JP2004031616A - 研磨スラリー、研磨方法および半導体装置の製造方法 - Google Patents

研磨スラリー、研磨方法および半導体装置の製造方法 Download PDF

Info

Publication number
JP2004031616A
JP2004031616A JP2002185462A JP2002185462A JP2004031616A JP 2004031616 A JP2004031616 A JP 2004031616A JP 2002185462 A JP2002185462 A JP 2002185462A JP 2002185462 A JP2002185462 A JP 2002185462A JP 2004031616 A JP2004031616 A JP 2004031616A
Authority
JP
Japan
Prior art keywords
polishing
insulating film
polishing slurry
spherical particles
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002185462A
Other languages
English (en)
Inventor
Shunichi Shibuki
澁木 俊一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002185462A priority Critical patent/JP2004031616A/ja
Publication of JP2004031616A publication Critical patent/JP2004031616A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】溝配線を形成するための化学機械的研磨において、SiO2 膜に比べて機械的性質が弱い比誘電率が3.5以下の低誘電率膜にも用いることができ、ディッシングを改善するとともにスクラッチを防止する研磨スラリー、その研磨スラリーを用いた研磨方法および半導体装置の製造方法を提供することにある。
【解決手段】絶縁膜12に形成された凹部13を埋め込むようにして絶縁膜12上に形成された導電膜15を凹部13内のみに残すように研磨する際に用いる研磨用スラリーであって、研磨スラリーは半径が50μm以上の大きい球状粒子を含むものであり、球状粒子は絶縁膜よりも軟質なものからなる、もしくは、内部に絶縁膜12よりも硬質な材料からなる核を有し、少なくとも最表面に絶縁膜12よりも軟質な被覆層が形成されているものからなり、この研磨スラリーを用いた研磨方法であり、この研磨方法を用いた半導体装置の製造方法である。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、研磨スラリー、研磨方法および半導体装置の製造方法に関し、詳しくは埋め込み配線を形成する研磨に用いる研磨スラリー、その研磨スラリーを用いた研磨方法およびその研磨方法を用いた半導体装置の製造方法に関する。
【0002】
【従来の技術】
絶縁膜に溝を形成した後、その溝内に導電体を埋め込んで配線を形成する溝配線の形成方法として、特開2001−187880号公報の第2頁の段落0003に「絶縁膜に溝や接続孔等の凹部を形成し、バリア金属膜を形成した後に、その凹部を埋め込むようにメッキ法により全面に銅膜を成膜し、その後、化学的機械的研磨法によって凹部以外の絶縁膜表面が完全に露出するまで研磨して表面を平坦化し、凹部に銅が埋め込まれた埋め込み銅配線やビアプラグ、コンタクトプラグ等の電気的接続部を形成」することが記述されている。
【0003】
また同公開特許公報の第2頁の段落0008には「銅膜研磨用のCMP用スラリーは、酸化剤と研磨砥粒を主成分とするものが一般的である。酸化剤の化学的作用で銅表面をエッチングするとともに、その酸化表面層を研磨砥粒により機械的に除去するのが基本的なメカニズムである」と記述されている。
【0004】
さらに同公開特許公報の第2頁の段落0025には「2次粒子の平均粒径は、0.05μm以上が好ましく、0.07μm以上がより好ましく、0.08μm以上が更に好ましい。上限としては、0.5μm以下が好ましく、0,4μm以下がより好ましく、0.3μm以下が更に好ましい」および同頁段落0027には「含2次粒子θアルミナは、好ましくは2μm、より好ましくは1.5μm、更に好ましくは1μmより粒径が大きい1次粒子及び2次粒子を実質的に含有しないことが望ましい」と記述されている。
【0005】
一般的にスラリーに含まれる砥粒には、平均粒径で0.5μm程度以下のものが使われ、これ以上大きい粒径のものはスクラッチの原因となるため、できるだけフィルタリングなどにより除去するのが一般的である。
【0006】
特開2001−187880号公報は、銅を用いたダマシン配線の形成における研磨方法を述べたものであり、同公報第7頁の段落0057には「研磨剤の平均粒径は、研磨速度、分散安定性、研磨面の表面粗さの点から、光散乱回折法により測定した平均粒径で5nm以上が好ましく、50nm以下がより好ましく、300nm以下がより好ましい。粒径分布は、最大粒径(d100)で3μm以下が好ましく、1μm以下がより好ましい」ことが記述されている。
【0007】
特開2001−77065号公報には、シリカ基板を最終研磨する方法が開示されており、この研磨では粒子径が50nm以下のコロイダルシリカを含むアルカリ性の水溶液を用いて基板の表面を研磨することが記述されている。
【0008】
特開2001−118815号公報には、シリコンウェーハのエッジを研磨するためのスラリーについて記載されており、同公報第2頁段落0005には「コロイダルシリカの粒子径を大きくすれば、除去速度は速くなるが、研磨面にスクラッチが発生しやすくなる」と記述されている。
【0009】
さらに、特開平9−285957号公報には、化学的機械研磨に用いる研磨材に研磨材の粒子よりも大きい径のスクラッチ防止粒子を混入した研磨剤が開示されている。このスクラッチ防止粒子は、研磨中に研磨材中へ入り込む異物よりも大きい径を有することが必要であることは開示されているが、具体的な粒径に関する開示はない。またスクラッチ防止粒子は、被加工物の半導体ウエハよりも柔らかい樹脂からなるものであればよいとされ、具体的なにはポリウレタン樹脂を用いることが開示されている。
【0010】
【発明が解決しようとする課題】
上記溝配線を形成するための化学機械的研磨では、研磨時にパッドが幅広い配線部に追随することから、ディッシングと呼ばれる配線膜の目減りが発生する。このディッシングを改善するためには、研磨時の圧力低減や研磨パッド回転数増大、研磨終点による正確な研磨時間管理が一定の効果を上げることが知られている。しかしながら、配線の微細化にともなって、銅の埋め込み時に発生する密配線部の盛り上がり現象が発生して研磨前の膜厚分布を増大させることにより、上記手法を用いたディッシングの低減には限界があった。
【0011】
また、ディッシングは、研磨パッドの硬質化で改善されることが一般に知られているが、研磨パッドの硬質化は、研磨面のスクラッチ増大を招きやすいことが知られている。特に、近年絶縁膜材料として使われ始めた比誘電率が3.5以下の低誘電率膜は従来から使われているSiO2 膜に比べて機械的性質が弱く、スクラッチが入りやすい性質を持っている。また硬質化するために研磨パッド内の気泡を減少させた場合には、研磨中のスラリーの入り込みが悪化し、スラリーの供給不足や熱の発生により、研磨量の面内均一性が悪化する問題があった。そこで、ディッシングを防止するとともにスクラッチを防止することが求められている。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされた研磨スラリー、研磨方法および半導体装置の製造方法である。
【0013】
本発明の研磨スラリーは、絶縁膜に形成された凹部を埋め込むようにして前記絶縁膜上に形成された導電膜を前記凹部内のみに残すように研磨する際に用いる研磨用スラリーであって、前記研磨スラリーは半径が50μm以上の大きい球状粒子を含むものである。
【0014】
上記研磨スラリーには、半径が50μm以上という径の大きな球状粒子が含まれているため、この球状粒子によって研磨パッドが直接被研磨物に接触することがなく、しかも凹部内にパッドも研磨スラリーの粒子も追随しないためディッシングが抑制される。また研磨スラリーに含まれる半径が50μm以上の粒子が球状であるため、スクラッチの原因となりにくい。さらにスラリーの化学成分はこの球状粒子の間を通って被研磨面に十分に供給されるため均一性悪化も防止される。
【0015】
次に、図2に示す断面模式図によって、本発明のスラリーを用いて研磨を行う際の、膜21に形成された凹部(以下、溝として説明する)22内への球状粒子31の追随状況を説明する。球状粒子31の半径をr、配線が形成される溝22の幅をwとすると、球状粒子31の溝22内への入り込み最大量hm a x は以下の(1)式で表される。
【0016】
Figure 2004031616
【0017】
上記球状粒子の半径rと溝幅wを変えた場合の入り込み最大量hm a x の一例を表3および図3に示す。この表3より、例えば、w=2μm,r=50μmの時、hm a x =10nmである。これは、2μm幅の配線では、球状粒子は深さ10nmしか追随しないことを示している。従って、配線の目減りを抑制できることを示している。
【0018】
【表3】
Figure 2004031616
【0019】
また、径の大きい球状粒子を使うほど、配線の目減りを抑制できることがわかる。一つの目標として、配線幅w=5μm以下の配線でディッシングをhm a x =100nm以下にしたいとすると、図3に示すように、半径r=50μm以上の球状粒子を含むものを使うことで、良い結果が得られることが予想できる。このように、本発明の研磨スラリーは、単に、研磨スラリー中に粒径が大きい粒子を混入させたのではなく、溝配線を形成するのに、ディッシングを抑制しかつスクラッチも抑制する最適な球状粒子を開示したものである。
【0020】
上記球状粒子は、絶縁膜よりも軟質なものを用いることが好ましい。このように、絶縁膜よりも軟質な球状粒子を用いることにより、スクラッチの発生がさらに抑制される。
【0021】
上記球状粒子は、内部に絶縁膜よりも硬質な材料からなる核を有し、少なくとも最表面に前記絶縁膜よりも軟質な被覆層が形成されていることが好ましい。ところで、上記(1)で計算した球状粒子が凹部内へ入り込む最大量hm a x は、粒子の変形を無視した場合の数値であり、実際に球状粒子が溝内に入り込む最大量は、球状粒子の変形によってさらに大きくなる。一方、上記球状粒子は、内部に絶縁膜よりも硬質な材料からなる核を有し、少なくとも最表面に前記絶縁膜よりも軟質な被覆層が形成されていることから、軟質なものだけで球状粒子を形成した場合に比べ、球状からの変形が少なくなるため、ディッシング量をさらに減らすことができる。また、球状粒子の表面が軟質であるからスクラッチの増大も起こりにくい。
【0022】
本発明の研磨方法は、絶縁膜に形成された凹部を埋め込むようにこの絶縁膜上に形成した導電膜を凹部内のみに残すように研磨する研磨方法において、研磨には半径が50μm以上の大きい球状粒子を含む研磨スラリーを用いる。
【0023】
上記研磨方法では、半径が50μm以上という径の大きな球状粒子が含まれている研磨スラリーを用いて研磨を行うため、この球状粒子によって研磨パッドが直接被研磨物に接触することがなく、しかも凹部内にパッドも研磨スラリーの粒子も追随しないためディッシングが抑制される。また研磨スラリーに含まれる半径が50μm以上の粒子が球状であるため、スクラッチの原因となりにくい。さらにスラリーの化学成分はこの球状粒子の間を通って被研磨面に十分に供給されるため均一性悪化も防止される。
【0024】
本発明の半導体装置の製造方法は、絶縁膜に形成された凹部を埋め込むように前記絶縁膜上に形成した導電膜を前記凹部内のみに残すように研磨する工程を備えた半導体装置の製造方法において、前記研磨には、半径が50μm以上の大きい球状粒子を含む研磨スラリーを用いる。
【0025】
上記半導体装置の製造方法では、上記研磨工程において、半径が50μm以上という径の大きな球状粒子が含まれている研磨スラリーを用いて研磨を行うため、この球状粒子によって研磨パッドが直接被研磨物に接触することがなく、しかも凹部内にパッドも研磨スラリーの粒子も追随しないためディッシングが抑制される。また研磨スラリーに含まれる半径が50μm以上の粒子が球状であるため、スクラッチの原因となりにくい。さらにスラリーの化学成分はこの球状粒子の間を通って被研磨面に十分に供給されるため均一性悪化も防止される。
【0026】
上記絶縁膜は、比誘電率が3.5以下の絶縁体で形成することができる。このような絶縁膜材料は、低誘電率膜として知られており、SiO2 膜に比べて機械的性質が弱く、スクラッチが入りやすい性質を持っている。絶縁膜として低誘電率膜を使用する場合に、本発明は、従来の研磨スラリーを用いた研磨と比較して、スクラッチの抑制効果がより大きくなる。
【0027】
【発明の実施の形態】
本発明の研磨スラリーを、以下に説明する。
【0028】
本発明の研磨スラリーは、シリコン系絶縁材料からなる絶縁膜に形成された凹部(例えば配線溝、接続孔等)を埋め込むようにしてこの絶縁膜上に形成された導電膜(配線材料となる膜)を上記凹部内のみに残すように研磨する際に用いる研磨用スラリーであり、この研磨スラリーは半径が50μm以上の大きい球状粒子を含むものである。この球状粒子は、上記絶縁膜よりも軟質なものとして、例えばフッ素樹脂、ポリスチレン等のポリマーからなる。以下、このような粒子を軟質球状粒子という。または、上記球状粒子は、内部に上記絶縁膜よりも硬質な材料として、金属、合金等からなる核を有し、少なくとも最表面に上記絶縁膜よりも軟質な被覆層が形成されているものからなる。以下、このような粒子を硬質軟質積層球状粒子という。軟質な被覆層は、例えばフッ素樹脂、ポリスチレン等のポリマーからなる。この被覆層は複数層で形成されていてもよい。
【0029】
上記球状粒子の半径は、50μmよりも小さいと、球状粒子を用いない場合と比較して、導電膜の研磨の際に発生するディッシングに大きな変化はない。一方、球状粒子の半径が50μm以上になると、ディッシングの発生量を20nm以上小さくでき、ディッシングの抑制効果が顕著に表れてくる。そこで、球状粒子の大きさは、半径50μm以上としている。このことに関しては、後に詳述する。
【0030】
次に、研磨スラリーを用いた研磨方法による溝配線の形成工程を含む半導体装置の製造方法を、図1の製造工程断面図によって説明する。図1では、一例として、半導体装置の溝配線を形成する工程を示す。
【0031】
図1の(1)に示すように、基板11上に絶縁膜12を例えば厚さが1000nmの酸化シリコン膜で形成する。
【0032】
次いで、図1の(2)に示すように、上記絶縁膜12に凹部(以下配線溝として説明する)13を形成する。この配線溝13は、ある領域には例えば幅が0.2μmの狭い配線溝13(13sa)が密に例えば0.4μmピッチで形成されたものであり、ある領域には例えば幅が1μm、5μm、10μmの広い配線溝13(13wa)、13(13wb)、13(13wc)が例えば200μm間隔で形成されたものである。
【0033】
次いで、図1の(3)に示すように、上記各配線溝13の内壁および絶縁膜12上にバリアメタル層(図示せず)を、例えば、スパッタリングによって窒化タンタル膜を30nmの厚さに堆積して形成する。さらに例えばスパッタリングによって、銅シード層(図示せず)を、例えば銅膜を100nmの厚さに堆積して形成する。この銅シード層は、100nmの膜厚に限定されるものではなく、配線溝13の内壁面を十分に被覆する膜厚に成膜されていればよい。さらにめっき法により、上記配線溝13の内部を導電膜15として、例えば銅膜を例えば1100nmの厚さに堆積して埋め込む。このとき、めっきの特性により、狭い配線幅が密に存在する部分の上部のめっき膜厚は他の部分に比べ厚くなった。
【0034】
その後、本発明に係るスラリーを用いて研磨(例えばCMP)を行い、絶縁膜12上に形成された銅からなる導電膜15および銅シード層(図示せず)を除去する。この際、特に上述した狭い配線幅が密に存在する部分に導電層15および銅シード層(図示せず)が残りやすかったが、これが除去されるまで研磨を行った。研磨後、バリアメタル(図示せず)は絶縁膜12上に一部残っていてもよい。
【0035】
その結果、図1の(4)に示すように、上記配線溝13内に残したバリアメタル層(図示せず)を介して埋め込まれている導電膜15で配線16が形成される。このとき、ディッシングhm a x は、従来の方法に比べ著しい改善が見られた。ここで、バリアメタル(図示せず)が絶縁膜12上に残っている場合には、配線間を電気的に分離するために、エッチングまたはCMPにより絶縁膜12上のバリアメタル(図示せず)を除去する。
【0036】
また、図1の(1)によって説明した絶縁膜の成膜工程および図1の(2)によって説明した配線溝の形成工程は、いわゆるデュアルダマシン構造を形成するように、配線溝と配線孔とを形成するようにしてもよい。
【0037】
また、導電膜15には、以下のようなものがある。スパッタ法により形成される導電膜には、例えばチタン(Ti)、窒化チタン(TiN)、タンタル(Ta)、窒化タンタル(TaN)、アルミニウム(Al)など、CVD法により形成される導電膜には、例えばタングステン(W)、窒化タングステン(WN)、チタンシリコンナイトライド(TiSiN)など、めっき法により形成される導電膜には、例えばニッケル(Ni)、クロム(Cr)、金(Au)、銀(Ag)などがあり、これらの単層膜もしくはその積層膜を使用することができる。
【0038】
なお、絶縁膜12は、酸化シリコン膜、SiOF、SiOC、SiC、SiCH、SiCN、SiOCH、PSG、BPSG、SOG、SiN、ポリアリールエーテル系樹脂(例えばSiLK)、アリールエーテル系樹脂、芳香族ポリマー、ポリイミド、フッ素添加ポリイミド、フッ素樹脂およびベンゾシクロブテンのうちの一つもしくはこれらのうちの複数を用いた積層体で形成することもできる。
【0039】
次に、研磨スラリーA、研磨スラリーB、研磨スラリーCの3種類の研磨スラリーを作製し、各研磨スラリーを用いて、上記図1によって説明した配線形成方法を実施した。ここでは、絶縁膜12には厚さが1000nmの酸化シリコン膜を用いた。
【0040】
まず、各研磨スラリーについて、以下に説明する。
【0041】
研磨スラリーAは、純水と過酸化水素30%溶液を10:1の割合で混合したものに、クエン酸3重量%を添加したスラリーを1000cc用意し、この1000ccのスラリーに対し、直径5μm、50μmまたは500μmの軟質球状粒子を20cc混合した研磨スラリーであり、またこの1000ccのスラリーに対し、直径5μm、50μmまたは500μmの硬質軟質積層球状粒子を20cc混合した研磨スラリーである。さらに、比較例として、軟質球状粒子も硬質軟質積層球状粒子も含まないものも用意した。
【0042】
研磨スラリーBは、純水と過酸化水素30%溶液を10:1の割合で混合したものに、クエン酸3重量%を添加し、さらに粒子径が50nmのシリカを分散させたスラリーを1000cc用意し、この1000ccのスラリーに対し、直径5μm、50μmまたは500μmの軟質球状粒子を20cc混合した研磨スラリーであり、またこの1000ccのスラリーに対し、直径5μm、50μmまたは500μmの硬質軟質積層球状粒子を20cc混合した研磨スラリーである。さらに、比較例として、軟質球状粒子も硬質軟質積層球状粒子も含まないものも用意した。
【0043】
研磨スラリーCは、特開2001−144062(日立化成特許)の第4頁段落0014に記載された研磨液Aを1000cc用意し、その1000ccの研磨液Aに対し、直径5μm、50μmまたは500μmの軟質球状粒子を20cc混合した研磨スラリーであり、また上記1000ccの研磨液Aに対し、直径5μm、50μmまたは500μmの硬質軟質積層球状粒子を20cc混合した研磨スラリーである。さらに、比較例として、軟質球状粒子も硬質軟質積層球状粒子も含まないものも用意した。上記研磨液Aは、DL−リンゴ酸(試薬特級)0.15重量部に水70重量部を加えて溶解し、これにベンゾトリアゾール0.2重量部、分子量15000のポリアクリル酸0.05重量部を加え、最後に過酸化水素水(試薬特級、30重量%水溶液)33.2重量部を加えて得られるものである。
【0044】
上記、軟質球状粒子には、一例としてフッ素樹脂粒子を用い、上記硬質軟質積層球状粒子には、一例としてステンレス粒子に1μmの厚さにフッ素樹脂をコーティングしたものを用いた。硬質軟質積層球状粒子に関しては、コーティング後の直径が5μm、50μm、500μmとなるように作製した。フッ素樹脂以外にはポリスチレンなど他のポリマー粒子などを使用してもよい。ポリスチレン粒子は、例えばDuke Scientific Corporation製の4000シリーズなどを使用することができる。
【0045】
上記硬質軟質積層球状粒子は、内部に絶縁膜12よりも硬質な材料からなる核を有し、少なくとも最表面に絶縁膜12よりも軟質な材料からなる被覆層が形成されているものであればよく、例えば被覆層が絶縁膜12よりも軟質な材料からなる複数の層で形成されていてもよく、また核が絶縁膜12よりも硬質な材料からなる複数の層で形成されたものであってもよい。
【0046】
次に、一般的な研磨装置(図示せず)を用い、上記研磨スラリーA、B、Cのそれぞれを用いて、上記図1によって説明した製造方法により配線16を形成した。そして、段差計を用いて研磨後のディッシングhdを測定した。ディッシングhdは前記図1に示すように、絶縁膜12表面からの配線16の最大凹み量で表す。軟質球状粒子を用いた研磨スラリーの結果を表1に示し、硬質軟質積層球状粒子を用いた研磨スラリーの結果を表2に示す。
【0047】
【表1】
Figure 2004031616
【0048】
【表2】
Figure 2004031616
【0049】
表1および表2より、半径が50μm以上の球状粒子を含む研磨スラリーを用いて導電膜15を研磨したものでは、球状粒子を含まない研磨スラリーを用いて導電膜15を研磨したもの比較して、ディッシングhm a x が20nm以上低減された。これにより本発明の研磨スラリーを用いた研磨ではディッシングが低減される効果が確認された。特に硬質軟質積層球状粒子を含む研磨スラリーでは軟質球状粒子を含む研磨スラリーよりもさらにディッシングの改善が見られた。
【0050】
上記説明では、絶縁膜として酸化シリコン膜を用いた場合について述べた。絶縁膜12を1000nmの膜厚のSiOCおよび1000nmの膜厚のポリアリルエーテルで形成し、上記研磨スラリーA、B、Cを用いて導電膜15を研磨して、配線16を形成した場合も、絶縁膜12を酸化シリコンで形成した場合とほぼ同様なる傾向のディッシング結果が得られた。
【0051】
また、全ての研磨例において、また3種類の絶縁膜を用いたすべての研磨で、スクラッチの無いきれいな表面が得られた。
【0052】
本発明の研磨スラリーを用いた研磨では、半導体装置の製造方法において、配線の設計において配線幅に制限を設けることにより、例えばディッシングhが設定した数値以下になるように配線幅に制限を設けることにより、さらに効果を上げることができる。
【0053】
また、本発明の研磨スラリーの物性を改良するため、薬液、界面活性剤、分散剤、沈降防止剤などを併用することができる。また、上記研磨スラリーBのように砥粒を併用することもできる。また溶媒は水以外にも、アルコール,油などを用いてもよい。さらには溶媒に分散させず乾式で用いてもよい。
【0054】
【発明の効果】
以上、説明したように本発明の研磨スラリーによれば、半径が50μm以上という径の大きな球状粒子が含まれているので、この球状粒子によって研磨パッドが直接被研磨物に接触することがなくなり、しかも凹部内にパッドも研磨スラリーの粒子も追随しないためディッシングを抑制することができる。したがって、配線の目減りを抑制できる。また研磨スラリーに含まれる半径が50μm以上の粒子が球状であるため、スクラッチの原因となりにくい。さらにスラリーの化学成分はこの球状粒子の間を通って被研磨面に十分に供給されるため均一性悪化も防止できる。よって、配線のディッシングを改善することができ、高精度の平坦度を得ることが出来る。
【0055】
また、球状粒子は、絶縁膜よりも軟質なものを用いることが好ましい。このように、絶縁膜よりも軟質な球状粒子を用いることにより、スクラッチの発生がさらに抑制できる。また球状粒子は、内部に絶縁膜よりも硬質な材料からなる核を有し、少なくとも最表面に前記絶縁膜よりも軟質な被覆層が形成されていることが好ましい。このような球状粒子は、球状からの変形が少なくなるため、ディッシング量をさらに減らすことができる。また、球状粒子の表面が軟質であるからスクラッチの増大も起こりにくい。
【0056】
本発明の研磨方法によれば、本発明の研磨スラリーによる効果が得られる。
【0057】
本発明の半導体装置の製造方法によれば、研磨工程において、本発明の研磨スラリーを用いて研磨を行うため、本発明の研磨スラリーによる効果が得られる。
【図面の簡単な説明】
【図1】研磨スラリーを用いた研磨方法による溝配線の形成工程を含む半導体装置の製造方法を示す製造工程断面図である。
【図2】溝内に入り込む球状粒子を示す断面模式図である。
【図3】球状粒子の半径をパラメータとした溝配線幅とディッシングとの関係をシミュレーションした結果を示す図である。
【符号の説明】
12…絶縁膜、15…導電膜

Claims (10)

  1. 絶縁膜に形成された凹部を埋め込むようにして前記絶縁膜上に形成された導電膜を前記凹部内のみに残すように研磨する際に用いる研磨用スラリーであって、
    前記研磨スラリーは半径が50μm以上の大きい球状粒子を含む
    ことを特徴とする研磨スラリー。
  2. 前記球状粒子は前記絶縁膜よりも軟質なものからなる
    ことを特徴とする請求項1記載の研磨スラリー。
  3. 前記球状粒子は、内部に前記絶縁膜よりも硬質な材料からなる核を有し、少なくとも最表面に前記絶縁膜よりも軟質な被覆層が形成されている
    ことを特徴とする請求項1記載の研磨スラリー。
  4. 絶縁膜に形成された凹部を埋め込むように前記絶縁膜上に形成した導電膜を前記凹部内のみに残すように研磨する研磨方法において、
    前記研磨には、半径が50μm以上の大きい球状粒子を含む研磨スラリーを用いる
    ことを特徴とする研磨方法。
  5. 前記球状粒子は前記絶縁膜よりも軟質なものからなる
    ことを特徴とする請求項4記載の研磨方法。
  6. 前記球状粒子は、内部に前記絶縁膜よりも硬質な材料からなる核を有し、少なくとも最表面に前記絶縁膜よりも軟質な被覆層が形成されている
    ことを特徴とする請求項4記載の研磨方法。
  7. 絶縁膜に形成された凹部を埋め込むように前記絶縁膜上に形成した導電膜を前記凹部内のみに残すように研磨する工程を備えた半導体装置の製造方法において、
    前記研磨には、半径が50μm以上の大きい球状粒子を含む研磨スラリーを用いる
    を特徴とする半導体装置の製造方法。
  8. 前記球状粒子は前記絶縁膜よりも軟質なものからなる
    ことを特徴とする請求項7記載の半導体装置の製造方法。
  9. 前記球状粒子は、内部に前記絶縁膜よりも硬質な材料からなる核を有し、少なくとも最表面に前記絶縁膜よりも軟質な被覆層が形成されている
    ことを特徴とする請求項7記載の半導体装置の製造方法。
  10. 上記絶縁膜は比誘電率が3.5以下の絶縁体からなる
    ことを特徴とする請求項7記載の半導体装置の製造方法。
JP2002185462A 2002-06-26 2002-06-26 研磨スラリー、研磨方法および半導体装置の製造方法 Pending JP2004031616A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002185462A JP2004031616A (ja) 2002-06-26 2002-06-26 研磨スラリー、研磨方法および半導体装置の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185462A JP2004031616A (ja) 2002-06-26 2002-06-26 研磨スラリー、研磨方法および半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2004031616A true JP2004031616A (ja) 2004-01-29

Family

ID=31181081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185462A Pending JP2004031616A (ja) 2002-06-26 2002-06-26 研磨スラリー、研磨方法および半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2004031616A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066907A (ja) * 2004-07-29 2006-03-09 Rohm & Haas Electronic Materials Cmp Holdings Inc ケミカルメカニカルポリッシングのためのポリマー被覆粒子
US7452819B2 (en) 2003-06-02 2008-11-18 Kabushiki Kaisha Toshiba Chemical mechanical polishing method of organic film and method of manufacturing semiconductor device
JP2010067998A (ja) * 2003-07-31 2010-03-25 Fujitsu Microelectronics Ltd 半導体装置の製造方法
JP2010123962A (ja) * 2008-11-20 2010-06-03 Commiss Energ Atom 基板に転写されたブロックを薄化する方法
JP2018060871A (ja) * 2016-10-03 2018-04-12 株式会社ディスコ デバイスチップの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452819B2 (en) 2003-06-02 2008-11-18 Kabushiki Kaisha Toshiba Chemical mechanical polishing method of organic film and method of manufacturing semiconductor device
US8685857B2 (en) 2003-06-02 2014-04-01 Kabushiki Kaisha Toshiba Chemical mechanical polishing method of organic film and method of manufacturing semiconductor device
JP2010067998A (ja) * 2003-07-31 2010-03-25 Fujitsu Microelectronics Ltd 半導体装置の製造方法
JP2006066907A (ja) * 2004-07-29 2006-03-09 Rohm & Haas Electronic Materials Cmp Holdings Inc ケミカルメカニカルポリッシングのためのポリマー被覆粒子
JP2010123962A (ja) * 2008-11-20 2010-06-03 Commiss Energ Atom 基板に転写されたブロックを薄化する方法
JP2018060871A (ja) * 2016-10-03 2018-04-12 株式会社ディスコ デバイスチップの製造方法

Similar Documents

Publication Publication Date Title
TWI233181B (en) Very low effective dielectric constant interconnect Structures and methods for fabricating the same
US6627539B1 (en) Method of forming dual-damascene interconnect structures employing low-k dielectric materials
US6251786B1 (en) Method to create a copper dual damascene structure with less dishing and erosion
US6924227B2 (en) Slurry for chemical mechanical polishing and method of manufacturing semiconductor device
US8614146B2 (en) Semiconductor device manufacture method and semiconductor device
US7145245B2 (en) Low-k dielectric film with good mechanical strength that varies in local porosity depending on location on substrate—therein
JP4901301B2 (ja) 研磨方法及び半導体装置の製造方法
JP2007335890A (ja) 化学・機械的研磨(cmp)中における銅のディッシングを防止するための局部領域合金化
JP2002141314A (ja) 化学機械研磨用スラリおよび半導体装置の製造方法
TW200403807A (en) Interconnect structures containing stress adjustment cap layer
JP2009059908A (ja) 研磨液および半導体装置の製造方法
US6930033B2 (en) Treating surface of low-dielectric constant material to achieve good mechanical strength
US10497614B2 (en) Semiconductor structure and fabrication method thereof
KR101842903B1 (ko) 에어 갭 상호연결 구조의 형성 방법
JP2007150298A (ja) 導体−誘電体構造およびこれを作成するための方法
JP2003100724A (ja) 誘電体エッチング用アルミニウムハードマスク
JP4864402B2 (ja) 半導体装置の製造方法
JP2003179136A (ja) デュアルダマシン半導体製造のためのマスク層及び相互接続構造
US6919276B2 (en) Method to reduce dishing and erosion in a CMP process
TW569384B (en) Method of manufacturing semiconductor device
JP5369597B2 (ja) Cmp研磨液及び研磨方法
JP2004031616A (ja) 研磨スラリー、研磨方法および半導体装置の製造方法
JP2010108985A (ja) 研磨方法
JP2004165434A (ja) 半導体装置の製造方法
JP2009123782A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603