JP3125529U - Radiant heat dissipation structure - Google Patents

Radiant heat dissipation structure Download PDF

Info

Publication number
JP3125529U
JP3125529U JP2006005632U JP2006005632U JP3125529U JP 3125529 U JP3125529 U JP 3125529U JP 2006005632 U JP2006005632 U JP 2006005632U JP 2006005632 U JP2006005632 U JP 2006005632U JP 3125529 U JP3125529 U JP 3125529U
Authority
JP
Japan
Prior art keywords
heat source
heat
frame
height
accommodated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006005632U
Other languages
Japanese (ja)
Inventor
元延 西村
嘉浩 西村
信行 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIMURA PORCELAIN CO.,LTD
Original Assignee
NISHIMURA PORCELAIN CO.,LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIMURA PORCELAIN CO.,LTD filed Critical NISHIMURA PORCELAIN CO.,LTD
Priority to JP2006005632U priority Critical patent/JP3125529U/en
Application granted granted Critical
Publication of JP3125529U publication Critical patent/JP3125529U/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

【課題】組立・作製が簡便で、放熱効率の高い新たな放熱機構を提供することを課題とする。
【解決手段】本考案の放射放熱性構造体1は、発熱源Hを収容可能な凹部2を中央部に有する枠体3から成り、枠体3の底部周囲を外側に略水平に突出させて支持部4を形成して成り、(i)凹部2が、発熱源Hに適合する形状を有し、発熱源Hを収容したときに、凹部2の内部底部5と発熱源Hの底部とが密着するように、および発熱源Hの最も高い部分Uが凹部2の上縁6と同じ位置かそれよりも低い位置に収まるように形成されていること、および、(ii)構造体1が放射放熱性のセラミックスから成ること、を特徴とする。
【選択図】図1
An object of the present invention is to provide a new heat dissipation mechanism that is simple to assemble and manufacture and has high heat dissipation efficiency.
A radiation heat dissipating structure 1 of the present invention comprises a frame 3 having a concave portion 2 capable of accommodating a heat generating source H at a central portion, and the periphery of the bottom of the frame 3 is projected substantially horizontally outward. (I) The recess 2 has a shape that fits the heat source H, and when the heat source H is accommodated, the inner bottom 5 of the recess 2 and the bottom of the heat source H are It is formed so as to be in close contact with each other, and the highest portion U of the heat generation source H is formed at the same position as or lower than the upper edge 6 of the recess 2, and (ii) the structure 1 emits radiation It is made of heat-dissipating ceramics.
[Selection] Figure 1

Description

本考案は、通信・情報機器等の電子機器分野や電気機器分野等の、発熱源の放熱機構を要するあらゆる産業分野に関するものである。   The present invention relates to all industrial fields that require a heat-dissipating mechanism of a heat source, such as electronic equipment fields such as communication / information equipment and electrical equipment fields.

発熱源を内蔵する種々の電子・電気製品等においては、近年、益々その高性能化が要求されている。例えばLEDパッケージにおいては、液晶のバックライト、各種表示および照明に用いるために、高輝度化が要求されている。しかし、従来の樹脂タイプのパッケージを用いた製品では、放熱が適切になされず、当該発熱源の発熱により、当該発熱源自体および当該発熱源を内蔵した製品の機能劣化や故障を生じる問題があった。この解決策として、従来、製品に空冷・水冷ファンや放熱器(ヒートシンク)を内蔵させるなど、対流現象を利用して発熱源付近を冷却するための対策が取られている。しかし、このようなファンやヒートシンクは嵩張るために、近年の製品ならびに部材の小型化の要請に沿わない問題がある。   In recent years, various electronic and electrical products having a built-in heat source have been required to have higher performance. For example, in an LED package, high brightness is required for use in liquid crystal backlights, various displays, and illumination. However, in products using conventional resin type packages, heat radiation is not properly performed, and there is a problem that the heat generation of the heat source causes deterioration of the function of the heat source itself and the product incorporating the heat source or failure. It was. As a solution to this problem, conventionally, measures have been taken to cool the vicinity of the heat source by utilizing a convection phenomenon, such as incorporating an air cooling / water cooling fan or a radiator (heat sink) in the product. However, since such fans and heat sinks are bulky, there is a problem that does not meet the recent demands for miniaturization of products and members.

また、別の対策として、導熱シリコーンおよび導熱シートの併用等が試みられているが、かかる従来の導熱材料は、熱伝導率は良くても放熱性の面で劣り、充分な放熱効果が得られておらず、また、製品の構造が複雑化する問題もある。例えば、ある従来装置では、LEDから発熱した熱をLED端子を通して、主として銅材から成るプレス導体に導き、導かれた熱が一部このプレス導体から発せられるようにすると共に、LED電極裏面に導熱シリコーンおよび導熱絶縁シートが設け、LED電極が発した熱が、この導熱シリコーンから導熱絶縁シートを介して、別途装着されているアルミ枠体へ導熱され、外部に放熱されるようにしている。即ち、この装置では、熱伝導による熱拡散や熱放散により冷却効果を確保しているが、使用されている従来の熱伝導体は、優れた熱伝導性を有して多くの熱を吸収し得るが、その熱放射性が不十分で、冷却機構自体が熱を溜め込んでしまい、冷却機構の温度が周囲の温度に近づくと、熱をもはや吸収しなくなり、冷却機能を果たさなくなる問題があり、また、装置の構造が明らかに複雑である。他の従来装置の多くも、この従来装置のごとく、熱伝導を主眼とした構造設計に基づいて放熱効果を確保しており、やはり熱放射が不十分で、装置構造が複雑で、製造に煩雑さを伴うものとなっている。そのため、組立・作製が簡便で、放熱効率の高い新たな放熱機構が今なお要請されている。   Further, as another countermeasure, the combined use of a heat conductive silicone and a heat conductive sheet has been attempted, but such a conventional heat conductive material is inferior in terms of heat dissipation even if the thermal conductivity is good, and a sufficient heat dissipation effect is obtained. There is also a problem that the structure of the product becomes complicated. For example, in a conventional apparatus, heat generated from an LED is led to a pressed conductor mainly made of copper through an LED terminal, and the guided heat is partially emitted from the pressed conductor, and is also conducted to the back surface of the LED electrode. Silicone and a heat conductive insulating sheet are provided, and the heat generated by the LED electrode is conducted from the heat conductive silicone to the separately attached aluminum frame through the heat conductive insulating sheet, and is radiated to the outside. That is, in this device, the cooling effect is secured by heat diffusion or heat dissipation by heat conduction, but the conventional heat conductor used has excellent heat conductivity and absorbs a lot of heat. However, the heat radiation is insufficient, the cooling mechanism itself accumulates heat, and when the temperature of the cooling mechanism approaches the ambient temperature, there is a problem that the heat is no longer absorbed and the cooling function is not performed. The structure of the device is obviously complicated. Many other conventional devices, like this conventional device, have a heat dissipation effect based on a structural design that focuses on heat conduction, and still have insufficient heat radiation, making the device structure complicated and complicated to manufacture. It is accompanied by. Therefore, there is still a demand for a new heat dissipation mechanism that is easy to assemble and manufacture and has high heat dissipation efficiency.

そこで、考案者等はこの度、発熱源を収容可能な凹部を有する立体構造体において、当該構造体を放射性放熱材のセラミックスから構成し、当該凹部の開口部が上方を向くように構成すること、当該凹部に、収容される当該発熱源を埋没させること、および、当該凹部の内部において、収容される当該発熱源との密着状態を出来るだけ多く確保することにより、当該凹部に収容された当該発熱源の放熱効果が有意に高まることを見出し、本考案を完成した。   Therefore, the inventors, etc., this time, in the three-dimensional structure having a recess that can accommodate a heat source, the structure is composed of a ceramic of a radioactive heat dissipation material, and the opening of the recess is configured to face upward. The heat generation accommodated in the concave portion by burying the heat generation source accommodated in the concave portion and ensuring as much as possible a close contact state with the heat generation source accommodated inside the concave portion. We found that the heat dissipation effect of the source was significantly increased and completed the present invention.

即ち、本願考案は、上方に開口する凹部を中央部に有する枠体から成り、当該枠体の底部周囲を外側に略水平に突出させて支持部を形成した、前記凹部に発熱源を収容可能な自立性の構造体であって、前記凹部が、前記発熱源に適合する形状を有し、当該発熱源を収容したときに、当該凹部の内部底部と当該発熱源の底部とが密着するように、および当該発熱源の最も高い部分が当該凹部の上縁と同じ位置かそれよりも低い位置に収まるように形成されていること、および、前記構造体が、放射放熱性のセラミックスから成ることを特徴とする、放射放熱性構造体(以下、第一の構造体と呼ぶ)に関するものである。   That is, the present invention consists of a frame body having a concave portion opening in the center, and a support portion is formed by projecting the periphery of the bottom portion of the frame body substantially horizontally to the outside. A self-supporting structure in which the concave portion has a shape suitable for the heat source, and the inner bottom portion of the concave portion and the bottom portion of the heat source are in close contact with each other when the heat source is accommodated. And the highest part of the heat source is formed so as to fit in the same position as or lower than the upper edge of the recess, and the structure is made of radiant heat radiation ceramics. It is related with the radiation heat dissipation structure (henceforth a 1st structure) characterized by these.

本考案はまた、上方に開口する凹部を複数並列に設けて成る平型の枠体から成り、当該枠体の底部周囲を外側に略水平に突出させて支持部を形成した、前記各凹部に発熱源を収容可能な自立性の構造体であって、各前記凹部が、当該凹部に収容される発熱源に適合する形状を有し、当該発熱源を収容したときに、当該凹部の内部底部と前記発熱源の底部とが密着するように、および当該収容された発熱源の最も高い部分が当該凹部の上縁と同じ位置かそれよりも低い位置に収まるように成形されていること、および、前記構造体が、放射放熱性のセラミックスから成ることを特徴とする、複数の発熱源を収容可能な放射放熱性構造体(以下、第二の構造体と呼ぶ)に関するものである。   The present invention also includes a flat frame having a plurality of recesses opened upward in parallel, each of the recesses having a support portion formed by projecting the periphery of the bottom of the frame substantially horizontally outward. A self-supporting structure capable of accommodating a heat source, wherein each of the recesses has a shape suitable for the heat source accommodated in the recess, and when the heat source is accommodated, an inner bottom portion of the recess And the bottom of the heat source are in close contact with each other, and the highest part of the housed heat source is molded so as to be in the same position as the upper edge of the recess or in a position lower than that, and The present invention relates to a radiation heat dissipating structure (hereinafter referred to as a second structure) capable of accommodating a plurality of heat sources, wherein the structure is made of a radiation heat dissipating ceramic.

本考案はさらに、前記枠体が、当該凹部の内部から当該枠体の下方外部へと貫通する1個または複数の孔を有することを特徴とする前記放射放熱構造体に関するものである。
ここで、本明細書の記載中、「発熱源に適合する形状」とは、発熱源を構造体の凹部に収容したときに、当該発熱源がその側部および底部において、0〜1.0mmの間隔を空けて当該凹部の内壁と対向し、当該凹部内壁と相補完する形状を意味する。
The present invention further relates to the radiation heat dissipating structure, wherein the frame body has one or a plurality of holes penetrating from the inside of the concave portion to the outside of the frame body.
Here, in the description of the present specification, the “shape suitable for the heat source” means that when the heat source is accommodated in the concave portion of the structure, the heat source is 0 to 1.0 mm at the side and bottom. The shape which opposes the inner wall of the said recessed part at intervals and complements the said recessed wall is meant.

本考案の構造体はいずれも、放射放熱性の材、即ち、発熱源からの熱を十分に吸収する高い熱伝導率と、伝導された熱を効果的に放射する高い熱放射率を併せ持つ材から成ることを重要な特徴とし、これにより、前記構造上の特徴と相まって、従来の放熱性の材を用いた放熱構造では得られなかった優れた放熱効果を得るものである。本考案の構造体に使用するかかる放射放熱性の材は、同時に電気絶縁性であることが望ましく、かかる材としては、放射放熱性のよいAl2O3に着目し、特に、素材に金属を使用せず、いわゆる一般的な陶器、磁器(陶磁器)に用いられる無機材料を使用して、焼結工程を経て作成される陶磁器熱放射性の固体の材が好ましく、その中でも、Al2O3の含有量が95重量%以上のもの、特に、Al2O3の含有量が95重量%以上で、30〜60W/m・Kの熱伝導率および0.93〜0.99の熱放射率を有する陶磁器熱放射性固体物が好ましい。かかる陶磁器熱放射性固体物は、電磁波に吸収・反射等の影響を与えることがなく、これを用いた本考案の構造体によれば、リーク電流やノイズを高レベルで抑制することも可能となる。なお、本明細書中における「熱放射率」とは、物体において吸収される熱のうち、当該物体により、その後、外部へ放出(放射)される熱の割合を意味する。 All of the structures of the present invention have a radiation heat dissipation material, that is, a material having both high thermal conductivity that sufficiently absorbs heat from the heat source and high thermal emissivity that effectively radiates the conducted heat. Therefore, in combination with the structural features, an excellent heat dissipation effect that cannot be obtained by a conventional heat dissipation structure using a heat dissipation material is obtained. It is desirable that the radiation-dissipating material used in the structure of the present invention is electrically insulating at the same time, and as such a material, paying attention to Al 2 O 3 which has good radiation-dissipating property, especially metal is used as the material. without using a so-called common pottery, using the inorganic material used for the porcelain (ceramic), preferably ceramic thermal radiation of solid wood to be created through the sintering step, among them, the Al 2 O 3 Ceramic heat radiation with a content of 95% by weight or more, in particular, Al 2 O 3 content of 95% by weight or more, thermal conductivity of 30-60W / m · K and thermal emissivity of 0.93-0.99 Solids are preferred. Such ceramic heat-radiating solids do not affect electromagnetic waves such as absorption and reflection, and according to the structure of the present invention using them, it is possible to suppress leakage current and noise at a high level. . Note that “thermal emissivity” in the present specification means the proportion of heat absorbed by an object and then released (radiated) to the outside by the object.

本考案の構造体はいずれも、凹部内部に発熱源を収容して、発熱源が発生する熱を当該凹部において直接吸収し、吸収した熱の一部を凹部の周囲側壁表面から放射放熱すると共に、当該凹部に吸収された熱の一部を、当該枠体の底部周囲の突出部へ伝導し、当該突出部の表面からも放射放熱を行うものである。本考案の第一の構造体は、収容される発熱源に適合する形状の凹部を、上方開口にて中央部に有し、かつ、底部周囲を外側に略水平に突出させた種々の形状の枠体から成り、収容される発熱源の発熱量やサイズ、当該発熱源の周囲のスペースや設置される箇所等の状況に応じて、高さや当該凹部の周囲における枠体側壁の厚さ、および枠体底部における突出の程度等を変更することができる。本考案の第二の構造体は、放射放熱性の材から成る板状、台状等の平型で、その上面に所定の間隔で複数の凹部を有し、かつ、当該枠体の底部周囲を外側に略水平に突出させた種々の形状の枠体から成り、収容される個々の発熱源の発熱量やサイズ、個々の発熱源の周囲のスペースや設置される箇所等の状況に応じて、高さや枠体の外壁の厚さや枠体底部における突出の程度、隣り合う当該凹部同士の間隔等を、適宜変更することができる。   Each of the structures of the present invention accommodates a heat source inside the recess, directly absorbs the heat generated by the heat source in the recess, and radiates and radiates a part of the absorbed heat from the peripheral side wall surface of the recess. A part of the heat absorbed by the concave portion is conducted to the protruding portion around the bottom of the frame body, and radiated and radiated from the surface of the protruding portion. The first structure of the present invention has a concave portion having a shape suitable for a heat source to be accommodated in a central portion at an upper opening, and has various shapes in which the periphery of the bottom portion protrudes substantially horizontally outward. Depending on the amount of heat generation and size of the heat source to be housed, the space around the heat source and the location of the installation location, etc., the height and thickness of the frame side wall around the recess, and The degree of protrusion at the bottom of the frame can be changed. The second structure of the present invention is a flat shape such as a plate shape or a trapezoid shape made of a radiation heat dissipating material, and has a plurality of concave portions at predetermined intervals on the upper surface thereof, and around the bottom of the frame body It consists of a frame of various shapes that protrudes almost horizontally to the outside, depending on the amount of heat generated and the size of the individual heat sources to be accommodated, the space around each heat source, the location where it is installed, etc. The height, the thickness of the outer wall of the frame, the degree of protrusion at the bottom of the frame, the interval between the adjacent recesses, and the like can be appropriately changed.

なお、本考案における前記枠体はいずれも、収容される発熱源の総容積の0.5倍以上の体積を有する場合に、優れた発熱効果を達成することが、考案者等により確認されている。また、汎用性ある本考案の第一の構造体は概して、収容を予定する発熱源の高さの110〜300%の高さを有し、異なる形状の複数の発熱源を収容するための本考案の第二の構造体は概して、最も背の高い発熱源の高さの110〜300%の高さを有するものが便利である。   In addition, it has been confirmed by the inventors that all the frame bodies in the present invention achieve an excellent heat generation effect when they have a volume that is 0.5 times or more the total volume of the heat generation source accommodated. Moreover, the first structure of the present invention that is versatile generally has a height of 110 to 300% of the height of the heat source to be accommodated, and is a book for accommodating a plurality of heat sources having different shapes. The second structure of the invention is generally convenient having a height of 110-300% of the height of the tallest heat source.

本考案の構造体における前記凹部は、収容される発熱源に適合する形状を有し、収容される発熱源との当接面積が大きい程熱吸収量が増し、好ましい。即ち、前記凹部は少なくともその内部底部が、収容される発熱源の底部と密着するように形成されていることが好ましく、さらにその内部側壁も、収容される発熱源の側壁と密着するように形成されていることがより好ましい。そして、かかる凹部内壁と発熱源表面との密着状態は、緊密であるほど高い放熱効果が得られることが、考案者等により確認されている。しかし、凹部内部底部が、発熱源の底部と密着するように形成されている場合、当該凹部の内部側壁とこれに対向する発熱源の側壁との間隔が0.1mm未満であれば、本考案の構造体の放熱効果にさほどの影響はないことが、考案者等により確認されている。ただし、この隙間が0.1mm以上1.0mm未満であるような場合は、この隙間を、例えば銀を主成分とする導電性ペースト等の導電性接着剤で埋め合わせてもよく、これにより、本考案の構造体の放熱効率を維持することができる。   The said recessed part in the structure of this invention has a shape suitable for the heat generating source accommodated, and the heat absorption amount increases, so that the contact area with the heat generating source accommodated is large, and is preferable. That is, the concave portion is preferably formed so that at least the inner bottom portion thereof is in close contact with the bottom portion of the heat source to be accommodated, and the inner side wall is also formed to be in close contact with the side wall of the heat source to be accommodated. More preferably. And it has been confirmed by the devised designers that the closer the close contact between the inner wall of the recess and the surface of the heat source, the higher the heat dissipation effect. However, when the inner bottom portion of the concave portion is formed so as to be in close contact with the bottom portion of the heat source, the distance between the inner side wall of the concave portion and the side wall of the heat source facing the concave portion is less than 0.1 mm. It has been confirmed by the inventors that there is no significant influence on the heat dissipation effect of the structure. However, when this gap is 0.1 mm or more and less than 1.0 mm, the gap may be filled with a conductive adhesive such as a conductive paste mainly composed of silver. The heat dissipation efficiency of the structure can be maintained.

前記凹部は、収容された発熱源が当該凹部の上縁から突出することのないように、即ち、収容された当該発熱源の最も高い部分が当該凹部の上縁と同じかそれよりも低い位置に収まるような深さに成形されており、凹部内部に発熱源を埋没させて、出来るだけ多くの熱を発熱源から吸収できるようになっている。また、当該凹部の下方の枠体底部は、一般に、厚い程、放熱効果に優れる。   The concave portion is arranged so that the contained heat source does not protrude from the upper edge of the concave portion, that is, the highest portion of the accommodated heat source is the same as or lower than the upper edge of the concave portion. The heat generating source is buried in the recess so that as much heat as possible can be absorbed from the heat generating source. Moreover, generally the frame bottom part under the said recessed part is excellent in the thermal radiation effect, so that it is thick.

本考案における支持部は、前記放射放熱機能を果たすと共に、前記枠体を安定化する機能も果たす。かかる支持部は、当該枠体の底部周囲を環状に突出させて成るものであってもよいし、当該底部周囲を所定の間隔で部分的に突出形成されて成るものであってもよく、前記枠体の中央部を安定に支持可能な形状・配置で突出される。かかる支持部は、前記枠体の底部周囲に連続一体的に突出形成されたものであり、当該枠体と別個に成形された材を当該枠体底部周囲に融着一体化したものであってもよいが、優れた放熱効率を得るためには、金型等を用いて、当該枠体と一体的にプレス加工されたものであることが好ましい。   The support part in the present invention fulfills the function of stabilizing the frame body as well as the function of radiating and radiating heat. The supporting portion may be formed by annularly projecting the periphery of the bottom of the frame, or may be formed by partially projecting the periphery of the bottom at a predetermined interval. It protrudes in a shape and arrangement that can stably support the center of the frame. The support portion is formed so as to protrude continuously and integrally around the bottom of the frame body, and is formed by fusing and integrating a material molded separately from the frame body around the frame bottom portion. However, in order to obtain excellent heat dissipation efficiency, it is preferable to use a die or the like that is integrally pressed with the frame.

例えば、放熱を要する発熱源が単数で、縦5〜30mm×横5〜30mm×高さ5〜30mmのサイズの角柱形状や直径5〜30mm×高さ5〜30mmのサイズの円柱形状のものである場合、これを収容する本考案の第一の構造体の態様としては、前記枠体が、前記発熱源の高さの110〜300%の高さを有し、その側壁が、当該支持部より上方の前記凹部の周囲において5〜30mmの厚さを有し、当該支持部が、前記枠体の高さの10〜90%の高さを有し、当該枠体の底部周囲において5〜15mm外側への突出しており、当該枠体の上面中央部における前記凹部が、当該発熱源の高さ以上で当該枠体の高さの95%以下の深さの、前記発熱源に適合する柱形状の空洞であるものが挙げられる。   For example, a single heat source that requires heat dissipation is a prismatic shape with a size of 5 to 30 mm in length × 5 to 30 mm in width × 5 to 30 mm in height, or a cylindrical shape with a size of 5 to 30 mm in diameter × 5 to 30 mm in height In some cases, as an aspect of the first structure of the present invention that accommodates the frame, the frame has a height of 110 to 300% of the height of the heat source, and the side wall of the frame has the support portion. The upper part has a thickness of 5 to 30 mm around the recessed part, the support part has a height of 10 to 90% of the height of the frame body, and 5 to 5 around the bottom part of the frame body A column that fits to the heat source and protrudes to the outside of 15 mm, and in which the concave portion at the center of the upper surface of the frame has a depth that is not less than the height of the heat source and not more than 95% of the height of the frame. The thing which is a cavity of shape is mentioned.

例えば、放熱を要する発熱源が複数で、その各々が縦5〜30mm×横5〜30mm×高さ5〜30mmのサイズの角柱形状や直径5〜30mm×高さ5〜30mmのサイズの円柱形状のものである場合、これを収容する本考案の第二の構造体の態様としては、前記枠体が、当該複数の発熱源の中で最も高い発熱源の高さの110〜300%の高さを有し、その側壁が、当該支持部より上方における前記凹部の外側において、5〜30mmの厚さを有し、当該支持部が、前記枠体の高さの10〜90%の高さを有し、前記枠体の底部周囲において5〜15mm突出しており、当該枠体の上面における前記各凹部が、収容される当該発熱源の高さ以上で前記枠体の高さの95%以下の深さの、当該発熱源に適合する柱形状の空洞であるものが挙げられる。   For example, there are multiple heat sources that require heat dissipation, each of which is a prismatic shape with a size of 5 to 30 mm in length × 5 to 30 mm in width × 5 to 30 mm in height, or a cylindrical shape with a size of 5 to 30 mm in diameter × 5 to 30 mm in height In the case of the second structural body of the present invention that accommodates the frame, the frame body is 110% to 300% higher than the highest heat source among the plurality of heat sources. And the side wall has a thickness of 5 to 30 mm outside the concave portion above the support portion, and the support portion has a height of 10 to 90% of the height of the frame body. And protrudes 5 to 15 mm around the bottom of the frame, and each recess on the upper surface of the frame is 95% or less of the height of the frame above the height of the heat source to be accommodated And a column-shaped cavity that fits the heat source.

本考案の前記第一および第二の構造体における各前記枠体には、当該凹部の内部から当該枠体の下方外部へと貫通する1個または複数個の孔を設けることができる。即ち、収容を予定する発熱源が底部に端子を有する場合、当該枠体底部に、当該端子に対応する形状および個数の前記孔を設けることができ、当該孔に対応する前記発熱源端子を、当該凹部内部から当該枠体の下方外部へと挿通することで、当該凹部の底部と当該発熱源の底部とを当接させること、および当該発熱源を当該凹部内部に埋没状態で収容することが可能となる。かかる孔は、例えば、挿通される枠体の端子の径よりも径を0.1〜0.3mm大きくとって設けられる。   Each of the frame bodies in the first and second structures of the present invention can be provided with one or a plurality of holes penetrating from the inside of the recess to the outside of the frame body. That is, when the heat source to be accommodated has a terminal at the bottom, the bottom of the frame can be provided with the shape and the number of holes corresponding to the terminal, and the heat source terminal corresponding to the hole, By inserting from the inside of the concave portion to the lower outside of the frame body, the bottom portion of the concave portion and the bottom portion of the heat source can be brought into contact, and the heat source can be accommodated in the concave portion in an embedded state. It becomes possible. Such holes are provided, for example, with a diameter larger by 0.1 to 0.3 mm than the diameter of the terminal of the inserted frame.

本考案の構造体は、発熱源が発生する熱の一部を当該凹部の上部開口から逃すと共に、当該発生した熱を可能な最大限まで吸収して、当該枠体の凹部周囲側壁から放射放熱すると共に、吸収された熱の一部を前記支持部へと逃し、当該支持部からも放射放熱させることができる構造となっており、有意に優れた放熱効果を達成するものである。また、本考案の構造体は、設置される箇所の状況に応じた適宜の形状で安定に自立でき、取り扱いが容易で、作製も簡便である。また、枠体底部に前記孔を有する本考案の構造体は、端子を有する発熱源も所望の態様で収容でき、極めて優れた発熱効率を達成できる。さらに、複数の前記凹部を備えた本考案の構造体は、複数の発熱源を収容して、優れた発熱効果を達成できる。また、特にAl2O3の含有量が95重量%以上で、30〜60W/m・Kの熱伝導率および0.93〜0.99の熱放射率を有する陶磁器熱放射性固体物を材として用いた本考案の構造体によれば、リーク電流やノイズを高レベルで抑制することもできる。 The structure of the present invention allows part of the heat generated by the heat source to escape from the upper opening of the recess, absorbs the generated heat to the maximum possible, and radiates and radiates from the side wall around the recess of the frame. At the same time, part of the absorbed heat is released to the support part and can be radiated and radiated from the support part, thereby achieving a significantly superior heat dissipation effect. In addition, the structure of the present invention can be stably self-supporting in an appropriate shape according to the situation of the installation location, is easy to handle, and is easy to manufacture. Moreover, the structure of the present invention having the hole at the bottom of the frame body can also accommodate a heat source having a terminal in a desired manner, and can achieve extremely excellent heat generation efficiency. Furthermore, the structure of the present invention having a plurality of the concave portions can accommodate a plurality of heat sources and achieve an excellent heat generation effect. In addition, the present invention uses a ceramic heat-radiating solid material having a thermal conductivity of 30 to 60 W / m · K and a thermal emissivity of 0.93 to 0.99 as the material, particularly with an Al 2 O 3 content of 95% by weight or more. According to the structure, leakage current and noise can be suppressed at a high level.

図1〜図3に、本考案の放射放熱構造体の具体例を示す。
[実施例1]
図1に示す本考案の構造体1は、縦10mm×横10mm×高さ10mmの立方体形状の、実質的に平坦な底部を有する発熱源Hを収容するためのものである。この構造体1は、底部周囲が突出した変形四角柱形状の枠体3から成る。即ち、枠体3は、高さhが25mmで、枠体3の底面から上15mmまでの部分9の外周横断面が一辺40mm(e)の正方形で、部分9の上方部分8の外周横断面が一辺30mm(d)の正方形の、変形四角柱形状のものである。枠体3の上面中央部には、縦(a)10.05mm×横(b)10.05mm×深さ(c)10.05mmの立方体形状の凹部2が設けられている。枠体3の底部周囲は、5mmの幅wで外側に突出して、高さが15mmの支持部4を形成している。凹部2の底部5は、実質的に平坦に形成されている。
1 to 3 show specific examples of the radiation heat dissipation structure of the present invention.
[Example 1]
A structure 1 of the present invention shown in FIG. 1 is for accommodating a heat source H having a substantially flat bottom portion having a cubic shape of 10 mm long × 10 mm wide × 10 mm high. The structure 1 is composed of a deformed quadrangular prism-shaped frame 3 projecting around the bottom. That is, the frame 3 has a height h of 25 mm, the outer peripheral cross section of the portion 9 from the bottom surface of the frame 3 to the upper 15 mm is a square with a side of 40 mm (e), and the outer peripheral cross section of the upper portion 8 of the portion 9 Is a square, deformed quadrangular prism shape with a side of 30 mm (d). At the center of the upper surface of the frame 3, a cube-shaped recess 2 having a length (a) 10.05 mm × width (b) 10.05 mm × depth (c) 10.05 mm is provided. The periphery of the bottom of the frame 3 protrudes outward with a width w of 5 mm to form a support 4 having a height of 15 mm. The bottom 5 of the recess 2 is formed to be substantially flat.

かかる構成により、構造体1は、当該凹部2において発熱源Hを、凹部底部5と発熱源Hの底面とを密着状態で、凹部内部側壁と発熱源側壁との間に0.05mm以下の間隔を空けて収容でき、収容された発熱源Hの上面Uは、凹部2の上縁6よりも約0.05mm低い位置に収まる。図1に示す本考案の構造体1は、安定にプリント基板(図示せず)の上に設置することができる。
収容された発熱源Hの側面と、凹部2の内部壁面との間に隙間には、適宜導電性ペーストを充填してもよい。
With this configuration, the structure 1 allows the heat source H in the concave portion 2 to have a space of 0.05 mm or less between the concave portion inner side wall and the heat source side wall with the concave portion bottom 5 and the bottom surface of the heat source H in close contact with each other. The upper surface U of the heat generation source H that can be accommodated in a space is accommodated in a position that is approximately 0.05 mm lower than the upper edge 6 of the recess 2. The structure 1 of the present invention shown in FIG. 1 can be stably placed on a printed circuit board (not shown).
A conductive paste may be appropriately filled in the gap between the side surface of the heat generation source H accommodated and the inner wall surface of the recess 2.

なお、図1に示す本考案の構造体1は、次の物性を有する陶磁器放射性の固体の材から成る。
(i)Al2O3の含有率が95重量%以上である。
(ii)レーザーフラッシュ法(JIS R1611)により熱拡散率を測定機〔TS-7000アルバック理工(株)〕を用いて測定した熱伝導率が30W/m・Kである。
(iii)FTIR装置〔Perkin Elmer型システム2000型〕により測定領域370〜7800cm-1にて測定した熱放射率が0.93〜0.99である。
The structure 1 of the present invention shown in FIG. 1 is made of a ceramic radioactive solid material having the following physical properties.
(I) The content of Al 2 O 3 is 95% by weight or more.
(Ii) The thermal conductivity measured by a laser flash method (JIS R1611) using a measuring instrument [TS-7000 ULVAC-RIKO Co., Ltd.] is 30 W / m · K.
(Iii) The thermal emissivity measured in the measurement region 370 to 7800 cm −1 by an FTIR apparatus [Perkin Elmer system 2000 type] is 0.93 to 0.99.

[実施例2]
図2Aに示す本考案の構造体1'は、底部に直径1.5mmの端子Tを2個有する縦10mm×横10mm×高さ10mmの立方体形状の発熱源H'を収容するためのものである。この図に示す本考案の構造体1'は、図1に示す枠体3の底部に直径1.8mmの孔7を2個、3mmの間隔で設けたことを除いて図1に示す枠体3と同じ構成の枠体3'から成る。
図2Aに示す本考案の構造体1'によれば、発熱源H'の各端子Tを、対応する枠体3'の孔7に凹部内部2'から挿通して、当該凹部内部2'に発熱源H'を、当該発熱源H'の底部を凹部内部底部5'と密着当接状態で収容でき、発熱源H'の上面U'が枠体3'の凹部2'の上縁6'から突出することはない。
なお、図2Bに示すごとく、前記枠体3'の底部外側に銀電極部Eを設け、この電極部Eと、孔7を貫通した発熱源端子Tとを、半田付けR等により固定してもよく、こうすることで、端子Tが孔7から抜けたりずれたりすることがなく、凹部内部2'に発熱源H'をより安定に収容保持することができる。
[Example 2]
A structure 1 ′ of the present invention shown in FIG. 2A is for accommodating a cube-shaped heat source H ′ having a length of 10 mm × width of 10 mm × height of 10 mm having two terminals T with a diameter of 1.5 mm at the bottom. . The structure 1 'of the present invention shown in this figure is the frame 3 shown in FIG. 1 except that two holes 7 having a diameter of 1.8 mm are provided at intervals of 3 mm in the bottom of the frame 3 shown in FIG. It consists of frame body 3 'of the same composition.
According to the structure 1 ′ of the present invention shown in FIG. 2A, each terminal T of the heat source H ′ is inserted into the hole 7 of the corresponding frame 3 ′ from the inside of the recess 2 ′, and into the inside of the recess 2 ′. The heat source H ′ can be accommodated in a state where the bottom of the heat source H ′ is in close contact with the inner bottom portion 5 ′ of the recess, and the upper surface U ′ of the heat source H ′ is the upper edge 6 ′ of the recess 2 ′ of the frame 3 ′. It does not protrude from.
As shown in FIG. 2B, a silver electrode portion E is provided outside the bottom of the frame 3 ′, and the electrode portion E and the heat source terminal T penetrating the hole 7 are fixed by soldering R or the like. In addition, by doing so, the terminal T does not come out or shift from the hole 7, and the heat source H ′ can be more stably accommodated and held in the concave portion 2 ′.

[実施例3]
図2Cに示す本考案の構造体(1'-2)は、直径10mm×高さ10mmの円柱形状の、実質的に平坦な底部を有する発熱源(H'-2)を収容するためのものである。この構造体(1'-2)は、図1に示す枠体3の上面における立方柱形状の凹部2に代えて、直径(a'-2)10.05mm×深さ10.05mmの円柱形状の凹部(2'-2)を設けたことを除いて図1に示す枠体3と同じ構成の枠体(3'-2)から成るものである。この構造体(1'-2)も、発熱源(H'-2)を凹部(2'-2)に、凹部底部と発熱源(H'-2)の底面とを密着状態で、発熱源(H'-2)の側壁と凹部(2'-2)の側壁との間に0.05mm以下の隙間を空けて収容可能であり、収容された発熱源(H'-2)の上面は、凹部(2'-2)の上縁から突出することはない。
[Example 3]
The structure (1′-2) of the present invention shown in FIG. 2C is for accommodating a heat source (H′-2) having a substantially flat bottom and a cylindrical shape having a diameter of 10 mm × height of 10 mm. It is. This structure (1′-2) is a cylindrical recess having a diameter (a′-2) of 10.05 mm × depth of 10.05 mm, instead of the cubic pillar-shaped recess 2 on the upper surface of the frame 3 shown in FIG. It is composed of a frame (3′-2) having the same configuration as the frame 3 shown in FIG. 1 except that (2′-2) is provided. This structure (1′-2) also has the heat source (H′-2) in the recess (2′-2), the bottom of the recess and the bottom surface of the heat source (H′-2) in close contact with each other. (H'-2) can be accommodated with a gap of 0.05 mm or less between the side wall of the recess (2'-2) and the upper surface of the accommodated heat source (H'-2) It does not protrude from the upper edge of the recess (2′-2).

[実施例4]
図3Aおよび図3Bに示す本考案の構造体1"は、底部に直径1.5mmの端子T"を2個有する縦10mm×横10mm×高さ10mmの立方体形状の発熱源H"を3個収容可能なものである。この構造体1"は、底部周囲が突出した平型変形四角柱形状の枠体3"から成る。即ち、枠体3"は、20mmの高さh"を有し、枠体3"の底から上10mmまでの部分9"の外周横断面が、縦(e"-1)50mm×横(e"-2)92mmの直方体で、その上方部分8"の外周横断面が、縦(d"-1)30mm×横(d"-2)72mmの長方形の、変形四角柱形状のものである。枠体3"の上面には、縦(a")10.05mm×横(b")10.05mm×深さ(c")10.05mmの立方体形状にくりぬかれた凹部2"が3個、10mmの間隔(k)を空けて設けられており、枠体3"の底部周囲は10mmの幅(w")で外側に突出して、高さ10mmの支持部4"を形成している。凹部2"の底部5"は、実質的に平坦に形成されており、かつ、直径1.8mmの孔7"を2個ずつ有する。
[Example 4]
The structure 1 ″ of the present invention shown in FIGS. 3A and 3B accommodates three cube-shaped heat sources H ″ having a length of 10 mm × width of 10 mm × height of 10 mm having two terminals T ″ having a diameter of 1.5 mm at the bottom. This structure 1 "is composed of a flat deformed quadrangular prism-shaped frame 3" protruding around the bottom. That is, the frame 3 "has a height h" of 20 mm, The outer peripheral cross section of the portion 9 "from the bottom of the frame 3" to the upper 10mm is a rectangular parallelepiped of vertical (e "-1) 50mm x horizontal (e" -2) 92mm, and the outer peripheral cross section of the upper portion 8 " Is a rectangular, deformed quadrangular prism shape of 30 mm in length (d "-1) x 72 mm in width (d" -2). On the upper surface of the frame 3 ″, there are three recesses 2 ″ hollowed in a cube shape of length (a ″) 10.05 mm × width (b ″) 10.05 mm × depth (c ″) 10.05 mm, with a distance of 10 mm. (K) is provided, and the periphery of the bottom of the frame 3 "protrudes outward with a width (w") of 10 mm to form a support 4 "having a height of 10 mm. The bottom 5 ″ of the recess 2 ″ is formed substantially flat and has two holes 7 ″ each having a diameter of 1.8 mm.

かかる構成により、本考案の構造体1"は、凹部2"において、収容される発熱源H"の端子T"を孔7"に挿通して、凹部底部5"と発熱源H"の底面とを密着し得ると共に、発熱源H"が凹部側壁と0.05mm以下の隙間を空けて収容可能であり、収容された発熱源H"の上面U"は、凹部2"の上縁6"よりも約0.05mm低い位置に収まり、上縁6"から突出することはない。この本考案の構造体1"は安定にプリント基板(図示せず)の上に設置することができる。なお、この本考案の構造体1"も、図1に示す本考案の構造体1と同じ陶磁器放射性の固体の材から成る。   With this configuration, the structure 1 ″ of the present invention is configured such that in the recess 2 ″, the terminal T ″ of the housed heat source H ″ is inserted into the hole 7 ″ so that the recess bottom 5 ″ and the bottom surface of the heat source H ″ And the heat source H "can be accommodated with a gap of 0.05 mm or less from the side wall of the recess, and the upper surface U" of the stored heat source H "is more than the upper edge 6" of the recess 2 ". It is about 0.05 mm lower and does not protrude from the upper edge 6 ". The structure 1" of the present invention can be stably placed on a printed circuit board (not shown). The structure 1 "of the present invention is also made of the same ceramic radioactive solid material as the structure 1 of the present invention shown in FIG.

[実施例5]
図3Cに示す本考案の構造体(1"-2)は、直径10mm×高さ10mmの円柱形状の発熱源(H "-2)を3個収容可能なものである。この構造体(1"-2)は、図3Aおよび図3Bに示す枠体3"の上面に設けられた立方柱形状の凹部2"に代えて、直径(a"-2)10.05mm×深さ10.05mmの円柱形状にくりぬかれた凹部(2"-2)を3個、10mmの間隔(k"-2)を空けて設けたことを除いて、図3Aおよび図3Bに示す枠体3"と同じ構成の枠体(3"-2)から成る。この構造体(1"-2)は、各凹部(2"-2)に発熱源(H"-2)を、発熱源(H"-2)の底面と凹部(2"-2)の底面とを密着状態で、その凹部(2"-2)の側壁と発熱源(H "-2)の側壁との間に0.05mm以下の隙間を空けて収容可能であり、収容された発熱源(H"-2)の上面は凹部(2"-2)の上縁から突出することはない。
[Example 5]
The structure (1 "-2) of the present invention shown in FIG. 3C can accommodate three cylindrical heat sources (H" -2) each having a diameter of 10 mm and a height of 10 mm. This structure (1 ″ -2) has a diameter (a ″ −2) of 10.05 mm × depth in place of the cubic pillar-shaped recess 2 ″ provided on the upper surface of the frame 3 ″ shown in FIGS. 3A and 3B. A frame 3 shown in FIGS. 3A and 3B, except that three recesses (2 ″ -2) hollowed into a cylindrical shape of 10.05 mm are provided with an interval of 10 mm (k ″ -2). It consists of a frame (3 "-2) with the same structure as". This structure (1 "-2) has a heat source (H" -2) in each recess (2 "-2), a bottom surface of the heat source (H" -2) and a bottom surface of the recess (2 "-2). Can be accommodated with a gap of 0.05 mm or less between the side wall of the recess (2 "-2) and the side wall of the heat source (H" -2). The upper surface of H ″ -2) does not protrude from the upper edge of the recess (2 ″ -2).

[実施例6]
本考案の構造体の放熱効果を以下のごとく評価した。
図2に示す本考案の構造体1'を使用した場合と従来の金属アルミニウム基板を使用した場合とで、定格64V、0.49Aの電流を流し続けた発熱源〔マイカヒーター(定格30W、直径10mm×高さ5mm)〕の表面温度がどのように変化するかを、表面温度計〔HFT-40安立計器(株)〕で測定評価した。結果を表1に示す。本考案の構造体1'を使用する場合では、構造体1'の凹部2'にマイカヒーターを収容し、従来の金属アルミニウム基板を使用する場合では、直径1.8mmの孔を2つ開けた従来の金属アルミニウム基板(縦20mm×横20mm×厚さ2mm)の上に、当該孔に端子を貫通させて安定に、同じマイカヒーターを保持した。
[Example 6]
The heat dissipation effect of the structure of the present invention was evaluated as follows.
A heat source [mica heater (rated 30 W, rated 10 mm in diameter) with a current of 64 V and 0.49 A flowing when the structure 1 ′ of the present invention shown in FIG. 2 is used and when a conventional metal aluminum substrate is used. X height 5 mm)] was measured and evaluated by a surface thermometer [HFT-40 Anritsu Meter Co., Ltd.]. The results are shown in Table 1. In the case of using the structure 1 ′ of the present invention, a mica heater is accommodated in the recess 2 ′ of the structure 1 ′, and in the case of using a conventional metal aluminum substrate, two holes having a diameter of 1.8 mm are formed. On the metal aluminum substrate (vertical 20 mm × width 20 mm × thickness 2 mm), the same mica heater was stably held by passing the terminal through the hole.

Figure 0003125529
Figure 0003125529

表1から、本考案の構造体の優れた放熱効果が明らかである。
即ち、本考案の構造体は、発熱源に発熱初期に高い冷却効果を提供した後、一定の平衡温度を維持するという、非常に優れた温度制御機能を発揮するものである。本考案の構造体は、発熱体の発熱温度および初期冷却後の所望される平衡温度等の種々の要因から、当該枠体および支持部の大きさ、形状等を割り出すことにより、適用される機器・装置等に応じて最適の冷却作用を有する冷却機構を設計することができる。
From Table 1, the excellent heat dissipation effect of the structure of the present invention is clear.
That is, the structure of the present invention exhibits a very excellent temperature control function of maintaining a constant equilibrium temperature after providing a high cooling effect to the heat source in the early stage of heat generation. The structure of the present invention is a device to be applied by determining the size, shape, etc. of the frame and the support from various factors such as the heating temperature of the heating element and the desired equilibrium temperature after initial cooling. -A cooling mechanism having an optimal cooling action can be designed according to the device or the like.

[実施例7]
本考案の構造体のノイズ抑制効果を、以下のように評価した。
積分球(Labsphere製、RSA-PE-200-ID)を備えたFTIR装置(Perkin Elmer製、System 2000型)を用いて、図1〜図3に示す本考案の構造体を構成する陶磁器放射性の固体の材と同じ材から成る固体物(陶磁器放射性固体物)と、従来のアルミナセラミックスの赤外線放射特性を測定した。なお、測定領域は1800〜7800cm-1、積算回数は200回、光源はMIR、検出器はMIR-TGS、分解能は16cm-1であった。結果を図4に示す。
図4から、赤外線放射強度曲線に関し、陶磁器放射性固体物では、波数2000〜6000cm-1の範囲で小さな波があるものの一本のラインを描いている(図4A)。これに対して一般的なアルミナセラミックでは、2500cm-1および4000cm-1付近に、電気電子機器において雑音や画像のちらつきを誘発する異常ピーク(ノイズN)が発生している(図4B)。本考案の構造体は、この陶磁器放射性固体物と同じ材から成り、ノイズ抑制効果を奏することが、この結果から認められる。
[Example 7]
The noise suppression effect of the structure of the present invention was evaluated as follows.
Using the FTIR apparatus (Perkin Elmer, System 2000 type) equipped with an integrating sphere (Labsphere, RSA-PE-200-ID), the ceramic radioactive material constituting the structure of the present invention shown in FIGS. The infrared radiation characteristics of a solid material (ceramic radioactive solid material) made of the same material as the solid material and a conventional alumina ceramic were measured. The measurement area was 1800-7800 cm −1 , the number of integrations was 200 times, the light source was MIR, the detector was MIR-TGS, and the resolution was 16 cm −1 . The results are shown in FIG.
From FIG. 4, regarding the infrared radiation intensity curve, the ceramic radioactive solid has a single line with small waves in the wave number range of 2000 to 6000 cm −1 (FIG. 4A). On the other hand, in the general alumina ceramic, an abnormal peak (noise N) that induces noise and image flickering is generated in the vicinity of 2500 cm −1 and 4000 cm −1 (FIG. 4B). It can be seen from this result that the structure of the present invention is made of the same material as the ceramic radioactive solid and exhibits a noise suppressing effect.

図1は、端子無しの発熱源を収容するための本考案の構造体の一態様を示す図である。図1Aは縦断面図を、図1Bは平面図を示す。FIG. 1 is a diagram showing an embodiment of a structure of the present invention for housing a heat source without a terminal. 1A is a longitudinal sectional view, and FIG. 1B is a plan view. 図2は、本考案の構造体の別の態様を示す図である。図2Aは、端子有りの角柱形状の発熱源を収容するための本考案の構造体の一態様を示す縦断面図である。図2Bは、図2Aに示す発熱源をより安定に収容可能な本考案の構造体の一態様を示す縦断面図である。図2Cは、円柱形状の発熱源を収容するための本考案の構造体の一態様を示す平面図である。FIG. 2 is a diagram showing another embodiment of the structure of the present invention. FIG. 2A is a longitudinal sectional view showing an aspect of the structure of the present invention for accommodating a prismatic heat source with terminals. FIG. 2B is a longitudinal sectional view showing an aspect of the structure of the present invention that can more stably accommodate the heat source shown in FIG. 2A. FIG. 2C is a plan view showing an aspect of the structure of the present invention for housing a cylindrical heat source. 図3は、複数の発熱源を収容可能な本考案の構造体の諸態様を示す図である。図3Aは、端子有りの角柱形の発熱源を複数収容するための本考案の構造体の一態様の長手方向縦断面図を示し、図3Bは、図3Aに示す構造体の平面図を示す。図3Cは、円柱形の発熱源を複数収容するための本考案の構造体の一態様の平面図を示す。FIG. 3 is a diagram showing various aspects of the structure of the present invention that can accommodate a plurality of heat sources. 3A shows a longitudinal longitudinal sectional view of one embodiment of the structure of the present invention for accommodating a plurality of prismatic heat sources with terminals, and FIG. 3B shows a plan view of the structure shown in FIG. 3A. . FIG. 3C shows a plan view of an embodiment of the structure of the present invention for accommodating a plurality of cylindrical heat sources. 図4は、従来のアルミナセラミックスとの対比で本考案の構造体のノイズ抑制効果を示すグラフである。図4Aは、陶磁器放射性固体物の赤外線放射強度曲線を示し、図4Bは、従来のアルミナセラミックスの赤外線放射強度曲線を示す。FIG. 4 is a graph showing the noise suppression effect of the structure of the present invention in comparison with conventional alumina ceramics. FIG. 4A shows an infrared radiation intensity curve of a ceramic radioactive solid, and FIG. 4B shows an infrared radiation intensity curve of a conventional alumina ceramic.

符号の説明Explanation of symbols

1、1'、1'-2、1"、1"-2 本考案の構造体
2、2'、2'-2、2"、2"-2 凹部
3、3'、3'-2、3"、3"-2 枠体
4、4'、4'-2、4"、4"-2 支持部
5、5'、5" 底部
6、6'、6" 凹部の上縁
7、7" 孔
a、a" 凹部の縦の長さ
b、b" 凹部の横の長さ
c、c" 凹部の深さ
a' -2、a"-2 凹部の直径
d 枠体上部の外周横断面の一辺の長さ
d"-1 枠体上部の外周横断面の縦の長さ
d"-2 枠体上部の外周横断面の横の長さ
e 枠体底部の外周横断面の一辺の長さ
e"-1 枠体底部の外周横断面の縦の長さ
e"-2 枠体底部の外周横断面の横の長さ
h、h" 枠体の高さ
k、k"-2 凹部間の間隔
w、w" 支持部の突出幅
H、H'、H'-2、H"、H"-2 発熱源
U、U'、U" 発熱源の上面
E 銀電極部
R 半田
T 発熱源端子
N ノイズ
1, 1 ', 1'-2, 1 ", 1" -2 Structure 2, 2', 2'-2, 2 ", 2" -2 of the present invention Recess 3, 3 ', 3'-2, 3 ", 3" -2 Frame 4, 4 ', 4'-2, 4 ", 4" -2 Support section 5, 5', 5 "Bottom section 6, 6 ', 6" Top edge 7, 7 of recess "Hole a, a" Depth length b, b "Depth width c, c" Depth depth a'-2, a "-2 Depth diameter d Perimeter cross section of frame upper part Side length d "-1 Vertical length d" -2 of the outer peripheral cross section of the upper part of the frame body Horizontal length e of outer peripheral cross section of the upper part of the frame body Length of one side of the outer peripheral cross section of the bottom of the frame body e "-1 Vertical length of the outer peripheral cross section of the bottom of the frame e" -2 Horizontal length of the outer peripheral cross section of the bottom of the frame h, h "Height of the frame k, k" -2 Between the recesses Interval w, w "Protrusion width of support part
H, H ', H'-2, H ", H" -2 Heat source U, U', U "Upper surface of heat source E Silver electrode part R Solder T Heat source terminal
N noise

Claims (7)

上方に開口する凹部を中央部に有する枠体から成り、当該枠体の底部周囲を外側に略水平に突出させて支持部を形成した、自立可能な構造体であって、前記凹部に発熱源を収容可能であり、
前記凹部が、前記発熱源に適合する形状を有し、当該発熱源を収容したときに、当該凹部の内部底部と当該発熱源の底部とが密着するように、および当該発熱源の最も高い部分が当該凹部の上縁と同じ位置かそれよりも低い位置に収まるように形成されていること、および、
前記構造体が放射放熱性のセラミックスから成ること、を特徴とする放射放熱性構造体。
A self-supporting structure comprising a frame having a concave portion opening upward in the center, and having a support portion formed by projecting the periphery of the bottom of the frame substantially horizontally to the outside. Can accommodate
The concave portion has a shape adapted to the heat source, and when the heat source is accommodated, the inner bottom portion of the concave portion and the bottom portion of the heat source are in close contact with each other, and the highest portion of the heat source Is formed so as to fit in the same position as or lower than the upper edge of the recess, and
A radiation heat dissipation structure, wherein the structure is made of a radiation heat dissipation ceramic.
上方に開口する凹部を複数並列に設けて成る平型の枠体から成り、当該枠体の底部周囲を外側に略水平に突出させて支持部を形成した、自立可能な構造体であって、前記各凹部に発熱源を収容可能であり、
各前記凹部が、当該凹部に収容される発熱源に適合する形状を有し、当該発熱源を収容したときに、当該凹部の内部底部と前記発熱源の底部とが密着するように、および当該収容された発熱源の最も高い部分が当該凹部の上縁と同じ位置かそれよりも低い位置に収まるように成形されていること、および、
前記構造体が放射放熱性のセラミックスから成ること、を特徴とする、複数の発熱源を収容可能な放射放熱性構造体。
A self-supporting structure comprising a flat frame having a plurality of recesses opened upward in parallel, wherein the support is formed by projecting the periphery of the bottom of the frame substantially horizontally outward, A heat source can be accommodated in each of the recesses;
Each of the recesses has a shape suitable for the heat source accommodated in the recess, and when the heat source is accommodated, the inner bottom portion of the recess and the bottom portion of the heat source are in close contact with each other, and The highest portion of the housed heat source is shaped to fit in the same position as or lower than the upper edge of the recess, and
A radiation heat dissipating structure capable of accommodating a plurality of heat sources, wherein the structure is made of a radiation heat dissipating ceramic.
角柱形状ないし円柱形状の発熱源を収容するための請求項1に記載の放射放熱性構造体であって、
前記枠体が、前記発熱源の高さの110〜300%の高さを有し、その側壁が、当該支持部より上方の前記凹部の周囲において5〜30mmの厚さを有し、
前記支持部が、前記枠体の高さの10〜90%の高さを有し、前記枠体の底部周囲が5〜15mm外側に突出して成り、
前記凹部が、前記発熱源に適合する柱形状の空洞であって、当該発熱源の高さ以上で前記枠体の高さの95%以下の深さを有することを特徴とする、請求項1に記載の放射放熱性構造体。
The radiation heat dissipating structure according to claim 1 for accommodating a prismatic or cylindrical heat generating source,
The frame has a height of 110 to 300% of the height of the heat source, and its side wall has a thickness of 5 to 30 mm around the recess above the support;
The support portion has a height of 10 to 90% of the height of the frame body, and the periphery of the bottom portion of the frame body protrudes outside by 5 to 15 mm;
2. The concave portion is a columnar cavity adapted to the heat source, and has a depth not less than the height of the heat source and not more than 95% of the height of the frame. The radiation heat dissipation structure as described in 1.
角柱形状ないし円柱形状の同一ないし異なる形状の発熱源を収容するための請求項2に記載の放射放熱性構造体であって、
前記枠体が、最も高い前記発熱源の高さの110〜300%の高さを有し、その側壁が、当該支持部より上方における前記凹部の外側において、5〜30mmの厚さを有し、
前記支持部が、前記枠体の高さの10〜90%の高さを有し、前記枠体の底部周囲が5〜15mm突出して成り、
前記各凹部が、収容される当該発熱源に適合する柱形状の空洞であって、収容される当該発熱源の高さ以上で前記枠体の高さの95%以下の深さを有することを特徴とする、請求項2に記載の放射放熱性構造体。
The radiation heat dissipating structure according to claim 2 for housing a heat source having the same or different shape of a prismatic shape or a cylindrical shape,
The frame body has a height of 110 to 300% of the height of the highest heat source, and its side wall has a thickness of 5 to 30 mm outside the concave portion above the support portion. ,
The support portion has a height of 10 to 90% of the height of the frame body, and the periphery of the bottom portion of the frame body protrudes 5 to 15 mm,
Each of the recesses is a columnar cavity adapted to the heat source to be accommodated, and has a depth not less than the height of the heat source to be accommodated and not more than 95% of the height of the frame. The radiating and heat dissipating structure according to claim 2, wherein
前記凹部が、当該発熱源を収容したときに、当該凹部の内部側壁と当該収容された発熱源の側壁との間隔が0〜0.1mmとなるように成形されていることを特徴とする、請求項1〜4のいずれか1項に記載の放射放熱性構造体。 The concave portion is shaped such that when the heat source is accommodated, an interval between an inner side wall of the concave portion and a side wall of the accommodated heat source is 0 to 0.1 mm. Item 5. The radiation heat dissipating structure according to any one of Items 1 to 4. 前記枠体が、当該凹部の内部から当該枠体の下方外部へと貫通する1個または複数の孔を有することを特徴とする、請求項1〜5のいずれか1項に記載の放射放熱性構造体。 The radiation heat dissipation property according to any one of claims 1 to 5, wherein the frame body has one or a plurality of holes penetrating from the inside of the concave portion to the lower outside of the frame body. Structure. 前記放射放熱性のセラミックスが、Al2O3の含有量が95重量%以上で、30〜60W/m・Kの熱伝導率および0.93〜0.99の熱放射率を有するものであることを特徴とする、請求項1〜6のいずれか1項に記載の放射放熱性構造体。 The radiative heat dissipation ceramic is characterized by having an Al 2 O 3 content of 95% by weight or more, a thermal conductivity of 30 to 60 W / m · K, and a thermal emissivity of 0.93 to 0.99. The radiation heat dissipating structure according to any one of claims 1 to 6.
JP2006005632U 2006-07-13 2006-07-13 Radiant heat dissipation structure Expired - Lifetime JP3125529U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006005632U JP3125529U (en) 2006-07-13 2006-07-13 Radiant heat dissipation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005632U JP3125529U (en) 2006-07-13 2006-07-13 Radiant heat dissipation structure

Publications (1)

Publication Number Publication Date
JP3125529U true JP3125529U (en) 2006-09-21

Family

ID=43475395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005632U Expired - Lifetime JP3125529U (en) 2006-07-13 2006-07-13 Radiant heat dissipation structure

Country Status (1)

Country Link
JP (1) JP3125529U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102889479A (en) * 2011-07-22 2013-01-23 杜邦株式会社 Light emitting diode lamp, manufacture method thereof, housing inside the lamp and use of the housing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243718A (en) * 2002-02-14 2003-08-29 Matsushita Electric Works Ltd Light emitting device
JP2004031577A (en) * 2002-06-25 2004-01-29 Nissan Motor Co Ltd Radiator for semiconductor device
JP3118059U (en) * 2005-10-28 2006-01-19 西村陶業株式会社 Heat dissipation assembly structure
JP2006332382A (en) * 2005-05-26 2006-12-07 Matsushita Electric Works Ltd Circuit board for mounting semiconductor substrate and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243718A (en) * 2002-02-14 2003-08-29 Matsushita Electric Works Ltd Light emitting device
JP2004031577A (en) * 2002-06-25 2004-01-29 Nissan Motor Co Ltd Radiator for semiconductor device
JP2006332382A (en) * 2005-05-26 2006-12-07 Matsushita Electric Works Ltd Circuit board for mounting semiconductor substrate and its manufacturing method
JP3118059U (en) * 2005-10-28 2006-01-19 西村陶業株式会社 Heat dissipation assembly structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102889479A (en) * 2011-07-22 2013-01-23 杜邦株式会社 Light emitting diode lamp, manufacture method thereof, housing inside the lamp and use of the housing
CN102889479B (en) * 2011-07-22 2016-09-28 杜邦株式会社 Shell in LED lamp, its preparation method, light fixture and application thereof

Similar Documents

Publication Publication Date Title
US7755902B2 (en) Heat dissipation device for computer add-on cards
JP5218747B2 (en) Lighting device
JP4365884B1 (en) LED board mounting device
JP2004325604A (en) Indicator
JP2009158144A (en) Illumination fixture
JP5333488B2 (en) LED lighting device
JP6061220B2 (en) LED lighting device
JP2011199055A (en) Heat radiating sheet and electronic apparatus using the same
JP3125529U (en) Radiant heat dissipation structure
JP2008135668A (en) Housing structure for electronic equipment, and power supply device
JP2006286757A (en) Heat dissipation structure of electronic apparatus
CN111983849A (en) LED backlight module
JP2006005081A (en) Power component cooling device
KR101709669B1 (en) Heat Sink Plate, and Heat Sink and LED Street Light manufacured using the Heat Sink Plates
JP2008252141A (en) Led-lighting device
JP2007067067A (en) Resin injection type power circuit unit
JP2006278359A (en) Electronic equipment, cooling system and method thereof and support unit
TWI413889B (en) Heat dissipation device
US8885346B2 (en) Electronic deviec having heat dissipation device
JP6275234B2 (en) LED lighting device
JP2013171845A (en) Housing for electronic apparatus
KR20110059025A (en) Led lamp and street lamp using heatsink module
JP2010130001A (en) Radiation bed
JP2008288379A (en) Semiconductor package
JP2021114542A (en) Housing component and heat radiation device

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090830

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100830

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110830

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120830

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130830

Year of fee payment: 7

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

A623 Registrability report

Free format text: JAPANESE INTERMEDIATE CODE: A623

Effective date: 20130712

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term