the first structure of the source / drain structure and a second side surface opposite the first side surface; When,
A third side of the first LDD structure adjacent to the second side and a fourth side of the source / drain structure substantially separated from the second material by the semiconductor material. A second LDD structure having:
A gate structure formed above the semiconductor layer;
An insulating layer disposed between the semiconductor layer and the gate structure to insulate the gate structure from the source / drain structure and the LDD structure.
 前記第1及び第2のLDD構造が、ゲートとドレインが重なりを有するLDD(GO−LDD)である請求項5に記載の薄膜トランジスタ。 The thin film transistor according to claim 5, wherein the first and second LDD structures are LDDs (GO-LDDs) having a gate and a drain overlapping.  前記薄膜トランジスタがN型であり、前記第1のLDD構造がPイオン、Asイオン、PHイオン、AsHイオン、及びこれらの組合せの中から選択されたドーピング物質を含んでおり、前記第2のLDD構造がBイオン、BHイオン、Bイオン、及びこれらの組合せの中から選択されたドーピング物質を含んでいる請求項5に記載の薄膜トランジスタ。 The thin film transistor is N-type, the first LDD structure includes a doping material selected from P ions, As ions, PH x ions, AsH x ions, and a combination thereof; LDD structure B ions, BH x ion, B 2 H x ions and a thin film transistor according to claim 5 which contains a doping material selected from among these combinations.  前記ソース/ドレイン構造の間に配置され、そのソース/ドレイン構造の第2の構造に隣接した第5の側面と、その第5の側面の反対側に第6の側面を有する第3のLDD構造と、
 前記第3のLDD構造の前記第6の側面に隣接した第7の側面と、前記ソース/ドレイン構造の第2の構造に対して本質的に前記半導体物質で隔てられた第8の側面とを有する第4のLDD構造と、をさらに備えた請求項5に記載の薄膜トランジスタ。
A third LDD structure disposed between the source / drain structure and having a fifth side adjacent to a second structure of the source / drain structure and a sixth side opposite the fifth side; When,
A seventh side adjacent to the sixth side of the third LDD structure and an eighth side essentially separated by the semiconductor material relative to the second structure of the source / drain structure. The thin film transistor according to claim 5, further comprising: a fourth LDD structure.
 少なくとも前記第1及び第3のLDD構造の一部が、前記第2及び第4のLDD構造及び前記ソース/ドレイン構造によって覆われていない請求項8に記載の薄膜トランジスタ。 9. The thin film transistor according to claim 8, wherein at least a part of the first and third LDD structures is not covered by the second and fourth LDD structures and the source / drain structure.  前記第1のLDD構造が前記第2のLDD構造及び前記ソース/ドレイン構造の第1の構造によって囲まれており、前記第3のLDD構造が前記第4のLDD構造及び前記ソース/ドレイン構造の第2の構造によって囲まれている請求項8に記載の薄膜トランジスタ。 The first LDD structure is surrounded by a first structure of the second LDD structure and the source / drain structure, and the third LDD structure is a structure of the fourth LDD structure and the source / drain structure. The thin film transistor according to claim 8, which is surrounded by the second structure.  薄膜トランジスタの製造方法であって、
 半導体層を形成する工程と、
 前記半導体層の上にゲート絶縁層を形成する工程と、
 前記ゲート絶縁層の上にゲート構造を形成する工程と、
 前記半導体層にチャネル領域で互いに隔てられたソース/ドレイン構造を形成する工程と、
 第1のLDD構造を形成するために、前記半導体層の表面から第1の角度の第1の方向で前記チャネル領域の第1の端部に第1のドーピング物質を注入する工程と、
 前記第1のLDD構造に接触している第2のLDD構造を形成するために、前記半導体層の前記表面から第2の角度の第2の方向で前記チャネル領域の前記第1の端部に第2のドーピング物質を注入する工程と、を備えていることを特徴とする薄膜トランジスタの製造方法。
A method for manufacturing a thin film transistor,
Forming a semiconductor layer;
Forming a gate insulating layer on the semiconductor layer;
Forming a gate structure on the gate insulating layer;
Forming source / drain structures separated from each other by a channel region in the semiconductor layer;
Implanting a first doping material in a first direction at a first angle from a surface of the semiconductor layer to a first end of the channel region to form a first LDD structure;
Forming a second LDD structure in contact with the first LDD structure on the first end of the channel region in a second direction at a second angle from the surface of the semiconductor layer; And a step of injecting a second doping material.
 前記第1のドーピング物質を注入する前記工程が、前記ゲート構造をマスクとして用いて前記チャネル領域に対して行われ、
 第3のLDD構造が、前記第1のLDD構造が形成される時、前記チャネル領域における第1の端部の反対側の第2の端部に同時に形成される請求項11に記載の薄膜トランジスタの製造方法。
The step of injecting the first doping material is performed on the channel region using the gate structure as a mask,
The thin film transistor of claim 11, wherein a third LDD structure is formed simultaneously at a second end of the channel region opposite the first end when the first LDD structure is formed. Production method.
 前記第3のLDD構造に接触している第4のLDD構造を形成するために、前記半導体層の前記表面から第3の角度の第3の方向で前記チャネル領域の前記第2の端部に第3のドーピング物質を注入する工程をさらに備えている請求項12に記載の薄膜トランジスタの製造方法。 Forming a fourth LDD structure in contact with the third LDD structure at a third direction at a third angle from the surface of the semiconductor layer to the second end of the channel region; 13. The method according to claim 12, further comprising a step of injecting a third doping material.  前記ゲート構造が、ゲート電極とその電極のそばのスペーサ構造を含み、
 前記第1のドーピング物質を注入する前記工程が、前記スペーサ構造が除去された後に行われる請求項11に記載の薄膜トランジスタの製造方法。
The gate structure includes a gate electrode and a spacer structure near the electrode;
The method of claim 11, wherein the step of implanting the first doping material is performed after the spacer structure is removed.
JP2003270766A 2002-07-08 2003-07-03 Thin film transistor with ldd structure and its manufacturing method Pending JP2004040108A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW091115101A TW544941B (en) 2002-07-08 2002-07-08 Manufacturing process and structure of thin film transistor

Publications (1)

Publication Number Publication Date
JP2004040108A true JP2004040108A (en) 2004-02-05

Family

ID=29708498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003270766A Pending JP2004040108A (en) 2002-07-08 2003-07-03 Thin film transistor with ldd structure and its manufacturing method

Country Status (3)

Country Link
US (1) US6747325B2 (en)
JP (1) JP2004040108A (en)
TW (1) TW544941B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287205A (en) * 2005-03-07 2006-10-19 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176095B1 (en) * 2004-03-01 2007-02-13 Advanced Micro Devices, Inc. Bi-modal halo implantation
US7504327B2 (en) * 2004-06-14 2009-03-17 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing thin film semiconductor device
US7745293B2 (en) * 2004-06-14 2010-06-29 Semiconductor Energy Laboratory Co., Ltd Method for manufacturing a thin film transistor including forming impurity regions by diagonal doping
US7144782B1 (en) 2004-07-02 2006-12-05 Advanced Micro Devices, Inc. Simplified masking for asymmetric halo
US7211489B1 (en) * 2004-09-07 2007-05-01 Advanced Micro Devices, Inc. Localized halo implant region formed using tilt pre-amorphization implant and laser thermal anneal
US7210499B2 (en) * 2005-01-18 2007-05-01 Dale Carpenter Methods and apparatus for a direct connect on-off controller
TW200627643A (en) * 2005-01-19 2006-08-01 Quanta Display Inc A method for manufacturing a thin film transistor
US20060197088A1 (en) * 2005-03-07 2006-09-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
KR101239889B1 (en) * 2005-08-13 2013-03-06 삼성디스플레이 주식회사 Thin film transistor plate and method of fabricating the same
US7495258B2 (en) * 2006-05-17 2009-02-24 Tpo Displays Corp. N-channel TFT and OLED display apparatus and electronic device using the same
CN103050410B (en) * 2012-10-30 2015-09-16 昆山工研院新型平板显示技术中心有限公司 The manufacture method of low-temperature polysilicon film transistor, low-temperature polysilicon film transistor
CN104779167A (en) * 2015-04-09 2015-07-15 京东方科技集团股份有限公司 Poly-silicon thin-film transistor, preparation method thereof, array substrate and display panel
TWI759751B (en) * 2020-05-29 2022-04-01 逢甲大學 Short-channel polycrystalline silicon thin film transistor and method therefor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204570A (en) * 1982-05-24 1983-11-29 Seiko Epson Corp Manufacture of semiconductor integrated circuit device
JPH0414262A (en) * 1990-05-07 1992-01-20 Fujitsu Ltd Semiconductor device and its manufacture
JPH05307189A (en) * 1992-01-31 1993-11-19 Canon Inc Semiconductor device and liquid crystal display device
JPH06232160A (en) * 1993-02-01 1994-08-19 Fuji Xerox Co Ltd Manufacture of thin film transistor
JPH104198A (en) * 1996-03-13 1998-01-06 Texas Instr Inc <Ti> On-silicon semiconductor transistor with hollow injections
JP2000196091A (en) * 1998-12-24 2000-07-14 Hitachi Ltd Semiconductor integrated circuit
JP2001085692A (en) * 1999-08-12 2001-03-30 Internatl Business Mach Corp <Ibm> Semiconductor device and its manufacturing method
JP2001308337A (en) * 2000-04-24 2001-11-02 Matsushita Electric Ind Co Ltd Method of manufacturing low-temperature polysilicon tft
JP2002076361A (en) * 2000-09-05 2002-03-15 Sharp Corp Semiconductor device, its manufacturing method and image display device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52156576A (en) * 1976-06-23 1977-12-27 Hitachi Ltd Production of mis semiconductor device
JPS61191070A (en) * 1985-02-20 1986-08-25 Toshiba Corp Manufacture of semiconductor device
US4949136A (en) * 1988-06-09 1990-08-14 University Of Connecticut Submicron lightly doped field effect transistors
KR940004446B1 (en) * 1990-11-05 1994-05-25 미쓰비시뎅끼 가부시끼가이샤 Method of making semiconductor device
JP3370806B2 (en) 1994-11-25 2003-01-27 株式会社半導体エネルギー研究所 Method for manufacturing MIS type semiconductor device
US6165876A (en) 1995-01-30 2000-12-26 Yamazaki; Shunpei Method of doping crystalline silicon film
US5917199A (en) 1998-05-15 1999-06-29 Ois Optical Imaging Systems, Inc. Solid state imager including TFTS with variably doped contact layer system for reducing TFT leakage current and increasing mobility and method of making same
US6071762A (en) 1998-11-16 2000-06-06 Industrial Technology Research Institute Process to manufacture LDD TFT
US6281552B1 (en) 1999-03-23 2001-08-28 Semiconductor Energy Laboratory Co., Ltd. Thin film transistors having ldd regions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204570A (en) * 1982-05-24 1983-11-29 Seiko Epson Corp Manufacture of semiconductor integrated circuit device
JPH0414262A (en) * 1990-05-07 1992-01-20 Fujitsu Ltd Semiconductor device and its manufacture
JPH05307189A (en) * 1992-01-31 1993-11-19 Canon Inc Semiconductor device and liquid crystal display device
JPH06232160A (en) * 1993-02-01 1994-08-19 Fuji Xerox Co Ltd Manufacture of thin film transistor
JPH104198A (en) * 1996-03-13 1998-01-06 Texas Instr Inc <Ti> On-silicon semiconductor transistor with hollow injections
JP2000196091A (en) * 1998-12-24 2000-07-14 Hitachi Ltd Semiconductor integrated circuit
JP2001085692A (en) * 1999-08-12 2001-03-30 Internatl Business Mach Corp <Ibm> Semiconductor device and its manufacturing method
JP2001308337A (en) * 2000-04-24 2001-11-02 Matsushita Electric Ind Co Ltd Method of manufacturing low-temperature polysilicon tft
JP2002076361A (en) * 2000-09-05 2002-03-15 Sharp Corp Semiconductor device, its manufacturing method and image display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006287205A (en) * 2005-03-07 2006-10-19 Semiconductor Energy Lab Co Ltd Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
US20040065924A1 (en) 2004-04-08
US6747325B2 (en) 2004-06-08
TW544941B (en) 2003-08-01

Similar Documents

Publication Publication Date Title
US7709904B2 (en) Thin film transistor substrate and method for manufacturing the same
JP2004040108A (en) Thin film transistor with ldd structure and its manufacturing method
WO2011004624A1 (en) Thin-film transistor producing method
JP2005228819A (en) Semiconductor device
JP2002124677A (en) Substrate for liquid crystal displays and its manufacturing method
KR20020050085A (en) Thin film transistor
KR20060062139A (en) The method of poly tft fabrication by the multiple heatreatment
KR20010056037A (en) Method for manufacturing Thin Film Transistor
JP3643025B2 (en) Active matrix display device and manufacturing method thereof
KR100328126B1 (en) Method for Fabricating a Trench Gate Poly-Si Thin Film Transistor
US20050110090A1 (en) Thin film transistor, method of fabricating the same, and flat panel display using the thin film transistor
US7098492B2 (en) Thin film transistor having LDD region and process for producing same
US20040201067A1 (en) LLD structure of thin film transistor
US6951793B2 (en) Low-temperature polysilicon thin film transistor having buried LDD structure and process for producing same
JP2009206434A (en) Display device, and manufacturing method thereof
US20040201068A1 (en) Process for producing thin film transistor
KR100493378B1 (en) Method of fabricating Poly Silicon Thin Film Transistor
JP5295172B2 (en) Semiconductor device
JP5414708B2 (en) Manufacturing method of semiconductor device
KR101334177B1 (en) Thin Film Transistor And Method for Manufacturing the Same
JP3923600B2 (en) Thin film transistor manufacturing method
JP2004303791A (en) Thin film transistor structure and its manufacturing method
JPH07142739A (en) Manufacture of polycrystal line silicon thin-film transistor
KR100252754B1 (en) Thin film transistor and the manufacturing method thereof
JP2004064056A (en) Manufacturing method of semiconductor integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070427

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070427

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080611

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080711