JP2004031881A - 半導体処理装置及び半導体処理装置の診断方法 - Google Patents

半導体処理装置及び半導体処理装置の診断方法 Download PDF

Info

Publication number
JP2004031881A
JP2004031881A JP2002234802A JP2002234802A JP2004031881A JP 2004031881 A JP2004031881 A JP 2004031881A JP 2002234802 A JP2002234802 A JP 2002234802A JP 2002234802 A JP2002234802 A JP 2002234802A JP 2004031881 A JP2004031881 A JP 2004031881A
Authority
JP
Japan
Prior art keywords
processing
processing chamber
semiconductor
semiconductor processing
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002234802A
Other languages
English (en)
Other versions
JP3717467B2 (ja
Inventor
Takeshi Miya
宮 豪
Junichi Tanaka
田中 潤一
Tsutomu Tetsuka
手束 勉
Hideyuki Yamamoto
山本 秀之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002234802A priority Critical patent/JP3717467B2/ja
Publication of JP2004031881A publication Critical patent/JP2004031881A/ja
Application granted granted Critical
Publication of JP3717467B2 publication Critical patent/JP3717467B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】ウエットクリーニング後の処理室再組み立ての不都合、あるいは反応生成物の堆積、部品の削れ等の処理室の状況を診断することのできる半導体処理装置及び半導体処理装置の診断方法を提供する。
【解決手段】真空処理室3内にプラズマ15を生成するプラズマ生成装置及び前記真空処理室内に処理ガス12を導入する処理ガス供給手段13を備え、前記真空処理室内に配置した試料8にプラズマ処理を施す半導体処理装置であって、
前記半導体処理装置は、該半導体処理装置に機械的振動を印加する発振手段28、及び該発振手段により前記半導体処理装置に生起した機械的振動を検出する受信手段29を備えた。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は半導体処理装置及び半導体処理装置の診断方法にかかり、特に半導体処理装置の処理室内状態を診断することのできる半導体処理装置及び半導体処理装置の診断方法に関する。
【0002】
【従来の技術】
従来、半導体基板などの試料の処理に際しては、半導体処理装置として、例えば反応性プラズマを利用したプラズマエッチング装置、プラズマCVD(Chemical Vapor Deposition)装置、あるいは処理に適した温度に保持した半導体基板を反応性ガス中に曝すことによって成膜処理を行なう熱CVD装置等が使用される。
【0003】
これらの半導体処理装置には、半導体基板の処理中に生じた反応生成物が処理室の内壁に堆積する。この堆積物は処理室内壁から剥離すると、剥離に伴いパーティクルを生成し、生成したパーティクルが半導体基板表面に落下して基板表面に付着する。パーティクルの付着は、半導体基板表面に設けた集積回路の配線の短絡(ショート)、断線あるいはエッチング残りなどを引き起こす。これにより製品である半導体装置の装置不良の原因となり、製造歩留まりの低下を招く。
【0004】
このような問題点を回避するために、通常、半導体処理装置の処理室内圧力を真空に維持したままで、反応性ガスを充填して行うガスクリーニングあるいは反応性プラズマを用いて行うプラズマクリーニング等のドライクリーニングを定期的に行い前記反応生成物を除去する。
【0005】
また、前記ドライクリーニングにより除去できない堆積物については、処理室内を大気に開放し、作業員が水やアルコールなどを用いた手作業で処理室内壁を拭き取るクリーニング作業(ウェットクリーニングあるいはマニュアルクリーニングと呼ばれる)により除去する。また、前記ウェットクリーニングの際には、処理室内壁表面を拭き取る作業の外、処理室内にある金属、石英ガラスあるいはセラミクスなどで構成される部品を分解して取り出し、取り出した部品を洗浄しあるいは表面汚れを拭き取りを行った後、再組み立てを行う。
【0006】
また、半導体処理処理は前述したように反応性ガスあるいは反応性プラズマを用いるため、処理室内の構成部品は化学的及び熱的に損傷を受け、損耗あるいは破損する。このため前記処理室内の構成部品は定期的に交換する必要がある。所定の寿命に達した構成部品は、例えば前記ウェットクリーニングの際に交換する。
【0007】
なお、前記ウェットクリーニングに際しては、前述のように処理室内を大気圧に開放した後、手作業で行ない、その後、再組み立てを行い、さらに処理室の真空引きを行なう。このため前記クリーニング作業には長時間を要し、生産性は低下する。従って、前記ウェットクリーニングは、ドライクリーニングによっては半導体基板へのパーティクル付着個数を所定値まで低下させることができない場合等の止むを得ない場合にのみ行なわれる。
【0008】
【発明が解決しようとする課題】
前記従来技術においては、ウェットクリーニングを行なう際に処理室内を大気圧に戻し、更に処理室蓋を開けて大気に開放する。このため、ウェットクリーニング終了後の処理室再組み立て時に、例えば、処理室蓋の閉め方等の相違等により処理室と処理室蓋との間の接触状態が変化する場合がある。また、処理室内の構成部品を分解清浄した後、再度取り付ける場合、他の部品との間の接触状態が変化することがある。このような場合には、ウェットクリーニング前後において処理装置の成膜レート、エッチングレートあるいはそれらの面内均一性など処理性能が変化する。特に反応性プラズマを用いた半導体製造装置においては、再組み立て時の接触状態の変化等により処理室のインピーダンスなどが変化する。こためウェットクリーニングの前後において、生成される反応性プラズマの電気的特性に変化が生じ、プラズマ処理性能が変化する。
【0009】
半導体装置の量産現場においては、成膜レートあるいはエッチングレートの経時的変動等の半導体基板の面内における均一性は数パーセント以内に抑えることが要求される。このため前記処理性能の変化は半導体製造における歩留まりの低下の原因となる。
【0010】
前記ウェットクリーニング前後でプラズマ処理性能が変化する問題に関しては、通常、ウェットクリーニング後に処理室の真空引きを行ない、QC(Quality Check)基板と呼ばれるテスト用の半導体基板に半導体製造処理を施し、該基板における成膜レートやエッチングレートもしくはそれらの面内均一性などを測定して処理性能を評価する。評価の結果、処理室の再組み立てに不具合がある判断した場合には、再び処理室内を大気に開放して前記処理室再組み立てのチェックを行なう。この場合は、再度の再組み立てまでに長時間を要し生産性の低下を招くことになる。なお、処理室内の構成部品と他の部品との間の接触状態の変化はウェットクリーニング時以外でも発生する。例えば、構成部品あるいは構成部品の近傍の温度変化あるいは処理室内の圧力変化等の繰り返し変化によって前記構成部品を固定するボルトあるいはナット等が弛み、その結果前記接触状態が変化する場合がある。
【0011】
一方、ウェットクリーニングの頻度あるいはタイミングを決定する主要な要因として、処理室内に堆積した反応生成物の増加に伴う半導体基板へのパーティクル付着個数の増大がある。パーティクル付着個数は、QC基板に処理を施し、該QC基板に付着したパーティクルの個数を測定することによって行われ、測定した個数により処理室内の清浄度を評価する。付着したパーティクルの個数の測定は有効な手段であるが処理室内の清浄度を完全に評価することは困難である。すなわち、パーティクル個数は突発的に増大して半導体基板に付着することがあり、QC基板によって検出されたパーティクル個数が処理に際して問題が無い個数であっても、その後の製品用半導体基板の表面に多くのパーティクルが付着し歩留まりの低下を引き起こすことがしばしば起こる。
【0012】
特開平4−204039号公報には、AE(Acoustic Emission)センサを配置し、該センサにより処理室内壁に堆積した反応生成物の膜に亀裂が入るときに発生する高周波弾性波を検知することが示されている。この方法は、堆積膜の剥離によるパーティクルの発生を検知する有効な手段である。しかし、膜に亀裂が発生した場合には、半導体基板表面にパーティクルが落下して付着することが多い。このため、前記方法のみではパーティクルの発生を未然に検知することはできず、半導体製造における歩留まりの低下を有効に防止することはできない。
【0013】
更に、半導体処理装置においては、その構成部品が度重なる処理によって損耗し、交換しなければならなくなることがある。特開2002−18274号公報には、半導体処理装置用の高周波電源等の電気的データをもとに前記消耗品の消耗度予測を行なう技術が示されている。この技術は、金属など導電性部品あるいは厚みが薄い絶縁性部品などに対しては有効である。しかし、プラズマを用いた半導体処理装置は、石英あるいはセラミクスなどの厚みのある絶縁性部材で構成される場合が多く前記電気的データを用いた予測技術では損耗度の診断は困難である
本発明はこれらの問題点に鑑みてなされたもので、ウエットクリーニング後の処理室再組み立ての不都合、あるいは反応生成物の堆積、部品の削れ等の処理室の状況を診断することのできる半導体処理装置及び半導体処理装置の診断方法を提供する。
【0014】
【課題を解決するための手段】
本発明は、上記の課題を解決するために次のような手段を採用した。
【0015】
真空処理室内にプラズマを生成するプラズマ生成装置及び前記真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料にプラズマ処理を施す半導体処理装置であって、前記半導体処理装置は、該半導体処理装置に機械的振動を印加する発振手段、及び該発振手段により前記半導体処理装置に生起した機械的振動を検出する受信手段を備えた。
【0016】
【発明の実施の形態】
以下、本発明の実施形態を図面を参照しながら説明する。図1は、本発明の第1の実施形態に係る平行平板型プラズマエッチング装置を示す図である。図に示すように、処理室側壁1の上に処理室蓋2を設置し、これにより構成される処理室3内に静電吸着装置4を設ける。処理室側壁1の上端面に円形状に溝を形成し、該溝にOリング5を埋設する。このOリング5によって処理室3内の気密を保持する。
【0017】
静電吸着装置4の上部には絶縁物からなる載置面が構成され、前記絶縁物内部には吸着用電極6を埋設する。吸着用電極6には直流電源7を接続し、吸着用電極6と半導体基板8との間発生した静電気力により半導体基板8を静電吸着する。なお、吸着用電極6と直流電源7との間にはスイッチ9を設け、該スイッチにより直流電源電圧印加のオン・オフを行なう。静電吸着装置4には図示しない駆動装置を接続し、吸着装置上に載置した半導体基板8とシャワープレート間の距離を調整して最適なエッチング処理ができるようにしている。また、静電吸着装置4と処理室側壁1との間には気密を保持するためのベローズ11が設けられる。
【0018】
処理ガス12はパイプ13を通り、多数の導入孔が設けられたシャワープレート10を介して処理室3内に導入される。シャワープレート10には高周波電源14を接続し、高周波電圧を印加することにより処理ガス12をプラズマ15化する。シャワープレート10と高周波電源14の間にはスイッチ16を設け、高周波電圧印加のオン・オフを行なう。なお、シャワープレート10は治具17、プレート18及びボルト19によって処理室蓋2に固定する。
【0019】
半導体基板8をプラズマ15にさらすことにより半導体製造処理(エッチング処理)を行う。このとき、高周波電源21を介して、静電吸着装置4の内部に埋設した高周波印加電極20に高周波電圧を印加することにより、静電吸着装置4にバイアス電位印加する。このバイアス電位によりプラズマ15中に生成したイオンを半導体基板8に引き込むことにより、異方性エッチングを行なうことができる。高周波印加電極20と高周波電源21との間にはスイッチ22が設けられ、高周波電圧印加のオン・オフを行なう。
【0020】
処理ガス12及び半導体製造処理における反応で生成した揮発性物質は排気口23から排出する。排気口23の先には図示しない真空ポンプが接続されており、これによって処理室3内の圧力を減圧する。
【0021】
静電吸着装置4の内部には冷媒流路24を形成し、外部に接続した図示しない冷却装置を介して冷媒供給口25から冷媒を供給する。冷媒は冷媒流路24を通り、冷媒排出口26から排出することにより静電吸着装置4を冷却する。プラズマ処理中に半導体基板8が受ける熱は、この静電吸着装置4を介して冷媒流路24の内部を流れる冷媒に伝達する。なお、カバー27は静電吸着装置4をプラズマ15から保護するためのものである。
【0022】
また、処理室蓋2上には発振手段として超音波発振機28を設置し、処理室側壁1の上部には受信手段としてAEセンサ29を設置する。この超音波発振機28によってパルス状の振動を発生し、処理室蓋2及び処理室側壁1を伝わってきた前記振動をAEセンサ29によって検出する。処理室蓋2と超音波発振機28との間、及び処理室側壁1とAEセンサ29との間は接着剤を介して接着している。すなわち、接着剤によって超音波発振機28と処理室蓋2間及びAEセンサ29処理室側壁1間を固定する。前記接着剤により、表面に微小な凹凸を持つ処理室蓋2と超音波発振機28との間、及び処理室側壁2とAEセンサ29との間の接触が促進され、AEセンサ29による超音波の検出精度を向上することができる。また、超音波発振機28にはそれぞれ図示しないコントローラ及び電源を接続する。また、AEセンサ29には受信信号を処理するための後述する処理手段が接続される。
【0023】
図2は、前記AEセンサ29の検出信号を解析して、処理室3の組み立てが正常に行われたか否かを診断する方法を説明する図であり、図2(a)は、組み立てが正常に行われた場合、図2(b)は組み立てに不具合がある場合を示す。なお、各図において、横軸は時間(任意単位)を示し、超音波発振機28によって振動を印加したとき原点とした。また縦軸はAEセンサ29の出力電圧(任意単位)を示す。
【0024】
図2(a)に示すように組み立てが正常に行われた場合では、時間t0においてピーク30を有する。すなわち、超音波発振機28によってパルス状の超音波振動が印加されてから、時間がt0が経過した後にAEセンサ29の設置場所に到達し、前記超音波振動が検出されたことを示している。また、ピーク時におけるAEセンサ29の検出信号の絶対値はV0である。
【0025】
一方、図2(b)に示すように組み立てに不具合がある場合では、正常に行われた場合と同様に時間t0においてピーク30’を持つが、ピーク30’の値は前記V0よりも小さい値(V1)である。すなわち、処理室蓋2と処理室側壁1との間には相互の接触の不具合により微少な隙間が生じ、ここを通過する超音波が減衰するためである。また、時間t0におけるピーク30’の直後に、ピーク30’よりも低い絶対値を持つピークが連続する領域31が存在するが、これは前記接触の不具合により生じた微少な隙間の中を伝播することによって遅延した超音波成分を受信したためである。
【0026】
以上説明したたように、処理室蓋2上に設置した超音波発振機28から発振された超音波を、処理室側壁1上部に設置したAEセンサ29によって検出し、AEセンサ29の検出信号におけるピーク30の絶対値、及びピーク30’と該ピーク30’の直後に現れるピーク30’よりも低い絶対値の電圧を持つ領域31の有無を評価することにより、処理室3の組み立ての不具合の有無を診断することができる。
【0027】
なお、本実施形態では、発振手段として超音波発振機28を使用したがそれに限定するものではない。また振動として音波に限定するものではないし、音波であっても可聴域のものを使用して構わない。超音波など高い振動数の音波は伝播減衰が大きいという欠点を持つが、周囲の機械的な雑音(例えばポンプなどによる騒音)の影響を受けにくく、また位置標定を行う場合の分解能を上げられるという利点を持つ。一方、低い振動数の音波は伝播減衰が小さいという利点を持つが、周囲の機械的な雑音の影響を受けやすく、また位置標定を行う場合の分解能を上げるのが難しいという欠点を持つ。そのため使用者は本発明の適用において、環境や半導体製造装置の特性などに応じて任意の周波数を使用して構わないが、前記した理由から超音波など高い振動数の音波の使用が好ましい。
【0028】
また本実施形態では受信手段としてAEセンサ29を使用したが、それに限定するものではない。例えば低い周波数を用いる発振手段を使用した場合には、受信手段として加速度センサを使用することができる。
【0029】
また本実施形態では処理室蓋2上に発振手段を設置し、処理室側壁1上部に受信手段を設置したが、設置する場所はそれに限定するものではない。例えば処理室蓋2上に受信手段を、処理室側壁1上部に発振手段を設置しても構わない。
【0030】
また、発振手段及び受信手段はそれぞれ複数を使用しても構わない。その場合には発振に用いる周波数領域がそれぞれ異なるものを用いてもよいし、受信に用いる周波数領域に関しても同様である。音波は周波数に関して前述したような特性を持つため、使用者は本発明の適用において発振及び受信が良好に行われるように、設置場所に応じて異なる周波数領域を使用しても構わない。
【0031】
また、本実施形態によって診断できるのはウェットクリーニング直後における組み付けの不具合だけではなく、構成部品の固定の不具合を診断できる。例えばシャワープレートを固定している治具17近傍に受信手段を設置すれば治具17を固定しているボルト19の緩みを検知することができる。すなわち発振手段によって発振された振動を、治具17近傍に設置した受信手段によって受信し、本実施形態と同様な方法により受信信号を分析すれば、前述したピーク30’直後に現れるピーク30’よりも低い絶対値の電圧を持つ領域31の有無を評価することにより、ボルト19の緩みの有無を診断することができる。
【0032】
また、組み付けの不具合や構成部品の固定の不具合の診断はウェットクリーニングの直後だけでなく、半導体基板の処理中あるいは処理の合間に行なうこともできる。
【0033】
図3は、本発明の第2の実施形態を説明する図である。前述したように、静電吸着装置4には、該装置4をプラズマ15から保護するためのカバー27が設置されている。静電吸着装置4内部には高周波印加電極20を埋設し、該電極20に高周波電源21を介してバイアス電位を印加することによりプラズマ15中に生成したイオンを半導体基板8に引き込み、スパッタを行っている。
【0034】
このため、半導体基板8の近傍にあるカバー27にもプラズマ15中のイオンが衝突し、半導体製造処理を行ううちにカバー27は徐々に削られ、損耗する。
【0035】
本実施形態では、カバー27に発振手段として設置した可聴域音波発振機32にを介して可聴域音波を印加し、カバー27を伝播する前記音波(振動)を受信手段として用いた加速度センサ33によって検出することにより、カバー27の振動を分析してカバー27の損耗度を診断する。
【0036】
可聴域音波発振機32を介して印加する音波の周波数を低い周波数から高い周波数まで連続的あるいは離散的に変化させ、カバー27を伝播する前記音波(振動)を受信手段として用いた加速度センサ33によって検出する。印加する音波の周波数がカバー27の共振周波数に達したとき、カバー27の振動の大きさが急増する。このため振動を受信している加速度センサ33からの出力信号電圧の大きさを評価することによって、カバー27の共振周波数を求めることができる。
【0037】
前述したようにカバー27は半導体製造処理を行ううちに徐々に削られるため、共振周波数は徐々に高くなる。この共振周波数を求めることによりカバー27の損耗度が評価でき、カバー27が寿命に到達し交換すべきか否かを診断することができる。
【0038】
図4は、前記カバー27の共振周波数の推移を示す図である。横軸はプラズマを発生させた累積時間(任意単位)であり、原点はカバー27を新品に交換した時を表す。縦軸は共振周波数(任意単位)である。前述したようにカバー27の共振周波数は徐々に高くなるため、予め定めていた閾値を共振周波数が超えたか否かでカバー27の損耗度の診断を良好に行なうことができる。図4に示した例においては、プラズマを発生させた累積時間がt0において共振周波数がf0となり、寿命に達したと診断できる。
【0039】
なお、寿命の診断には閾値を用いるだけでなく、過去の複数の数値データから変化の推移を求め、それを基に判断してもよい。
【0040】
また本実施形態によって診断できるのは、イオンスパッタによる損耗度だけではない。例えば、カバー27に亀裂等の異常が発生した場合等には、加速度センサ33によって検出した振動の共振周波数が過去の数値データの推移から大きく外れ、これにより前記異常を検出することができる。
【0041】
また、本実施形態では、プラズマエッチングを例にしてカバー27の損耗度を評価したが、CVD装置のように処理室内の反応生成物の堆積が多い装置の場合にはカバー27など構成部品に堆積した膜の厚さを評価することができる。エッチング装置の場合にはカバー27が徐々に削られるために共振周波数が徐々に高くなる。一方、前記CVD装置の場合には反応生成物の膜が堆積すると共振周波数は徐々に低くなる。このため前記エッチング装置の場合と同様な手法により構成部品に堆積した膜の厚さを評価することができる。
【0042】
図5は、本発明の第3の実施形態を説明する図である。前記第2の実施形態においては、減圧された処理室内部にある構成部品(カバー27)に直接発振手段及び受信手段を取り付け、減圧環境下においてカバー27の損耗度や破損などの異常の診断を行なう。しかし、真空中あるいは減圧にある処理室内部の構成部品であっても、大気側にある部品(例えば処理室側壁1)と機械的に強固に接続されていれば、その大気側にある部品を通して同様の診断を行なうことができる。
【0043】
図5において、カバー43は処理室側壁1をプラズマ15から保護するように設置されたものであり、リング44と圧着によって強固に接続されている。リング44と処理室側壁1との間にはOリング5’および5’’が設置されており、減圧に保たれる処理室3を気密に保持している。
【0044】
本実施形態ではリング44の大気側に発振手段として可聴域音波発振機32を設置し、リング44と強固に接続されたカバー43を振動させる。またこの振動を、カバー43と強固に接続されたリング44の大気側に設置した加速度センサ33によって検出し、その検出信号(振動)を分析する。前記第3実施例と同様にカバー43の共振周波数を求めることによりカバー43の損耗度を評価することができ、カバー43が寿命に到達し交換すべきか否かを診断することができる。
【0045】
なお、発振手段及び受信手段のうち、一方を大気側、他方を減圧環境下に設置しても同様に診断を行なうことができる。
【0046】
図6は、本発明の第4の実施形態を説明する図である。図に示すように、処理室側壁1の大気側に発振手段としての超音波発振機28及び受信手段としてのAEセンサ29を並置し、処理室側壁1の真空側に堆積した反応生成物の膜34の厚さを評価するものである。膜34の厚さの評価は、超音波が異なる2つの経路を通り伝播することによって生じる伝播時間の差を利用することによって実現できる。すなわち、第1の経路は、図6中で実線矢印で示すように、超音波発振機28から放射された超音波は処理室側壁1内部を伝播し、処理室側壁1の真空側端において反射し、再び処理室側壁1内部を伝播し、AEセンサ29により検出される。一方、第2の経路は図6中で破線矢印で示すように、超音波発振機28から放射された超音波は処理室側壁1内部及び処理室側壁1の真空側に堆積した反応生成物の膜34内部を伝播して、膜34の真空側端において反射し、再び膜34、処理室側壁1を伝播し、AEセンサ29により検出される。
【0047】
実際には上述した2つの経路以外にも超音波が伝播する経路は存在する。例えば超音波発振機28から放射された超音波は処理室側壁1内部を伝播し、さらに処理室側壁1の真空側に堆積した反応生成物の膜34に入射し、膜34の内部を伝播し、膜34の真空側端において反射し、再び膜34の内部を伝播し、処理室側壁1の真空側で反射し、膜34の内部を伝播し、膜34の真空側端において反射し、膜34の内部を伝播し、処理室側壁1に入射し、処理室側壁1の内部を伝播し、AEセンサ29により検出されるものなどである。しかし、このように多重に反射された超音波は減衰が大きく、最終的にAEセンサ29によって受信される時点では非常に小さな信号となっている。このため、フィルタリングなどの演算処理によって容易に除去することができ、膜34の厚さの評価において障害とはなることはない。
【0048】
また、超音波発振機28から放射された超音波が処理室側壁1の表面近傍を通り、直接AEセンサ29に到達して受信される経路も存在する。この信号は大きな値を有するが、前述した第1及び第2の経路を通る信号よりも早く到達するため、これら2つの信号との分離は容易である。
【0049】
図7は、前記AEセンサ29の検出信号の用いて膜34の厚さを評価する方法を説明する図である。横軸は時間(任意単位)であり、原点は超音波発振機28が音波を放射した時点を表す。また縦軸は超音波を検出したAEセンサの出力電圧(任意単位)を示す。
【0050】
まず、時点t0において、前記第1の経路を通ってAEセンサ29に到達した超音波のピーク35が検出される。次に、前記第2の経路を通ってAEセンサ29に到達した超音波のピーク35’が受信される。第2の経路は前述したように、膜34内を伝播することによって第1の経路と比較して伝播距離が長くなるため、ピーク35’はピーク35よりもΔtだけ遅く現れる。これら2つのピークが現れる時間差Δtを求めることにより、処理室を開放することなく、処理室側壁1の処理室内側に堆積した反応生成物の膜34の厚さを評価することができる。なお、第2の経路を通過した超音波信号は、前記第1の経路と比較して処理室側壁1及び膜34との間の界面等において入射及び反射を多く行うために減衰し、最終的にAEセンサ29によって検出される信号は前記第1の経路の信号と比較して小さなものとなっている。
【0051】
図8は、前記ピークの時間差Δtの推移を示す図である。横軸はプラズマを発生させた累積時間(任意単位)であり、原点は、例えばウェットクリーニングにより処理室側壁に堆積していた反応生成物を完全に除去された時点を表す。縦軸は2つのピークの時間差Δt(任意単位)である。
【0052】
処理室側壁に堆積した反応生成物の膜は次第に厚くなるため、前記時間差Δtは次第に大きくなる。従って、膜の剥離が予測される膜厚に対応する前記時間差Δt0を閾値として予め設定しておけば、時間差Δtが前記閾値を超えたか否かでウェットクリーニングを行なうべきか否かを診断を行なうことができる。
【0053】
図8に示す例においては、プラズマを発生させた累積時間がtpにおいて前記時間差ΔtがΔt1となる。従ってこのときを膜34の剥離が発生する直前の状態、すなわちウェットクリーニングを行なうべき時期であるを診断することができる。
【0054】
なお、処理室側壁1の材質中の音速及び反応生成物の膜34の中における音速が既知であれば膜34の厚さを正確に求めることができる。しかし反応生成物の膜34の中における音速が不明であり、そのため膜34の厚さを正確に求めることができない場合がある。その場合は、前述したように膜の剥離が発生する膜厚に対して、前述した2つのピークの時間差Δt1を閾値に設定すれば、Δtを測定することにより膜34の厚さが膜の剥離が発生する膜厚か否かが判断できるため、ウェットクリーニング時期の診断の診断を行なうことができる。
【0055】
なお、本実施形態においては、発振手段及び受信手段を処理室側壁1に設置することによって、処理室側壁1の処理室内側に堆積した反応生成物の膜厚を評価したが、評価場所を処理室側壁に限定するものではない。例えば、シャワープレートに発振手段及び受信手段を設置すればシャワープレートに堆積した膜厚を評価することができる。また、発振手段及び受信手段をそれぞれ複数設置してもよい。例えば、処理室側壁1の上部及び下部、そしてシャワープレートに発振手段及び受信手段をそれぞれ設置すれば、それぞれの場所の処理室内側に堆積した膜厚を評価し、ウェットクリーニングを実施すべき時期か否かの診断を行なうことができる。この場合は、いずれかの場所においてウェットクリーニングを実施すべき時期と診断された場合には、ウェットクリーニングを実施すべきである。
【0056】
また、複数の場所における膜厚の評価によるウェットクリーニング時期の診断を、時間差Δtの閾値Δt1との比較によって行なう場合は、それぞれの場所において全て同じ閾値を使用してもよいし、それぞれ異なる閾値を使用しても構わない。例えば、処理室側壁の堆積膜がシャワープレートの堆積膜に比して剥離を起こしにくい性質を持つ場合は、処理室側壁の堆積膜に対する閾値はシャワープレートの堆積膜に対する閾値よりも大きくするとよい。
【0057】
また、処理室側壁1の処理室側に堆積した膜厚を評価するための発振手段及び受信手段は大気側に設置したが、前記発振手段及び受信手段を真空あるいは減圧環境下に設置することにより、前記と同様に膜厚の評価を行なうことにより、ウェットクリーニング時期を診断することができる。なお、膜厚の評価に際しては、前記閾値を用いる外に、過去の数値データからの変化の推移を基に判断してもよい。
【0058】
図9は、以上説明したような半導体処理装置を用いて行う半導体処理の手順を説明するフローチャートである。
【0059】
まず、超音波発振機等の発振手段から放射された超音波をAEセンサ等の受信手段により受信する(ステップS1)。受信手段により受信した受信信号は受信信号は信号処理手段に伝送し、ここでデジタルデータに変換する(ステップS2)。次に、このデジタルデータを演算処理手段に伝送し、ここで演算処理を施す。演算処理としては、例えばFFT(Fast Fourier Transform)処理などを行うことによる周波数分析、フィルタリング処理を施すことによるノイズ除去、デジタルデータの圧縮処理をあげることができる(ステップS3)。次に、演算処理を施したデジタルデータはデータベースに格納する。このデータベースには前記デジタルデータの外に、診断に使用する閾値あるいはその範囲を表すデータを保存することができる(ステップS4)。
【0060】
次に、前記デジタルデータを予測・診断手段41に伝送する。予測・診断手段41は前記デジタルデータと前記データベース保存している閾値、あるいは過去の履歴データとを比較参照することにより、半導体処理装置が現在正常状態にあるか否かを診断する。この判断は、例えば、前記デジタルデータが予め指定された閾値あるいは範囲を超えるか否かで判断することができる。また、正常状態における履歴データと比較することによって判断してもよい。また、過去の複数の履歴データから変化の推移を求め、この推移を基に判断してもよい。なお、前記予測・診断手段41は現在の半導体処理装置が正常状態であるか否かを診断するだけではなく、予測を行なうこともできる。すなわち、前記データベースに保存している過去の履歴データの推移を分析することにより、例えば何時間後に次回のウェットクリーニングを行なうべきか、あるいは何時間後に処理室内の構成部品がその寿命に達するか等の予測を行なうことができる(ステップS5)。
【0061】
次に、前記診断結果を半導体処理装置制御コンピュータ42に伝送する。半導体処理装置制御コンピュータ42は、前記診断結果が正常状態であれば処理を続行し(ステップS6)、前記診断結果が異常であれば処理を中止し、警報を発する(ステップS7,S8)。
【0062】
また、前記予測・診断手段の予測結果がウェットクリーニング時期あるいは構成部品の寿命の到来であれば、処理を続行すると共にその旨を警報手段により警報する(ステップS6,S8)。
【0063】
警報はブザーなど音によるものや、装置に設置されたモニタ画面に警告を発することにより作業員に知らせるものであってもよいし、半導体処理装置がコンピュータネットワークに接続されているならば、離れた場所にいる作業員やエンジニアにE−メールなどで知らせるものでもよいし、そのいずれかを組み合わせたものであってもよい。また、前記警報手段はブザーのように単に警報を出すものであってもよいし、どのような異常が発生したのかを作業員に知らせる警報であってもよい。例えば、チャンバ組み付けに異常があるのか、構成部品の設置に異常があるのか、処理室内の膜の剥離を防止するためにウェットクリーニングをすべき時期にあるのか、あるいはウェットクリーニング時期あるいは構成部品の寿命の到来を知らせる警報手段であってよい。
【0064】
また、以上の実施形態においては、発振手段として超音波発振機または可聴域音波発振機を用いたが、発振手段として、半導体処理装置の処理圧力を急激に変化させることによって生じる振動を用いることができる。また、プラズマが発生するときに生じる瞬間的な圧力変動により発生する振動を用いることもできる。
【0065】
また、以上の説明では、半導体処理装置としてプラズマエッチング装置を例に説明したが、本発明は、例えばプラズマCVD、熱CVD、スパッタリング装置など他の半導体処理装置に適用することができることは言うまでもない。
【0066】
以上説明したように、本実施形態によれば、半導体処理装置に発振手段及び受信手段を設置するので、ウェットクリーニング後の組み立て不良の有無、処理室内の構成部品の損耗度、あるいは処理室内壁に堆積した反応生成物膜の評価によるウェットクリーニング時期の診断を行なうことができる。またこれにより半導体製造における製造歩留まりを向上することができる。
【0067】
次に本発明の第5の実施形態にかかるプラズマエッチング装置について説明する。
【0068】
図10は前記プラズマエッチング装置の略円筒形の処理室3を外側から見た鳥瞰図であり、発振手段として処理室蓋2に角度90度おきに4つの超音波発振機28a、28b、28cおよび28dを設置している。また受信手段として処理室側壁1上部に4つのAEセンサ29a、29b、29cおよび29dを設置している。これら超音波発振機28a、28b、28c、28dによる発振およびAEセンサ29a、29b、29c、29dによる受信をそれぞれ独立に行なうことによってウェットクリーニング直後の装置組み付けの不具合箇所の座標の特定を行なうことができる。
【0069】
図11は略円筒形の処理室3の上に設置した処理室蓋2を真上から見た図であり、超音波発振機28aからの音波振動をAEセンサ29a、29b、29c、29dによって受信している様子を実線矢印で表している。処理室蓋2の組み付けに不具合が無い場合は、前述したようにAEセンサ29a、29b、29c、29dの出力電圧の解析結果には超音波発振機28aからのパルス状の超音波に起因するピーク30(図2参照)は表れるが、不具合箇所に起因する前記ピークよりも低い絶対値の電圧を持つ領域31は表れないため不具合が無いことが検出できる。このとき図12に示すように半導体処理装置に設置されたモニタ画面40に異常が無いことを表示してもよい。この図においてドーナツ状の領域41は処理室壁1と処理室蓋2との接触部分を表している。
【0070】
一方、図13に示すように不具合箇所42が存在する場合、第1の実施形態に述べたようにAEセンサ29a、29b、29c、29dの出力電圧の解析結果には、超音波発振機28aからのパルス状の超音波に起因するピーク30以外に、不具合箇所42に起因する前記ピークよりも低い絶対値の電圧を持つ領域31(図2参照)が観測される。破線矢印で示すように不具合箇所42からAEセンサ29a、29b、29c、29dまでの距離はぞれぞれ異なるため、これらの出力電圧を解析することによって不具合箇所の座標を特定することができる。このとき図14に示すように半導体処理装置に設置されたモニタ画面40においてドーナツ状の領域41中に不具合箇所を示す場所を図示し、また不具合箇所の座標43を表示して作業者に知らせてもよい。
【0071】
本実施例では超音波発振機28aからのパルス状超音波を用いて不具合箇所座標の特定を行なったが、超音波発振機28b、29c、29dを用いて同様な操作を行うことによって、不具合箇所座標の特定をより高精度にすることができる。
【0072】
複数の超音波発振機28を用いる場合には発振に用いる周波数領域がそれぞれ同じものを用いてもよいし、異なるものを用いてもよい。また、受信に用いるAEセンサ29の周波数領域に関しても同様である。しかし音波振動は周波数に関して前述したような特性を持つため、不具合の原因となっている位置の座標特定を行う場合の分解能を上げるためには超音波など周波数が高い振動を使用するのが望ましい。
【0073】
また、本実施例によって診断できるのはウェットクリーニング直後における組み付けの不具合だけではなく、構成部品の固定の不具合を診断できる。例えばシャワープレート10及び治具17を固定しているボルト19の近傍に受信手段を設置すれば、治具17を固定している複数のボルト19のうち、どのボルトが緩みを生じているかを検知することができる。すなわち発振手段によって発振された振動を、ボルト19近傍に設置した受信手段によって受信し、本実施形態と同様な方法により不具合箇所の座標を特定することにより、どのボルト19が緩みを生じているかの診断を行なうことができる。
【0074】
また前述したように、チャンバを開けることなく処理室側壁の堆積膜を除去するためにプラズマクリーニングやガスクリーニングなどドライクリーニングが行なわれているが、第4の実施形態と同様な方法で処理室側壁の堆積膜の厚さをモニタリングすることにより、ドライクリーニングの終点検出を行なうことができる。
【0075】
すなわち超音波発振機28を用いて超音波を発振し、その音波振動をAEセンサ29によって受信し、前述した方法によって処理室側壁1に付着した膜34の厚さを検出し、膜34が完全に除去され厚さが0になったときにクリーニングを終了すればよい。
【0076】
ドライクリーニング中に膜34の厚さを検出する場合には、ドライクリーニングのために発生させたプラズマによって膜34および処理室側壁1が加熱され、それぞれを音が伝わる速度が変化し、膜34の厚さの検出結果が実際の厚さと異なる場合がある。しかし重要なのは膜34の正確な厚さを求めることではなく、膜34が除去されたことを検出することである。膜34の厚さの検出に対しては、膜34の厚さが0になった場合には音速の変化による悪影響は無い。そのため、ドライクリーニングのためのプラズマによる膜34および処理室側壁1の加熱による音速の変化は、ドライクリーニングの終点検出の障害とはならない。
【0077】
また、複数の超音波発振機28およびAEセンサ29を用いることによって、処理室側壁の複数箇所における膜34の厚さを検出し、高精度なクリーニングの終点検出やクリーニングの条件の最適化を行なうこともできる。
【0078】
図15は本発明の第6の実施形態にかかる平行平板型プラズマエッチング装置を示す図である。処理室側壁1の上方に超音波発振機28aおよびAEセンサ29aを、処理室側壁1の下方に超音波発振機28bおよびAEセンサ29bを設置している。
【0079】
図16はドライクリーニング実施中の処理室側壁1近傍を拡大して示した図である。膜34を除去するためにドライクリーニング用のプラズマ15を発生させている。このとき超音波発振機28aおよびAEセンサ29aの近傍における膜34の厚さ、および超音波発振機28bおよびAEセンサ29bの近傍における膜34の厚さを、前述したような方法によりそれぞれ検出する。また、いずれかの近傍における膜34が除去されたとしても、他方の近傍における膜34が残留していた場合にはドライクリーニングを続行させ、両方の近傍における膜34が除去が検出されたときにドライクリーニングの終点と見なせばよい。
【0080】
以上示したように、複数の複数の超音波発振機28およびAEセンサ29を用いることによって、ドライクリーニングの終点の検出を高精度に行なうことができる。
【0081】
本実施形態では2箇所に超音波発振機28およびAEセンサ29を設置したが、設置する場所は2箇所に限るものではない。3箇所以上に超音波発振機28およびAEセンサ29を設置した場合、全ての箇所における膜34の除去が検出されたときにドライクリーニングの終点と見なせばよい。
【0082】
また、図16に示すように処理室側壁1の上方における膜34の厚さが、下方における膜34の厚さよりも厚い場合には、下方における膜34が上方における膜34よりも先に除去され、上方における残留した膜34を除去するためにドライクリーニング時間が長くなることが多く、半導体装置製造におけるスループットを低下させる原因となる。またこの場合には、処理室側壁1の下方においては、膜34が除去された後もドライクリーニングされるため側壁1の損耗の原因となる。そのため処理室側壁1の上方におけるドライクリーニング速度つまり膜34の除去速度を処理室側壁1の下方よりも大きくするのが望ましい。そのためにはドライクリーニングの実施中に処理室側壁1に残留している膜34の厚さを複数の場所において検知し、ドライクリーニングのプロセス条件を変える事によって、膜34が厚い場所においては薄い場所と比較してドライクリーニング速度を上げればよい。
【0083】
複数の発振手段および受信手段を用いてドライクリーニングの終点検出およびドライクリーニングのプロセス条件を変える具体的な方法について図17を用いて以下説明する。
【0084】
まず超音波発振機などの発振手段から放射された音波振動をAEセンサなど複数の受信手段により受信する(ステップS1)。なお、ここでは2つの受信手段を示したが、2つに限るものではなく3つ以上の受信手段を用いてもよい。
【0085】
受信手段により受信した受信信号を信号処理手段に伝送し、ここでデジタルデータに変換する(ステップS2)。
【0086】
次にこのデジタルデータを演算処理手段に伝送し、ここで演算処理を施す。演算処理としては、例えばFFT(Fast Fourier Transform)処理などを行うことによる周波数分析、フィルタリング処理を行うことによるノイズ除去、デジタルデータの圧縮処理を挙げることができる(ステップS3)。
【0087】
次に演算処理を施したデジタルデータをデータベースに格納するこのデータベースには前記デジタルデータの他に、後に説明する予測・診断に用いる閾値あるいはその範囲を表すデータを保存することができる。また、データベースにはドライクリーニング中に得たデータだけでなく、エッチング処理などドライクリーニング以外の半導体製造処理中に得たデータを格納することができる(ステップS4)。
【0088】
次に前記デジタルデータを予測・診断手段40に伝送する。予測・診断手段40は前記デジタルデータにより膜34が除去されたか否かを判断し、ドライクリーニングを続行すべきか否かの判断を行なう(ステップS5)。また続行すべきと判断した場合にはドライクリーニング条件を調節すべきか否かの判断を行なう(ステップS6)。
【0089】
次に前記予測・診断手段40による予測・診断結果の信号を半導体処理装置制御コンピュータ41に伝送する。半導体処理装置制御コンピュータ41は前記予測・診断手段40からの信号に基づき、半導体処理装置の制御を行なう。
【0090】
例えば前記予測・診断手段40がドライクリーニングを終了すべきと判断した場合には、スイッチ16および22(図1参照)をOFFにすることで高周波印加を止める、プロセスガス12の導入を止めるなどドライクリーニング処理終了の動作を行なう(ステップS7)。
【0091】
また、前記予測・診断手段40がドライクリーニングを続行すべきと判断し、且つドライクリーニングのプロセス条件を調節すべきではないと判断した場合は、プロセス条件を調節することなくドライクリーニングを続行する(ステップS8)。
【0092】
また、前記予測・診断手段40がドライクリーニングを続行すべきと判断し、且つドライクリーニングのプロセス条件を調節すべきと判断した場合は、プロセス条件の調節動作を行ない、ドライクリーニングを続行する(ステップS9)。図16に示すように処理室壁1の上方における膜34の厚さが下方における膜34の厚さよりも厚い場合には、ドライクリーニングのプロセス条件の調節の手段として、シャワープレート10に印加している高周波の電力を上げ処理室3の上部におけるプラズマ15の密度を上げることによって、処理室壁1の上方におけるドライクリーニング速度つまり膜34の除去速度を上げることができる。また、逆に処理室壁1の下方における膜34の厚さが上方における膜34の厚さよりも厚い場合には、ドライクリーニングのプロセス条件の調節の手段として、高周波印加電極20に印加している高周波の電力を上げ処理室3の下部におけるプラズマ15の密度を上げることによって、処理室壁1の下方におけるドライクリーニング速度つまり膜34の除去速度を上げることができる。これらのドライクリーニングのプロセス条件の調節により処理室壁1に残留している膜34の除去速度を上げ、ドライクリーニング時間を短縮することができる。
【0093】
次に前記予測・診断手段40がドライクリーニングを終了すべきと判断した場合には、処理を終了するとともに警報手段によって作業者にドライクリーニングが終了したことを知らせることができる(ステップS10)。警報手段は半導体処理装置に設置されたモニタ画面に表示することでドライクリーニングの終了を作業者に知らせるものであってもよいし、半導体処理装置がコンピュータネットワークに接続されているならば、離れた場所にいる作業者やエンジニアにE−メールなどで知らせるものでもよいし、そのいずれかを組み合わせたものであってもよい。
【0094】
なお、本実施例では発振手段として超音波発振機28を使用したがそれに限定するものではない。また振動として音波に限定するものではないし、音波であっても可聴域のものを使用して構わない。また本実施例では受信手段としてAEセンサ29を使用したが、それに限定するものではない。例えば低い周波数を用いる発振手段を使用した場合には、受信手段として加速度センサを使用することができる。音波振動の伝播は周波数によって前述したような性質を持つため、本発明の使用者は実施に適した任意の周波数を用いることができる。
【0095】
また、本実施例ではドライクリーニング中における予測・診断結果に基づいてプロセス条件の調節を行なったが、それに限るものではない。エッチングなどドライクリーニング以外の半導体製造処理の実施中に同様の予測・診断を行うことによってドライクリーニングのプロセス条件の調節を行ってもよい。また、ドライクリーニング中に行なった予測・診断の結果に基づいて、次回以降のドライクリーニングのプロセス条件の調節を行なってもよい。
【0096】
また、本実施例ではドライクリーニングのプロセス条件の調節の手段としてシャワープレート10もしくは高周波印加電極20に印加している高周波の電力を調節したが、それらに限るものではない。例えば処理ガス12の流量、処理室3内の圧力など他のプロセス条件の調節を行なってもよいし、処理室壁1の温度調節手段を有しているならば、それを用いてプロセス条件の調節を行なってよいし、ECR(Electron Cyclotron Resonance)プラズマ装置ならば、処理室3における磁束密度分布を調節してもよい。
【0097】
また、本実施形態ではプラズマエッチング装置を例に説明を行なったが、他の半導体処理装置においても実施が可能である。使用者は本発明を実施する場合、任意の半導体処理装置において受信手段からの受信信号を用いた予測・診断結果に基づいて、任意のドライクリーニングのプロセス条件の調節を行なうことができる。
【0098】
以上説明したように受信手段からの信号に基づいてドライクリーニングの終点検出およびドライクリーニングのプロセス条件の調節を行なうことによって、優れたドライクリーニング処理を実現することができる。
【0099】
【発明の効果】
以上説明したように本発明によれば、ウエットクリーニング後の処理室再組み立ての不都合、あるいは反応生成物の堆積、部品の削れ等の処理室の状況を診断することのできる半導体処理装置及び半導体処理装置の診断方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態にかかる平行平板型プラズマエッチング装置を示す図である。
【図2】処理室の組み立てが正常に行われたか否かを診断する方法を説明する図である。
【図3】第2の実施形態を説明する図である。
【図4】カバーの共振周波数の推移を説明する図である。
【図5】第3の実施形態を説明する図である。
【図6】第4の実施形態を説明する図である。
【図7】反応生成物の膜の厚さを評価する方法を説明する図である。
【図8】超音波のピークの時間差の推移を説明する図である。
【図9】本発明の半導体処理装置を用いて行う半導体処理の手順を説明する図である。
【図10】第5の実施形態を説明する図である。
【図11】処理室の組み立てが正常である場合の超音波の伝播を説明する図である。
【図12】処理室の組み立てが正常である場合の処理装置に設置されたモニタ画面の表示状態を表す図である。
【図13】処理室の組み立てに不具合がある場合の超音波の伝播を説明する図である。
【図14】処理室の組み立てに不具合がある場合の処理装置に設置されたモニタ画面の表示状態を表す図である。
【図15】第6の実施形態にかかる平行平板型プラズマエッチング装置を説明する図である。
【図16】図15に示すエッチング装置の処理室壁近傍の拡大図である。
【図17】本発明の半導体処理装置を用いて行なうドライクリーニングの手順を説明する図である。
【符号の説明】
1 処理室側壁
2 処理室蓋
3 処理室
4 静電吸着装置
5 Oリング
6 吸着用電極
7 直流電源
8 半導体基板
9,16,22 スイッチ
10 シャワープレート
11 ベローズ
12 処理ガス
13 パイプ
14,21 高周波電源
15 プラズマ
17 治具
18 プレート
19 ボルト
20 高周波印加電極
23 排気口
24 冷媒通路
25 冷媒供給口
26 冷媒排出口
27 カバー
28 超音波発振機
29 AEセンサ
32 可聴域音波発振機
33 加速度センサ
41 予測・診断手段
42 半導体製造装置制御コンピュータ

Claims (17)

  1. 真空処理室内にプラズマを生成するプラズマ生成装置及び前記真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料にプラズマ処理を施す半導体処理装置であって、
    前記半導体処理装置は、該半導体処理装置に機械的振動を印加する発振手段、及び該発振手段により前記半導体処理装置に生起した機械的振動を検出する受信手段を備えたことを特徴とする半導体処理装置。
  2. 真空処理室内にプラズマを生成するプラズマ生成装置及び前記真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料にプラズマ処理を施す半導体処理装置であって、
    前記半導体処理装置は、前記真空処理室内に設けられ且つ前記真空処理室内部品に機械的振動を印加する発振手段、及び該発振手段により前記半導体処理装置に生起した機械的振動を検出する受信手段を備えたことを特徴とする半導体処理装置。
  3. 真空処理室内にプラズマを生成するプラズマ生成装置及び前記真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料にプラズマ処理を施す半導体処理装置であって、
    該半導体処理装置は、半導体処理装置に機械的振動を印加する発振手段、及び前記真空処理室内に設けられ且つ前記真空処理室内部品に生起した機械的振動を検出する受信手段を備えたことを特徴とする半導体処理装置。
  4. 真空処理室内にプラズマを生成するプラズマ生成装置及び前記真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料にプラズマ処理を施す半導体処理装置であって、
    前記半導体処理装置は、該半導体処理装置に機械的振動を印加する発振手段、及び該発振手段により前記半導体処理装置に生起した機械的振動を検出する受信手段を備え、且つ前記発振手段及び受信手段を前記真空処理室側壁に並設したことを特徴とする半導体処理装置。
  5. 真空処理室内にプラズマを生成するプラズマ生成装置及び前記真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料にプラズマ処理を施す半導体処理装置であって、
    前記半導体処理装置は、該半導体処理装置に機械的振動を印加する発振手段、該発振手段により前記半導体処理装置に生起した機械的振動を検出する受信手段及び該受信手段が受信した受信信号を解析して前記真空処理室内の状態を予測する信号処理手段をを備えたことを特徴とする半導体処理装置。
  6. 請求項5の記載において、信号処理手段は前記解析結果を保存するデータベースを備えたことを特徴とする半導体処理装置。
  7. 請求項5の記載において、信号処理手段は前記解析結果をもとに警報を発する警報手段を備えたことを特徴とする半導体処理装置。
  8. 真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料に処理を施す半導体処理装置であって、
    前記半導体処理装置は、該半導体処理装置に機械的振動を印加する発振手段、及び該発振手段により前記半導体処理装置に生起した機械的振動を検出する受信手段を備えたことを特徴とする半導体処理装置。
  9. 真空処理室内にプラズマを生成するプラズマ生成装置及び前記真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料にプラズマ処理を施す半導体処理装置の診断方法であって、
    該方法は半導体処理装置に機械的振動を印加する工程、及び該工程により前記半導体処理装置に生起した機械的振動を検出する工程を含むことを特徴とする半導体処理装置の診断方法。
  10. 真空処理室内にプラズマを生成するプラズマ生成装置及び前記真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料にプラズマ処理を施す半導体処理装置の診断方法であって、
    該方法は、前記真空処理室内に設けられ且つ前記真空処理室内部品に機械的振動を印加する工程、及び該工程により前記半導体処理装置に生起した機械的振動を検出する工程を含むことを特徴とする半導体処理装置の診断方法。
  11. 真空処理室内にプラズマを生成するプラズマ生成装置及び前記真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料にプラズマ処理を施す半導体処理装置の診断方法であって、
    該方法は、半導体処理装置に機械的振動を印加する工程、及び前記真空処理室内に設けられ且つ前記真空処理室内部品に生起した機械的振動を検出する工程を含むことを特徴とする半導体処理装置の診断方法。
  12. 真空処理室内にプラズマを生成するプラズマ生成装置及び前記真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料にプラズマ処理を施す半導体処理装置の診断方法であって、
    該方法は、該半導体処理装置に機械的振動を印加する工程、該工程により前記半導体処理装置に生起した機械的振動を検出する工程及び検出した信号を解析して前記真空処理室内の状態を予測する工程を含むことを特徴とする半導体処理装置の診断方法。
  13. 真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料に処理を施す半導体処理装置の診断方法であって、
    該方法は、該半導体処理装置に機械的振動を印加する工程、及び該工程により前記半導体処理装置に生起した機械的振動を検出する工程を含むことを特徴とする半導体処理装置の診断方法。
  14. 真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料に処理を施す半導体処理装置であって、
    該半導体処理装置は半導体処理装置に機械的振動を印加する複数の発振手段、該発振手段により前記半導体処理装置に生起した機械的振動を検出する複数の受信手段並びに受信した受信信号を解析して前記真空処理装置内の状態を診断および予測する信号処理手段を備えたことを特徴とする半導体処理装置。
  15. 真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料に処理を施す半導体処理装置の診断方法であって、
    該方法は複数の発振手段によって半導体処理装置に機械的振動を印加する工程、該工程により前記半導体処理装置に生起した機械的振動を複数の受信手段によって検出する工程、及び前記受信信号を解析して前記真空処理装置内の異常が生じている場所の特定を行なう工程を含むことを特徴とする半導体処理装置の診断方法。
  16. 真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料に処理を施す手段及び前記真空処理装置内の堆積物を除去する手段を有する半導体処理装置であって、
    該処理装置は半導体処理装置に機械的振動を印加する発振手段、該発振手段により前記半導体処理装置に生起した機械的振動を検出する受信手段及び受信した受信信号を解析して前記真空処理装置内のクリーニング状態を予測する信号処理手段を備えたことを特徴とする半導体処理装置。
  17. 真空処理室内に処理ガスを導入する処理ガス供給手段を備え、前記真空処理室内に配置した試料に処理を施す手段および前記真空処理装置内の堆積物を除去する手段を有する半導体処理装置のクリーニング状態の診断方法であって、
    該方法は半導体処理装置に機械的振動を印加する工程、及び該工程により前記半導体処理装置に生起した機械的振動を検出する工程を含むことを特徴とする半導体処理装置のクリーニング状態の診断方法。
JP2002234802A 2002-05-02 2002-08-12 半導体処理装置及び半導体処理装置の診断方法 Expired - Fee Related JP3717467B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002234802A JP3717467B2 (ja) 2002-05-02 2002-08-12 半導体処理装置及び半導体処理装置の診断方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002130793 2002-05-02
JP2002234802A JP3717467B2 (ja) 2002-05-02 2002-08-12 半導体処理装置及び半導体処理装置の診断方法

Publications (2)

Publication Number Publication Date
JP2004031881A true JP2004031881A (ja) 2004-01-29
JP3717467B2 JP3717467B2 (ja) 2005-11-16

Family

ID=31190067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002234802A Expired - Fee Related JP3717467B2 (ja) 2002-05-02 2002-08-12 半導体処理装置及び半導体処理装置の診断方法

Country Status (1)

Country Link
JP (1) JP3717467B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182218A (ja) * 2007-12-25 2008-08-07 Hitachi High-Technologies Corp プラズマ処理装置
JP2013041993A (ja) * 2011-08-16 2013-02-28 Tokyo Electron Ltd 膜割れ検出装置及び成膜装置
JP2023512103A (ja) * 2020-02-03 2023-03-23 アプライド マテリアルズ インコーポレイテッド シャワーヘッドアセンブリ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213296A (ja) * 1994-10-20 1996-08-20 Hitachi Ltd 薄膜製造装置及び半導体装置
JPH09171992A (ja) * 1995-12-20 1997-06-30 Hitachi Ltd ドライエッチング装置
WO2001074123A1 (fr) * 2000-03-28 2001-10-04 Japan Science And Technology Corporation Appareil de detection de decharge anormale de plasma, et procede de detection correspondant
JP2001329369A (ja) * 2000-05-18 2001-11-27 Canon Inc 真空処理装置および真空処理方法
JP2003100714A (ja) * 2001-09-19 2003-04-04 Japan Science & Technology Corp 超音波プローブの一部を内蔵した基板載置台及び超音波プローブ貫通孔の密閉装置
JP2003173897A (ja) * 2001-12-04 2003-06-20 Japan Science & Technology Corp 超音波センサの接触状態の確認方法、超音波センサの接触状態の確認機能を備えたプラズマ異常放電監視装置、及び、プラズマ処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08213296A (ja) * 1994-10-20 1996-08-20 Hitachi Ltd 薄膜製造装置及び半導体装置
JPH09171992A (ja) * 1995-12-20 1997-06-30 Hitachi Ltd ドライエッチング装置
WO2001074123A1 (fr) * 2000-03-28 2001-10-04 Japan Science And Technology Corporation Appareil de detection de decharge anormale de plasma, et procede de detection correspondant
JP2001329369A (ja) * 2000-05-18 2001-11-27 Canon Inc 真空処理装置および真空処理方法
JP2003100714A (ja) * 2001-09-19 2003-04-04 Japan Science & Technology Corp 超音波プローブの一部を内蔵した基板載置台及び超音波プローブ貫通孔の密閉装置
JP2003173897A (ja) * 2001-12-04 2003-06-20 Japan Science & Technology Corp 超音波センサの接触状態の確認方法、超音波センサの接触状態の確認機能を備えたプラズマ異常放電監視装置、及び、プラズマ処理装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182218A (ja) * 2007-12-25 2008-08-07 Hitachi High-Technologies Corp プラズマ処理装置
JP4723559B2 (ja) * 2007-12-25 2011-07-13 株式会社日立ハイテクノロジーズ プラズマ処理装置
JP2013041993A (ja) * 2011-08-16 2013-02-28 Tokyo Electron Ltd 膜割れ検出装置及び成膜装置
JP2023512103A (ja) * 2020-02-03 2023-03-23 アプライド マテリアルズ インコーポレイテッド シャワーヘッドアセンブリ
JP7462771B2 (ja) 2020-02-03 2024-04-05 アプライド マテリアルズ インコーポレイテッド シャワーヘッドアセンブリ

Also Published As

Publication number Publication date
JP3717467B2 (ja) 2005-11-16

Similar Documents

Publication Publication Date Title
US6866744B2 (en) Semiconductor processing apparatus and a diagnosis method therefor
US20060100824A1 (en) Plasma processing apparatus, abnormal discharge detecting method for the same, program for implementing the method, and storage medium storing the program
JP5363213B2 (ja) 異常検出システム、異常検出方法、記憶媒体及び基板処理装置
JP4878188B2 (ja) 基板処理装置、堆積物モニタ装置、及び堆積物モニタ方法
US7931776B2 (en) Plasma processing apparatus
JP2003318115A (ja) 窓型プローブ、プラズマ監視装置、及び、プラズマ処理装置
US20060075968A1 (en) Leak detector and process gas monitor
KR102422119B1 (ko) 모니터링 디바이스를 갖는 처리 툴
JP2008288340A (ja) プラズマ処理装置、プラズマ処理方法、及び洗浄時期予測プログラム
TWI746694B (zh) 選擇性蝕刻速率監控器
JP2002025982A (ja) 消耗品の消耗度予測方法及び堆積膜厚の予測方法
KR20100069392A (ko) 증착, 식각 혹은 클리닝 공정에서 증착, 식각 혹은 클리닝 종료 시점을 결정하기 위하여 수정 결정 미소저울을 이용하는 반도체 소자의 제조장치 및 이를 이용한 제조방법
JP2007003443A (ja) 異常状態検出方法およびシート状圧電センサ
KR101833762B1 (ko) 플라즈마 공정용 챔버 내부 관리 시스템
EP4114999A1 (en) System and method for monitoring semiconductor processes
KR101912259B1 (ko) 파티클 모니터 방법, 파티클 모니터 시스템
JP3717467B2 (ja) 半導体処理装置及び半導体処理装置の診断方法
JP2006210415A (ja) 部品検査方法、部品検査装置および製造装置
JP3653668B2 (ja) 超音波センサの接触状態の確認方法、超音波センサの接触状態の確認機能を備えたプラズマ異常放電監視装置、及び、プラズマ処理装置
JP4673601B2 (ja) プラズマ処理装置
CN1656600A (zh) 监控处理室中薄膜沉积的方法及设备
KR20220024855A (ko) 가스 라인 성능을 예측하고 제어하는 시스템 및 방법
JP7401402B2 (ja) 測定装置、膜厚センサ、成膜装置および異常判定方法
JP2006066552A (ja) 周波数測定装置、プラズマ処理装置及びプラズマ処理方法
JP5389362B2 (ja) 真空処理装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees