JP2004032323A - Surface mounting type piezoelectric oscillator and its manufacturing method - Google Patents

Surface mounting type piezoelectric oscillator and its manufacturing method Download PDF

Info

Publication number
JP2004032323A
JP2004032323A JP2002185166A JP2002185166A JP2004032323A JP 2004032323 A JP2004032323 A JP 2004032323A JP 2002185166 A JP2002185166 A JP 2002185166A JP 2002185166 A JP2002185166 A JP 2002185166A JP 2004032323 A JP2004032323 A JP 2004032323A
Authority
JP
Japan
Prior art keywords
bump electrode
component
mounting
circuit board
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002185166A
Other languages
Japanese (ja)
Inventor
Toshiyuki Taira
平 敏幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2002185166A priority Critical patent/JP2004032323A/en
Publication of JP2004032323A publication Critical patent/JP2004032323A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Abstract

<P>PROBLEM TO BE SOLVED: To solve the trouble of joint strength in the case of a mounting on a mother board generated when the mounting height of the whole oscillator is lowered by reducing the diameter of a spherical bump electrode and the lowering of a mounting flatness, in a surface mounting type piezoelectric oscillator in which a piezoelectric transducer is loaded on the surface side of a printed board while an IC and the spherical bump electrode are loaded on the rear side. <P>SOLUTION: The surface mounting type piezoelectric oscillator with the printed board 2 has the electrodes on both surface and rear of the insulating substrate 2, the piezoelectric transducer 21 loaded on the surface of the printed board, the IC 22 loaded on the rear of the printed board, the bump electrode 23 loaded at a place on the outer peripheral side of the IC, and a resin 24 in which the IC and a bump on the rear of the printed board are buried. The bump electrode has a constitution in which the external surface and side face of a spherical body having a diameter exceeding the mounting height of the IC part are cut and worked in a required shape, and the IC has the constitution in which the external surface side of the IC is cut off by a fixed thickness. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、低背化を最大限に達成するための構成を備えた圧電発振器の欠点である実装強度の低下という問題を解消した表面実装型圧電発振器、及びその製造方法に関する。
【0002】
【従来の技術】
携帯電話機等の移動体通信機器の普及に伴う低価格化、及び小型化の急激な進展により、これらの通信機器に使用される水晶発振器等の圧電発振器に対しても、低価格化、小型化、及び薄型化の要請が高まっている。
このような要請に対応するために、従来からチップ部品を使用してパッケージ化した表面実装型圧電発振器が種々提案されている。表面実装型圧電発振器としては、底部に実装電極を備えた絶縁基板(プリント基板)の表面に形成した配線パターン上に、水晶振動子等の圧電振動子や、発振回路部品及び温度補償回路部品等のチップ部品を搭載し、更にこれらの部品を包囲するように金属キャップを絶縁基板に固定した圧電発振器が知られている。
しかし、このタイプの発振器は、絶縁基板の表面上に全ての部品を並列に搭載する構成であるため、絶縁基板の面積が大きくなり、小型化の要請を満たすことが困難であった。
図3は、このような不具合を解消するために、本出願人が提案した表面実装型の圧電発振器(特願2002−026018)の構成図であり、この圧電発振器は、セラミック、或いはガラスエポキシ等から成る絶縁基板102の表裏両面に夫々電極(配線パターン)103、104を形成したプリント基板101と、絶縁基板102の表面側に搭載した圧電振動子110と、絶縁基板102の裏面側に搭載したIC部品115、及び球状の導電ボール電極116と、を備えている。
この絶縁基板102は、表面側に搭載する圧電振動子110の底面積と同等の面積を有するように最小化されているので、その裏面におけるIC部品や導電ボール電極の搭載面積も極限られた狭いスペースとなっている。
圧電振動子110は、圧電振動素子(圧電基板上に励振電極を形成した素子)をパッケージ内に気密封止した構成を備えており、底部電極111をプリント基板101の表面側電極103上に半田接続されている。
IC部品115は、発振回路、温度補償回路等を集積した半導体チップを絶縁樹脂等により包摂一体化した構成を備えており、その外面(上面)には半導体チップの各端子から引き出された外部電極が配置されている。この外部電極をプリント基板101の裏面に設けた電極104に半田接続することにより、IC部品115は搭載される。IC部品115の下面には外部電極が存在しないため、図示しないマザーボード上に搭載したときにマザーボード上の配線パターンと短絡する虞がない。
導電ボール電極116は、例えば球状の耐熱樹脂に金属メッキ加工を施した電極であり、絶縁基板102の裏面の電極104に固定されている。この導電ボール電極116を図示しないマザーボード上の配線パターンに半田によって接続することにより、マザーボードに対する圧電発振器の搭載が行われる。
【0003】
上記の如き圧電発振器は、絶縁基板の面積を、搭載する圧電振動子の底面積にほぼ一致させる程度に狭面積化されているとともに、IC部品を絶縁基板裏面に配置したため、最終的に得られる圧電発振器の平面積を最小化することができるばかりでなく、図示しないマザーボード上に表面実装されたときにおける実装高さを可能な限り低減するために、IC部品115の高さ及び導電ボール電極116の直径は夫々可能な限り小さく設定されている。この例で言えば、導電ボール電極116の直径は、IC部品115の実装高さと同等か、或いは僅かに大きく設定されている。従って、IC部品115の実装高さが低くなればなるほど、直径の小さい導電ボール電極116を使用する必要が生じる。
しかし、球状の導電ボール電極116は、その直径が小さくなればなるほど表面積が狭いため、マザーボード上に半田接続した際の使用半田量が減少して半田フィレットを形成できず、実装強度を低下させる原因となる。また、導電ボール電極116の径にばらつきがある場合には、このように直径が一定しない複数の導電ボール電極を介してマザーボード上に搭載される発振器は、その平坦度が悪化する虞がある。
一方、導電ボール電極116を楕円形状に構成して半田接続に際する接合強度を高めることも考えられるが、楕円形状の導電ボールは球状の導電ボール電極に比べて精度よく製造することが困難であるばかりでなく、絶縁基板102の電極104上に接続するために楕円形状の導電ボールを一定方向に転がしながら所定方向に向けて位置決めする作業が繁雑化する。これに対して、球状の導電ボール電極は、製造が容易であるばかりでなく、転がしたり位置決めする際の方向性がないため、電極上に位置決めし易く、生産性低下を招かないという利点を有している。
【0004】
【発明が解決しようとする課題】
本発明は上記に鑑みてなされたものであり、低背化を最大限に達成するための構成を備えた上記圧電発振器の欠点である実装強度の低下という問題を解消することを課題とする。具体的には、プリント基板の表面側に圧電振動子を搭載すると共に、裏面側にIC部品及び球状導電ボール電極を搭載した表面実装型圧電発振器において、球状バンプ電極を小径化して発振器全体の実装高さの低減を図った場合に発生していた、マザーボードに実装した場合の接合強度の低下という不具合を解消した表面実装型圧電発振器及びその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するため請求項1の発明に係る表面実装型圧電発振器は、絶縁基板の表裏両面に電極を備えたプリント基板と、プリント基板の表面に搭載した圧電振動子と、プリント基板の裏面に搭載したIC部品と、該IC部品の外周側位置に搭載したバンプ電極と、プリント基板裏面のIC部品及びバンプを埋設する樹脂と、を備えた表面実装型圧電発振器において、前記バンプ電極は、外側面と底面とを切断加工された構成を備えていることを特徴とする。
請求項2の発明は、前記バンプ電極は、前記IC部品の実装高さを超えた直径を有した球状体の外側面と底面とを所要形状に切断加工された構成を備えていることを特徴とする。
請求項3の発明は、前記IC部品は、その外面側を所定厚だけ切除された構成を備えていることを特徴とする。
搭載する圧電振動子の底面積と同等の表面積を有した絶縁基板の裏面の面積内に、発振回路、温度補償回路を含んだIC部品と、実装用のバンプ電極を搭載する際に、高さ寸法を可能な限り低減する必要があるが、球形状のバンプ電極をそのままの形状で搭載するとすれば、直径の小さいバンプ電極を使用せざるを得ず、この場合にはマザーボード上に半田接続する際の使用半田量が少なくなり、接合強度が低下する。また、バンプ電極の形状のバラツキにより、実装後の発振器の平坦度が低下することも多々ある。
そこで、本発明では、限られた狭い面積の絶縁基板の裏面側にIC部品とバンプ電極を配置する際に、直径がIC部品の実装高さよりも大幅に大きいバンプ電極を用い、当該バンプ電極の側面及び外面(下面)を夫々所定厚だけ切断することにより、表面実装時にバンプ電極に半田が付着する面積を可能な限り大きくして、接合強度を高めたものである。また、IC部品とバンプ電極と、これらを固定する樹脂の一部を製造工程において研磨、切断により切除して所要形状に整形するようにしたので、マザーボード上に搭載する側の面を精度よく平坦化することができ、表面実装時の平坦度を高めることができる。特に、バンプ電極の側面積を大きくしたので、十分な半田フィレットを確保することができる。
【0006】
請求項4の発明方法は、複数の個片区画から成る大面積の絶縁基板母材、及び該絶縁基板母材の各個片区画の表裏両面に夫々形成した配線パターン領域を備えたプリント基板母材を用いた表面実装型圧電デバイスの製造方法において、前記各個片区画の裏面側配線パターン領域に夫々IC部品及びバンプ電極を搭載する際に、各バンプ電極を各個片区画間の境界に位置決めしながら搭載する工程と、前記プリント基板母材の裏面側に搭載した各IC部品及びバンプ電極を絶縁樹脂により埋設する工程と、前記バンプ電極の外側部分を含む絶縁樹脂の外側部分及び底面側部分を所定厚だけ切除する工程と、前記プリント基板母材を各個片区画毎に切断する際に、各バンプ電極の側面を同時に切断して個片を得る工程と、切断された前記各個片の表面側配線パターン領域に夫々圧電振動子を搭載する工程と、から成ることを特徴とする。
この方法によれば、絶縁基板裏面に搭載するIC部品及びバンプ電極を固定する樹脂の一部(外側面及び側面)を研磨、切断により切除する際に、IC部品及びバンプ電極の外側面及び側面を所要形状に整形するようにしたので、マザーボード上に搭載する側の面を精度よく平坦化することができ、表面実装時の平坦度を高めることができる。
請求項5の発明は、請求項4において、前記バンプ電極は、圧電発振器完成時における前記IC部品の実装高さを超えた直径を有した球状体であることを特徴とする。
隣接するIC部品と干渉することがない程度に、バンプ電極の当初の直径を大きいものとしたので、切断加工後においても、十分な接合面積が露出することとなり、表面実装時の接合強度を高めることが可能となる。
【0007】
【発明の実施の形態】
以下、本発明を添付図面に示した実施の形態にもとづいて詳細に説明する。
なお、以下の実施形態では表面実装型圧電発振器の一例として表面実装型水晶発振器を用いて説明する。
図1(a)及び(b)は本発明の一実施形態に係る表面実装型水晶発振器の斜視図、及び断面で示す正面図である。
この水晶発振器0は、プリント基板1の表面上に表面実装型電子部品としての水晶振動子21を搭載し、プリント基板1基板の裏面上に発振回路及び温度補償回路を構成するIC部品(半導体集積回路部品:ベアチップを含む)22、及び銅、或いは高温半田等を球状などの塊状に加工したバンプ電極23を搭載すると共に、IC部品22及びバンプ電極23を含むプリント基板裏面上の空間を絶縁性樹脂(アンダーフィル又はポッティング)24によって接合一体化した構成を備えている。
プリント基板1は、セラミックシート等、シート状の絶縁材料を積層した絶縁基板2と、絶縁基板2の表裏両面に夫々電極3、及び4a、4bを露出配置した構成を備えている。
絶縁基板2の裏面側の一方の電極4aには、小バンプ電極5を介して、IC部品22の上面に設けた端子が半田接続されている。他方の電極4bには、バンプ電極23が半田等により固定されている。尚、各バンプを固定する際には半田を用いない熱圧着等の周知のフリップチップ実装を行ってもよい。この水晶発振器は、後述する製造工程において説明するように、大面積の絶縁基板母材からバッチ処理にて生産する過程で個片毎に切断される手順を経るため、バンプ電極23の側面形状は、球状体を切断した如き形状となっている。
次に、絶縁基板2の表面側電極3には、水晶振動子21の外部電極32が半田接続されている。なお、水晶振動子21は、絶縁材料から成る容器30内に水晶振動素子(水晶基板上に励振電極を形成した素子)31を気密封止した構成を備え、絶縁基板2上に表面実装可能な外部電極32を備えた構成となっている。
この水晶発振器0においては、図1(b)に示すように、本来IC部品22の実装高さよりも大きい直径を有した球状のバンプ電極を切断した構成を有するため、図示の如く切断後のバンプ電極23の底面(実装面)及び側面(サイド電極面)の面積を大きく確保することができる。このため、この水晶発振器を図示しないマザーボード上の配線パターンに半田接続した際に、十分な半田量を使用して半田フィレットを形成できるので、十分な接合強度を確保することが可能となる。
【0008】
次に、図2に基づいて上記水晶発振器の製造方法について説明する。
この製造方法においては、複数の個片区画Sから成る大面積の絶縁基板母材41と、絶縁基板母材41の各個片区画Aの表裏両面に夫々形成した配線パターン領域P1、P2を備えたプリント基板母材40を用いたバッチ処理を行う。なお、図示説明の都合上から、図2ではプリント基板母材40の上側を裏面、下側を表面として説明する。
各個片区画Sの裏面側配線パターン領域P2には、夫々電極4a、4bが形成されている。図2(a)の工程では、電極4aに対してはIC部品22の外面に形成した端子を小バンプ電極5を介して半田接続する一方、電極4bに対してはIC部品22の実装高さよりも大きい直径を有した球形のバンプ電極23を位置決めした上で半田接続する。この際、各バンプ電極23は、個片区画Sの中央部に配置したIC部品22の外周側に配置され、隣接する個片区画Sとの間の境界線に沿ってバンプ電極23が配置された状態となっている。
次に、図2(b)の工程では、プリント基板母材40の裏面側に搭載した各IC部品22及びバンプ電極23が埋設されるように絶縁樹脂24をプリント基板母材の裏面に均一厚で充填(アンダーフィル、又はポッティング)し、硬化させる。
【0009】
次に、図2(c)の工程では、低背化のために、IC部品22及びバンプ電極23の外側部分を含む絶縁樹脂24の外側部分を研磨等によって所定厚だけ切除する(バックグラインド工程)。即ち、絶縁樹脂24の外側面を所定厚だけ切除する際に、バンプ電極23の外側部分を所定厚だけ切除する。この結果、IC部品22についても半導体チップの一部が切除される場合もあるが、半導体チップの機能に影響がない部分を所定の厚さだけ切除するに過ぎないため、問題はない。一方、バンプ電極23は大径の金属ボールを用いてもその外側面が平坦に切除されるため、発振器の高さを増すことなく、且つ図示しないマザーボード上に実装する際における実装面積が増大して使用する半田量を増大させ、実装状態での接合強度を増すことが可能となる。また、複数のバンプ電極23を同時に研磨、切断することにより、これらバンプ電極23の高さが均一化され、水晶発振器をマザーボード上に搭載する際の設置安定性、端子平坦度を高めることができる。
次いで、図2(d)の工程では、上記各工程によってプリント基板母材40上の各個片区画S内に各部品を搭載した後で、各個片区画毎に切断する工程が実施される。即ち、切断箇所Lは、図示した様に、各個片区画内のバンプ電極23の側面を所定厚に切断できる位置に選定され、基板母材面と直交する方向に切断される。
図2(e)は切断の結果得られた個片を示している。
この個片の絶縁基板40の表面側電極3に対して図1に示した水晶振動子21を搭載することにより、図1に示した如き水晶発振器が完成する。
【0010】
なお、バンプ電極23は正確な球形でなくてもよく、多少の変形した球形は勿論、楕円球形状も含むものである。また、バンプ電極23の形状に寸法バラツキがあっても、図2(c)及び(d)のバックグラインド、及び切断工程により高さ方向、及び横方向の寸法が統一されるので、最終製品としての発振器の底面及び側面におけるバンプ電極の平坦性を確保することができる。
なお、バンプ電極23は、切断加工後に十分な半田接合面積を確保するべく、IC部品22の実装高さ寸法よりも十分に大きな直径を有した球状体であることが好ましく、IC部品22と干渉しない程度にIC部品22に近接して配置する。このことにより、面積を極限した状態の絶縁基板の裏面にあって可能な限りの広い半田接合面積を確保することが可能となり、マザーボード上に搭載した際の実装強度を確保することができる。
なお、上記実施形態では、バンプ電極として球状のものを用いているが、本発明はこれに限定されるものではなく、例えば円柱状、多角柱状等、他の形状のバンプ電極であってもよいことは自明であろう。
【0011】
【発明の効果】
以上のように本発明によれば、プリント基板の表面側に圧電振動子を搭載すると共に、裏面側にIC部品及び球状ボール電極を搭載した表面実装型圧電発振器において、球状ボール電極を小径化して発振器全体の実装高さの低減を図った場合に発生していた、マザーボードに実装した場合の接合強度の低下、実装平坦度の低下という不具合を解消することができる。
請求項1、2、3の発明に係る表面実装型圧電発振器は、限られた狭い面積の絶縁基板の裏面側にIC部品とバンプ電極を配置する際に、直径がIC部品の実装高さよりも大幅に大きいバンプ電極を用い、当該バンプ電極の側面及び外面(下面)を夫々所定厚だけ切断することにより、表面実装時にバンプ電極に半田が付着する面積を可能な限り大きくして、接合強度を高めたものである。また、マザーボード上に搭載する側の面を精度よく平坦化することができ、表面実装時の平坦度を高めることができる。
請求項4の発明によれば、絶縁基板裏面に搭載するIC部品及びバンプ電極を固定する樹脂の一部(外側面及び側面)を研磨、切断により切除する際に、IC部品及びバンプ電極の外側面及び側面を所要形状に整形するようにしたので、マザーボード上に搭載する側の面を精度よく平坦化することができ、表面実装時の平坦度を高めることができる。
請求項5の発明によれば、隣接するIC部品と干渉することがない程度に、バンプ電極の当初の直径を大きいものとしたので、切断加工後においても、十分な接合面積が露出することとなり、表面実装時の接合強度を高めることが可能となる。
【図面の簡単な説明】
【図1】(a)及び(b)は本発明の一実施形態に係る表面実装型水晶発振器の斜視図、及び断面で示す正面図。
【図2】(a)乃至(e)は本発明の一実施形態に係る製造方法の工程を説明する図。
【図3】従来の表面実装型圧電発振器の構成説明図。
【符号の説明】
0 水晶発振器、1 プリント基板、2 絶縁基板、3 表面側電極、4a、4b 裏面側電極、5 小バンプ電極、21 水晶振動子、22 IC部品(半導体集積回路部品)、23 バンプ電極、24 絶縁性樹脂(アンダーフィル)、30 容器、31 水晶振動素子、32 外部電極、40 プリント基板母材、41 絶縁基板母材、S 個片区画。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface-mount type piezoelectric oscillator that has solved the problem of a reduction in mounting strength, which is a drawback of a piezoelectric oscillator having a configuration for maximizing the height reduction, and a method of manufacturing the same.
[0002]
[Prior art]
With the spread of mobile communication devices such as mobile phones, price reductions and rapid progress in miniaturization, the cost and size of piezoelectric oscillators such as crystal oscillators used in these communication devices have been reduced. Demand for thinner and thinner is increasing.
In order to respond to such demands, various surface mount type piezoelectric oscillators packaged using chip components have been conventionally proposed. As a surface mount type piezoelectric oscillator, a piezoelectric vibrator such as a quartz oscillator, an oscillation circuit component, a temperature compensation circuit component, etc. are formed on a wiring pattern formed on a surface of an insulating substrate (printed circuit board) having a mounting electrode on a bottom portion. There is known a piezoelectric oscillator in which a chip component is mounted and a metal cap is fixed to an insulating substrate so as to surround these components.
However, since this type of oscillator has a configuration in which all components are mounted in parallel on the surface of an insulating substrate, the area of the insulating substrate becomes large, and it has been difficult to satisfy the demand for miniaturization.
FIG. 3 is a configuration diagram of a surface-mount type piezoelectric oscillator (Japanese Patent Application No. 2002-026018) proposed by the present applicant to solve such a problem. This piezoelectric oscillator is made of ceramic, glass epoxy, or the like. Printed circuit board 101 on which electrodes (wiring patterns) 103 and 104 are formed on the front and back surfaces of an insulating substrate 102 made of, a piezoelectric vibrator 110 mounted on the front side of the insulating substrate 102, and mounted on the back side of the insulating substrate 102, respectively. An IC component 115 and a spherical conductive ball electrode 116 are provided.
Since the insulating substrate 102 is minimized so as to have the same area as the bottom area of the piezoelectric vibrator 110 mounted on the front surface side, the mounting area of the IC components and the conductive ball electrodes on the back surface is also extremely limited and narrow. Space.
The piezoelectric vibrator 110 has a structure in which a piezoelectric vibrating element (an element having an excitation electrode formed on a piezoelectric substrate) is hermetically sealed in a package, and a bottom electrode 111 is soldered on a front surface electrode 103 of a printed circuit board 101. It is connected.
The IC component 115 has a configuration in which a semiconductor chip on which an oscillation circuit, a temperature compensation circuit, and the like are integrated is enclosed and integrated by an insulating resin or the like, and an external surface (upper surface) has external electrodes drawn out from each terminal of the semiconductor chip. Is arranged. The IC component 115 is mounted by soldering the external electrode to the electrode 104 provided on the back surface of the printed circuit board 101. Since there is no external electrode on the lower surface of the IC component 115, there is no danger of short circuit with the wiring pattern on the motherboard when mounted on the motherboard (not shown).
The conductive ball electrode 116 is, for example, an electrode obtained by applying a metal plating process to a spherical heat-resistant resin, and is fixed to the electrode 104 on the back surface of the insulating substrate 102. By connecting the conductive ball electrode 116 to a wiring pattern on the motherboard (not shown) by soldering, the piezoelectric oscillator is mounted on the motherboard.
[0003]
The above-described piezoelectric oscillator is finally obtained because the area of the insulating substrate is reduced to the extent that the area of the insulating substrate substantially matches the bottom area of the mounted piezoelectric vibrator, and the IC components are arranged on the back surface of the insulating substrate. In addition to minimizing the plane area of the piezoelectric oscillator, the height of the IC component 115 and the conductive ball electrode 116 are reduced to minimize the mounting height when mounted on a motherboard (not shown). Are set as small as possible. In this example, the diameter of the conductive ball electrode 116 is set to be equal to or slightly larger than the mounting height of the IC component 115. Therefore, as the mounting height of the IC component 115 becomes lower, it becomes necessary to use the conductive ball electrode 116 having a smaller diameter.
However, the smaller the diameter of the spherical conductive ball electrode 116, the smaller the surface area. Therefore, the amount of solder used when soldering on the motherboard is reduced, so that a solder fillet cannot be formed and the mounting strength is reduced. It becomes. If the diameter of the conductive ball electrode 116 varies, the flatness of the oscillator mounted on the motherboard via the plurality of conductive ball electrodes having such irregular diameters may be deteriorated.
On the other hand, it is conceivable that the conductive ball electrode 116 is formed in an elliptical shape to increase the bonding strength at the time of solder connection. However, it is difficult to manufacture an elliptical conductive ball with higher accuracy than a spherical conductive ball electrode. In addition to this, the operation of positioning the elliptical conductive ball in a predetermined direction while rolling the elliptical conductive ball in a certain direction for connection to the electrode 104 of the insulating substrate 102 becomes complicated. On the other hand, the spherical conductive ball electrode has advantages that not only is it easy to manufacture, but also because it has no directionality when rolling or positioning, it is easy to position on the electrode and does not cause a decrease in productivity. are doing.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and it is an object of the present invention to solve the problem of a reduction in mounting strength, which is a drawback of the piezoelectric oscillator having a configuration for maximizing the height reduction. Specifically, in a surface mount type piezoelectric oscillator in which a piezoelectric vibrator is mounted on the front side of a printed circuit board and IC components and spherical conductive ball electrodes are mounted on the back side, the diameter of the spherical bump electrode is reduced and the entire oscillator is mounted. An object of the present invention is to provide a surface-mount type piezoelectric oscillator and a method of manufacturing the same, which has solved the problem of a decrease in bonding strength when mounted on a motherboard, which has occurred when the height was reduced.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, a surface mount type piezoelectric oscillator according to the invention of claim 1 includes a printed board provided with electrodes on both front and back surfaces of an insulating board, a piezoelectric vibrator mounted on the front face of the printed board, and a back face of the printed board. A surface mount type piezoelectric oscillator comprising: an IC component mounted on the IC component; a bump electrode mounted on an outer peripheral side position of the IC component; and a resin for embedding the IC component and the bump on the back surface of the printed circuit board. The outer surface and the bottom surface are cut off.
The invention according to claim 2 is characterized in that the bump electrode has a configuration in which an outer surface and a bottom surface of a spherical body having a diameter exceeding a mounting height of the IC component are cut into a required shape. And
The invention according to claim 3 is characterized in that the IC component has a configuration in which the outer surface side is cut off by a predetermined thickness.
When mounting an IC component including an oscillation circuit and a temperature compensation circuit and a mounting bump electrode within the area of the back surface of the insulating substrate having the same surface area as the bottom area of the mounted piezoelectric vibrator, It is necessary to reduce the dimensions as much as possible, but if the spherical bump electrode is mounted in the same shape, it is necessary to use a bump electrode with a small diameter, in this case soldering on the motherboard In this case, the amount of solder used is reduced, and the bonding strength is reduced. In addition, the flatness of the mounted oscillator often decreases due to variations in the shape of the bump electrode.
Therefore, in the present invention, when arranging the IC component and the bump electrode on the back surface side of the insulating substrate having a limited narrow area, the bump electrode having a diameter that is much larger than the mounting height of the IC component is used, and By cutting the side surface and the outer surface (lower surface) respectively by a predetermined thickness, the area where the solder adheres to the bump electrode during surface mounting is made as large as possible, and the bonding strength is increased. In the manufacturing process, the IC components, the bump electrodes, and a part of the resin for fixing them are polished and cut off so as to be shaped into a required shape, so that the surface to be mounted on the motherboard is accurately flattened. And the flatness during surface mounting can be increased. In particular, since the side area of the bump electrode is increased, a sufficient solder fillet can be secured.
[0006]
The invention according to claim 4, wherein a large-area insulating substrate preform comprising a plurality of individual sections, and a printed circuit board preform comprising a wiring pattern region formed on both front and back surfaces of each individual section of the insulating substrate preform. In the method of manufacturing a surface mount type piezoelectric device using the method, when mounting the IC component and the bump electrode on the back side wiring pattern region of each of the individual sections, while positioning each bump electrode at the boundary between the individual sections. Mounting, embedding each of the IC components and bump electrodes mounted on the back side of the printed circuit board base material with an insulating resin, and determining the outer and bottom side portions of the insulating resin including the outer portions of the bump electrodes. Cutting out only the thickness, and, when cutting the printed circuit board base material into individual sections, simultaneously cutting the side surfaces of the bump electrodes to obtain individual pieces; and A step of mounting each of the piezoelectric vibrator on the side wiring pattern region, that consists of the features.
According to this method, when a part (outside surface and side surface) of the resin fixing the IC component and the bump electrode mounted on the back surface of the insulating substrate is cut off by polishing and cutting, the outer surface and the side surface of the IC component and the bump electrode are cut off. Is formed into a required shape, so that the surface on the side mounted on the motherboard can be flattened accurately, and the flatness during surface mounting can be increased.
According to a fifth aspect of the present invention, in the fourth aspect, the bump electrode is a spherical body having a diameter exceeding a mounting height of the IC component when the piezoelectric oscillator is completed.
Since the initial diameter of the bump electrode is set to be large enough not to interfere with an adjacent IC component, a sufficient bonding area is exposed even after cutting, and the bonding strength at the time of surface mounting is increased. It becomes possible.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on an embodiment shown in the accompanying drawings.
In the following embodiments, a surface-mounted crystal oscillator will be described as an example of a surface-mounted piezoelectric oscillator.
1A and 1B are a perspective view and a cross-sectional front view of a surface-mounted crystal oscillator according to an embodiment of the present invention.
The crystal oscillator 0 has a crystal oscillator 21 as a surface-mounted electronic component mounted on the surface of a printed circuit board 1 and an IC component (semiconductor integrated circuit) forming an oscillation circuit and a temperature compensation circuit on the back surface of the printed circuit board 1 substrate. Circuit components (including bare chips) 22 and bump electrodes 23 formed by processing copper, high-temperature solder, or the like into lumps such as spheres, and the space on the back surface of the printed circuit board including the IC components 22 and the bump electrodes 23 is insulated. It has a configuration in which it is joined and integrated with a resin (underfill or potting) 24.
The printed board 1 has a configuration in which an insulating substrate 2 in which a sheet-shaped insulating material such as a ceramic sheet is laminated and electrodes 3 and 4a and 4b are exposed and arranged on both front and back surfaces of the insulating substrate 2, respectively.
A terminal provided on the upper surface of the IC component 22 is connected to one electrode 4a on the back surface side of the insulating substrate 2 via a small bump electrode 5 by soldering. A bump electrode 23 is fixed to the other electrode 4b by solder or the like. When fixing each bump, a known flip-chip mounting such as thermocompression bonding without using solder may be performed. As described in a later-described manufacturing process, the crystal oscillator goes through a procedure of being cut into individual pieces in a process of producing from a large-area insulating substrate base material in a batch process. The shape is as if a spherical body were cut.
Next, the external electrode 32 of the crystal unit 21 is soldered to the surface-side electrode 3 of the insulating substrate 2. The crystal resonator 21 has a configuration in which a crystal resonator 31 (an element having an excitation electrode formed on a crystal substrate) 31 is hermetically sealed in a container 30 made of an insulating material, and can be surface-mounted on the insulating substrate 2. The configuration includes the external electrode 32.
As shown in FIG. 1B, the crystal oscillator 0 has a configuration in which a spherical bump electrode having a diameter larger than the mounting height of the IC component 22 is originally cut. A large area of the bottom surface (mounting surface) and the side surface (side electrode surface) of the electrode 23 can be secured. For this reason, when this crystal oscillator is soldered to a wiring pattern on a motherboard (not shown), a solder fillet can be formed using a sufficient amount of solder, so that sufficient bonding strength can be ensured.
[0008]
Next, a method for manufacturing the crystal oscillator will be described with reference to FIG.
In this manufacturing method, a large-area insulating substrate preform 41 composed of a plurality of individual sections S, and wiring pattern regions P1 and P2 formed on both front and back surfaces of each individual section A of the insulating substrate preform 41 are provided. Batch processing using the printed circuit board base material 40 is performed. 2, the upper side of the printed circuit board base material 40 is described as a back surface, and the lower side is described as a front surface in FIG.
Electrodes 4a and 4b are formed in the back side wiring pattern area P2 of each individual section S, respectively. In the step of FIG. 2A, the terminals formed on the outer surface of the IC component 22 are soldered to the electrodes 4a via the small bump electrodes 5, while the electrodes 4b are connected to the mounting height of the IC component 22 based on the mounting height. The solder connection is made after positioning the spherical bump electrode 23 having a large diameter. At this time, each bump electrode 23 is arranged on the outer peripheral side of the IC component 22 arranged at the center of the individual section S, and the bump electrode 23 is arranged along a boundary between the adjacent individual section S. It is in a state where it is set.
Next, in the step of FIG. 2B, an insulating resin 24 is uniformly applied to the back surface of the printed circuit board base material so that the IC components 22 and the bump electrodes 23 mounted on the back surface side of the printed circuit board base material 40 are embedded. (Underfill or potting) and cure.
[0009]
Next, in the step of FIG. 2C, the outer portion of the insulating resin 24 including the outer portion of the IC component 22 and the bump electrode 23 is cut by a predetermined thickness by polishing or the like to reduce the height (back grinding step). ). That is, when the outer surface of the insulating resin 24 is cut by a predetermined thickness, the outer portion of the bump electrode 23 is cut by a predetermined thickness. As a result, a part of the semiconductor chip of the IC component 22 may be cut off, but there is no problem because only a predetermined thickness is cut out of a portion which does not affect the function of the semiconductor chip. On the other hand, the bump electrode 23 has a flat outer surface even if a large-diameter metal ball is used, so that the mounting area of the oscillator on the motherboard (not shown) increases without increasing the height of the oscillator. Thus, it is possible to increase the amount of solder used and increase the bonding strength in the mounted state. Also, by simultaneously polishing and cutting the plurality of bump electrodes 23, the heights of the bump electrodes 23 are made uniform, and the installation stability and the terminal flatness when mounting the crystal oscillator on the motherboard can be improved. .
Next, in the step of FIG. 2D, a step of cutting each individual section after mounting each component in each individual section S on the printed circuit board preform 40 by the above steps is performed. That is, as shown in the drawing, the cut portion L is selected at a position where the side surface of the bump electrode 23 in each individual section can be cut to a predetermined thickness, and is cut in a direction orthogonal to the substrate base material surface.
FIG. 2E shows a piece obtained as a result of cutting.
The crystal oscillator 21 shown in FIG. 1 is mounted on the surface-side electrode 3 of the individual insulating substrate 40 to complete the crystal oscillator shown in FIG.
[0010]
Note that the bump electrode 23 does not have to be an accurate spherical shape, and includes an elliptical spherical shape as well as a slightly deformed spherical shape. Further, even if the bump electrodes 23 have dimensional variations, the dimensions in the height direction and the horizontal direction are unified by the back grinding and cutting steps shown in FIGS. 2C and 2D. The flatness of the bump electrode on the bottom surface and side surface of the oscillator can be secured.
The bump electrode 23 is preferably a spherical body having a diameter sufficiently larger than the mounting height of the IC component 22 in order to secure a sufficient solder bonding area after the cutting process. It is arranged as close as possible to the IC component 22. As a result, it is possible to secure as large a solder joint area as possible on the back surface of the insulating substrate in a state where the area is minimized, and it is possible to secure mounting strength when mounted on the motherboard.
In the above embodiment, a spherical bump electrode is used. However, the present invention is not limited to this. For example, a bump electrode of another shape such as a columnar shape or a polygonal column shape may be used. That will be self-evident.
[0011]
【The invention's effect】
As described above, according to the present invention, the diameter of the spherical ball electrode is reduced in the surface mounted piezoelectric oscillator in which the piezoelectric vibrator is mounted on the front side of the printed circuit board and the IC component and the spherical ball electrode are mounted on the back side. It is possible to solve the problems that occur when the mounting height of the entire oscillator is reduced, such as a decrease in bonding strength and a reduction in mounting flatness when mounted on a motherboard.
In the surface-mount type piezoelectric oscillator according to the first, second and third aspects, when the IC component and the bump electrode are arranged on the back side of the insulating substrate having a limited area, the diameter is larger than the mounting height of the IC component. By using a significantly large bump electrode and cutting the side and outer surfaces (lower surface) of the bump electrode by a predetermined thickness, the area where the solder adheres to the bump electrode during surface mounting is made as large as possible to increase the bonding strength. It is enhanced. Moreover, the surface on the side mounted on the motherboard can be accurately flattened, and the flatness during surface mounting can be increased.
According to the fourth aspect of the invention, when a part (outside surface and side surface) of the resin fixing the IC component and the bump electrode mounted on the back surface of the insulating substrate is cut off by polishing and cutting, the outside of the IC component and the bump electrode is removed. Since the side surfaces and the side surfaces are shaped into a required shape, the surface on the side mounted on the motherboard can be flattened accurately, and the flatness during surface mounting can be increased.
According to the fifth aspect of the present invention, since the initial diameter of the bump electrode is set to be large enough not to interfere with the adjacent IC component, a sufficient bonding area is exposed even after the cutting process. In addition, it is possible to increase the bonding strength at the time of surface mounting.
[Brief description of the drawings]
FIGS. 1A and 1B are a perspective view and a cross-sectional front view of a surface-mounted crystal oscillator according to an embodiment of the present invention.
FIGS. 2A to 2E are diagrams illustrating steps of a manufacturing method according to an embodiment of the present invention.
FIG. 3 is a configuration explanatory view of a conventional surface mount type piezoelectric oscillator.
[Explanation of symbols]
0 crystal oscillator, 1 printed circuit board, 2 insulating substrates, 3 front side electrodes, 4a, 4b back side electrodes, 5 small bump electrodes, 21 crystal oscillator, 22 IC parts (semiconductor integrated circuit parts), 23 bump electrodes, 24 insulation Resin (underfill), 30 containers, 31 crystal vibrating element, 32 external electrodes, 40 printed circuit board base material, 41 insulating substrate base material, S pieces section.

Claims (5)

絶縁基板の表裏両面に電極を備えたプリント基板と、プリント基板の表面に搭載した圧電振動子と、プリント基板の裏面に搭載したIC部品と、該IC部品の外周側位置に搭載したバンプ電極と、プリント基板裏面のIC部品及びバンプを埋設する樹脂と、を備えた表面実装型圧電発振器において、
前記バンプ電極は、外側面と底面とを切断加工された構成を備えていることを特徴とする表面実装型圧電発振器。
A printed circuit board having electrodes on both sides of an insulating substrate, a piezoelectric vibrator mounted on the surface of the printed circuit board, an IC component mounted on the back surface of the printed circuit board, and a bump electrode mounted on an outer peripheral position of the IC component. , A resin for embedding the IC components and bumps on the back of the printed circuit board,
The surface mount type piezoelectric oscillator, wherein the bump electrode has a configuration in which an outer surface and a bottom surface are cut and processed.
前記バンプ電極は、前記IC部品の実装高さを超えた直径を有した球状体の外側面と底面とを所要形状に切断加工された構成を備えていることを特徴とする請求項1に記載の表面実装型圧電発振器。2. The bump electrode according to claim 1, wherein the outer surface and the bottom surface of a spherical body having a diameter exceeding the mounting height of the IC component are cut into a required shape. Surface mount type piezoelectric oscillator. 前記IC部品は、その外面側を所定厚だけ切除された構成を備えていることを特徴とする請求項1又は2に記載の表面実装型圧電発振器。The surface mount type piezoelectric oscillator according to claim 1, wherein the IC component has a configuration in which an outer surface thereof is cut off by a predetermined thickness. 複数の個片区画から成る大面積の絶縁基板母材、及び該絶縁基板母材の各個片区画の表裏両面に夫々形成した配線パターン領域を備えたプリント基板母材を用いた表面実装型圧電発振器の製造方法において、
前記各個片区画の裏面側配線パターン領域に夫々IC部品及びバンプ電極を搭載する際に、各バンプ電極を各個片区画間の境界に位置決めしながら搭載する工程と、
前記プリント基板母材の裏面側に搭載した各IC部品及びバンプ電極を絶縁樹脂により埋設する工程と、
前記バンプ電極の外側部分を含む絶縁樹脂の外側部分及び底面側部分を所定厚だけ切除する工程と、
前記プリント基板母材を各個片区画毎に切断する際に、各バンプ電極の側面を同時に切断して個片を得る工程と、
切断された前記各個片の表面側配線パターン領域に夫々圧電振動子を搭載する工程と、
から成ることを特徴とする表面実装型圧電発振器の製造方法。
Surface mount type piezoelectric oscillator using a large-area insulating substrate preform composed of a plurality of individual sections, and a printed circuit board preform having a wiring pattern region formed on both front and back surfaces of each individual section of the insulating substrate preform. In the manufacturing method of
When mounting the IC component and the bump electrode on the back side wiring pattern area of each of the individual sections, respectively, mounting the bump electrodes while positioning them at the boundaries between the individual sections,
Embedding each IC component and bump electrode mounted on the back side of the printed circuit board base material with an insulating resin;
Cutting off a predetermined thickness of the outer portion and the bottom portion of the insulating resin including the outer portion of the bump electrode,
When cutting the printed circuit board base material for each individual section, a step of simultaneously cutting side surfaces of each bump electrode to obtain individual pieces,
Mounting a piezoelectric vibrator on the surface-side wiring pattern region of each of the cut individual pieces,
A method of manufacturing a surface-mount type piezoelectric oscillator, comprising:
前記バンプ電極は、前記圧電発振器完成時における前記IC部品の実装高さを超えた直径を有した球状体であることを特徴とする請求項4に記載の表面実装型圧電発振器の製造方法。The method according to claim 4, wherein the bump electrode is a spherical body having a diameter exceeding a mounting height of the IC component when the piezoelectric oscillator is completed.
JP2002185166A 2002-06-25 2002-06-25 Surface mounting type piezoelectric oscillator and its manufacturing method Pending JP2004032323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002185166A JP2004032323A (en) 2002-06-25 2002-06-25 Surface mounting type piezoelectric oscillator and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185166A JP2004032323A (en) 2002-06-25 2002-06-25 Surface mounting type piezoelectric oscillator and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004032323A true JP2004032323A (en) 2004-01-29

Family

ID=31180895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185166A Pending JP2004032323A (en) 2002-06-25 2002-06-25 Surface mounting type piezoelectric oscillator and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004032323A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244644A (en) * 2004-02-26 2005-09-08 Kyocera Corp Piezoelectric oscillator
JP2005244641A (en) * 2004-02-26 2005-09-08 Kyocera Corp Temperature compensated crystal oscillator
JP2006186464A (en) * 2004-12-27 2006-07-13 Kyocera Kinseki Corp Piezoelectric oscillator and manufacturing method thereof
JP2006262136A (en) * 2005-03-17 2006-09-28 Kyocera Corp Method of manufacturing temperature-compensated crystal-controlled oscillator
JP2007067773A (en) * 2005-08-31 2007-03-15 Seiko Epson Corp Oscillator and electronic apparatus
US7253426B2 (en) 2005-09-30 2007-08-07 Virgin Islands Microsystems, Inc. Structures and methods for coupling energy from an electromagnetic wave
US7282776B2 (en) 2006-02-09 2007-10-16 Virgin Islands Microsystems, Inc. Method and structure for coupling two microcircuits
WO2007130091A1 (en) * 2006-05-05 2007-11-15 Virgin Islands Microsystems, Inc. Integration of vacuum microelectronic device with integrated circuit
JP2008104151A (en) * 2006-09-19 2008-05-01 Epson Toyocom Corp Piezoelectric device and manufacturing method of piezoelectric device
JP2008193637A (en) * 2007-02-08 2008-08-21 Epson Toyocom Corp Layered electronic device and manufacturing method thereof
US7443577B2 (en) * 2006-05-05 2008-10-28 Virgin Islands Microsystems, Inc. Reflecting filtering cover
WO2011102336A1 (en) * 2010-02-18 2011-08-25 北陸電気工業株式会社 Force detector

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005244641A (en) * 2004-02-26 2005-09-08 Kyocera Corp Temperature compensated crystal oscillator
JP2005244644A (en) * 2004-02-26 2005-09-08 Kyocera Corp Piezoelectric oscillator
JP2006186464A (en) * 2004-12-27 2006-07-13 Kyocera Kinseki Corp Piezoelectric oscillator and manufacturing method thereof
JP4594139B2 (en) * 2005-03-17 2010-12-08 京セラ株式会社 Manufacturing method of temperature compensated crystal oscillator
JP2006262136A (en) * 2005-03-17 2006-09-28 Kyocera Corp Method of manufacturing temperature-compensated crystal-controlled oscillator
JP2007067773A (en) * 2005-08-31 2007-03-15 Seiko Epson Corp Oscillator and electronic apparatus
JP4706399B2 (en) * 2005-08-31 2011-06-22 セイコーエプソン株式会社 Oscillator and electronic equipment
US7253426B2 (en) 2005-09-30 2007-08-07 Virgin Islands Microsystems, Inc. Structures and methods for coupling energy from an electromagnetic wave
US7282776B2 (en) 2006-02-09 2007-10-16 Virgin Islands Microsystems, Inc. Method and structure for coupling two microcircuits
US7443577B2 (en) * 2006-05-05 2008-10-28 Virgin Islands Microsystems, Inc. Reflecting filtering cover
WO2007130091A1 (en) * 2006-05-05 2007-11-15 Virgin Islands Microsystems, Inc. Integration of vacuum microelectronic device with integrated circuit
JP2008104151A (en) * 2006-09-19 2008-05-01 Epson Toyocom Corp Piezoelectric device and manufacturing method of piezoelectric device
JP2008193637A (en) * 2007-02-08 2008-08-21 Epson Toyocom Corp Layered electronic device and manufacturing method thereof
WO2011102336A1 (en) * 2010-02-18 2011-08-25 北陸電気工業株式会社 Force detector
JP2011169717A (en) * 2010-02-18 2011-09-01 Hokuriku Electric Ind Co Ltd Force detector

Similar Documents

Publication Publication Date Title
US6762537B1 (en) Piezoelectric device and method for manufacture thereof
JP2006279872A (en) Piezoelectric vibrator, manufacturing method therefor, and manufacturing method of piezoelectric oscillator using the piezoelectric vibrator
JP5059478B2 (en) Piezoelectric oscillator and piezoelectric vibrator for surface mounting
US8836441B2 (en) Surface mount piezoelectric oscillator
JP2004032323A (en) Surface mounting type piezoelectric oscillator and its manufacturing method
JP2005341326A (en) Piezoelectric oscillator and electronic apparatus
EP1460888A1 (en) Low-profile electronic circuit module and method for manufacturing the same
JP4442603B2 (en) Surface mount type piezoelectric oscillator unit
JP2004296455A (en) Surface mounted electronic device and surface mounted oscillator
JP2004135090A (en) Surface mounted piezoelectric resonator
JP2008035486A (en) Method of manufacturing electronic component
JP2007060319A (en) Surface-mounted piezoelectric oscillator and its manufacturing method
JP5045316B2 (en) Piezoelectric device
JP4085549B2 (en) Piezoelectric device and manufacturing method thereof
JP4066770B2 (en) Piezoelectric oscillator
JP2002064333A (en) Piezoelectric oscillator
JP2004147221A (en) Piezoelectric oscillator
JP4325666B2 (en) Surface mount type piezoelectric oscillator unit
JP2008091970A (en) Piezoelectric oscillator and manufacturing method thereof
JP2001144215A (en) Flip-chip mounter
JP2004260512A (en) Crystal oscillator for surface mounting
JP4103325B2 (en) Crystal oscillator
JP4241430B2 (en) Piezoelectric oscillator
JP2003124745A (en) Structure and production method for electronic component
JP3956824B2 (en) Surface mount type piezoelectric oscillator unit