JP2004039313A - Icp質量分析装置及びその分析方法 - Google Patents

Icp質量分析装置及びその分析方法 Download PDF

Info

Publication number
JP2004039313A
JP2004039313A JP2002191488A JP2002191488A JP2004039313A JP 2004039313 A JP2004039313 A JP 2004039313A JP 2002191488 A JP2002191488 A JP 2002191488A JP 2002191488 A JP2002191488 A JP 2002191488A JP 2004039313 A JP2004039313 A JP 2004039313A
Authority
JP
Japan
Prior art keywords
icp
sample
cleaning liquid
unit
sampling cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002191488A
Other languages
English (en)
Other versions
JP3801958B2 (ja
Inventor
Yoshinobu Sakurai
櫻井 良信
Hideki Matsunaga
松永 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP2002191488A priority Critical patent/JP3801958B2/ja
Publication of JP2004039313A publication Critical patent/JP2004039313A/ja
Application granted granted Critical
Publication of JP3801958B2 publication Critical patent/JP3801958B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

【課題】作業時間を短縮化し、常に高感度な分析を行うことができるICP質量分析装置及びその方法を提供する。
【解決手段】サンプリングコーン31を備え、サンプリングコーン31を介して導入されたイオン化した試料を質量分析する質量分析部30と、質量分析部30に対向して設けられ、試料をイオン化するためのプラズマを発生するICP部20と、試料をICP部20に導入する試料導入部10と、洗浄液をICP部20に供給する洗浄液供給部11と、サンプリングコーン31に対向して設けられ、サンプリングコーン31に堆積した堆積膜の堆積状態を検出する堆積モニタ50とを備える。
【選択図】      図10

Description

【0001】
【発明の属する技術分野】
本発明は、高周波誘導結合プラズマ(ICP)をイオン源とする質量分析装置及びその分析方法に関する。
【0002】
【従来の技術】
ICP質量分析装置は、ICPによって溶液試料をイオン化し、そのイオンを質量分析室に導いてイオンの質量毎にその強度を検出することによって、溶液に含まれる測定対象元素を分析する装置である。従来の原子吸光装置やICP発光分析装置等に比べて感度が非常に高く、他元素同時定量が容易である等の特徴を持つため、超微量分析の分野では最も強力な元素分析装置の一つとして広く用いられている。
【0003】
このようなICP質量分析装置において、ICP部でイオン化された試料は、サンプリングコーンからスキマーコーンを抜けて質量分析室へと導入される。このため、例えば、半導体分野等で分析されるシリコンマトリクスを含んだ試料を供給した場合、サンプリングコーンの先端にシリコン酸化物が堆積する現象が起きる。シリコン酸化膜の堆積が進むと、サンプリングコーン先端の開口部分が狭くなるため、質量分析室側へ供給されるイオンの数が減少し、分析感度が悪化するという問題を生じる。
【0004】
このような感度の悪化を防ぎ、高感度な分析状態を維持するために、検量線によって感度を確認する方法が知られている。(以下において「第1の従来技術」という。)例えば、検量線の傾きから感度の増減を確認することで、サンプリングコーン先端部分の酸化膜の堆積具合を把握する方法がある。
【0005】
また、分析前に予め試料中のシリコン濃度を低減しておき、サンプリングコーンに付着するシリコン酸化物等の堆積を防ぐ方法もある。例えば、分析前に試料を加熱濃縮し、試料中のシリコン成分を除去した後に装置に導入し、分析する方法が試みられている。(以下において「第2の従来技術」という。)
【0006】
【発明が解決しようとする課題】
しかし、上述した第1の従来技術では、感度を確認するための分析を何回も行わなければならず、作業時間が長くなる。逆に、感度確認の分析を怠ると、分析感度が悪化した状態で試料の分析を行うことになり、正確な分析ができない。分析により感度の減少が見られた場合は、サンプリングコーンを装置本体から取り外す等をして洗浄を行わなければならず、作業時間の長期化を招く。
【0007】
また、上述した第2の従来技術では、試料分析前にシリコン成分除去工程を設けなければならず、時間や手間がかかる。更に、シリコン成分除去工程中に試料の汚染が生じる可能性を有し、正確な分析ができないことがある。
【0008】
上記問題点を鑑み、本発明は、作業時間の短縮化を図ることができ、常に高感度な分析を行うことができるICP質量分析装置及びその方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を解決するために、本発明の第1の特徴は、(イ)サンプリングコーンを備え、そのサンプリングコーンを介してイオン化した試料を質量分析する質量分析部と、(ロ)質量分析部に対向して設けられ、試料をイオン化するためのプラズマを発生するICP部と、(ハ)試料をICP部に導入する試料導入部と、(ニ)洗浄液をICP部に供給する洗浄液供給部と、(ホ)サンプリングコーンに対向して設けられ、サンプリングコーンに堆積した堆積膜の堆積状態を検出する堆積モニタとを有するICP質量分析装置であることを要旨とする。
【0010】
本発明の第1の特徴によれば、堆積モニタにより、サンプリングコーンに堆積した堆積膜の堆積状態が検出されるので、分析感度の状態を把握することができる。更に、洗浄液供給部により、高温プラズマ状態のICP部に洗浄液が供給されるので、サンプリングコーンに堆積した堆積膜を効果的に除去することができる。したがって、感度が悪化した状態で不正確な分析を行うことがなく、常時高感度な分析を行うことができる。
【0011】
本発明の第1の特徴において、堆積モニタは、反射率測定装置からなることが好ましい。更に、堆積モニタは、エリプソメータからなることが好ましい。
【0012】
本発明の第1の特徴において、堆積モニタに接続され、サンプリングコーンの表面に堆積する堆積膜の堆積状態を検出して洗浄液を供給するか否かを判定する中央制御処理装置と、中央制御処理装置とICP部に接続され、試料と洗浄液とを自動的に供給する自動供給部とを更に有するICP質量分析装置であることが好ましい。
【0013】
本発明の第1の特徴において、プラズマは、プラズマ温度が5000K以上9000K以下であることを特徴とする質量分析装置であることが好ましい。更に、洗浄液は、フッ化水素酸からなるICP質量分析装置であることが好ましい。
【0014】
本発明の第2の特徴は、(イ)試料の分析対象に基づいてICP部のプラズマ温度を設定するステップと、(ロ)試料をICP部に導入するステップと、(ハ)試料を質量分析するステップと、(ニ)ICP部を高温プラズマ状態にするステップと、(ホ)高温プラズマ状態のICP部に洗浄液を供給するステップと、(ヘ)ICP部に供給された洗浄液により、サンプリングコーンに堆積した堆積膜の除去を行うステップとを有するICP質量分析方法であることを要旨とする。
【0015】
本発明の第2の特徴によれば、高温プラズマ状態のICP部に洗浄液を供給して、サンプリングコーンに堆積した堆積膜に洗浄液を接触させて酸化膜の除去を行うので、サンプリングコーンの洗浄に必要な作業時間を短縮することができる。
【0016】
本発明の第2の特徴において、試料を質量分析するステップを少なくとも1回以上繰り返すことが好ましい。
【0017】
本発明の第2の特徴において、プラズマ温度を設定するステップは、分析対象が軽元素の場合にICP部を低温プラズマ状態に設定し、分析対象が重元素の場合に、ICP部を高温プラズマ状態にすることが好ましい。
【0018】
本発明の第2の特徴において、サンプリングコーンの表面に堆積した堆積膜の堆積状態をモニタするステップを更に有することが好ましい。堆積膜の堆積状態をモニタするステップは、堆積膜の屈折率を測定することにより行うことが好ましい。更に、堆積膜の堆積状態をモニタするステップは、堆積膜が堆積された場所のサンプリングコーンの反射率を求めることにより行うことができる。
【0019】
本発明の第2の特徴において、サンプリングコーンの表面に堆積する堆積膜の堆積状態を検出し、洗浄液を供給するか否かを判定するステップと、洗浄液を自動的に供給するステップとを更に有することが好ましい。
【0020】
本発明の第2の特徴において、高温プラズマ状態は、プラズマ温度が5000K以上9000K以下であることが好ましい。更に、洗浄液は、フッ化水素酸からなることが好ましい。
【0021】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、形状や寸法等は現実のものとは異なることに留意すべきである。従って、具体的な形状や寸法は以下の説明を参酌して判断すべきものである。また図面相互間においてもお互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
【0022】
(第1の実施の形態)
本発明の第1の実施の形態に係るICP質量分析装置は、図1に示すように、サンプリングコーン31を備え、そのサンプリングコーン31を介してイオン化した試料を質量分析する質量分析部30と、質量分析部30に対向して設けられ、試料をイオン化するためのプラズマを発生するICP部20と、試料をICP部20に導入する試料導入部10と、洗浄液をICP部に供給する洗浄液供給部11とを有する。
【0023】
試料導入部10は、分析対象となる試料を、導入管12を介してICP部20に導入する。洗浄液供給部11は、質量分析部30のサンプリングコーン31、スキマーコーン32に、図2に示すように付着した堆積膜(酸化膜)40を洗浄するための洗浄液を、ICP部20が高温プラズマ状態の時に、導入管12を介してICP部20に供給する。洗浄液は、10%フッ化水素酸(HF水溶液)等からなる。また、洗浄液は、過酸化水素(H溶液)とHF水溶液を混合させた溶液でもよく、硝酸(HNO)とHF水溶液とを混合させた溶液でもよい。更に、水酸化カリウム(KOH溶液)等のアルカリ系の溶液を使用することもできる。
【0024】
ICP部20は、高周波電力を誘電結合させることで、数1000K程度の高温のプラズマを作り出すことが可能である。ICP部20は、質量分析部30に対向して設けられたプラズマトーチ部21を備える。プラズマトーチ部21は、石英ガラスからなり、図11に示すような同軸の三重管23の形状を有している。プラズマトーチ部21は、三重管23の外周に設けられた誘導コイル(図示せず)等に高周波電力を流すことで、導入された試料や不活性ガスをプラズマ炎14にする。また、プラズマトーチ部21は、三重管23内に供給された冷却ガス24によってプラズマ炎14の温度を変化させることが可能である。例えば、冷却ガス24により、試料の重元素質量分析を行う場合には高温プラズマ状態に設定し、軽元素質量分析を行う場合には低温プラズマ状態に設定できる。プラズマ温度は、一般的にはRFパワーで切り替えることができる。また、プラズマトーチ部21には、不活性ガス供給部22が接続されている。不活性ガス供給部22は、プラズマトーチ部21にプラズマを作り出すための不活性ガスを供給する。不活性ガスには、アルゴン(Ar)等が用いられる。
【0025】
質量分析部30は、ICP部20でイオン化された試料を質量分離する。質量分析部30は、プラズマトーチ部21に対向して設けられたサンプリングコーン31、サンプリングコーン31に対向して、プラズマトーチ部21とは逆側に設けられたスキマーコーン32、スキマーコーン32に対向して、サンプリングコーン31とは逆側に設けられた質量分析器33を備える。
【0026】
サンプリングコーン31、スキマーコーン32は、図2に示すように中心部に小孔が設けられた円錐形の形状を有し、プラズマトーチ部21に突出して設けられている。サンプリングコーン31、スキマーコーン32は、差動排気がなされており、大気中に設けられたICP部20から効率よくイオンを引き込む。尚、サンプリングコーン31、スキマーコーン32は、銅(Cu)又はニッケル製(Ni)のものを窒化チタン(TiN)や白金(Pt)でコーティングして耐酸化性を増したもの等が用いられる。質量分析器33は、サンプリングコーン31、スキマーコーン32から引き込まれたイオンを質量分離することにより検出する。質量分析器33には、四重極型の質量分析計や磁場型の質量分析計が用いられる。
【0027】
本発明の第1の実施の形態に係るICP質量分析装置によれば、洗浄液供給部11により、プラズマトーチ部21が高温プラズマ状態の時に、質量分析部30に洗浄液が供給されるので、サンプリングコーン31に付着する堆積膜(酸化膜)40を効果的に除去することができる。従って、堆積膜(酸化膜)40の付着による分析感度の悪化が発生せず、常時高感度で分析を行うことができる。
【0028】
次に、本発明の第1の実施の形態に係るICP質量分析装置の分析方法について、図1及び図3を用いて説明する。
【0029】
(イ)最初に、S101において、プラズマトーチ部21のプラズマ温度を設定し、ステップS102において、分析する試料を試料導入部10に導入する。例えば、軽元素を対象とした分析を行う場合は、RFパワーにより、プラズマトーチ部21を低温プラズマ状態に設定し、重元素を対象とした場合は、高温プラズマ状態に設定する。
【0030】
(ロ)次に、ステップS103において、導入された試料を、試料導入部10から導入管12を介してICP部20へ導入し、プラズマトーチ部21でイオン化する。図2に、イオン化された試料を含むプラズマ炎14の拡大図を示す。プラズマ炎14は、サンプリングコーン31、スキマーコーン32へと引き込まれ、質量分析器33で質量毎に分離、検出される。この時、イオン化された試料の一部は、質量分析器33へ引き込まれずに、図2に示すようにサンプリングコーン31、スキマーコーン32の上に堆積膜(酸化膜)40として付着する。
【0031】
(ハ)次に、ステップS104において、プラズマトーチ部21を高温プラズマ状態に設定する。尚、ステップS102において、既に高温プラズマ状態に設定していた場合は、そのまま高温プラズマ状態を継続する。ここで、高温プラズマ状態のプラズマ温度が高い程、後述する洗浄液を容易にイオン化し、堆積膜(酸化膜)40の洗浄を効果的に行うことができるので、プラズマガス温度を5000K以上9000K以下にすることが好ましい。
【0032】
(ニ)次に、ステップS105において、洗浄液を洗浄液供給部11に導入する。洗浄液は、洗浄液供給部11から導入管12を介してICP部20へ導入する。次に、ステップS107において、ICP部20へ導入された洗浄液をプラズマトーチ部21でイオン化する。次に、ステップS108において、イオン化された洗浄液をサンプリングコーン31、スキマーコーン32を介して質量分析器33側に引き込み、サンプリングコーン31、スキマーコーン32に付着した堆積膜(酸化膜)40に洗浄液を接触させて除去する。
【0033】
以上より、本発明の第1の実施の形態に係るICP質量分析方法によれば、試料分析後に、高温プラズマ状態で洗浄液を供給することにより、サンプリングコーン31に付着した堆積膜(酸化膜)40を除去することができる。従って、感度を悪化させることなく、分析を継続することができる。
【0034】
(実施例1)
本発明の第1の実施の形態に係る実施例1は、図1に示すICP質量分析装置の分析感度の状態を判断するために、3種類の試料を用いた。試料には、シリコンマトリクスを含まない試料(以下、「標準溶液」という。)、シリコンマトリクスを1000ppm含んだ試料(以下、「試料A」という。)、及びシリコンマトリクスを500ppm含んだ試料(以下、「試料B」という。)を使用した。標準溶液は、試料分析開始時及び試料分析終了時に検量線を作成するための溶液として使用した。試料A及び試料Bは、シリコン基板上に形成した熱酸化膜1μmを気相分解法により調製した。試料の分析対象は、軽元素(Na及びFe)とした。感度の悪化の判断は、シリコンマトリクスを含む試料A及び試料Bの分析前及び分析終了後に、標準溶液を分析し、検量線を作成して判断した。尚、以下に示す実施例において使用する標準溶液、試料A、試料B、洗浄液は全て同一とする。
【0035】
実施例1において、最初に、標準溶液に不純物を既知量添加した試料の分析を行って検量線▲1▼を作成した。次に、試料Aの分析を行った。次に、プラズマトーチ部21を高温プラズマ状態にして、洗浄液を供給した。洗浄液は5分間供給した(尚、以下に示す実施例において洗浄液の供給は全て5分間とする。)。高温プラズマ状態の装置条件は、Arガス総量2.533Pa・m/s、プラズマトーチ部21とサンプリングコーン31との距離10mm、プラズマガス温度5000K、使用周波数27.12MHzとした(以下に示す実施例において、上記装置条件を「高温プラズマ状態」という)。次に、試料Aと洗浄液のICP質量分析装置への供給を合計5回実施した。最後に、再び標準溶液の分析を行い、検量線▲2▼を作成した。
【0036】
図4に、図3に示すICP質量分析方法を用いた実施例1の分析結果を示す。
【0037】
図4(a)はNa分析、図4(b)はFe分析によって得られた標準溶液の検量線である。横軸は、不純物濃度[ppb]、縦軸はイオン強度を示すカウント数である。実線は検量線▲1▼、破線は検量線▲2▼である。図4より、検量線▲2▼の傾きは、検量線▲1▼の傾きと同等であった。従って、本発明の第1の実施の形態に係るICP質量分析方法を用いた実施例1においては、シリコンマトリクスを含んだ試料Bを分析することによる分析感度の悪化が発生しなかった。
【0038】
実施例1に対する比較例として、図3のステップS104に示す高温プラズマ状態を、低温プラズマ状態(プラズマパワー600W)に変えた場合の分析結果を図5に示す。低温プラズマ状態の装置条件は、Arガス総量2.533Pa・m/s、プラズマトーチ部21とサンプリングコーン31との距離10mm、プラズマガス温度2000K、使用周波数27.12MHzとした(以下に示す実施例において、上記装置条件を「低温プラズマ状態」という)。図5に示す検量線▲2▼の傾きは、検量線▲1▼の傾きに比べて小さくなった。従って、低温プラズマ状態で洗浄液を供給した場合においては、感度の悪化が発生した。
【0039】
更に、比較例として、洗浄液を全く供給しなかった場合の分析結果を図6に示す。検量線▲2▼の傾きは、検量線▲1▼の傾きに比べて小さくなった。従って、洗浄液を全く供給しない場合においても、感度の悪化が発生した。
【0040】
以上、図4〜図6より明らかなように、本発明の第1の実施の形態に係るICP質量分析方法を用いた実施例1によれば、試料の分析後に、高温プラズマで洗浄液を供給してサンプリングコーン31の洗浄を行うことで、分析感度の悪化を防止することができる。
【0041】
(実施例2)
実施例2では、図3のステップS103に示す試料の質量分析を2回連続して行った点が異なる。分析はシリコンマトリクス濃度が試料Aの半分である試料Bを用いて行った。
【0042】
実施例2において、まず、検量線▲1▼を作成した。次に、試料Bの分析を2回連続して行った。次に、プラズマトーチ部21を高温プラズマ状態に設定し、洗浄液を供給して堆積膜(酸化膜)40の除去を行った。次に、試料Bの連続分析を2回繰り返してから洗浄液を供給する上記のステップを2回繰り返し、試料Bの供給を合計6回実施した。最後に、検量線▲2▼を作成した。
【0043】
図7に、実施例2における分析結果を示す。検量線▲2▼の傾きは、検量線▲1▼の傾きと同等であった。従って、本発明の第1の実施の形態に係るICP質量分析方法を用いた実施例2においても、感度の悪化が発生しなかった。
【0044】
以上より、本発明の第1の実施の形態に係るICP質量分析方法によれば、洗浄液の供給は、各試料の分析毎に行わなくてもよく、試料に含まれるマトリクス濃度に応じて行うことで、感度の悪化を防止することができる。
【0045】
(第1の実施の形態の変形例)
本発明の第1の実施の形態に係るICP質量分析方法は、図8に示すように、サンプリングコーン31の洗浄を各試料の分析中に行うこともできる。
【0046】
(イ)最初に、ステップS201において、プラズマトーチ部21を低温プラズマ状態に設定しておき、試料中に含まれる軽元素を対象とした分析を行う。試料の導入方法は、本発明の第1の実施の形態に係るICP質量分析方法と同様とする。
【0047】
(ロ)次に、ステップS202において、プラズマトーチ部21を高温プラズマ状態に移行する。高温プラズマ状態におけるプラズマガス温度等の条件は、第1の実施の形態に係るICP質量方法と同様である。
【0048】
(ハ)次に、ステップS203において、試料中に含まれる重元素を対象とした分析を行う。重元素分析を行う間、洗浄液供給部11から洗浄液を供給し、サンプリングコーン31、スキマーコーン32に洗浄液を接触させて堆積膜(酸化膜)40を除去する。
【0049】
(ニ)ステップS203での重元素分析が終了した後、次にステップS204において、高温プラズマ状態から低温プラズマ状態に移行する。ここで、新しい試料を分析する場合には、ステップS205に進む。新しい試料を分析しない場合には、操作を終了する。
【0050】
(ホ)次に、ステップS205において、試料を交換し、新たに分析する試料を試料導入部10より質量分析部30へ導入し、軽元素を対象とした分析を行う。
【0051】
以上より、本発明の第1の実施の形態の変形例に係るICP質量分析方法によれば、試料の重元素分析中に同時に洗浄液を供給することで、洗浄液を供給する工程を設けずに済む。従って、堆積膜(酸化膜)40を除去するための作業時間を短縮できる。
【0052】
(実施例)
図8に示すICP質量分析方法に従って行った実施例の結果を図9に示す。試料分析には、試料Aを使用した。図9において、検量線▲2▼の傾きは、検量線▲1▼の傾きと同等であった。従って本実施例においても、感度の悪化が発生しなかったことが確認できる。
【0053】
(第2の実施の形態)
本発明の第2の実施の形態に係るICP質量分析装置は、図10に示すようにサンプリングコーン31を備え、そのサンプリングコーン31を介してイオン化した試料を質量分析する質量分析部30と、質量分析部30に対向して設けられ、試料をイオン化するためのプラズマを発生するICP部20と、試料をICP部20に導入する試料導入部10と、洗浄液をICP部20に供給する洗浄液供給部10と、サンプリングコーン31に対向して設けられ、サンプリングコーン31に堆積した堆積膜40の堆積状態を検出する堆積モニタ50と、堆積モニタ50に接続され、サンプリングコーン31の表面に堆積する堆積膜40の堆積状態を検出して洗浄液を供給するか否かを判定する中央制御処理装置(CPU)60と、中央制御処理装置(CPU)60とICP部20に接続され、試料と洗浄液とを自動的に供給する自動供給部13とを有する。尚、自動供給部13及び中央制御処理装置(CPU)60の他は、第1の実施の形態と実質的に同様であるので、重複した記載を省略する。
【0054】
自動供給部13は、試料と洗浄液を自動的に採取し、ICP部20へ注入するオートサンプラー等からなる。自動供給部13は、例えば回転盤の円周に沿って設けられた試験管の中に試料と洗浄液とを有し、回転盤上部に備えた針状の管を試験管に注入することにより、試料と洗浄液をICP部20へと導入する。
【0055】
堆積モニタ50は、図10では、模式的に表しているが、実際には図11に示すような反射率測定装置である。図11に示す堆積モニタ50としての反射率測定システムは、光源51と受光器52を有し、光源51が、ある一定の入射角でサンプリングコーン31に対して光を入射し、受光器52が、反射光の強度を測定する。光源51の入射光強度は、ハーフミラー53を介して分岐し、光強度モニタ54で検出する。光強度モニタ54で測定された入射光強度と、受光器52で測定された反射光強度は、インターフェイス56を介して演算部57で演算し、反射率=(反射光強度)/(入射光強度)を求める。ここで、反射率の測定に用いられる光源51としては、ヘリウム・ネオン(He−Ne)等の気体レーザー又は半導体レーザーを用いることが好ましい。また、堆積モニタ50の精度を高めるために、パルス化した光を入射することができる。使用する光の波長は、サンプリングコーン31の材質に対して最も反射率の高い波長を使用することが好ましい。
【0056】
CPU60は、図10に示すように、反射率取得部61、反射率記録部62、判定部64が内蔵されている。反射率取得部61は、堆積モニタ50により計測されたサンプリングコーン31の反射率の値を取得する。反射率記録部62は、反射率取得部61によって取得された反射率の値や、洗浄液を供給する目安となる基準値等を反射率記録装置63に記録する。判定部64は、反射率取得部61が取得した反射率と、反射率記録装置63が記録した反射率とを比較し、洗浄液を供給するか否かの判定を行う。
【0057】
このように、本発明の第2の実施の形態におけるICP質量分析装置によれば、堆積モニタ50によってサンプリングコーン31表面の反射率が測定されるので、反射率の減少を確認することで、堆積膜(酸化膜)40の付着状態が分かる。更に、CPU60によって、洗浄液を供給するタイミングが判定され、自動供給部13によって洗浄液が自動的に供給されるので、堆積膜(酸化膜)40を効率的に除去し、除去作業を簡単且つ短時間に行うことができる。従って、常に高感度な状態で分析を行うことができる。
【0058】
次に、図10及び図12を参照して、本発明の第2の実施の形態に係るICP質量分析方法を説明する。
【0059】
(イ)最初に、ステップS301において、反射率取得部61は、試料分析前のサンプリングコーン31の反射率を取得する。ここで、「サンプリングコーン31の反射率」とは、堆積モニタ50により測定されたサンプリングコーン31の反射率の値である。尚、試料分析前の反射率の値を初期値とする。
【0060】
(ロ)次に、ステップS302において、反射率記録部62は、初期値を反射率記録装置63に記録する。更に、反射率記録部62は、ユーザーにより予め設定された洗浄液を供給するための条件を、反射率記録装置63に記録しておく。例えば、初期値に基づいた反射率の基準値を設定しておき、取得された反射率の値が、基準値よりも下回った場合に洗浄液を供給し、基準値よりも下回らなかった場合は、試料の分析を継続するように記録しておく。
【0061】
(ハ)次に、ステップS303において、試料分析の対象とする元素の種類に基づいて、プラズマトーチ部21のプラズマ温度を設定する。ステップS304において、自動供給部13は、分析する試料をICP部20へ導入し、次に、ステップS305において、試料をプラズマトーチ部21でイオン化して、サンプリングコーン31、スキマーコーン32を介して質量分析器33に導入し、質量分析を行う。
【0062】
(ニ)次に、ステップS306において、反射率取得部61は、再びサンプリングコーン31の反射率を堆積モニタ50により取得する。
【0063】
(ホ)ステップS307において、判定部64は、取得された反射率の値が基準値よりも下回っているか否かを判定する。取得された反射率の値が基準値を下回っていた場合は、ステップS308に進む。尚、取得された反射率の値が基準値を上回っていた場合は、処理を終了する。
【0064】
(ヘ)ステップS308において、プラズマトーチ部21を高温プラズマ状態に設定し、ステップS309において、自動供給部13によりICP部20へ洗浄液を供給する。次に、ステップS310において、ICP部20に導入した洗浄液を、プラズマトーチ部21でイオン化する。ステップS311において、イオン化した洗浄液を、サンプリングコーン31、スキマーコーン32に接触させ、堆積膜(酸化膜)40の除去を行う。次に、堆積膜(酸化膜)40が除去されているかどうかを確認するために、再びステップS306において、サンプリングコーン31の反射率を測定し、取得された反射率の値が基準値を上待っていた場合は、処理を終了する。
【0065】
以上説明したように、本発明の第2の実施の形態に係る質量分析方法によれば、試料分析後に反射率を測定し、その反射率の基準値に対する減少程度を判定することによって、自動的に洗浄液を質量分析部30側へ供給し、サンプリングコーン31の洗浄を行うことができる。従って、堆積膜(酸化膜)40の堆積による感度の悪化を防止し、常に高感度な状態で分析を行うことができる。更に、本発明の第2の実施の形態に係るICP質量分析方法によれば、自動供給部13により洗浄液を自動的に供給するので、堆積膜(酸化膜)40を除去する作業時間を短縮することができる。
【0066】
(実施例)
本発明の第2の実施に係る実施例は、最初に、検量線▲1▼を作成した。次に、堆積モニタ50により反射率を測定した。次に、反射率記録部62により、初期値と基準値とを記録した。ここで、本実施例においては、分析開始前に計測されたサンプリングコーン31の反射率を1とし、以後得られた反射率の値を初期値と比較することにより反射率の割合を求めるように設定した。また、洗浄液を供給する際の基準値は0.98と設定した。次に試料Aを導入した。試料Aの導入回数は全部で5回であった。
【0067】
図13に、本実施例において堆積モニタ50により測定された反射率の割合の推移を示す。2回目以降の反射率の割合は0.98からやや減少しているものの、ほぼ横這いであった。また、図14に示すように、検量線▲2▼の傾きは、検量線▲1▼の傾きとほぼ同様で、感度の悪化は発生しなかったことが確認できる。
【0068】
一方、本実施例に対する比較例として、洗浄液の供給を全く行わなかった場合における堆積モニタ50が測定した反射率の割合の推移を図15に示す。反射率の割合は測定回数が進むに従って減少し続けた。また、図16に示すように、検量線▲2▼の傾きは、検量線▲1▼の傾きより小さくなった。従って、洗浄液を全く供給しない場合は、反射率の割合の減少が進み、感度の悪化も生じることが確認できる。
【0069】
以上より、図13〜図16より明らかなように、本発明の第2の実施の形態におけるICP質量分析方法によれば、試料の分析後に反射率を測定することで、堆積膜(酸化膜)40の堆積状況を確認できるので、分析感度の状態を判断することができる。従って、感度が悪化した状態で不正確な分析を行うことない。更に、堆積膜(酸化膜)40の堆積状況に応じて適時洗浄を行うことができるので、サンプリングコーン31を取り外す等の作業を必要とせずに、常時高感度な分析を行うことができる。
【0070】
(第3の実施の形態)
本発明の第3の実施の形態に係るICP質量分析装置は、図17に示すように、堆積モニタ50が光学的に屈折率を測定するエリプソメータからなり、堆積モニタ50及び自動供給部13に接続されたCPU60が屈折率取得部81、屈折率記録部82を更に有する点が図10と異なる。他は、第2の実施の形態と同様であるので、重複した記載を省略する。
【0071】
堆積モニタ50は、図17では模式的に表しているが、実際には図18に示すようなエリプソメータである。図18(a)に示すように、光源51とマニュピレータ73とを有する。図13(b)は、13(a)の直交する方向から見たエリプソメータである。堆積モニタ50は、光源51が回転ポラライザ71を介してサンプリングコーン31に対して光を入射し、マニュピレータ73がその反射光を受光する。回転ポラライザ71は、光源51から出た光を直線偏光に変えてサンプリングコーン31に入射する。サンプリングコーン31上に堆積した堆積膜(酸化膜)40により楕円偏光に変化した反射光が、マニュピレータ73のアナライザ72を介して受光器(分光器)76に入る。ここで、マニュピレータ73は、アナライザ72が、回転ポラライザ71による入射角に対し、一定の角度を維持するように、マニュピレータドライバ74によって移動する。分光器76は、楕円偏光に変化した反射光を、入射面に対して平行な光(P偏光)と入射面に対して垂直な光(S偏光)とに分光する。分光されたP偏光とS偏光は、増幅回路75で増幅され、演算部57がインターフェイス56を介してその反射係数を演算する。更に、演算部57は、回転ポラライザ71が入射した直線偏光と受光器(分光器)76により測定された反射光の反射係数を解析することによりサンプリングコーン31上の堆積膜(酸化膜)40の屈折率を計算する。
【0072】
CPU60は、図10に示すICP質量分析装置に加え、屈折率取得部81と屈折率記録部82とを更に有し、屈折率取得部81が堆積モニタ50によって取得された屈折率の値を取得する。屈折率記録部82は、屈折率取得部81により取得された屈折率の値や、洗浄液を供給する目安となる基準値等を屈折率記録装置83に記録する。
【0073】
このように、本発明の第3の実施の形態におけるICP質量分析装置によれば、堆積モニタ50によってサンプリングコーン31に堆積した薄膜の屈折率が測定できる。更に、CPU60によって、洗浄液を供給するタイミングが判定され、洗浄液供給部13により適時洗浄液が供給されるので、サンプリングコーン31上に堆積した堆積膜(酸化膜)40を効果的に除去することができる。
【0074】
次に、図19を参照して、本発明の第3の実施の形態に係るICP質量分析方法を説明する。尚、本発明の第3の実施の形態に係るICP質量分析方法は、図12に示すICP質量分析方法とほぼ同様であるので、重複する部分を省略して説明する。
【0075】
(イ)最初に、ステップS401において、屈折率取得部81は、試料分析前のサンプリングコーン31の屈折率を取得する。ここで、「サンプリングコーン31の屈折率」とは、堆積モニタ50により測定されたサンプリングコーン31の屈折率の値である。
【0076】
(ロ)次に、ステップS402において、屈折率記録部82は、初期値を屈折率記録装置83に記録する。更に、屈折率記録部82は、ユーザーにより予め設定された洗浄液を供給するための条件を、屈折率記録装置83に記録しておく。
【0077】
(ハ)次に、ステップS403において、試料分析の対象とする元素の種類に基づいて、プラズマトーチ部21のプラズマ温度を設定し、ステップS404において、自動供給部13は、分析する試料をICP部20へ導入する。次に、ステップS405において、試料をプラズマトーチ部21でイオン化して、サンプリングコーン31、スキマーコーン32を介して質量分析器33に導入し、質量分析を行う。
【0078】
(ニ)次に、ステップS406において、屈折率取得部81は、再び堆積モニタ50により測定された屈折率の取得を行う。
【0079】
(ホ)ステップS407において、判定部64は、ステップS406において取得された屈折率の値が基準値よりも下回っているか否かを判定する。取得された屈折率の値が基準値を下回っていた場合は、ステップS408に進む。、取得された屈折率の値が基準値を上回っていた場合は、処理を終了する。
【0080】
(ヘ)ステップS408において、プラズマトーチ部21を高温プラズマ状態に設定し、ステップS409において、自動供給部13によりICP部20へ洗浄液を供給する。次に、ステップS410において、ICP部20に導入した洗浄液をプラズマトーチ部21でイオン化する。ステップS411において、イオン化した洗浄液を、サンプリングコーン31、スキマーコーン32に接触させ、堆積膜(酸化膜)40の除去を行った後、ステップS406へ進み、屈折率の値を取得し、屈折率が基準値を上回っていた場合は、処理を終了する。
【0081】
以上より、本発明の第3の実施の形態におけるICP質量分析方法によれば、試料分析後に屈折率を測定することで、堆積膜(酸化膜)40の堆積状況を確認できるので、本発明の第2の実施の形態におけるICP質量分析方法と同様に、分析感度の状態を確認することができる。
【0082】
(実施例)
図20に、本実施例において堆積モニタ50により測定された屈折率の割合の推移を示す。本実施例におけるICP質量分析方法は、図15に示す実施例と同様の手順で行った。屈折率の割合は測定回数と共に初期値から変化した。従って、堆積膜(酸化膜)40の堆積具合を確認する場合に、屈折率を測定する堆積モニタ50を用いても利用可能であることが確認できる。
【0083】
(その他の実施の形態)
上記のように、本発明は、第1〜第3の実施の形態によって記載したが、この開示の一部をなす論述及び図面は、この発明を限定するものではない。この開示から当業者には、様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
【0084】
既に述べた本発明の第1〜第3の実施の形態に係るICP質量分析装置においては、洗浄液供給部11が、試料と共に導入管12から供給されるだけでなく、別の管から供給することもできる。
【0085】
更に、本発明の第2及び第3の実施の形態においては、堆積膜(酸化膜)40の堆積状況に従って、適宜サンプリングコーン31を取り外して、先端部分を洗浄液や酸等に浸すことも可能である。
【0086】
更に、本発明の第2及び第3の実施の形態に係るICP質量分析装置においては、中央制御処理装置(CPU)60や自動供給部13を機能させずに手動操作することも可能である。
【0087】
更に、本発明の第2の実施の形態に係るICP質量分析装置においては、図18に示すような光学系のレイアウトで反射率を測定してもよく、本発明の第3の実施の形態に係るICP質量分析装置においては、図11に示すような光学系のレイアウトでエリプソメトリーを行ってもよい。即ち、光源51と受光器52,76をどこに配置するかは、適宜変更可能である。
【0088】
更に、本発明の第3の実施の形態に係るICP質量分析方法においては、図19のステップS402に示す初期値を、サンプリングコーン31に堆積膜が堆積した状態の屈折率の値とし、基準値を、例えば取得された屈折率の初期値に対する割合が±10%となった場合に洗浄液を供給するような条件に設定することも可能である。
【0089】
このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。従って本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められる。
【0090】
【発明の効果】
以上より、本発明によれば、作業時間を短縮化することができ、常に高感度な分析を行うことができるICP質量分析装置及びその方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係るICP質量分析装置を示す概略図である。
【図2】図1に示すICP質量分析装置の堆積膜の堆積状況を説明する拡大図である。
【図3】本発明の第1の実施の形態に係るICP質量分析方法を示すフロー図である。
【図4】本発明の第1の実施の形態の実施例1において測定された不純物濃度とカウント数の関係を表す検量線図である。
【図5】図4の実施例1に対する比較例1の不純物濃度とカウント数の関係を示す検量線図である。
【図6】図4の実施例1に対する比較例2の示す不純物濃度とカウント数の関係を示す検量線図である。
【図7】本発明の第1の実施の形態において測定された実施例2の不純物濃度とカウント数の関係を示す検量線図である。
【図8】本発明の第1の実施の形態の変形例1に係るICP質量分析方法を示すシーケンス図である。
【図9】本発明の第1の実施の形態の変形例1における実施例で測定された不純物濃度とカウント数の関係を示す検量線図である。
【図10】本発明の第2の実施の形態に係るICP質量分析装置の概略図である。
【図11】本発明の第2の実施の形態に係る堆積モニタの詳細を示す図である。
【図12】本発明の第2の実施の形態に係るICP質量分析方法を表すフロー図である。
【図13】本発明の第2の実施の形態の実施例における測定回数と反射率の割合との関係を示す図である。
【図14】本発明の第2の実施の形態の実施例において測定された不純物濃度とカウント数の関係を示す検量線図である。
【図15】図14の実施例に対する比較例の測定回数と反射率の割合との関係を示す図である。
【図16】図14の実施例に対する比較例の不純物濃度とカウント数の関係を示す図である。
【図17】本発明の第3の実施の形態に係るICP質量分析装置の概略図である。
【図18】本発明の第3の実施の形態に係る堆積モニタの詳細を示す図である。
【図19】本発明の第3の実施の形態に係るICP質量分析方法を表すフロー図である。
【図20】本発明の第3の実施の形態の実施例の測定回数と反射率の割合との関係を示す図である。
【符号の説明】
10…試料導入部
11…洗浄液供給部
12…導入管
13…自動供給部
14…プラズマ炎
20…ICP部
21…プラズマトーチ部
22…不活性ガス供給部
23…三重管
24…冷却ガス
30…質量分析部
31…サンプリングコーン
32…スキマーコーン
33…質量分析器
40…堆積膜(酸化膜)
50…堆積モニタ
51…光源
52…受光器
53…ハーフミラー
54…光強度モニタ
56…インターフェイス
57…演算部
60…中央制御処理装置(CPU)
61…反射率取得部
62…反射率記録部
63…反射率記録装置
64…判定部
71…回転ポラライザ
72…アナライザ
73…マニュピレータ
74…マニュピレータドライバ
75…増幅回路
76…受光器(分光器)
81…屈折率取得部
82…屈折率記録部
83…屈折率記録装置

Claims (15)

  1. サンプリングコーンを備え、該サンプリングコーンを介してイオン化した試料を質量分析する質量分析部と、
    前記質量分析部に対向して設けられ、前記試料をイオン化するためのプラズマを発生するICP部と、
    前記試料を前記ICP部に導入する試料導入部と、
    洗浄液を前記ICP部に供給する洗浄液供給部と、
    前記サンプリングコーンに対向して設けられ、前記サンプリングコーンに堆積した堆積膜の堆積状態を検出する堆積モニタ
    とを有することを特徴とするICP質量分析装置。
  2. 前記堆積モニタは、反射率測定装置からなることを特徴とする請求項1記載のICP質量分析装置。
  3. 前記堆積モニタは、エリプソメータからなることを特徴とする請求項1記載のICP質量分析装置。
  4. 前記堆積モニタに接続され、前記サンプリングコーンの表面に堆積する堆積膜の堆積状態を検出して前記洗浄液を供給するか否かを判定する中央制御処理装置と、
    前記中央制御処理装置と前記ICP部に接続され、前記試料と前記洗浄液とを自動的に供給する自動供給部
    とを更に有することを特徴とする請求項1〜3のいずれか1項に記載のICP質量分析装置。
  5. 前記プラズマは、プラズマ温度が5000K以上9000K以下であることを特徴とする請求項1〜4のいずれか1項に記載のICP質量分析装置。
  6. 前記洗浄液は、フッ化水素酸からなることを特徴とする請求項1〜5のいずれか1項に記載のICP質量分析装置。
  7. 試料の分析対象に基づいてICP部のプラズマ温度を設定するステップと、
    前記試料を前記ICP部に導入するステップと、
    前記試料を質量分析するステップと、
    前記ICP部を高温プラズマ状態にするステップと、
    前記高温プラズマ状態の前記ICP部に洗浄液を供給を供給するステップと、
    前記ICP部に供給された前記洗浄液により、前記サンプリングコーンに堆積した堆積膜の除去を行うステップ
    とを有することを特徴とするICP質量分析方法。
  8. 前記試料を質量分析するステップを少なくとも1回以上繰り返すことを特徴とする請求項7に記載のICP質量分析方法。
  9. 前記プラズマ温度を設定するステップは、前記分析対象が軽元素の場合に前記ICP部を低温プラズマ状態に設定し、
    前記分析対象が重元素の場合に、前記ICP部を高温プラズマ状態にすることを特徴とする請求項7に記載のICP質量分析方法。
  10. 前記サンプリングコーンの表面に堆積した前記堆積膜の堆積状態をモニタするステップを更に有することを特徴とする請求項7〜9のいずれか1項に記載のICP質量分析方法。
  11. 前記堆積膜の堆積状態をモニタするステップは、前記堆積膜の屈折率を測定することにより行うことを特徴とする請求項10に記載のICP質量分析方法。
  12. 前記堆積膜の堆積状態をモニタするステップは、前記堆積膜が堆積された場所の前記サンプリングコーンの反射率を求めることにより行うことを特徴とする請求項10に記載のICP質量分析方法。
  13. 前記サンプリングコーンの表面に堆積する堆積膜の堆積状態を検出し、前記洗浄液を供給するか否かを判定するステップと、
    前記洗浄液を自動的に供給するステップ
    とを更に有することを特徴とする請求項7〜12のいずれか1項に記載のICP質量分析方法。
  14. 前記高温プラズマ状態は、プラズマ温度が5000K以上9000K以下であることを特徴とする請求項7〜13のいずれか1項に記載のICP質量分析方法。
  15. 前記洗浄液は、フッ化水素酸からなることを特徴とする請求項7〜14のいずれか1項に記載のICP質量分析方法。
JP2002191488A 2002-06-28 2002-06-28 Icp質量分析装置及びその分析方法 Expired - Fee Related JP3801958B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191488A JP3801958B2 (ja) 2002-06-28 2002-06-28 Icp質量分析装置及びその分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191488A JP3801958B2 (ja) 2002-06-28 2002-06-28 Icp質量分析装置及びその分析方法

Publications (2)

Publication Number Publication Date
JP2004039313A true JP2004039313A (ja) 2004-02-05
JP3801958B2 JP3801958B2 (ja) 2006-07-26

Family

ID=31701048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191488A Expired - Fee Related JP3801958B2 (ja) 2002-06-28 2002-06-28 Icp質量分析装置及びその分析方法

Country Status (1)

Country Link
JP (1) JP3801958B2 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2470288A (en) * 2009-05-13 2010-11-17 Micromass Ltd Improved sampling cone for mass spectrometer
CN102890113A (zh) * 2012-10-09 2013-01-23 浙江大学 一种消减icp-ms测定中汞记忆效应的方法
US8471198B2 (en) 2009-05-13 2013-06-25 Micromass Uk Limited Mass spectrometer sampling cone with coating
KR20150068991A (ko) * 2013-01-30 2015-06-22 칼 짜이스 에스엠티 게엠베하 혼합 가스의 질량 분석 검사 방법 및 그 질량 분석계
JP2018036160A (ja) * 2016-08-31 2018-03-08 三菱マテリアル株式会社 誘導結合プラズマ質量分析方法
WO2018163576A1 (ja) * 2017-03-09 2018-09-13 信越半導体株式会社 誘導結合プラズマ質量分析装置用プラズマコーン、誘導結合プラズマ質量分析装置、誘導結合プラズマ質量分析装置用プラズマコーンの製造方法
WO2019202719A1 (ja) * 2018-04-20 2019-10-24 株式会社島津製作所 スキマーコーン及び誘導結合プラズマ質量分析装置
WO2022249228A1 (ja) * 2021-05-24 2022-12-01 株式会社 イアス 誘導結合プラズマ質量分析装置のコーン閉塞防止方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618420A (ja) * 1990-01-05 1994-01-25 L'air Liquide 高周波誘導結合プラズママススペクトル分析を用いる検体の元素分析のための改良法およびこの改良法を実施するための装置
JPH0855601A (ja) * 1994-08-11 1996-02-27 Seiko Instr Inc 誘導結合プラズマ分析装置用の試料導入装置
JPH10189292A (ja) * 1996-12-25 1998-07-21 Shimadzu Corp Icp分析装置
JP2000164169A (ja) * 1998-11-26 2000-06-16 Hitachi Ltd 質量分析計

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618420A (ja) * 1990-01-05 1994-01-25 L'air Liquide 高周波誘導結合プラズママススペクトル分析を用いる検体の元素分析のための改良法およびこの改良法を実施するための装置
JPH0855601A (ja) * 1994-08-11 1996-02-27 Seiko Instr Inc 誘導結合プラズマ分析装置用の試料導入装置
JPH10189292A (ja) * 1996-12-25 1998-07-21 Shimadzu Corp Icp分析装置
JP2000164169A (ja) * 1998-11-26 2000-06-16 Hitachi Ltd 質量分析計

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2470288A (en) * 2009-05-13 2010-11-17 Micromass Ltd Improved sampling cone for mass spectrometer
US8471198B2 (en) 2009-05-13 2013-06-25 Micromass Uk Limited Mass spectrometer sampling cone with coating
GB2470288B (en) * 2009-05-13 2013-11-20 Micromass Ltd Sampling cone of mass spectrometer
US8785843B2 (en) 2009-05-13 2014-07-22 Micromass Uk Limited Mass spectrometer sampling cone with coating
CN102890113A (zh) * 2012-10-09 2013-01-23 浙江大学 一种消减icp-ms测定中汞记忆效应的方法
JP2016512647A (ja) * 2013-01-30 2016-04-28 カール・ツァイス・エスエムティー・ゲーエムベーハー ガス混合物の質量分析試験のための方法および質量分析計
KR20150068991A (ko) * 2013-01-30 2015-06-22 칼 짜이스 에스엠티 게엠베하 혼합 가스의 질량 분석 검사 방법 및 그 질량 분석계
KR101868215B1 (ko) * 2013-01-30 2018-06-15 칼 짜이스 에스엠티 게엠베하 혼합 가스의 질량 분석 검사 방법 및 그 질량 분석계
US10903060B2 (en) 2013-01-30 2021-01-26 Leybold Gmbh Method for mass spectrometric examination of gas mixtures and mass spectrometer therefor
JP2018036160A (ja) * 2016-08-31 2018-03-08 三菱マテリアル株式会社 誘導結合プラズマ質量分析方法
WO2018163576A1 (ja) * 2017-03-09 2018-09-13 信越半導体株式会社 誘導結合プラズマ質量分析装置用プラズマコーン、誘導結合プラズマ質量分析装置、誘導結合プラズマ質量分析装置用プラズマコーンの製造方法
WO2019202719A1 (ja) * 2018-04-20 2019-10-24 株式会社島津製作所 スキマーコーン及び誘導結合プラズマ質量分析装置
JPWO2019202719A1 (ja) * 2018-04-20 2021-02-12 株式会社島津製作所 スキマーコーン及び誘導結合プラズマ質量分析装置
WO2022249228A1 (ja) * 2021-05-24 2022-12-01 株式会社 イアス 誘導結合プラズマ質量分析装置のコーン閉塞防止方法

Also Published As

Publication number Publication date
JP3801958B2 (ja) 2006-07-26

Similar Documents

Publication Publication Date Title
US6695947B2 (en) Device for manufacturing semiconductor device and method of manufacturing the same
US5294289A (en) Detection of interfaces with atomic resolution during material processing by optical second harmonic generation
EP0735565B1 (en) Method and apparatus for monitoring the dry etching of a dielectric film to a given thickness
JP3429137B2 (ja) トレンチ形成プロセスのリアルタイム現場監視のための方法
US6911157B2 (en) Plasma processing method and apparatus using dynamic sensing of a plasma environment
US6745095B1 (en) Detection of process endpoint through monitoring fluctuation of output data
US6525829B1 (en) Method and apparatus for in-situ measurement of thickness of copper oxide film using optical reflectivity
US8237928B2 (en) Method and apparatus for identifying the chemical composition of a gas
US6894474B2 (en) Non-intrusive plasma probe
JP3801958B2 (ja) Icp質量分析装置及びその分析方法
Duan et al. Design and development of a highly sensitive, field portable plasma source instrument for on-line liquid stream monitoring and real-time sample analysis
JPH085555A (ja) 元素分析用プラズマトーチ及びこれを用いた元素分析方法
JP3620147B2 (ja) 誘導結合プラズマ発光分析装置
JP2003247920A (ja) 軽元素を含有する固体試料の組成比分析方法
JP2002340794A (ja) 半導体ウェーハの赤外吸収測定法
JPH0737958A (ja) 半導体処理工程監視装置
de Castro et al. End-point detection of polymer etching using Langmuir probes
JPH10335307A (ja) 加工プロセスの終点検出方法およびそれを用いた装置
JPH07183347A (ja) 半導体治具材料の評価方法
JPH0754294B2 (ja) 微粒子測定装置
JP3096025B2 (ja) グロー放電発光分光分析装置
JPH05152254A (ja) ドライエツチング装置
JP2000031226A (ja) 半導体装置の製造装置及びその製造方法
JP2001343339A (ja) 分析位置設定手段を備えた蛍光x線分析方法およびその装置
Selwyn Optical diagnostic techniques for rie

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees