JP2004037871A - パターン光投影装置及び測定装置 - Google Patents
パターン光投影装置及び測定装置 Download PDFInfo
- Publication number
- JP2004037871A JP2004037871A JP2002195169A JP2002195169A JP2004037871A JP 2004037871 A JP2004037871 A JP 2004037871A JP 2002195169 A JP2002195169 A JP 2002195169A JP 2002195169 A JP2002195169 A JP 2002195169A JP 2004037871 A JP2004037871 A JP 2004037871A
- Authority
- JP
- Japan
- Prior art keywords
- fiber grating
- plane
- pattern
- pattern light
- grating element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measurement Of Optical Distance (AREA)
Abstract
【解決手段】複数の光ファイバー11を各光ファイバー11の軸線を第1の方向v1に向けて並べた第1のファイバーグレーティング素子12と、各光ファイバー11の軸線を第1の方向v1と異なる第2の方向v2に向けて並べた第2のファイバーグレーティング素子13と、各光ファイバー11の軸線を第1、第2の方向v1、v2と異なる第3の方向v3に向けて並べた第3のファイバーグレーティング素子14とを備え、第1のファイバーグレーティング素子12と第2のファイバーグレーティング素子13と第3のファイバーグレーティング素子14は、重ね合わせてファイバーグレーティング10を構成し、ファイバーグレーティング10には、可干渉性の光束を透過させるように構成されたパターン光投影装置1とする。
【選択図】 図3
Description
【発明の属する技術分野】
本発明は、パターン光投影装置及び測定装置に関し、特に単純な構成で輝線又は輝点アレイを投影できるパターン光投影装置及び測定装置に関するものである。
【0002】
【従来の技術】
輝線が投影されるパターンとして利用されている従来のパターン光投影装置は、輝線を投影する場合には、レンズやプリズムを用いて、輝度を可能な限り均一にしたライン光源(輝線)を発生していた。具体例としては、例えば、図11に示すような、シリンドリカルレンズ201と、凸面鏡202を組合わせた特殊なレンズを用いたものがあった。光源から投射された光束は、シリンドリカルレンズ201の中央部に形成された穴を通過し、凸面鏡202で反射する。さらにこの反射光が、シリンドリカルレンズ201の曲面に入射し、反射されることで、輝線を形成していた。
【0003】
【発明が解決しようとする課題】
以上のような従来のパターン光投影装置によれば、光学系が複雑になり、部品の製造及び調整に手間がかかっていた。また、装置も大きくなってしまっていた。さらに、輝線の輝度を均一にすることが難しく、例えば輝線の端部の輝度が低くなってしまっていた。
【0004】
そこで本発明は、単純な構成で輝線又は輝点アレイを投影できるパターン光投影装置及び測定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明によるパターン光投影装置は、例えば図3に示すように、複数の光ファイバー11を各光ファイバー11の軸線を第1の方向v1に向けて平行に且つ平面状に並べた第1のファイバーグレーティング素子12と;複数の光ファイバー11を各光ファイバー11の軸線を第1の方向v1と異なる第2の方向v2に向けて平行に且つ平面状に並べた第2のファイバーグレーティング素子13と;複数の光ファイバー11を各光ファイバー11の軸線を第1、第2の方向v1、v2と異なる第3の方向v3に向けて平行に且つ平面状に並べた第3のファイバーグレーティング素子14とを備え;第1のファイバーグレーティング素子12と第2のファイバーグレーティング素子13と第3のファイバーグレーティング素子14は、重ね合わせてファイバーグレーティング10を構成し、ファイバーグレーティング10には、可干渉性の光束を透過させるように構成されている。
【0006】
このように構成すると、第1のファイバーグレーティング素子12と第2のファイバーグレーティング素子13と第3のファイバーグレーティング素子14は、重ね合わせてファイバーグレーティング10を構成し、ファイバーグレーティング10には、可干渉性の光束を透過させるように構成されていることで、例えば透過した可干渉性の光束が各ファイバーグレーティング素子12、13、14で回折し、さらに前記回折光が干渉することで輝点アレイを投影できるので、単純な構成で輝線又は輝点アレイを投影できるパターン光投影装置を提供できる。
【0007】
また請求項2に記載のように、請求項1に記載のパターン光投影装置では、第1のファイバーグレーティング素子12と、第2のファイバーグレーティング素子13と、第3のファイバーグレーティング素子14とは、前記各軸線の間隔が等しく、且つ前記間隔は、前記第1、第2、第3ファイバーグレーティング素子12、13、14間で等しいとよい。
【0008】
また請求項3に記載のように、請求項1又は請求項2に記載のパターン光投影装置では、第1の方向v1と第2の方向v2がほぼ直交しているとよい。
【0009】
さらに請求項4に記載のように、請求項3に記載のパターン光投影装置では、
第3のファイバーグレーティング素子14は、第3の方向v3が、第1の方向v1から所定の角度θだけ前記平面と平行な面内で回転させて重ね合わされているとよい。このように構成すると、例えば、複数の輝線の列を投影することができる。
【0010】
さらに請求項5に記載のように、請求項1乃至請求項3のいずれか1項に記載のパターン光投影装置では、例えば図4に示すように、第3のファイバーグレーティング素子14は、前記平面内で回転可能に構成するとよい。言い換えれば、第3のファイバーグレーティング素子14は、前記所定の角度θを変更可能に構成されている。
【0011】
このように構成すると、第3のファイバーグレーティング素子14は、前記平面内で回転可能に構成されているので、例えば、投影される輝点アレイのパターンを自在に変更することができる。
【0012】
また、上記パターン光投影装置では、例えば図2に示すように、前記可干渉性の光束を発生する光束発生手段5を備えるとよい。
【0013】
前記目的を達成するために、請求項6に係る発明による測定装置は、例えば図10に示すように、請求項1乃至請求項5のいずれか1項に記載のパターン光投影装置1と;パターン光投影装置1によりパターン光10aが投影された対象物104を撮像する撮像装置111とを備える。
【0014】
このように構成すると、パターン光投影装置1によりパターン光10aが投影された対象物104を撮像するので、単純な構成で輝線又は輝点アレイを投影できる測定装置を提供することができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。なお、各図において互いに同一あるいは相当する部材には同一符号を付し、重複した説明は省略する。
【0016】
図1は、本発明による第1の実施の形態であるパターン光投影装置1の模式的斜視図である。ここで、XY軸を平面2内に置くように、直交座標系XYZがとられている。図中Z軸上で平面2の上方には、パターン光投影装置1が配置されている。パターン光投影装置1は、平面2上にパターン光としてのパターン10aを投影している。本実施の形態では、図6、7で後述するように、投影されるパターン光は、典型的には平行であり、等間隔に配列された複数の輝線であるが、輝点アレイであってもよい。なお投影されるパターン10aについては、図6、7を参照して後で詳しく説明する。
【0017】
図2の模式的斜視図を参照して、パターン光投影装置1について説明する。パターン光投影装置1は、可干渉性の光束を発生する光束発生手段としての光束発生部5と、ファイバーグレーティング10(以下、単にグレーティング10という)とを備えている。可干渉性の光束は、典型的にはレーザーである。光束発生部5は、平行光束を発生するように構成されている。光束発生部5は、典型的には不図示のコリメータレンズを含んで構成される半導体レーザー装置であり、発生される平行光束は、レーザー光束L1である。ここで平行光束とは、実質的に平行であればよく、平行に近い光束も含む。
【0018】
ここでは、グレーティング10は、平面2に平行に(Z軸に直角に)配置される場合で説明する。グレーティング10に、レーザー光L1を、Z軸方向に入射させる。するとレーザー光L1は、個々の光ファイバー11によりそのレンズ効果を持つ面内で集光したのち、発散波となって広がって行き、干渉して、投影面である平面2にパターン10aが投影される。なお、グレーティング10を平面2に平行に配置するとは、図3で後述するように、例えば、グレーティング10を構成する第1FG素子12の各光ファイバー11の軸線を含む平面と、平面2とが平行になるように配置することである。
【0019】
図3の模式図を参照して、グレーティング10について説明する。(a)は斜視図、(b)は正面図である。グレーティング10は、複数の光ファイバー11を各光ファイバー11の軸線を第1の方向v1に向けて平行に且つ平面状に並べた第1のファイバーグレーティング素子12(以下第1FG素子12という)と、複数の光ファイバー11を各光ファイバー11の軸線を第1の方向v1と異なる第2の方向v2に向けて平行に且つ平面状に並べた第2のファイバーグレーティング素子13(以下第2FG素子13という)と、複数の光ファイバー11を各光ファイバー11の軸線を第1の方向v1、第2の方向v2と異なる第3の方向v3に向けて平行に且つ平面状に並べた第3のファイバーグレーティング素子14(以下第3FG素子14という)とを含んで構成される。本実施の形態では、各FG素子12、13、14の平面は、互いに平行である。ここでは、各FG素子を識別するために、第1FG素子、第2FG素子、第3FG素子と呼ぶ。本実施の形態では、第1FG素子、第2FG素子、第3FG素子の順序で重ね合わせてある。しかしなから他の順序、例えば、第1FG素子、第3FG素子、第2FG素子の順に重ね合わせてもよい。以下、各FG素子12、13、14の平面を素子平面という。
【0020】
また本実施の形態では、第1FG素子12と、第2FG13と、第3FG素子14とは、各光ファイバー11の軸線の間隔が等しく、且つその間隔は、第1FG素子12、第2FG素子13、第3FG素子14間で等しい。言い換えれば、第1FG素子12の各光ファイバー11の軸線の間隔と、第2FG素子13の各光ファイバー11の軸線の間隔と、第3FG素子14の各光ファイバー11の軸線の間隔とが互いに等しい。さらに本実施の形態では、第1FG素子12と、第2FG13と、第3FG素子14は、共に光ファイバー11の径を等しく、且つ光ファイバー11を接触させて並べて構成されている。即ち軸線の間隔が等しく、且つその間隔は、第1FG素子12、第2FG素子13、第3FG素子14間で等しい。
【0021】
第1FG素子12、第2FG素子13、第3FG素子14は、それぞれ、例えば、直径が数十ミクロン、長さ10mm程度の光ファイバー11を数10〜数100本程度、平行にシート状に並べて構成したものである。また、各FG素子12、13、14は、それぞれ、図4で後述するように、ガラス板に貼り付けて構成するとよい。このようにすることで、各FG素子12、13、14の取り扱いが容易になる。また、グレーティング10を容易に組み立てることができるので、製造しやすい。また図示では、各FG素子12、13、14は、接触して配置している場合を示しているが、それぞれ、素子平面の法線方向に距離を空けて配置してもよい。この場合には、各FG素子12、13、14の互いの距離は、パターン10aの投影に差支えない程度とする。
【0022】
第1FG素子12と第2FG素子13と第3FG素子14は、重ね合わせてグレーティング10を構成する。なお、ここでの重ね合わせは、各FG素子12、13、14の各素子平面がほぼ平行になるように重ね合わされている。言い換えれば、本実施の形態では、グレーティング10は、第1FG素子12、第2FG素子13、第3FG素子14の順に、各々の素子平面が平行になるように重ね合わされている。即ち、第1FG素子12と第2FG素子13は隣接している。また、第2FG素子13と第3FG素子14は隣接している。また、グレーティング10は、光束発生部5により発生されるレーザー光束L1を透過させるように構成されている。ここでは、レーザ光束L1は、第1FG素子12側から入射させる。言い換えれば、レーザ光束L1は、第1FG素子12、第2FG素子13、第3FG素子14の順に透過させる。レーザ光束L1は、典型的には、グレーティング10(第1FG素子12)の素子平面に対して垂直に入射させる。
【0023】
さらに、図3(b)に示すように、本実施の形態では、第1の方向v1と第2の方向v2がほぼ直交している。また、第3FG素子14は、第3の方向v3が、第1の方向v1から所定の角度θだけ素子平面と平行な面内で回転させて重ね合わされている。所定の角度θについては、図5を参照して後述する。
【0024】
また、図4に示すように、グレーティング10では、第3FG素子14は、素子平面と平行な面内で回転可能に構成するとよい。即ち、所定の角度θを、前記素子平面と平行な面内で回転させることで、自在に変更できるように構成されている。図示では、第1FG素子12、第2FG素子13、第3FG素子14は、それぞれ、ガラス板12a、13a、14aに貼り付けられている場合を示している。このようにすることで、前述したように、各FG素子12、13、14の取り扱いが容易になる。
【0025】
第3FG素子14の素子平面に平行な面内で回転は、方向制御手段としての回転装置16により行なう。回転装置16は、第3FG素子14を、素子平面に平行な面内で回転、及び固定できるように構成されている。即ち、回転装置16は、第3FG素子14を素子平面と平行な面内で任意の角度に回転し、前記角度で固定できるように構成される。なお、角度の固定は、例えば外筒16a側に、外筒16aの中心方向に取り付けた不図示のネジにより行なうようにするとよい。回転装置16は、同一平面で第3FG素子14を回転できるように構成されている。回転装置16は、外筒16aと内筒16bとを含んで構成される。そして、内筒16b側に第1FG素子12、第2FG素子13が、それぞれガラス板12a、12bを介して取り付けられ、外筒16a側に第3FG素子14が、ガラス板14aを介して取り付けられている。なお、図4では、第1FG素子12、第2FG素子13、第3FG素子14がよく見えるように、回転装置16の図中手前半分をカットして示している。
【0026】
このようにすることで、回転装置16の外筒16aを手動で回転させることで、グレーティング10は、第3FG素子14の第3の方向を、素子平面に平行な面内で任意の方向に設定できる。即ち、所定の角度θを自在に変更設定できる。このため、パターン10aの設定、パターン10aの変更が容易に行なえるので、簡便である。さらに、パターン10aの設定、変更が容易に行なえることで、装置の転用も可能である。
【0027】
また以上では、方向制御手段は、手動の場合で説明したが、自動であってもよい。自動の場合は、上述した構成に加え、回転装置16を回転駆動する不図示の駆動手段を備えるようにするとよい。また、方向制御手段は、回転装置16を用いる場合で説明したが、これに限られない、例えば回転ヘリコイドのように、内筒、外筒で構成され、外筒を回転させることで、第3FG素子14を素子平面と平行な面内で回転可能に構成したものでもよい。
【0028】
ここで、図5を参照して、所定の角度θについて説明する。まず所定の角度θを与えることによる、輝点の変化について説明する。(a)では、(b)に示すように、所定の角度θがθ1の場合で説明する。なお(a)は、(b)の図中奥側から手前にレーザー光束L1を透過させた場合に投影されるパターン10aの一部を示した図である。図示では、参考として、θ1は、10°程度で示してある。まず、所定の角度θが0°であったときに投影されるパターン10aの一部である輝点51、52、53、54、55に注目する。そして、第3FG素子14に所定の角度θ1を与えると、上記各輝点は、各輝点の生成方向である直線51aに対して、それぞれ角度θ1をなす直線51a’方向に回折して新たな輝点を投影する。さらに説明するならば、輝点51に注目すると、輝点51は、直線51a’方向に、回折して新たな輝点51’を投影する。
【0029】
これにより、所定の角度θによって輝点の回折方向が変わるので、θによっては、例えば平行であり、等間隔に配列された複数の輝線列(以下単に複数の輝線という)や、密な輝点アレイを投影することができる。言い換えれば、第3FG素子14に所定の角度θを調整することで、複数の輝線や、密な輝点アレイを容易に投影することができる。以下、所定の角度θを調整することで投影した輝点アレイの例を示す。
【0030】
図6、図7の模式図を参照して、所定の角度θによって投影されるパターン10aの例について説明する。図6(a)はθ=0°、図6(b)はθ=5°の場合を示した図であり、さらに図7(a)はθ=37°、図6(b)はθ=45°の場合を示した図である。また、上記各角度は厳密なものではなくおよその値である。
【0031】
図6(a)に示すように、θ=0°の場合には、パターン10aは、正方格子状の輝点アレイとなる。θ=90°の場合にも同じ輝点アレイとなる。また、第3FG素子14が無い場合、即ち第1FG素子12の第1の方向v1と第2FG素子13の第2の方向v2が直交している第1FG素子12と第2FG素子14だけの場合にも同じ輝点アレイとなる。
【0032】
図6(b)に示すように、θ=5°の場合には、パターン10aは、複数の輝線となる。この輝線は、複数の輝点が直線的に集合することで形成される。また、FG素子は、低次から高次の回折光に渡って回折効率が一定に近く、輝線は、複数の輝点が集合することで形成されているので、輝線の中央部の明るさが、中央部から輝線の端部方向にいっても変化しにくい。即ち、輝度が均一な輝線を投影できる。複数の輝線にする場合には、所定の角度θは、0.1〜10°、好ましくは1〜8°、最も好ましくは5°程度とするとよい。また、θ=85°の場合にも、同様な複数の輝線となる。但し、この場合には、投影されるパターン10aは、(b)を90°回転させたパターンとなる。
【0033】
以上で説明した場合以外でも、パターン10aを複数の輝線とすることができる。この場合には、例えば、第1の方向v1と第2の方向v2とのなす角を2θ’とする。そして、第3FG素子14は、第3の方向v3を第1の方向v1からθ’回転させて重ね合わせる。言い換えれば、第3の方向v3は、2θ’の2等分線方向となる。さらに、第1FG素子12の各光ファイバー11の軸線の間隔と、第2FG素子13の各光ファイバー11の軸線の間隔とを同じ間隔P1とする。そして、第3FG素子14の各光ファイバー11の軸線の間隔を、P1の1/2cosθ’倍した間隔P2とする。このようにすると、例えば、θ’<60°の場合、第1FG素子12、第2FG素子13の各光ファイバー11の軸線の間隔を光ファイバー11の直径とした場合には、これ以上各光ファイバー11の軸線の間隔を狭めることが出来ない。この場合には、第3FG素子14の各光ファイバー11は、第1FG素子12、第2FG素子13のものより細い光ファイバーを使うことになる。また各光ファイバー同士に隙間が空かないようにすることが好ましいが、空く場合には、各光ファイバー同士の隙間に例えば遮光物を入れるようにする。このようにすることで、パターン10aを複数の輝線とすることができる。
【0034】
図7(a)に示すように、θ=37°の場合には、パターン10aは、規則的であり、密な輝点アレイ(輝点同士の間隔が短い)、例えば0°のときと比べてより密な輝点アレイとなる。また、θ=53°の場合にも、同様な輝点アレイとなる。但し、この場合には、投影されるパターン10aは、(a)を90°回転させたパターンとなる。また、この角度では、パターン10a(輝点アレイ)に3:4:5の直角三角形を重ねることができる。またこのように、自然数比で表せる直角三角形を重ねることができる場合には同様なことが言える。例えば、5:12:13の直角三角形(θ=23°)の場合には、37°よりもさらに密な輝点アレイとなる。
【0035】
図7(b)に示すように、θ=45°の場合には、θ=37°の場合と同様に、パターン10aは、規則的であり、密な輝点アレイとなる。但し、パターン10aは、図中45°方向に延びる複数の輝線に近い輝点アレイとなる。
以下、パターン10aは、複数の輝線である場合(図6(b)の場合)で説明する。
【0036】
以上のように、パターン光投影装置1は、第1FG素子12と、第2FG素子13と、第3FG素子14とを含むグレーティング10を備えている。さらに、第1の方向v1と第2の方向v2が直交し、第3FG素子14は、第3の方向v3が、第1の方向v1から所定の角度θだけ素子平面と平行な面内で回転させて重ね合わされている。これにより、パターン光投影装置1は、レーザ光束L1を第1FG素子12と、第2FG素子13と、第3FG素子14を透過させることで、パターン10aを投影できるので、単純に構成できる。また、パターン光投影装置1は、重ね合わせた第1FG素子12と、第2FG素子13と、第3FG素子14とを含んで構成されたグレーティング10が光学系となるので、複雑な光学系を必要とすることなく、光学筐体を小型化できる。さらに、このように構成されているので、複数の輝線や、密な輝点アレイをパターン10aとして平面2に投影できる。特に輝度が均一な複数の輝線を投影できるので、下記のような装置へ応用した場合に優位性がある。
【0037】
さらに、以上で説明したパターン光投影装置1は、量産性が高く、広範囲に輝点アレイを発生できるので、複数の輝線や、輝点アレイの各々の輝点の移動を測定する装置例えば、物体の高さ分布を測定することにより、三次元形状を測定する測定装置、監視対象領域内に存在する人物や物体の監視や、人物の呼吸等の検出を行なうことで人物の状態を監視する監視装置等に用いた場合に有効である。
以下、実施例として、パターン光投影装置1を用いた、物体の高さ分布を測定することにより、三次元形状を測定する測定装置について説明する。
【0038】
図8は、本発明による第2の実施の形態である測定装置としての三次元形状測定装置110の概念的斜視図である。三次元形状測定装置110は、対象物の高さの分布を測定するように構成されたものである。即ち、前記高さの分布に基づいて対象物の三次元形状を測定する。
【0039】
図中物体101が、平面2上に載置されている。XY軸を平面2内に置くように、直交座標系XYZがとられており、対象物としての物体101はXY座標系の第1象限に置かれている。
【0040】
一方、図中Z軸上で平面2の上方には、パターン光投影装置1によりパターン光としてのパターン110aが投影された物体101を撮像する撮像装置111が配置されている。パターン110aは、図6(b)で前述したものと同様なもの、即ち、平行であり、等間隔に配置された複数の輝線である。撮像装置111の結像レンズ111aは、その光軸がZ軸に一致するように配置されている。結像レンズ111aが、平面2あるいは物体101の像を結像する撮像素子115の結像面115’(イメージプレーン)は、Z軸に直交する面である。結像面内115’にxy直交座標系をとり、Z軸が、xy座標系の原点を通るようにする。撮像装置111は、例えば複数の画素の配列された撮像素子を有するものであり、典型的にはCCDカメラである。なお撮像素子115の例としては、CCDの他にCMOS構造の素子が最近盛んに発表されており、それらも当然使用可能である。特にこれらの中には、素子自体にフレーム間差算や二値化の機能を備えたものがあり、これらの素子の使用は好適である。
【0041】
平面2から結像レンズ111aと等距離で、結像レンズ111aからY軸の負の方向に距離d(基線長d)だけ離れたところに、パターン光投影装置1が配置されている。物体101と平面2には、パターン光投影装置1によりパターン110a投影される。また、撮像素子115には、画像処理装置114が電気的に接続されている。画像処理装置114は、例えばパソコンに組み込むとよい。なお、画像処理装置114については後で詳述する。
【0042】
また、撮像装置111は、光束発生部5(図2参照)により発生されるレーザー光束L1の波長の周辺部以外の波長の光を減光するフィルタ111bを備えるとよい。フィルタ111bは、典型的には光学フィルタであり、結像レンズ111aの光軸上に配置するとよい。このようにすると、撮像装置111は、撮像素子115に受光する光のうち、パターン光投影装置1より投影された光の強度が相対的にあがるので、外乱光による影響を軽減できる。また、レーザー光束L1をパルス変調し、そのパルスにあわせて撮像素子15の撮像(露光)を行なうことにより、例えばレーザー光束の時間平均出力を上げることなく、外乱光の影響を軽減できる。これは、例えば対象物を人物とする場合には、該人物に対する影響を抑えることができる。
【0043】
ここで、三次元形状測定装置110の作用を説明する。パターン光投影装置1により平面2に投影されたパターン110aは、物体101が存在する部分では、物体101に遮られ平面2には到達しない。ここで物体101が存在しなければ、平面2上の点102aに投射されるべき輝線は、物体101上の点101aに投射される。輝線が点102aから点101aに移動したことにより、また結像レンズ111aとパターン光投影装置1とが距離d(基線長d)だけ離れているところから、結像面115’上では、点102a’(x,y)に結像すべきところが点101a’(x,y+δ)に結像する。即ち、物体101が存在しない時点と物体101が存在する時点とは、輝点がy軸方向に距離δだけ移動することになる。
【0044】
例えば、図9に示すように、撮像素子115により撮像されたパターン110aの画像は、高さのある物体101により、δだけy軸方向に移動することになる。
【0045】
画像処理装置114により、このδを計測することにより、物体101上の点101aの位置が三次元的に特定できる。即ち、点101aの高さがわかる。このように、ある点が、物体101が存在しなければ、結像面115’上に結像すべき点と、結像面115’上の実際の結像位置との差を測定することにより、物体101の三次元形状が計測できる。あるいは物体101の三次元座標が計測できる。ここで、輝線の対応関係が不明にならない程度に、パターン110aのピッチ、即ち輝線のピッチを細かくすれば、物体101の三次元形状はそれだけ詳細に計測できることになる。
【0046】
さらにパターン光投影装置1を用いることで、パターン110aを輝線とすることができるので、輝線の移動を測定することで、パターン110aを輝点とした場合に比べて、輝線の任意の点の移動を測定でき、輝線方向の連続的形状が認識できる。言い換えれば、図中X軸方向の測定の分解能を向上することができる。また、パターン光投影装置1は、輝線の投影を単純な構成で行なうことができるので、三次元形状計測装置110の構成を単純化できる。
【0047】
また、三次元形状計測装置110は、対象物が人物であり、その呼吸の測定に応用することもできる。言い換えれば、人物の呼吸を監視する監視装置に応用することもできる。
【0048】
図10は、対象物としての人物104の呼吸を測定する三次元形状計測装置110’の模式的斜視図である。図中ベッド106上に人物104が横たわって存在している。また、人物104の上には、さらに寝具103がかけられており、人物104の一部と、ベッド106の一部とを覆っている。
【0049】
一方、人物104の腹部周辺直上には、パターン光投影装置1によりパターン110a’が投影された人物104を撮像するための撮像手段としての撮像装置111が設置されている。また人物104のおよそ足部又は頭部上方には(図示は足部上方の場合)、パターン光投影装置1が設置され、人物104のおよそ腹部上の寝具103を中心に照明している。照明される範囲は、人物104の腹部、胸部、背部、および肩部が、就寝中に取りうる位置を網羅する範囲に設定するとよい。同様に、撮像装置111による撮影領域の範囲も設定するとよい。
【0050】
さらに、撮像装置111とパターン光投影装置1とは、撮像装置111とパターン光投影装置1を結ぶ軸と、ベッド106の中心線がおよそ平行になるように設置する。さらにパターン光投影装置1により投影されるパターン110a’の輝線の方向は、ベッド106の中心線と垂直方向とする。また、撮像装置111とパターン光投影装置1とは、ある程度離して設置するとよい。このようにすることで、前述の距離d(基線長d)が長くなるので、変化を敏感に検出できるようになる。撮像装置111とパターン光投影装置1との設置場所は、例えば天井に設置するとよい。このように設置することで、人物104の周期的動き例えば呼吸を敏感に検出することができる。また、本実施の形態では、撮像装置11と輝線投影装置10との設置場所は、天井としているが、例えばスタンドに取り付けてもよい。
【0051】
また、画像処理部114は、撮像素子115により得られた所定時間間隔の2フレームの画像の差分画像を生成するように構成するとよい。この場合には、画像処理部114は、撮像素子115の各画素毎の差を取ることにより差分画像を生成する。所定時間間隔とは、物体101の細かい周期的動き即ち人物104の呼吸を監視するのに十分な間隔であり、例えば2〜5フレーム/秒程度であるが、さらに速く例えば10フレーム/秒以上であってもよい。撮像装置111は、差分画像を生成することにより、例えば太陽光により、人物104以外の物による陰影が人物104にかかっていたり、外乱光による照明強度が、人物104の部分部分でばらつきがあったりしていても、そのような陰影やばらつきの影響を排除できる。
【0052】
また、差画像を生成する場合には、撮像装置111は、撮像素子115として動体検出素子を用いてもよい。動体検出素子は、例えば撮像素子115の各画素で、フレームの画素値を記憶し、1フレームずれた最新のフレームの画素値との差を取り、その差を閾値処理して値を出力する機能(2値化処理機能)を持った素子で、信号伝達過程でのノイズの影響をうけることなく、輝線が移動した差分画像を生成することができる。
【0053】
さらに差画像を生成する場合は、撮像装置111に、例えば上述の動体検出素子を用いた場合でも、レーザー光L1は、低出力レーザーでもよく、また、継続的に照射してもよい。即ち、パターン110aを継続的に照射してもよい。
【0054】
三次元形状測定装置110’は、撮像装置111より画像又は差画像を入力し、入力した画像の2フレーム間の輝点の移動から人物104の形状変化を抽出する。これにより、監視装置101は、この形状変化を追うことで、人物104の呼吸や動きの検出をすることができる。また、差画像を用いた場合、入力する差画像上には、移動した輝点のみが残っているので、処理が簡便になる。人物104の呼吸や動きの検出は、輝線の移動から輝線移動量を算出して、この変化から検出してもよいし、また輝線移動量から三角法により人物104までの距離変化から検出してもよい。また移動した輝線の画素値の累積を算出して、この変化から検出してもよい。
【0055】
以上では、三次元形状測定装置110’は、ベッド106上の人物104の動きを検出する場合について説明したが、これに限定されて適用されるものではなく、例えばトイレや浴室等、対象とする領域が限定される場合に、特に有効に働くものである。
【0056】
また三次元形状測定装置110’は、単純な画像処理で、人物104の姿勢や外乱光に対して影響を受けることなく人物の呼吸を確実に検出することができる。これにより、三次元形状測定装置110’は、高齢者や病人が危機的状況に陥った場合に、迅速な救急対応の実現が可能になる。
【0057】
【発明の効果】
以上のように、本発明によれば、複数の光ファイバーを各光ファイバーの軸線を第1の方向に向けて平行に且つ平面状に並べた第1のファイバーグレーティング素子と、複数の光ファイバーを各光ファイバーの軸線を第1の方向と異なる第2の方向に向けて平行に且つ平面状に並べた第2のファイバーグレーティング素子と、複数の光ファイバーを各光ファイバーの軸線を第1、第2の方向と異なる第3の方向に向けて平行に且つ平面状に並べた第3のファイバーグレーティング素子とを備え、前記第1のファイバーグレーティング素子と第2のファイバーグレーティング素子と第3のファイバーグレーティング素子は、重ね合わせてファイバーグレーティングを構成し、該ファイバーグレーティングには、可干渉性の光束を透過させるように構成されているので、単純な構成で輝線又は輝点アレイを投影できるパターン光投影装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態であるパターン光投影装置の模式的斜視図である。
【図2】本発明の第1の実施の形態であるパターン光投影装置を説明する模式的斜視図である。
【図3】本発明の第1の実施の形態であるグレーティングについて説明する、(a)斜視図、(b)正面図である。
【図4】本発明の第1の実施の形態であるグレーティングで、方向制御手段を備える場合について説明する斜視図である。
【図5】本発明の第1の実施の形態であるグレーティングにより投影されるパターンについて説明する、(a)パターンの模式図、(b)グレーティングの正面図である。
【図6】本発明の第1の実施の形態であるグレーティングにより投影されるパターンの例を示す図であり、(a)所定の角度θが0°の場合を示す模式的平面図、(b)所定の角度θが5°の場合を示す模式的平面図である。
【図7】図6と同様なパターンの例を示す図であり、(a)所定の角度θが37°の場合を示す模式的平面図、(b)所定の角度θが45°の場合を示す模式的平面図である。
【図8】本発明の第2の実施の形態である三次元形状測定装置の概念的斜視図である。
【図9】図8の場合のパターンの画像を説明する線図である。
【図10】図8の三次元形状測定装置を人物の呼吸を監視する監視装置に応用した場合を説明する模式的斜視図である。
【図11】従来のパターン光投影装置について説明する模式的斜視図である。
【符号の説明】
1 パターン光投影装置
2 平面
5 光束発生部
10 グレーティング
10a パターン
11 光ファイバー
12 第1FG素子
13 第2FG素子
14 第3FG素子
16 回転装置
101 物体(対象物)
110 三次元形状測定装置
111 撮像装置
115 撮像素子
Claims (6)
- 複数の光ファイバーを各光ファイバーの軸線を第1の方向に向けて平行に且つ平面状に並べた第1のファイバーグレーティング素子と;
複数の光ファイバーを各光ファイバーの軸線を第1の方向と異なる第2の方向に向けて平行に且つ平面状に並べた第2のファイバーグレーティング素子と;
複数の光ファイバーを各光ファイバーの軸線を第1、第2の方向と異なる第3の方向に向けて平行に且つ平面状に並べた第3のファイバーグレーティング素子とを備え;
前記第1のファイバーグレーティング素子と第2のファイバーグレーティング素子と第3のファイバーグレーティング素子は、重ね合わせてファイバーグレーティングを構成し、該ファイバーグレーティングには、可干渉性の光束を透過させるように構成された;
パターン光投影装置。 - 前記第1のファイバーグレーティング素子と、前記第2のファイバーグレーティング素子と、前記第3のファイバーグレーティング素子とは、前記各軸線の間隔が等しく、且つ前記間隔は、前記第1、第2、第3ファイバーグレーティング素子間で等しい;
請求項1に記載のパターン光投影装置。 - 前記第1の方向と第2の方向がほぼ直交している、請求項1又は請求項2に記載のパターン光投影装置。
- 前記第3のファイバーグレーティング素子は、前記第3の方向が、前記第1の方向から所定の角度だけ前記平面と平行な面内で回転させて重ね合わされている、請求項3に記載のパターン光投影装置。
- 前記第3のファイバーグレーティング素子は、前記平面内で回転可能に構成された;
請求項1乃至請求項3のいずれか1項に記載のパターン光投影装置。 - 請求項1乃至請求項5のいずれか1項に記載のパターン光投影装置と;
前記パターン光投影装置によりパターン光が投影された対象物を撮像する撮像装置とを備える;
測定装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002195169A JP3977172B2 (ja) | 2002-07-03 | 2002-07-03 | パターン光投影装置及び測定装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002195169A JP3977172B2 (ja) | 2002-07-03 | 2002-07-03 | パターン光投影装置及び測定装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004037871A true JP2004037871A (ja) | 2004-02-05 |
JP3977172B2 JP3977172B2 (ja) | 2007-09-19 |
Family
ID=31703668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002195169A Expired - Fee Related JP3977172B2 (ja) | 2002-07-03 | 2002-07-03 | パターン光投影装置及び測定装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3977172B2 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012058729A (ja) * | 2010-08-10 | 2012-03-22 | Asahi Glass Co Ltd | 回折光学素子及び計測装置 |
CN104101383A (zh) * | 2014-07-25 | 2014-10-15 | 宁波金信通讯技术有限公司 | 一种基于光纤光栅传感器的智能床垫 |
CN104905584A (zh) * | 2015-06-25 | 2015-09-16 | 苏州安莱光电科技有限公司 | 一种非侵入式坐姿监测的智能坐垫 |
WO2018049842A1 (zh) * | 2016-09-13 | 2018-03-22 | 深圳市迈迪加科技发展有限公司 | 睡眠控制系统、睡眠设备的控制方法及处理设备 |
CN109634037A (zh) * | 2018-11-19 | 2019-04-16 | 深圳阜时科技有限公司 | 一种光束调制元件、光学投影模组、感测装置及设备 |
-
2002
- 2002-07-03 JP JP2002195169A patent/JP3977172B2/ja not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012058729A (ja) * | 2010-08-10 | 2012-03-22 | Asahi Glass Co Ltd | 回折光学素子及び計測装置 |
CN104101383A (zh) * | 2014-07-25 | 2014-10-15 | 宁波金信通讯技术有限公司 | 一种基于光纤光栅传感器的智能床垫 |
CN104101383B (zh) * | 2014-07-25 | 2017-01-11 | 宁波金信通讯技术有限公司 | 一种基于光纤光栅传感器的智能床垫 |
CN104905584A (zh) * | 2015-06-25 | 2015-09-16 | 苏州安莱光电科技有限公司 | 一种非侵入式坐姿监测的智能坐垫 |
WO2018049842A1 (zh) * | 2016-09-13 | 2018-03-22 | 深圳市迈迪加科技发展有限公司 | 睡眠控制系统、睡眠设备的控制方法及处理设备 |
CN109634037A (zh) * | 2018-11-19 | 2019-04-16 | 深圳阜时科技有限公司 | 一种光束调制元件、光学投影模组、感测装置及设备 |
CN109634037B (zh) * | 2018-11-19 | 2024-02-13 | 深圳阜时科技有限公司 | 一种光束调制元件、光学投影模组、感测装置及设备 |
Also Published As
Publication number | Publication date |
---|---|
JP3977172B2 (ja) | 2007-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6862097B2 (en) | Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus | |
JP2006514739A5 (ja) | ||
JP2002122417A (ja) | 三次元形状測定装置 | |
JP2006514739A (ja) | 歯科用レーザデジタイザシステム | |
WO2004109228A1 (ja) | 三次元形状測定装置 | |
JPH1043179A (ja) | 断層撮影−合成撮影用x線診断装置 | |
US9420235B2 (en) | Measuring system for a 3D object | |
JP2012518791A (ja) | コヒーレント照明イメージング・システムにおけるスペックル雑音の低減 | |
TWI740237B (zh) | 光學相位輪廓測定系統 | |
KR20130113453A (ko) | 표면을 이미지화하기 위한 이미징 유닛을 구비한 치과용 x-선 장치, 그리고 환자의 x-선 사진을 생성하기 위한 방법 | |
JP3677444B2 (ja) | 三次元形状測定装置 | |
JPH06123610A (ja) | 対物の光学的測定方法及び測定装置 | |
JP2004096457A (ja) | 領域監視装置 | |
JP3977172B2 (ja) | パターン光投影装置及び測定装置 | |
JP2008058248A (ja) | 回折光検出装置および検査システム | |
JP2004097302A (ja) | 空間内監視装置 | |
JP4464137B2 (ja) | 光学式2次元および3次元形状測定システム | |
JP6152395B2 (ja) | 光学検出システム | |
JPH05306915A (ja) | 形状測定方法およびその装置 | |
JP2004037274A (ja) | 高さ計測装置及び監視装置 | |
JP4365548B2 (ja) | 輝点アレイ発生装置及び監視装置 | |
JP2012008078A (ja) | 欠陥検査装置 | |
JP2007264402A (ja) | 全方位視覚センサ | |
JP2004093376A (ja) | 高さ計測装置及び監視装置 | |
JPWO2018143074A1 (ja) | 3次元情報検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070403 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070410 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070518 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070612 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070620 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3977172 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100629 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110629 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110629 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120629 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130629 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140629 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |