JP2004031577A - Radiator for semiconductor device - Google Patents

Radiator for semiconductor device Download PDF

Info

Publication number
JP2004031577A
JP2004031577A JP2002184710A JP2002184710A JP2004031577A JP 2004031577 A JP2004031577 A JP 2004031577A JP 2002184710 A JP2002184710 A JP 2002184710A JP 2002184710 A JP2002184710 A JP 2002184710A JP 2004031577 A JP2004031577 A JP 2004031577A
Authority
JP
Japan
Prior art keywords
radiator
heat
semiconductor element
mounting portion
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002184710A
Other languages
Japanese (ja)
Inventor
Masanori Yamagiwa
山際 正憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002184710A priority Critical patent/JP2004031577A/en
Publication of JP2004031577A publication Critical patent/JP2004031577A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiator for a semiconductor device which has a good heat dissipating efficiency without an increase in size. <P>SOLUTION: The radiator 1 has a side wall portion 3 standing up from an end part 2 of a placement section 2 to the semiconductor device 5 side. There are bottom face fins 11 on a bottom surface of the placement section 2 and side face fins 12 on an outer surface of the side wall portion 3. The bottom face fins 11, the side face fins 12, the bottom face of the placement section 2, and the outer surface of the side wall section 3 are made to face a liquid 10 for cooling to dissipate heat generated by the semiconductor device 5. Due to this structure, the radiator for a semiconductor device can be reduced in size, compared with the conventional radiator with an increased area for the placement section with added bottom face fins. Furthermore, the radiator 1 can secure required dissipating performance in a shape corresponding to a dimensional margin of an installation site of the radiator 1 mounted with the semiconductor device 5. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子の放熱を行う半導体素子用放熱器に関する。
【0002】
【従来の技術】
近年、半導体素子の微細加工技術がより一層進歩し、高密度化によって動作時の発熱量が増大しているため、その熱を効果的に放熱するための新しい放熱器が種々提案されている。このような放熱器の例として、たとえば特開2001−168256号公報記載のようなものがある。この放熱器は、半導体素子を載置する載置部と、載置部の半導体を載置した側を表面としてその裏面から伸びる複数の放熱フィンからなる。この載置部の裏面と放熱フィンを冷却用液体に臨ませることにより、半導体素子で発生した熱は載置部表面へ伝わり、放熱器の内部で拡散して放熱フィンを伝って冷却用液体へと放熱される。
【0003】
【発明が解決しようとする課題】
このような上記従来の放熱器にあっては、十分な放熱効果を得るためには放熱フィンを追加する必要があり、また同時に放熱フィンを冷却する冷却用液体の流路も拡大せざるを得ない。
さらに、放熱フィンを追加した場合、放熱面積が増加し冷却用液体への伝熱量は全体的には増加する傾向になるが、熱源である半導体素子から放熱フィンにおける冷却用液体と接する放熱面までの距離が遠くなるため、熱源から運ばれる熱量はその距離が遠いほど少なくなる。したがって追加した放熱フィンほど、そこでの冷却用液体への伝熱量は少なくなる。
【0004】
式で表すと、放熱器の材料の熱伝導率をλ、熱の流れる断面積をS1、その熱伝導距離をX、放熱面における冷却用液体への熱伝達係数をα、その伝達面積(放熱面積)をS2とした場合、放熱器内での熱源から放熱面までの熱の流れやすさは、
λ×S1/X                      式(1)
で表され、放熱器の放熱面から冷却用液体への熱の伝わりやすさは、
α×S2                        式(2)
で表される。
【0005】
したがって、どれだけ伝達面積S2を増やしても、それにあわせて熱伝道距離Xの値も上昇してしまえば、全体の放熱効果は小さくなる。すなわち、追加した放熱フィンでは、式(1)に含まれる熱伝導距離Xの値が大きくなり放熱フィン先端まで十分に熱が伝わらないため、式(2)であらわされる冷却用液体への伝熱量は非常に少ないものとなる。
【0006】
特に液冷の場合、式(2)に含まれる熱伝達係数αの値が空冷に比べて大きいにもかかわらず、熱伝導距離Xの値が大きいほど式(1)で算出されるように放熱フィンの放熱面まで熱が到達しにくくなり、その結果、放熱フィンの追加による半導体素子の最大温度Tjmaxの低減には限界が生じていた。
【0007】
そこで本発明はこのような問題点に鑑み、大型化を避け、放熱効率のよい半導体素子用放熱器を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、半導体素子を備える基板を載置する載置部の端部を、半導体素子側に伸ばして側壁部を形成する。載置部の半導体素子を載置していない側の面と、側壁部の外側の面および載置部の側面の少なくとも一方を冷却用媒体に臨ませて、半導体素子で発生する熱の放熱を行うものとした。
【0009】
【発明の効果】
本発明によれば、半導体素子を載置する載置部の端部に側壁部を備えたので、半導体素子によって発生した熱は、載置部だけでなく側壁部および載置部の側面からも冷却用媒体へ放熱できる構造となっている。よって従来は、放熱器を載置部の面積方向へ拡大して放熱性能を確保していたが、本発明では側壁部を設けて放熱を行うことにより、従来よりも小型な放熱器を得ることができる。
【0010】
【発明の実施の形態】
次に本発明の実施の形態を実施例により説明する。
図1に本発明の断面図を示す。
放熱器1の載置部2に、半導体素子5を備える半導体モジュール13が接合されている。放熱器1は、載置部2の端部から半導体素子5側に立ち上がる側壁部3を有している。また側壁部3の端部が外方に向けて90度折り曲げられ、その先端に取付穴4Aが開けられて取付部4を形成している。放熱器1は、載置部2の半導体素子5が載置されていない側の面から下方に伸びる下面フィン11を有している。また放熱器1は、最外側の下面フィン11における外側面、側壁部3の外側面および載置部2の側面から、外側方向に伸びる側面フィン12を有している。
【0011】
一方、半導体モジュール13は半導体素子5、半田6および絶縁基板7からなる。絶縁基板7は、十分な絶縁性を保ち熱伝導率の高いセラミックス基板7Bを備え、セラミックス基板7Bの上面には半導体素子5を半田付けするための銅回路7Aを直接またはろう材を用いて接合してある。半導体素子5は半田6によって銅回路7Aに取り付けられる。またセラミックス基板7Bの下面は、直接またはろう材を用いて載置部2に接合される。
【0012】
放熱器1の下方には、下面フィン11および側面フィン12を囲う図示しない流路が形成され、下面フィン11、側面フィン12、載置部2の下面および側面、側壁部3の外方側面は、流路を流れる冷却媒体としての冷却用液体10に接している。半導体素子5で発生した熱は、半田6と絶縁基板7を経由して載置部2の上面へと伝わり、放熱器1の載置部2および側壁部3で拡散し、下面フィン11、側面フィン12を伝って冷却用液体10へと放熱される。
【0013】
放熱器1は熱伝導率や、加工性、信頼性の観点から、アルミニウムまたはアルミニウム合金によって形成される。これらは比較的熱伝導率が高く(200W/mK前後)、加工も容易でありさらにヤング率が低く塑性変形しやすいために、載置部2に接合したセラミックス基板7Bにかかる応力の緩和が図れ、半導体モジュール13としての高い信頼性を確保することができる。
【0014】
図1に示すように、冷却用液体10の流路の幅を26mm、放熱器1の取付部4の上面から、冷却用液体10の流路の底面までの高さを10.4mmとする。また半導体素子5の発熱量を200W、放熱器1の熱伝導率を200W/mK、冷却用液体10の温度を80℃とし、冷却用液体10に接する放熱面の熱伝達係数を6000W/mK、半田6の熱伝導率を70W/mK、半田6の厚みを0.08mmとする。さらに絶縁基板7の絶縁層であるセラミックス基板7Bの熱伝導率を170W/mK、その厚みを0.6mmとした場合の、半導体素子5の熱シュミレーションを行った。
その結果、半導体素子5の最大温度Tjmaxは134.0℃となった。
【0015】
ここで従来の放熱器、すなわち載置部と、載置部から下方に伸びる放熱フィンからなる放熱器に、半導体素子を取り付けた際の熱シュミレーション結果を示す。この放熱器に取り付けられる半導体モジュールは、第1の実施例と同じ構成であるものとする。また、載置部の下面からは7個の放熱フィンが伸び、放熱フィンの左右最外側間は32mmである。さらに、冷却用液体を流す流路の幅を32mmに形成して、流路に放熱フィンを臨ませ、放熱フィンと載置部の下面を冷却用液体に臨ませる。冷却用液体の流路の下面から半導体素子の上面までの高さは10.4mmであるとする。
【0016】
半導体素子の発熱量を200W、放熱器の熱伝導率を200W/mK、冷却用液体の温度を80℃とし、それと接する放熱面における熱伝達係数を6000W/mKとする。また、半田の熱伝導率を70W/mK、厚みを0.08mm、絶縁基板の絶縁層であるセラミックス基板の熱伝導率を170W/mK、その厚みを0.6mmとした場合に半導体素子の熱シュミレーションを行った。
その結果、半導体素子の最大温度Tjmaxは134.0℃となった。
【0017】
このように、本実施例および従来の放熱器における半導体素子の熱シュミレーションより、半導体素子の最大温度Tjmaxを同じ値としながら、取付部4を除く放熱器の横方向の幅を、従来の幅32mmから幅26mmに縮小することができ、モジュール全体の約20%の小型化を達成することができる。
【0018】
図2の(a)に、本実施例における放熱器1の放熱面から冷却用液体10へ伝達される熱の伝達量を、放熱器1の横方向の単位長さ(1mm)毎に計算した値をグラフにしたものを示す。放熱器1の奥行きは1mとする。同様に図2の(b)に、上記従来の放熱器の放熱面から冷却用液体へ伝達される熱の伝熱量を、放熱器の横方向の単位長さ(1mm)毎に計算した値をグラフにしたものを示す。これによると、従来の放熱器である図2の(b)に比べ、本実施例における放熱器内において全体的に均一に熱拡散が行われ、両脇の放熱フィンで効果的な放熱が実施されていることがわかる。
【0019】
さらに同様な熱シュミレーションにおいて、図1における放熱器1の左右の側面フィン12を両側に互いに3mmずつ伸ばし、冷却用液体10の流路幅を従来と同様の32mmにした場合、半導体素子5の最大温度Tjmaxは132.2℃となり、上記従来の放熱器と同じ横幅寸法で、モジュール全体の熱抵抗を約3.3%改善できる結果が得られた。
本実施例において、下面フィン11および側面フィン12が本発明における放熱フィンを構成する。
【0020】
本実施例は以上のように構成され、下面フィン11を備える載置部2、および側面フィン12を備える側壁部3を冷却用液体10に臨ませて、半導体素子5で発生する熱の放熱を行うことにより、従来の下面フィンを追加した放熱器に比べ、小型の半導体素子用放熱器を得ることができ、半導体素子5を備えた放熱器1と冷却用液体の流路の設置場所の縦横寸法の制限範囲内で、必要な放熱性能を確保することができる。
【0021】
これにより、半導体素子の最大温度Tjmaxは上げずに半導体素子用放熱器を小型化することや、半導体素子用放熱器の大きさは大型化せずに半導体素子の最大温度Tjmaxを下げることが可能である。
熱を放熱する放熱フィンとしての下面フィン11や側面フィン12を備えたことにより放熱面積が増加し、より効果的な放熱を行うことができる。
【0022】
次に本発明の第2の実施例を説明する。
図3は第2の実施例の断面図である
放熱器1Aの載置部2に、半導体素子5を備える半導体モジュール13が接合されている。放熱器1Aは、載置部2の端部から半導体素子5側に立ち上がる側壁部3を有している。また側壁部3の端部が外方に向けて90度折り曲げられ、その先端に取付穴4Aが開けられて取付部4を形成している。放熱器1Aは、載置部2の半導体素子5が載置されていない側の面から下方に伸びる下面フィン11(11A、11B)を有している。
【0023】
載置部2の下面から伸びる下面フィン11(11A、11B)のうち左右最外側の下面フィン11Aは、載置部2の下面からの突出量を中央部の下面フィン11Bと同じに形成されている。また下面フィン11Aの内側面11aは、下面フィン11Aの先端から階段状に、隣接する下面フィン11Bの根元近傍につながっている。このように下面フィン11Aは、先端に向かうにつれて他の下面フィン11Bの幅と同じとなる先細り形状に形成してある。
また放熱器1Aは、最外側の下面フィン11Aにおける外側面、側壁部3の外側面および載置部2の側面から、外側方向に伸びる側面フィン12を有している。
他の構成は上記第1の実施例と同様であり、同じ番号を付して説明を省略する。
なお、下面フィン11Aの内側面11aの形状は、階段状に限らず、斜めや曲線等の形状であってもかまわない。
【0024】
図3に示すように、冷却用液体10の流路の幅を26mm、放熱器1Aの取付部4の上面から、冷却用液体10の流路の底面までの高さを10.4mmとし、上記第1の実施例で行った各種の条件と同じ条件で、第2の実施例における放熱器1Aを用いて、半導体素子5の熱シュミレーションを行った。
その結果、半導体素子5の最大温度Tjmaxは132.4℃となり、上記従来の放熱器を用いた場合に比べ、モジュール全体の約20%の小型化とともに、モジュール全体の熱抵抗を約3.0%改善することが同時に可能である結果が得られた。
【0025】
図4に、第2の実施例における放熱器1Aの放熱面から冷却用液体10へ伝達される熱の伝達量を、放熱器1Aの横方向の単位長さ(1mm)毎に計算した値をグラフにしたものを示す。放熱器1Aの奥行きは1mとする。これによると、放熱器1A内で全体的に満遍なく熱拡散が行われ、階段状の内側面11aを備えた下面フィン11Aで特に伝熱量が多く、効果的な放熱が実施されていることがわかる。
【0026】
本実施例は以上のように構成され、下面フィン11Aは、内側面11aを階段状に形成され、先端に向かうにつれて他の下面フィン11Bの幅と同じとなる先細り形状に形成される。よって放熱器1Aにおいて、半導体素子5を備える半導体モジュール13との接合面から伝わる熱は、下面フィン11Aの先端まで十分に広い断面積を通って運ばれてくるため、下面フィン11Aおよび側面フィン12の放熱面において、熱を冷却用液体10に効果的に放熱することができる。
【0027】
なお本実施例において、下面フィンのうち左右最外側の下面フィン11Aのみを先細り形状に形成したが、これに限定されず他の下面フィン11Bや側面フィン12の形状を先細り形状に形成してもよい。これにより、より効率よく熱を放熱することができる。
【0028】
なお上記各実施例において、絶縁基板7の上面に備えた銅回路7Aに代り、応力緩和を図ったアルミニウム回路を用いてもよい。また半導体モジュール13と放熱器1との取り付けの際に、セラミックス基板7Bと載置部2とを直接またはろう材を用いて取り付けたが、これに限定されず、セラミックス基板7Bの下面に銅回路を備えたセラミックス絶縁基板や、前記セラミックス絶縁基板を搭載したベース、または、その他全ての半導体モジュールを接合してもよい。
【0029】
また、放熱器の材料として、高い熱伝導率で放熱性を向上した無酸素銅(360W/mK前後、16ppm/℃前後)を用いてもよい。また、熱膨張係数がよりセラミックスの値に近く、セラミックス基板7Bにかかる応力の緩和が図れるモリブデンを用いた銅合金(220W/mK前後、8ppm/℃前後)やその他の銅合金、炭化ケイ素等を分散材とした金属基複合材料(180W/mK前後、8ppm/℃前後)や、100W/mK以上の熱伝導率を持った窒化アルミニウム、窒化ケイ素等のセラミックス材料を用いてもよい。
【0030】
このように放熱器を熱伝導率の高い金属材料によって形成することにより、放熱器内で熱の伝達がよくなり、より一層冷却用液体に熱を伝達し、半導体素子を冷却することができる。また絶縁基板に用いられるセラミックスと比較的熱膨張係数が近い金属基複合材料やセラミックス材料を放熱器の材料として用いた場合は、高温と低温との間で繰り返されるヒートサイクルによって絶縁基板に与える熱応力を小さくすることができ、モジュールの信頼性の向上を図ることができる。
【図面の簡単な説明】
【図1】本発明における第1の実施例を示す断面図である。
【図2】第1の実施例における放熱器から冷却用液体への伝熱量を示す図である。
【図3】本発明における第2の実施例を示す断面図である。
【図4】第2の実施例における放熱器から冷却用液体への伝熱量を示す図である。
【符号の説明】
1、1A  放熱器
2  載置部
3  側壁部
5  半導体素子
7  絶縁基板
10  冷却用液体
11、11A、11B  下面フィン
12  側面フィン
13  半導体モジュール
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device radiator that radiates heat from a semiconductor device.
[0002]
[Prior art]
In recent years, fine processing technology for semiconductor elements has been further advanced, and the amount of heat generated during operation has been increased due to higher density. Therefore, various new radiators for effectively dissipating the heat have been proposed. As an example of such a radiator, there is one described in, for example, JP-A-2001-168256. The radiator includes a mounting portion on which a semiconductor element is mounted, and a plurality of heat dissipating fins extending from the back surface of the mounting portion on the side where the semiconductor is mounted. The heat generated by the semiconductor element is transmitted to the surface of the mounting part, and diffuses inside the radiator and travels through the radiating fin to the cooling liquid by exposing the back surface of the mounting part and the radiation fin to the cooling liquid. Is dissipated.
[0003]
[Problems to be solved by the invention]
In such a conventional radiator, it is necessary to add a radiation fin in order to obtain a sufficient heat radiation effect, and at the same time, the flow path of the cooling liquid for cooling the radiation fin must be enlarged. Absent.
Furthermore, when a heat radiating fin is added, the heat radiating area increases and the amount of heat transferred to the cooling liquid tends to increase as a whole, but from the semiconductor element, which is the heat source, to the heat radiating surface of the heat radiating fin that contacts the cooling liquid. , The amount of heat transferred from the heat source decreases as the distance increases. Therefore, the more heat radiation fins are added, the smaller the amount of heat transfer to the cooling liquid there.
[0004]
In terms of the equation, the thermal conductivity of the material of the radiator is λ, the cross-sectional area of heat flow is S1, the heat conduction distance is X, the heat transfer coefficient to the cooling liquid on the heat radiating surface is α, and the transfer area (radiation) If the area) is S2, the easiness of heat flow from the heat source to the heat dissipation surface in the radiator is
λ × S1 / X Equation (1)
The heat transfer from the radiator surface to the cooling liquid is
α × S2 Equation (2)
Is represented by
[0005]
Therefore, no matter how much the transmission area S2 is increased, if the value of the heat conduction distance X increases accordingly, the overall heat radiation effect becomes smaller. That is, with the added radiating fin, the value of the heat conduction distance X included in Expression (1) becomes large, and heat is not sufficiently transmitted to the tip of the radiating fin. Therefore, the amount of heat transfer to the cooling liquid represented by Expression (2) Will be very few.
[0006]
In particular, in the case of liquid cooling, although the value of the heat transfer coefficient α included in the equation (2) is larger than that of the air cooling, the larger the value of the heat conduction distance X is, the more the heat is dissipated as calculated by the equation (1). It is difficult for heat to reach the radiating surface of the fin, and as a result, there has been a limit in reducing the maximum temperature Tjmax of the semiconductor element by adding the radiating fin.
[0007]
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a semiconductor device radiator having high heat dissipation efficiency while avoiding an increase in size.
[0008]
[Means for Solving the Problems]
According to the present invention, an end of a mounting portion on which a substrate having a semiconductor element is mounted is extended toward the semiconductor element to form a side wall. The surface of the mounting portion on which the semiconductor element is not mounted, and at least one of the outer surface of the side wall portion and the side surface of the mounting portion are exposed to the cooling medium to radiate heat generated by the semiconductor element. It was done.
[0009]
【The invention's effect】
According to the present invention, since the side wall is provided at the end of the mounting portion on which the semiconductor element is mounted, the heat generated by the semiconductor element can be transmitted not only from the mounting portion but also from the side wall and the side surface of the mounting portion. It has a structure that can radiate heat to the cooling medium. Therefore, in the past, the heat radiator was expanded in the area direction of the mounting portion to secure the heat radiation performance. However, in the present invention, by providing the side wall portion to perform the heat radiation, it is possible to obtain a heat radiator smaller than the conventional one. Can be.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to examples.
FIG. 1 shows a sectional view of the present invention.
The semiconductor module 13 including the semiconductor element 5 is joined to the mounting portion 2 of the radiator 1. The radiator 1 has a side wall 3 that rises from the end of the mounting portion 2 toward the semiconductor element 5. Further, the end of the side wall portion 3 is bent outward by 90 degrees, and a mounting hole 4A is formed at the end thereof to form the mounting portion 4. The radiator 1 has a lower surface fin 11 extending downward from a surface of the mounting portion 2 on which the semiconductor element 5 is not mounted. The radiator 1 also has side fins 12 extending outward from the outer surface of the outermost lower surface fin 11, the outer surface of the side wall portion 3, and the side surface of the mounting portion 2.
[0011]
On the other hand, the semiconductor module 13 includes the semiconductor element 5, the solder 6, and the insulating substrate 7. The insulating substrate 7 includes a ceramic substrate 7B having sufficient thermal conductivity and high thermal conductivity, and a copper circuit 7A for soldering the semiconductor element 5 is bonded directly or using a brazing material to the upper surface of the ceramic substrate 7B. I have. The semiconductor element 5 is attached to the copper circuit 7A by the solder 6. The lower surface of the ceramic substrate 7B is joined to the mounting portion 2 directly or by using a brazing material.
[0012]
Below the radiator 1, a flow path (not shown) surrounding the lower fin 11 and the side fin 12 is formed, and the lower fin 11, the side fin 12, the lower surface and the side surface of the mounting portion 2, and the outer side surface of the side wall portion 3 are formed. And a cooling liquid 10 as a cooling medium flowing through the flow path. The heat generated in the semiconductor element 5 is transmitted to the upper surface of the mounting portion 2 via the solder 6 and the insulating substrate 7, diffused in the mounting portion 2 and the side wall portion 3 of the radiator 1, Heat is radiated to the cooling liquid 10 along the fins 12.
[0013]
The radiator 1 is formed of aluminum or an aluminum alloy from the viewpoint of thermal conductivity, workability, and reliability. These have relatively high thermal conductivity (around 200 W / mK), are easy to process, and have low Young's modulus and are easily plastically deformed, so that the stress applied to the ceramic substrate 7B joined to the mounting portion 2 can be relaxed. Thus, high reliability as the semiconductor module 13 can be ensured.
[0014]
As shown in FIG. 1, the width of the flow path of the cooling liquid 10 is 26 mm, and the height from the upper surface of the mounting portion 4 of the radiator 1 to the bottom of the flow path of the cooling liquid 10 is 10.4 mm. Further, the heat value of the semiconductor element 5 is 200 W, the thermal conductivity of the radiator 1 is 200 W / mK, the temperature of the cooling liquid 10 is 80 ° C., and the heat transfer coefficient of the heat radiation surface in contact with the cooling liquid 10 is 6000 W / m 2. K, the thermal conductivity of the solder 6 is 70 W / mK, and the thickness of the solder 6 is 0.08 mm. Further, the thermal simulation of the semiconductor element 5 was performed when the thermal conductivity of the ceramic substrate 7B as the insulating layer of the insulating substrate 7 was 170 W / mK and the thickness was 0.6 mm.
As a result, the maximum temperature Tjmax of the semiconductor element 5 became 134.0 ° C.
[0015]
Here, a heat simulation result when a semiconductor element is attached to a conventional radiator, that is, a radiator including a mounting portion and a radiating fin extending downward from the mounting portion, is shown. The semiconductor module attached to this radiator has the same configuration as that of the first embodiment. Also, seven radiating fins extend from the lower surface of the mounting portion, and the distance between the left and right outermost fins is 32 mm. Further, the width of the flow path through which the cooling liquid flows is formed to be 32 mm, and the radiation fin faces the flow path, and the lower surface of the radiation fin and the mounting portion faces the cooling liquid. The height from the lower surface of the cooling liquid flow path to the upper surface of the semiconductor element is 10.4 mm.
[0016]
The heat value of the semiconductor element is 200 W, the thermal conductivity of the radiator is 200 W / mK, the temperature of the cooling liquid is 80 ° C., and the heat transfer coefficient on the heat dissipating surface in contact therewith is 6000 W / m 2 K. When the thermal conductivity of the solder is 70 W / mK, the thickness is 0.08 mm, and the thermal conductivity of the ceramic substrate, which is the insulating layer of the insulating substrate, is 170 W / mK and the thickness is 0.6 mm, the heat of the semiconductor element is A simulation was performed.
As a result, the maximum temperature Tjmax of the semiconductor element became 134.0 ° C.
[0017]
As described above, from the heat simulation of the semiconductor element in the present embodiment and the conventional radiator, while keeping the maximum temperature Tjmax of the semiconductor element to the same value, the width in the lateral direction of the radiator excluding the mounting part 4 is reduced to the conventional width of 32 mm. To 26 mm in width, and a size reduction of about 20% of the entire module can be achieved.
[0018]
In FIG. 2A, the amount of heat transferred from the heat radiating surface of the radiator 1 to the cooling liquid 10 in the present embodiment was calculated for each unit length (1 mm) of the radiator 1 in the lateral direction. The values are shown as a graph. The depth of the radiator 1 is 1 m. Similarly, FIG. 2B shows a value obtained by calculating the amount of heat transferred from the heat radiation surface of the conventional radiator to the cooling liquid for each unit length (1 mm) in the lateral direction of the radiator. The graph is shown. According to this, as compared with the conventional radiator of FIG. 2B, the heat is diffused uniformly in the radiator of the present embodiment as a whole, and effective radiation is performed by the radiation fins on both sides. You can see that it is done.
[0019]
Further, in the same heat simulation, when the left and right side fins 12 of the radiator 1 in FIG. 1 are extended to both sides by 3 mm and the flow path width of the cooling liquid 10 is set to 32 mm as in the related art, the maximum of the semiconductor element 5 The temperature Tjmax was 132.2 ° C., and the result was that the thermal resistance of the entire module could be improved by about 3.3% with the same width as the above-mentioned conventional radiator.
In the present embodiment, the lower surface fins 11 and the side fins 12 constitute the heat radiation fins of the present invention.
[0020]
This embodiment is configured as described above. The mounting portion 2 having the lower surface fins 11 and the side wall portion 3 having the side surface fins 12 are exposed to the cooling liquid 10 to radiate heat generated in the semiconductor element 5. By doing so, it is possible to obtain a small-sized radiator for a semiconductor device as compared with a radiator provided with a conventional lower surface fin, and the radiator 1 provided with the semiconductor element 5 and the vertical and horizontal positions of the cooling liquid flow path are installed. The required heat radiation performance can be ensured within the size limit.
[0021]
This makes it possible to reduce the size of the semiconductor device radiator without increasing the maximum temperature Tjmax of the semiconductor device, and to reduce the maximum temperature Tjmax of the semiconductor device without increasing the size of the semiconductor device radiator. It is.
The provision of the lower surface fins 11 and the side surface fins 12 as heat radiation fins for dissipating heat increases the heat radiation area, thereby enabling more effective heat radiation.
[0022]
Next, a second embodiment of the present invention will be described.
FIG. 3 is a cross-sectional view of the second embodiment, in which a semiconductor module 13 having a semiconductor element 5 is joined to a mounting portion 2 of a radiator 1A. The radiator 1 </ b> A has a side wall 3 rising from the end of the mounting section 2 to the semiconductor element 5 side. Further, the end of the side wall portion 3 is bent outward by 90 degrees, and a mounting hole 4A is formed at the end thereof to form the mounting portion 4. The radiator 1A has lower surface fins 11 (11A, 11B) extending downward from a surface of the mounting portion 2 on which the semiconductor element 5 is not mounted.
[0023]
Of the lower surface fins 11 (11A, 11B) extending from the lower surface of the mounting portion 2, the left and right outermost lower surface fins 11A are formed to have the same protruding amount from the lower surface of the mounting portion 2 as the lower surface fin 11B of the central portion. I have. In addition, the inner side surface 11a of the lower fin 11A is connected to the vicinity of the root of the adjacent lower fin 11B stepwise from the tip of the lower fin 11A. As described above, the lower surface fin 11A is formed in a tapered shape having the same width as the other lower surface fins 11B toward the tip.
The radiator 1A has side fins 12 extending outward from the outer surface of the outermost lower surface fin 11A, the outer surface of the side wall 3 and the side surface of the mounting portion 2.
Other configurations are the same as those of the first embodiment, and the same reference numerals are given and the description is omitted.
The shape of the inner side surface 11a of the lower surface fin 11A is not limited to the step shape, and may be an oblique or curved shape.
[0024]
As shown in FIG. 3, the width of the flow path of the cooling liquid 10 is 26 mm, and the height from the top surface of the mounting portion 4 of the radiator 1A to the bottom surface of the flow path of the cooling liquid 10 is 10.4 mm. Under the same conditions as the various conditions performed in the first embodiment, a heat simulation of the semiconductor element 5 was performed using the radiator 1A in the second embodiment.
As a result, the maximum temperature Tjmax of the semiconductor element 5 becomes 132.4 ° C., the size of the module is reduced by about 20% and the thermal resistance of the module is reduced to about 3.0 as compared with the case of using the conventional radiator. % Improvement was obtained at the same time.
[0025]
FIG. 4 shows a value obtained by calculating the amount of heat transmitted from the heat radiation surface of the radiator 1A to the cooling liquid 10 for each unit length (1 mm) in the lateral direction of the radiator 1A in the second embodiment. The graph is shown. The depth of the radiator 1A is 1 m. According to this, it can be seen that heat is diffused uniformly throughout the radiator 1A, and the lower surface fin 11A having the step-like inner surface 11a has a particularly large amount of heat transfer and effective heat radiation is performed. .
[0026]
The present embodiment is configured as described above, and the lower surface fin 11A is formed in a stepped shape on the inner side surface 11a, and is formed in a tapered shape having the same width as the other lower surface fins 11B toward the tip. Therefore, in the radiator 1A, the heat transmitted from the bonding surface with the semiconductor module 13 including the semiconductor element 5 is transferred through a sufficiently wide cross-sectional area to the tip of the lower fin 11A, so that the lower fin 11A and the side fin 12 The heat can be effectively radiated to the cooling liquid 10 on the heat radiating surface.
[0027]
In this embodiment, among the lower fins, only the left and right outermost lower fins 11A are formed in a tapered shape. However, the present invention is not limited to this, and other lower fins 11B and side fins 12 may be formed in a tapered shape. Good. Thereby, heat can be more efficiently dissipated.
[0028]
In each of the above embodiments, an aluminum circuit for reducing stress may be used instead of the copper circuit 7A provided on the upper surface of the insulating substrate 7. In mounting the semiconductor module 13 and the radiator 1, the ceramic substrate 7B and the mounting portion 2 are mounted directly or by using a brazing material. However, the present invention is not limited to this, and a copper circuit is provided on the lower surface of the ceramic substrate 7B. A ceramic insulating substrate provided with the above, a base on which the ceramic insulating substrate is mounted, or all other semiconductor modules may be joined.
[0029]
Further, as a material of the radiator, oxygen-free copper (about 360 W / mK, about 16 ppm / ° C.) having high heat conductivity and improved heat dissipation may be used. In addition, a copper alloy (about 220 W / mK, about 8 ppm / ° C.) using molybdenum whose thermal expansion coefficient is closer to that of ceramics and can relax stress applied to the ceramic substrate 7B, other copper alloys, silicon carbide, etc. A metal-based composite material (around 180 W / mK, around 8 ppm / ° C.) as a dispersing material, or a ceramic material such as aluminum nitride or silicon nitride having a thermal conductivity of 100 W / mK or more may be used.
[0030]
By forming the radiator from a metal material having a high thermal conductivity as described above, heat can be transmitted well in the radiator, and the heat can be further transmitted to the cooling liquid to cool the semiconductor element. When a metal-based composite material or ceramic material having a coefficient of thermal expansion relatively close to that of the ceramic used for the insulating substrate is used as the material for the radiator, the heat applied to the insulating substrate by repeated heat cycles between high and low temperatures The stress can be reduced, and the reliability of the module can be improved.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a first embodiment of the present invention.
FIG. 2 is a diagram showing a heat transfer amount from a radiator to a cooling liquid in the first embodiment.
FIG. 3 is a sectional view showing a second embodiment of the present invention.
FIG. 4 is a diagram showing a heat transfer amount from a radiator to a cooling liquid in a second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1A Heat sink 2 Mounting part 3 Side wall part 5 Semiconductor element 7 Insulating substrate 10 Cooling liquid 11, 11A, 11B Lower fin 12 Side fin 13 Semiconductor module

Claims (4)

半導体素子の冷却に用いられる半導体素子用放熱器において、
前記半導体素子を備える基板を載置する載置部と、該載置部の端部を前記半導体素子側に伸ばして形成した側壁部とを備え、
前記載置部の半導体素子を載置していない側の面と、前記側壁部の外側の面および載置部の側面の少なくとも一方を冷却用媒体に臨ませて、前記半導体素子で発生する熱の放熱を行うことを特徴とする半導体素子用放熱器。
In a semiconductor element radiator used for cooling a semiconductor element,
A mounting portion for mounting the substrate including the semiconductor element, and a side wall portion formed by extending an end of the mounting portion toward the semiconductor element side,
The heat generated in the semiconductor element by exposing at least one of the surface of the mounting portion on which the semiconductor element is not mounted, the outer surface of the side wall portion, and the side surface of the mounting portion to the cooling medium. A radiator for a semiconductor device, which radiates heat.
前記載置部の半導体素子を載置していない側の面、前記側壁部の外側の面、および前記載置部の側面の少なくともいずれか一方に、前記半導体素子で発生する熱を前記冷却用媒体に放熱するための放熱フィンを備えていることを特徴とする請求項1記載の半導体素子用放熱器。The heat generated by the semiconductor element is applied to at least one of the surface of the mounting portion on which the semiconductor element is not mounted, the outer surface of the side wall portion, and the side surface of the mounting portion for cooling. The radiator for a semiconductor device according to claim 1, further comprising a radiating fin for radiating heat to the medium. 前記放熱フィンを、根元の断面積を大きく形成し、先端に向かうにつれその断面積が小さくなる先細り形状に形成したことを特徴とする請求項1または2記載の半導体素子用放熱器。3. The radiator for a semiconductor device according to claim 1, wherein the radiating fin is formed to have a larger cross-sectional area at a root and a tapered shape having a smaller cross-sectional area toward a tip. 前記載置部と側壁部は、
銅、銅合金、アルミニウム、アルミニウム合金等の金属材料、またはセラミックス分散材を用いた金属基複合材料、または熱伝導率の高い窒化アルミニウム、窒化ケイ素等のセラミックス材料によって形成されていることを特徴とする請求項1、2または3記載の半導体素子用放熱器。
The placing part and the side wall part are described above.
It is characterized by being formed of a metal material such as copper, copper alloy, aluminum and aluminum alloy, a metal matrix composite material using a ceramic dispersing material, or a ceramic material such as aluminum nitride and silicon nitride having high thermal conductivity. The radiator for a semiconductor device according to claim 1, 2 or 3, wherein
JP2002184710A 2002-06-25 2002-06-25 Radiator for semiconductor device Withdrawn JP2004031577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184710A JP2004031577A (en) 2002-06-25 2002-06-25 Radiator for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184710A JP2004031577A (en) 2002-06-25 2002-06-25 Radiator for semiconductor device

Publications (1)

Publication Number Publication Date
JP2004031577A true JP2004031577A (en) 2004-01-29

Family

ID=31180561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184710A Withdrawn JP2004031577A (en) 2002-06-25 2002-06-25 Radiator for semiconductor device

Country Status (1)

Country Link
JP (1) JP2004031577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3125529U (en) * 2006-07-13 2006-09-21 西村陶業株式会社 Radiant heat dissipation structure
JP2007214281A (en) * 2006-02-08 2007-08-23 Toshiba Corp Cooler for power converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214281A (en) * 2006-02-08 2007-08-23 Toshiba Corp Cooler for power converter
JP4738192B2 (en) * 2006-02-08 2011-08-03 株式会社東芝 Cooler for power converter
JP3125529U (en) * 2006-07-13 2006-09-21 西村陶業株式会社 Radiant heat dissipation structure

Similar Documents

Publication Publication Date Title
JP4979768B2 (en) Thermally conductive composite interface, cooling electronic assembly using the same, and method for coupling cooling assembly and heat generating electronic device
JP5249434B2 (en) Servo amplifier with heat sink for heat dissipation having two sets of heat dissipation fins orthogonal to each other
JP5070014B2 (en) Heat dissipation device
US20020195229A1 (en) Heatsink design for uniform heat dissipation
WO2011096218A1 (en) Heat radiation device and electronic equipment using the same
JP2006287080A (en) Memory module
JP2017017133A (en) Liquid-cooled type cooling device
JP3340053B2 (en) Heat dissipation structure and electronic device using the same
US6646341B2 (en) Heat sink apparatus utilizing the heat sink shroud to dissipate heat
JP2002289750A (en) Multi-chip module and its radiation structure
JP5957866B2 (en) Semiconductor device
JP2006210611A (en) Heat sink equipped with radiation fin, and manufacturing method thereof
JPH09298259A (en) Heat sink and manufacture thereof
JP2008124187A (en) Base for power module
JP2008124187A6 (en) Power module base
JP5092274B2 (en) Semiconductor device
JP6710320B2 (en) Vehicle power converter
JPH04294570A (en) Heat sink
JP2004031577A (en) Radiator for semiconductor device
JP4723661B2 (en) Heat receiving surface parallel fin type flat heat dissipation structure
CN111223838A (en) Insulating welt of high-efficient heat dissipation
JP3193142B2 (en) Board
JP3960192B2 (en) Radiator
JP4460791B2 (en) Heat sink for semiconductor devices
JP3217757B2 (en) Heat sink and cooling structure using it

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906