JP2005331413A - 距離画像取得システム - Google Patents

距離画像取得システム Download PDF

Info

Publication number
JP2005331413A
JP2005331413A JP2004150972A JP2004150972A JP2005331413A JP 2005331413 A JP2005331413 A JP 2005331413A JP 2004150972 A JP2004150972 A JP 2004150972A JP 2004150972 A JP2004150972 A JP 2004150972A JP 2005331413 A JP2005331413 A JP 2005331413A
Authority
JP
Japan
Prior art keywords
light
light source
distance image
image acquisition
acquisition system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004150972A
Other languages
English (en)
Inventor
Yasuji Seko
保次 瀬古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2004150972A priority Critical patent/JP2005331413A/ja
Publication of JP2005331413A publication Critical patent/JP2005331413A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Studio Devices (AREA)

Abstract

【課題】 三次元画像を好適に取得することができる距離画像取得システムを提供する。
【解決手段】 距離画像取得システムは、光源モジュール3とカメラ装置19とを備える。光源モジュール3は、レーザ光を放射する光源、およびこの光源から放射されたレーザ光を異なる光路を通過させることにより同心円的な形状の干渉模様を対象物に形成する光学レンズを有する。カメラ装置19はこの干渉模様を撮影する。光源モジュールの発光に同期して前記カメラ装置が前記干渉模様を撮影し、この撮影情報に基づいて距離画像を取得する。光源モジュール3は複数個備えることができる。また、光源モジュール3はカメラ装置19にフラッシュ装置のように搭載することができる。カメラ装置19は例えばデジタルカメラとされる。
【選択図】 図9

Description

本発明は、同心円干渉模様を形成するのに適したレンズを用いて、物体の距離画像、即ち三次元画像を取得する距離画像取得システムに関するものである。
三次元画像の取得方法は大別すると能動型と受動型に分けられる。能動型の代表的な技術に光切断法がある。対象物にスリット光を走査させながらカメラで順次撮影し、三角測量の原理で三次元画像を取得する方法である。しかし、この方法は各時刻毎に逐次カメラで撮影し、スリット光が走査し終えるまでこれを繰り返さなければならないので、時間がかかるという欠点がある。また、スリット光の走査にはポリゴンミラーなどを使用するので、消費電力が大きく携帯には向かないと言う欠点もある。スリット光の操作に時間がかかるという欠点を改良する方法として、輝度を変化させたパターン光をプロジェクターなどで対象物に投影し、その輝度情報から何番目のパターンであるかを判断し、三角測量を行う空間コード化法などが提案されているが、輝度を多値に変化させたために対象物の反射率などによる輝度変化がエラーを起こしやすいという欠点がある。また、プロジェクターはサイズが大きい、消費電力が大きいなどの問題がある。また、対象物の遠近によるパターン光の焦点ボケがエラーを誘発しやすいという欠点もある。これは同時に、対象物が比較的速く動いている場合にはパターン光が焦点ボケを起こし、正常に三次元画像を取得できないという問題も起こしている。
受動型の代表的な技術として、2台のカメラを用いたステレオ視により対象物の特徴点を照合して三角測量の原理で三次元画像を取得する方法がある。この方法では2台のカメラが異なる方向から対象物を捉えるために、特徴点の形状が異なったり、輝度情報が異なるために、特徴点照合のエラーを起こしやすいという欠点がある。また、カメラを2台利用するためにコストが高くなると言う問題もある。
一方、発光体の位置計測を高精度に行う方法として光干渉法が知られている。代表的な光干渉法として、レーザ光源から出た光をビームスプリッターなどを用いて2つに分割し、その一方を対象物に照射し、他方を参照光としてミラーに照射して元の光路に戻し、対象物からの反射光と参照光とを重ね合わせて干渉させる方法がある。この方法は、波長以下の分解能で位置や変位を計測できるという特徴がある。干渉を用いた測定装置は、例えば特許文献1に記載されている。しかし、この方法ではビームスプリッターや反射ミラーなどの光学部品が必要で、部品数がおおく、かつコストが高いという問題がある。また、これらの部品の組立には高い位置精度が要求され、手間がかかりコストが高いという問題がある。また、自動焦点機構などが必要で、高速計測が困難などの欠点がある。さらに、レーザ光はスポット状あるいは線状に成形されて対象物に照射されるので、安全面での注意が必要である。
特開2000−171209公報
従来、三次元画像の取得において、時間がかかる、消費電力が大きい、あるいは輝度情報の変化が特徴点の照合エラーを起こしやすいなどの問題があった。また、対象物の遠近により投影パターンが焦点ボケする、移動する対象物に対して距離画像を取得できない、などの問題があった。
本発明の目的は、従来の問題点を解決し、三次元画像を好適に取得することができる距離画像取得システムを提供することにある。
上記目的は、レーザ光を放射する光源および前記光源から放射されたレーザ光を光軸上平面において仮想的に2つ以上の光源から放出された光であるように対象物に投影し同心円状の干渉模様を形成する光学レンズを有する光源モジュールと、前記干渉模様を撮影するカメラ装置とを備え、前記光源モジュールの発光により形成される前記干渉模様を前記カメラ装置が撮影し、この撮影情報に基づいて距離画像を取得する距離画像取得システムにより、達成される。
ここで、前記光源モジュールを複数個備え、前記各光源モジュールの発光により形成された前記各干渉模様を前記カメラ装置が撮影し、この複数の撮影情報に基づいて距離画像を取得することができる。前記カメラ装置は、イメージセンサーを搭載したデジタルカメラであり、前記光源モジュールの発光に同期して前記カメラ装置が前記各干渉模様を撮影することができ、この場合、前記イメージセンサーは、光の三原色を受光する素子および赤外光を受光する素子を備えることができる。また、カメラ装置は、イメージセンサーを搭載したビデオカメラとすることができる。この場合、前記光源モジュールは、ビデオカメラの撮影の1フレーム分に相当する時間だけ発光することが好ましい。前記ビデオカメラで撮影した画像から、移動体の距離情報を取得し、前記移動体のの位置を検出し、また前記移動体がある距離より近づいた場合にアラームを発することができる。
前記光源モジュールは前記カメラ装置にフラッシュ装置のように搭載することができる。前記光源モジュールを搭載した前記カメラ装置はロボットの目として用いることができる。前記カメラ装置は、前記対象物との距離に基づいてその背景に相当する領域を除いた領域のみを画像として抽出することができる。
また、前記光源モジュールは赤外レーザ光を放射し、前記赤外レーザ光で形成された前記同心円状の干渉模様を撮影するカメラ装置は可視光などの光を遮断し前記赤外レーザ光を透過するフィルターを有する。前記光源モジュールは、半導体レーザおよびリング形状レンズを備えて構成することができる。また、前記撮影情報に基づいて距離画像を取得するための演算装置が備えられる。前記演算装置はコンピュータ(PC)とすることができる。演算装置は前記カメラ装置内に設けることができる。
本発明に係るカメラ装置は、対象物に投影された同心円状の干渉模様を撮影するイメージセンサーと、前記イメージセンサーから得られた撮影情報に基づいて前記対象物までの距離情報を演算する演算装置とを備える。さらに、このカメラ装置は、レーザ光を放射する光源および前記光源から放射されたレーザ光を光軸上平面において仮想的に2つ以上の光源から放出された光であるように対象物に投影し同心円状の干渉模様を形成する光学レンズを有する光源モジュールを搭載することができる。前記演算装置は、カメラ装置に内蔵されたコンピュータとすることができる。
前記同心円状の干渉模様とは、ほぼ同心円の干渉模様を含み、さらには円や楕円だけではなくこれに類する形状の干渉模様を含むものである。
本発明によれば、半導体レーザ光源とレンズにより、光の同心円干渉模様を形成し、これを対象物に投影してカメラで撮影するだけで、対象物の三次元画像が取得できるので、単純な構成、低コスト、小型で三次元画像を取得できる効果がある。
本発明では、干渉模様を対象物に投影するが、干渉模様は距離の遠近に関わらず常にクリアーな像が形成されるので、検出や画像処理を行いやすいという利点がある。また、本発明では、干渉模様を対象物に投影するが、干渉模様は距離の遠近に関わらず常にクリアーな像が形成されるので、焦点合わせが不要であり、低コスト、高速に距離画像を取得できる効果がある。
本発明では、カメラが一つであるので、距離画像を取得する際に、対象物の特徴点照合などが不要で、誤認識が少なく、信頼性高く距離画像を取得できる効果がある。本発明では、対象物をモニターで見ながら、その距離に応じてコマンドを実行させることができる。コマンドとしては、例えば、人が家に近づいた場合に、アラームが鳴る、ビデオを録画する、などの操作を実行させることができる。
以下、本発明に係る距離画像取得システムの実施例を説明するが、その前に、本距離画像取得システムに用いる光学レンズ系および光源モジュールについて説明する。
図1(a)、(b)は、光学レンズの上側半分と下側半分を通過した光が干渉を起こす原理を説明するための図である。図1(a)は光学レンズの光軸を通過する平面におけるレンズ断面を示し、図1(b)は円錐形状の光学レンズの断面図と正面図を示している。図示のように、光学レンズ1−1は光入射面が円錐形状であり、光出射面は平面で構成されている。光学レンズ1−1uは、レンズ1−1を光源方向から見た正面図である。このように、光学レンズ1−1は、光軸上あるいは光軸近傍に形状の特異点があるレンズ面を有している。
レーザ光源2から放射された光は光学レンズ1−1に入射する。光軸より上側を通過した光は対象物10に光線軌跡2−1−1を経由して照射される。同様に、光軸より下側を通過した光は対象物10に光線軌跡2−2−1を経由して照射される。対象物10上の同一点(干渉点)5に到達した光は、同一光源より発されたレーザ光であるので干渉する。このように、一つの光源から放出されたレーザ光は光軸上平面において仮想的に2点の光源2−1、2−2から放出されたレーザ光であるように、対象物に投影される。
いま、光源2から干渉点5に至る光路2−1−1と光路2−2−1の光路長を各々L1、L2とし、その光路差をΔLとし、また、光路2−1−1と光路2−2−1を通って干渉点5に到達した光の強度は同じとすると、干渉点5における光の電界強度Iは光路長L1、L2と波長λとの関数になっており、以下の式で表される。
E=exp(2πL1/λ*i)+exp(2πL2/λ*i)
=2cos(π*ΔL/λ)*exp(iπ(L1+L2)/λ) 式(1)
ここで、iは虚数単位、λはレーザ光の波長である。また、光路長は空気とレンズの屈折率を考慮した値となる。ここで、光の強度Iは電界強度の2乗で表されるので、
I=|E| 式(2)
となる。
この式を応用して、コンピュータにより光干渉をシミュレーションすることができる。
光学レンズ1−1は光軸対称の形状を有しているので、光軸を中心とした同心円の干渉模様が形成されることが予想された。円錐レンズを用いて実際に干渉模様が形成されるかどうかを調べた。その結果を図2に示す。図2は、CCDに直接干渉模様を投影して撮影したときの干渉模様を示す図である。このとき、CCDサイズは約12mm×10mmで、レンズからCCDの距離は60cmとした。円錐レンズの形状はレンズ径Φ16mm、円錐部の高さ1.5mm、円錐高さを含む全体の厚さ5mmとした。円錐レンズの頂上とレーザ光源の距離は1〜2mm程度とした。その結果、図2に示すような同心円が実際に形成できることが確認できた。ここで、円錐レンズはレーザ光を対象物上で重ね合わせる働きをしている。
図3(a)、(b)は、レンズの上半分を通過した光と下半分を通過した光が同心円干渉模様を形成する光学レンズ系の例を示す図である。
本例では、図3(a)に示すように、光軸に窪みのある光軸対象のリング形状レンズ1−3を用いる。図3(b)において、レンズ1−3はレンズの断面図を示し、レンズ1−3uはレンズを光源方向から見た正面図を示すものである。ここで、レンズ外径は3mmとした。光軸上の平面におけるレンズの入射面はx=0.5*(y―1.5)1.5(単位はmm)の非球面で構成されている。ここで、xは光軸で光の進行方向を正とし、yは光軸に垂直な半径方向の軸である。レンズ1−3の光出射面は平面とした。レンズ素材の屈折率は1.51とした。
レーザ光源2から放射された光はコリメータレンズ1cを介して光学レンズ1−3に入射する。光軸より上側を通過した光は対象物10に光線軌跡2−3−1を経由して照射される。同様に、光軸より下側を通過した光は対象物10に光線軌跡2−3−2を経由して照射される。対象物10上の同一点(干渉点)5に到達した光は、同一光源より発されたレーザ光であるので干渉する。このように、一つの光源から放出されたレーザ光は光軸上平面において仮想的に2点の光源2−1、2−2から放出されたレーザ光であるように、対象物に投影される。本例では、点光源の光をコリメータレンズを用いて平行光とし、これを上記レンズに入射させているが、平行光は、無限遠の光源と考えることができ、この無限遠の光源を上記レンズにより、仮想的に2点の光源としている。
このレンズ1−3に半導体レーザ2から出射した光をコリメータレンズ1cで平行光として入射させた場合にどのような干渉模様が形成されるかをシミュレーションにより調べた。半導体レーザの光は一般にガウシアン分布の強度分布を持つので、ここではレンズ外径3mmの外径部を通過する光の強度は、レンズ中心部(光軸)を通過する光の強度の3.4%にまで減少する、としてシミュレーションを行った。その結果、4m先の対象物に約直径4mの同心円干渉模様が形成されることが分かった。その干渉パタンの一部分を図4に示す。図4には円中心から1000mm〜1010mm離れた位置の同心円干渉模様が示されている。このグラフでは、ちょうど1.0mmピッチで同心円ができることが確認できる。
図5(a)、(b)は、レンズの上半分を通過した光同士、あるいは下半分を通過した光同士が干渉し、同心円干渉模様を形成する光学レンズ系の例を示す図である。
本例では、図5(a)に示すように、光軸中心付近のインナーレンズ1−4−inとその外側を取り囲むアウターレンズ1−4−outで構成されるレンズ1−4を用いる。図5(b)において、レンズ1−4はレンズの断面図を示し、レンズ1−4uはレンズを光源方向から見た正面図を示すものである。インナーレンズの光入射面はその断面形状を二次曲線(放物曲線)面x=0.6*y*y(単位はmm)とした。ここで、xは光軸で光の進行方向を正とし、yはこれに垂直な方向とした。インナーレンズ1−4−inのレンズ径は2.0mmとした。アウターレンズ1−4−outの光入射面はn=1.52のn次曲線面x=1.4*(y−3)^1.52とした(記号^は階乗を表す)。アウターレンズのレンズ径は3mmとした。この式はアウターレンズの非球面がx−y平面においてy=3を中心としたn次曲線であることを示しており、これは最外周部を通過する光はレンズを直進して通過し、屈折せずに進むことを示している。レンズの屈折率は1.51とした。
このレンズを用いて、3m先に投影される光強度分布をシミュレーションにより調べた。本レンズにおいては、インナーレンズを通過した光とアウターレンズを通過した光が干渉するので、各々のレンズを通過して対象物に投影される光の強度が同程度であることが望まれる。なぜならば、干渉により光は強めあったり、弱めあったりする訳であるが、光強度が同じであれば、完全に打ち消しあった光強度0の暗点と完全に強めあった光強度が2倍の明点が交互に発生するので、光強度のコントラストが明瞭となるという特徴がある。
図6は、投影面におけるインナーレンズを通過した光とアウターレンズを通過した光の強度を示すグラフである。図において縦軸は光強度で横軸はy軸方向(投影面)の位置(mm)であり、このグラフから3m以上に光が広がっていることが分かる。インナーレンズとアウターレンズを通過した光は共に光強度4〜6の間にあり、だいたい同じような光強度にあることが分かった。光干渉により十分に明暗のコントラストが取れることが判明した。
図7は、上記光学レンズ系を用いて構成した光源モジュールの一例を示す図である。本例の光源モジュールは、半導体レーザ光源と同心円干渉模様を形成するレンズとを組み合わせたものである。このモジュールを用いて同心円の間隔が等間隔である同心円の形成する。図7に示すように、光源モジュール3は波長850nmの半導体レーザ2と同心円干渉模様を形成するリング形状レンズ1−3とで構成した。レンズ外径は6mmとした。光軸を通る平面によるレンズ入射面の断面はx=0.3*(y―1.5)^1.55(単位はmm)の非球面で構成した。ここで、xは光軸で光の進行方向を正とし、yは光軸に垂直な半径方向の軸である。レンズ1−3の光出射面は曲率半径R=−62mmの凹面の球面とした。レンズ材質の屈折率は1.51で、光軸上のレンズ厚さは3mmとした。このレンズ1−3に半導体レーザ2から出射した光をコリメータレンズ1cで平行光として入射させた。
レンズ出射面から投影平面までの距離を3mとした場合に、投影平面に形成される同心円干渉模様は円中心から外周部に至るまで、そのピッチが全て0.85〜0.86mmになることがシミュレーション結果から分かった。これを図8(a)、(b)に示す。即ち、光源の光軸と平面が垂直であれば、同心円干渉模様のピッチは平面内のどこでもほぼ同じになることが判明した。また、このピッチは距離に比例することも分かった。従って、検出装置が検出した同心円の曲率から同心円中心を算出でき、次に、同心円ピッチから、光源モジュールまでの光軸上の距離を計算することができることが確認できた。
図9は、本発明に係る距離画像取得システムの一実施例を示す図である。ここでは、図7で示した光源モジュールを用いて、対象物の三次元画像を取得する方法について説明する。本実施例では、光源モジュール3をカメラ装置(デジタルカメラ)19のフラッシュとして登載した。この光源モジュール3をフラッシュとして使用して、対象物11に同心円干渉模様を投影した瞬間にデジタルカメラ19で画像を撮影した。すなわち、光源モジュール3の発光に同期してデジタルカメラ19が干渉模様を撮影するようにされる。対象物11は図9に示したような三角形の大きな箱で、同心円干渉模様の全体がこの箱に投影された。従って、カメラが撮影した画像の同心円模様はすべて同心円中心から何番目の円であるかを読み取ることができた。さらに、画像の同心円模様の光強度は同心円中心からコサイン(COS)の二乗曲線で周期的に変化していたので、この周期関数の位相情報も精度よく読み撮ることができた。例えば、ある画素の干渉模様の光強度がピーク値の1/2であれば、位相はπ/4か3π/4であり(位相0とπの点が光強度1で位相π/2と3π/2の点が光強度0である)、隣りの画素の光強度がこれよりも下がっているか上がっているかにより、π/4か3π/4かが決定できる。これら、同心円の番号と、その中での位相情報から、画像の各画素の距離を計算することができたので、その方法を図10を用いて説明する。
上記の同心円模様のある部分を撮影したカメラの画素を点Piとし、このPiに対応する対象物11上の実際の点をPする。点Piはそれが存在する同心円の番号と位相から、光源モジュールを頂点とする下記の円錐を決定することができる。この円錐をCpとする。
y^2+z^2=(ax)^2 式(3)
ここで、xは光源モジュールから同心円中心までの距離で、y軸z軸はxに垂直な平面を構成する直交軸である。aは係数である。この式は、距離xに比例して円の半径が変化することを表しており、円錐を規定している。この円錐上に対象物上の点Pが存在する。
点Pは、点Pを撮影したカメラ装置19内のイメージセンサー41の画素位置Piで決定される直線Lの上にも存在する。直線Lは
Figure 2005331413
で表される。ただし、画素位置Piの三次元座標が(xpi、ypi、zpi)である。また、カメラのレンズの主点の三次元位置が(xl、yl、zl)である。従って、mlが判明すれは、点Pの座標(x、y、z)が判明する。式(4)を式(3)に代入することによりmlの解が得られる。mlは一般には2次方程式の解であるので、2つ存在するが、正であることと、カメラからの距離が大体1m〜10m程度の範囲であることを入れると一つの解が得られる。以上の手順で、演算装置42により演算し、対象物11の三次元画像を取得することができた。このように、距離情報を含む距離画像をカメラ装置による上記干渉模様の撮影情報から得ることができる。ここで、カメラ装置19はコンピュータ内蔵のディジタルカメラとすることができる。この場合、コンピュータは演算装置42としても機能させることができる。また、演算装置はカメラ装置19に外付けされるものでもよい。例えば、カメラ装置19に接続したコンピュータ(PC)に演算装置42の機能を持たせてもよい。また、前記光源モジュールが赤外レーザ光を放射するものである場合、赤外レーザ光で形成された同心円状の干渉模様を撮影するカメラ装置は、可視光などの光を遮断し赤外レーザ光を透過するフィルターを有する。
図11は、本発明に係る距離画像取得システムの他の実施例を示す図である。本実施例では、図11に示すように、対象物11に段差があり、カメラが撮影した画像は同心円模様が飛び飛びになり、その番号を連続的に数えられない場合がある。本実施例は、このような場合の距離画像の取得方法を与える。
図11に示すように、同心円を投影した対象物11は上下2段に積まれた箱である。上の箱は下の箱より奥に引っ込んでおり、大きな段差ができていた。カメラ19はその段差部分より下方にあるために、段差部分はカメラからは見えない位置にあった。即ち、オクルージョン(隠れ)が発生していたので、カメラ19ではその段差部分は撮影できなかった。同心円干渉模様は図11に示すように投影されたが、カメラ19からは同心円中心を撮影できなかったので、カメラの撮影した画像からは同心円の番号を数えることができず、実施例5で行ったような方法では、距離画像を取得できないことが分かった。
そこで、図12に示すように、光源モジュール3aと3bを2個利用して、同心円干渉模様AとBの2個を投影した。同一の対象物に対して、異なる同心円干渉模様の画像を得ることができた。この各々の画像から、カメラのイメージセンサーの画素位置Piに対して、同心円Aと同心円Bの各々の位相情報pa、pbを得ることができた。また、点Pは同心円Aと同心円Bのna番目とnb番目の円であると仮定すると(na,nbは正の整数)、次式が得られる。
y^2+z^2=(a*(na+pa/2π)*x)^2 式(5)
(y−yb)^2+z^2=(b*(nb+pb/2π)*x)^2 式(6)
ここで、a,bは同心円AとBのピッチ間隔を表す係数である。光源モジュールyaのy座標はゼロであり、光源モジュール3bのy座標はybである。光源モジュール3bは、光源モジュール3aに対して、x、z座標は同じで、y座標のみが異なった位置にある。上式(3)、(4)に式(2)を代入して、x、y、zをmlで置き換えると、上式(3)、(4)はmlの2次式となる。a,b,pa,pbは全て既知であるので、未知数は、ml,na,nbである。これら二つのmlの2次方程式において、na,nbを1,2,3,・・・と変化させて、mlの解を得る。na,nbの上限は同心円干渉模様の広がり角45度程度に対応する番号となる。例えば、同心円ピッチ1mmで同心円の最大半径が1mであるならば、na,nbの最大値は100となる。二つの方程式の解mlが同一になった点が求めている解である。
また、この解mlは、対象物の距離が数十cm〜数mの距離にある条件を入れることに狭められ、複数個の解が出た場合に、正しい解を抽出できる。
以上のように、2つの光源モジュールを用いて、2つの位相情報を得ることにより、対象物の表面に凹凸があり、同心円の番号が数えられない場合においても、対象物の三次元画像を得ることができた。撮影条件によっては、光源モジュールを2つを利用しても、求めている解mlが複数個存在する場合がある。この場合には、光源モジュールをもう一個増やし、3個とすることで、mlを絞りこむことができる。即ち、自然数na,nb,ncの3個を持つmlの2次方程式を解く問題に帰着し、3つの方程式の解mlが同一であれば、これが求めてほぼ対象物の位置となる。以上のようにして、対象物の距離画像を取得することができる。
また、対象物の表面の材質によって光反射率がことなり、位相情報を取得しにくい場合がある。その場合には、対象物に投影される干渉模様の光強度のピーク値と同じ強度の一様な参照光を投影し、干渉模様の光強度と参照光の光強度の比率から位相を算出することができる。例えば、ある画素の干渉模様の光強度が参照光の場合の1/2であれば、位相はπ/4か3π/4であり(位相0とπの点が光強度1で位相π/2と3π/2の点が光強度0である)、隣りの画素の光強度がこれよりも下がっているか上がっているかにより、π/4か3π/4かが決定できる。このように参照光を用いた場合には対象物が微少領域の激しい凹凸形状を有していても、簡易に位相情報がわかるという特徴がある。このように参照光を利用することにより、対象物の表面の反射率などに左右されずに、精度良く距離画像を取得することができる。
このような三次元画像取得技術では、対象物の特徴点抽出や、その照合(パターンマッチング)などは不要である。また、レーザ光源として半導体レーザを利用できるので消費電力は少ない。また、レーザ素子は通常そのサイズが直径Φ5.6mmやΦ3.3mmなどであり、光学レンズも同程度のサイズなので小型化が実現される。また、干渉模様なので焦点合わせが不要で常に焦点の合った鮮明な同心円模様が形成される特徴がある。
図13は、本発明に係る距離画像取得システムの他の実施例を説明するための図である。本実施例では、光の三原色RGBを受光する素子と赤外光Irを受光する素子で構成されたCCDイメージセンサーを搭載したデジタルカメラを用いて、普通画像と距離画像を取得する方法について説明する。
先ず、イメージセンサーにはRGBIrの4色を検出するCCDセンサーを用いた。図13に示すように、RGBIrの光を透過するフィルターが各素子に取り付けられており、各素子はRGBIrだけを検出する。この2×2に配列されがRGBIrの素子を1セットとして、CCDイメージセンサー全体に配置することにより、通常のRGBイメージの像を撮像することができると同時に、赤外光の同心円干渉模様を対象物に投影することにより、その三次元画像を取得することができる。
また、赤外光の同心円干渉模様を投影する光学モジュールを通常のカメラフラッシュのように利用することもできる。これにより普通のカメラのサイズでありながら、三次元画像を取得できる。
本実施例では、赤外光を検出する受光素子をRGBに追加したが、これを追加することなく通常のRGB受光素子を利用し、RGBの光を放出する光源モジュールを利用することができる。
本実施例では普通画像と距離画像を一つの距離画像把握システムが撮影する方法について述べたが、本システムをロボットに搭載すれば、対象物の検出や認識に利用することができる。本システムが取得する距離画像の情報にもとづいて、ロボットは対象物を避けて移動したり、対象物に接近したりすることが出来る。また、ロボットは対象物を手でつかんだり、足で蹴ったりすることが出来る。このように、本システムはロボットの目として利用できる。
図14(a)、(b)は、本発明に係る距離画像取得システムの他の実施例を説明するための図である。本実施例では、通常のカラー映像を送信するビデオカメラを用いて、カメラに写っている特定の領域のみを送信し、特定の領域以外の背景に当たる領域は送信しない実施例を説明する。ビデオカメラには通常のRGBカラー映像をインターネット経由で送信できるカメラを用いた。このビデオカメラは1秒間に30フレームを撮影することができる。このカメラには赤色の同心円干渉模様を形成する光源モジュールが設置してあり、1秒間に1回、1フレーム分に相当する時間だけ赤色光源を用いて同心円干渉模様のフラッシュを焚き、撮影する。このフレームの距離画像を取得し、撮影している画面の距離情報を取得する。本実施例では、図14(a)に示すように、カメラ映像の中央に人物がおり、この人物と同じ距離あるいは近い距離にある映像だけを抽出し、その映像だけをインターネット経由で相手に送信した。即ち、背景領域は相手に送信しない設定とした。これにより、図14(a)の映像が図14(b)の映像に変換され、背景像が消されて、人物像だけを相手側に送信することができた。
本発明は、普通のビデオカメラを利用し、これにフラッシュのように発光する光源モジュールを搭載するだけで、所望の映像領域を抽出できるシステムであり、極めて簡単な構成で、簡易に、小型で、低コストで、送りたい映像だけを抽出して相手側に送信するシステムを構築することができる。
図15は、本発明に係る距離画像取得システムの他の実施例を説明するための図である。本実施例では、ビデオカメラで撮影した映像から、移動体の距離情報を取得し、移動体がある距離より近づいた場合に、アラームを発する装置について説明する。図15に示すように、家の玄関20から外の状況を撮影するようにビデオカメラ19が設置されている。ビデオカメラ19は常に同じ場所を撮影している。本装置は、この撮影領域に移動物体が入ってきた場合に、その移動物体の距離を常に計測する。移動物体が、家20と公道との境界線21を越えて家20に近づいた場合に、警報アラームが室内に鳴るように設定した。警報が鳴る距離の設定においては、実際に人をカメラで撮影しモニターしながら、その距離を設定した。
本実施例では、移動体がある距離に近づいた場合に、室内に警報を鳴らすコマンドを実行したが、このコマンドは何でもよく、例えば、ビデオ録画を開始する、顔認識を行い家の人であればドアを開ける、などさまざまなことに応用できる。本実施例ではカメラが撮影した映像を見ながら、警報が鳴る距離を設定できるので、距離設定を精度良く、かつ簡易に行うことができる。
本発明は、同心円干渉模様を形成するのに適したレンズを用いて、物体の距離画像、即ち三次元画像を取得する距離画像取得システムに関するものであり、産業上の利用可能性を有している。
(a)、(b)は、光学レンズの上側半分と下側半分を通過した光が干渉を起こす原理を説明するための図である。 CCDに直接干渉模様を投影して撮影したときの干渉模様を示す図である。 (a)、(b)は、レンズの上半分を通過した光と下半分を通過した光が同心円干渉模様を形成する光学レンズ系の例を示す図である。 同心円干渉模様のシミュレーション結果を示す図である。 (a)、(b)は、レンズの上半分を通過した光同士、あるいは下半分を通過した光同士が干渉し、同心円干渉模様を形成する光学レンズ系の例を示す図である。 投影面におけるインナーレンズを通過した光とアウターレンズを通過した光の強度を示すグラフである。 上記光学レンズ系を用いて構成した光源モジュールの一例を示す図である。 同心円の干渉模様が等間隔になることを示すシミュレーション結果の図である。 本発明に係る距離画像取得システムの一実施例を示す図である。 距離画像を取得する方法を説明するための図である。 本発明に係る距離画像取得システムの他の実施例を示す図である。 同心円干渉模様を投影する光源モジュールを2個用いて距離画像を取得する方法を説明するための図である。 本発明に係る距離画像取得システムの他の実施例を説明するための図である。 (a)、(b)は、本発明に係る距離画像取得システムの他の実施例を説明するための図である。 本発明に係る距離画像取得システムの他の実施例を説明するための図である。
符号の説明
1 光学レンズ
2 レーザ光源
3 光源モジュール
5 同心円干渉模様
11 対象物
19 カメラ装置

Claims (19)

  1. レーザ光を放射する光源および前記光源から放射されたレーザ光を光軸上平面において仮想的に2つ以上の光源から放出された光であるように対象物に投影し同心円状の干渉模様を形成する光学レンズを有する光源モジュールと、前記干渉模様を撮影するカメラ装置とを備え、前記光源モジュールの発光により形成される前記干渉模様を前記カメラ装置が撮影し、この撮影情報に基づいて距離画像を取得することを特徴とする距離画像取得システム。
  2. 前記光源モジュールを複数個備え、前記各光源モジュールの発光により形成された前記各干渉模様を前記カメラ装置が撮影し、この複数の撮影情報に基づいて距離画像を取得することを特徴とする請求項1記載の距離画像取得システム。
  3. 前記カメラ装置が、イメージセンサーを搭載したデジタルカメラであり、前記光源モジュールの発光に同期して前記カメラ装置が前記各干渉模様を撮影することを特徴とする請求項1または2記載の距離画像取得システム。
  4. 前記イメージセンサーが、光の三原色を受光する素子および赤外光を受光する素子を備えたことを特徴とする請求項3記載の距離画像取得システム。
  5. 前記カメラ装置が、イメージセンサーを搭載したビデオカメラであることを特徴とする請求項1または2記載の距離画像取得システム。
  6. 前記光源モジュールが、ビデオカメラの撮影の1フレーム分に相当する時間だけ発光することを特徴とする請求項5記載の距離画像取得システム。
  7. 前記ビデオカメラで撮影した画像から、移動体の距離情報を取得し、前記移動体の位置を検出することを特徴とする請求項1〜6のいずれかに記載の距離画像取得システム。
  8. 前記移動体がある距離より近づいた場合にアラームを発することを特徴とする請求項7記載の距離画像取得システム。
  9. 前記光源モジュールが前記カメラ装置にフラッシュ装置のように搭載されたことを特徴とする請求項1〜7のいずれかに記載の距離画像取得システム。
  10. 前記光源モジュールを搭載した前記カメラ装置をロボットの目として用いることを特徴とする請求項8記載の距離画像取得システム。
  11. 前記カメラ装置が、前記対象物との距離に基づいてその背景に相当する領域を除いた領域のみを画像として抽出することを特徴とする請求項1または2記載の距離画像取得システム。
  12. 前記光源モジュールが赤外レーザ光を放射し、前記赤外レーザ光で形成された前記同心円状の干渉模様を撮影するカメラ装置が可視光を遮断し前記赤外レーザ光を透過するフィルターを有していることを特徴とする距離画像取得システム。
  13. 前記光源モジュールが、半導体レーザおよびリング形状レンズを備えたことを特徴とする請求項1記載の距離画像取得システム。
  14. 前記撮影情報に基づいて距離画像を取得するための演算装置を備えたことを特徴とする請求項1記載の距離画像取得システム。
  15. 前記演算装置がコンピュータであることを特徴とする請求項14記載の距離画像取得システム。
  16. 前記演算装置が前記カメラ装置内に設けられたことを特徴とする請求項14または15記載の距離画像取得システム。
  17. 対象物に投影された同心円状の干渉模様を撮影するイメージセンサーと、前記イメージセンサーから得られた撮影情報に基づいて前記対象物までの距離情報を演算する演算装置とを備えたことを特徴とするカメラ装置。
  18. レーザ光を放射する光源および前記光源から放射されたレーザ光を光軸上平面において仮想的に2つ以上の光源から放出された光であるように対象物に投影し同心円状の干渉模様を形成する光学レンズを有する光源モジュールを搭載したことを特徴とする請求項17記載のカメラ装置。
  19. 前記演算装置が、内蔵されたコンピュータであることを特徴とする請求項17または18記載のカメラ装置。
JP2004150972A 2004-05-20 2004-05-20 距離画像取得システム Pending JP2005331413A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150972A JP2005331413A (ja) 2004-05-20 2004-05-20 距離画像取得システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150972A JP2005331413A (ja) 2004-05-20 2004-05-20 距離画像取得システム

Publications (1)

Publication Number Publication Date
JP2005331413A true JP2005331413A (ja) 2005-12-02

Family

ID=35486163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150972A Pending JP2005331413A (ja) 2004-05-20 2004-05-20 距離画像取得システム

Country Status (1)

Country Link
JP (1) JP2005331413A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264838A (ja) * 2006-03-27 2007-10-11 Toyota Central Res & Dev Lab Inc 物体識別装置
JP2015094761A (ja) * 2013-11-08 2015-05-18 ザ・ボーイング・カンパニーTheBoeing Company 合成波レーザー測距を使用する位置の決定
JP2018054769A (ja) * 2016-09-28 2018-04-05 パナソニックIpマネジメント株式会社 撮像装置
WO2018169135A1 (en) * 2017-03-14 2018-09-20 Lg Electronics Inc. Terminal and method of controlling therefor
KR102040410B1 (ko) * 2018-10-01 2019-11-04 오준호 카메라 비전을 이용한 촬영 사물 거리 측정 방법 및 그 장치
KR102676294B1 (ko) * 2021-12-01 2024-06-19 광주과학기술원 원추형 렌즈를 이용한 디퓨저 카메라

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264838A (ja) * 2006-03-27 2007-10-11 Toyota Central Res & Dev Lab Inc 物体識別装置
JP2015094761A (ja) * 2013-11-08 2015-05-18 ザ・ボーイング・カンパニーTheBoeing Company 合成波レーザー測距を使用する位置の決定
JP2018054769A (ja) * 2016-09-28 2018-04-05 パナソニックIpマネジメント株式会社 撮像装置
WO2018061816A1 (ja) * 2016-09-28 2018-04-05 パナソニックIpマネジメント株式会社 撮像装置
WO2018169135A1 (en) * 2017-03-14 2018-09-20 Lg Electronics Inc. Terminal and method of controlling therefor
US10564765B2 (en) 2017-03-14 2020-02-18 Lg Electronics Inc. Terminal and method of controlling therefor
KR102040410B1 (ko) * 2018-10-01 2019-11-04 오준호 카메라 비전을 이용한 촬영 사물 거리 측정 방법 및 그 장치
KR102676294B1 (ko) * 2021-12-01 2024-06-19 광주과학기술원 원추형 렌즈를 이용한 디퓨저 카메라

Similar Documents

Publication Publication Date Title
CN100592029C (zh) 测距设备
US10571668B2 (en) Catadioptric projector systems, devices, and methods
CN110998223B (zh) 用于确定至少一个对像的位置的检测器
US20160134860A1 (en) Multiple template improved 3d modeling of imaged objects using camera position and pose to obtain accuracy
KR100753885B1 (ko) 촬상 장치
JP6484072B2 (ja) 物体検出装置
JP5966467B2 (ja) 測距装置
KR101639227B1 (ko) 3차원 형상 측정장치
US20160044301A1 (en) 3d modeling of imaged objects using camera position and pose to obtain accuracy with reduced processing requirements
US20040004727A1 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
EP3069100B1 (en) 3d mapping device
US20190098276A1 (en) 3-d 360 degree depth projector
JP2002139304A (ja) 距離測定装置、及び距離測定方法
JP5944156B2 (ja) 照明光学系と結像光学系とが統合された光学系、及びそれを含む3次元映像獲得装置
JP3975917B2 (ja) 位置計測システム
EP3030859A1 (en) 3d mapping device for modeling of imaged objects using camera position and pose to obtain accuracy with reduced processing requirements
JP2017528714A (ja) 3次元座標の光学測定のための方法および3次元測定デバイスの制御
US11350077B2 (en) Handheld three dimensional scanner with an autoaperture
TWI258706B (en) Method and device for optical navigation
JP2005331413A (ja) 距離画像取得システム
EP3462128A1 (en) 3-d 360 degree depth projector
CN213091888U (zh) 深度测量系统及电子设备
JP2006308452A (ja) 3次元形状計測方法および装置
EP1202074B1 (en) Distance measuring apparatus and distance measuring method
Munkelt et al. Large-volume NIR pattern projection sensor for continuous low-latency 3D measurements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060818

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060818

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605