JP2004028574A - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
JP2004028574A
JP2004028574A JP2003180772A JP2003180772A JP2004028574A JP 2004028574 A JP2004028574 A JP 2004028574A JP 2003180772 A JP2003180772 A JP 2003180772A JP 2003180772 A JP2003180772 A JP 2003180772A JP 2004028574 A JP2004028574 A JP 2004028574A
Authority
JP
Japan
Prior art keywords
expressor
cavity
compressor
expander
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003180772A
Other languages
English (en)
Other versions
JP4056433B2 (ja
Inventor
Yan Tang
ヤン タン
Joost J Brasz
ジュースト ジェー.ブラスズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Publication of JP2004028574A publication Critical patent/JP2004028574A/ja
Application granted granted Critical
Publication of JP4056433B2 publication Critical patent/JP4056433B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/06Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B11/00Compression machines, plants or systems, using turbines, e.g. gas turbines
    • F25B11/02Compression machines, plants or systems, using turbines, e.g. gas turbines as expanders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/14Power generation using energy from the expansion of the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

【課題】機械的エネルギーを引き出すように飽和液または過冷却液をその蒸気へ高い効率で膨張させる密閉型冷凍装置を提供する。
【解決手段】飽和液または過冷却液が、エクスプレッサ20の膨張器へ供給される。入口過程の最後の直前にまたは入口過程の完了の直後に開始して、エクスプレッサ圧縮機吐出からの高圧蒸気が、膨張進行中に捕捉領域を画定する空洞C−2へ供給される。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、密閉型冷凍装置に関し、特に、エクスプレッサ容量制御装置を含む密閉型冷凍装置に関する。
【0002】
【従来の技術】
全ての密閉型冷凍装置は、直列に圧縮機、凝縮器、膨張装置、蒸発器を含む。膨張装置としては、固定オリフィス、キャピラリ、温度式膨張弁、電子式膨張弁、タービン、膨張器・圧縮機(expander−compressor)すなわちエクスプレッサ(expressor)などがある。各膨張装置においては、高圧液体冷媒は、圧力降下を経験しながらさっと通り(flash)、液体冷媒の少なくとも一部が蒸気になって特定の体積の増加を引き起こす。エクスプレッサにおいては、体積増加は、随伴圧縮機を駆動するのに使用され、この随伴圧縮機は、高圧冷媒蒸気を装置圧縮機の吐出に供給し、それによって装置容量を向上させる。エクスプレッサ内で生じる圧縮過程は、電気モータではなくさっと通る液体冷媒により駆動されるので、全冷凍効率は、装置容量と同じ量だけ増加する。
【0003】
【発明が解決しようとする課題】
冷凍機に通常適用される圧力比では、吐出圧力の吸入圧力に対する比を表す圧力比Prが、装置を制御するのに使用される。体積比Viは、圧縮の場合は吸入体積の吐出体積に対する比であり、膨張の場合は吐出体積の吸入体積に対する比である。液体膨張では、Viは、10またはそれを超える程度である。同じ圧力比では、蒸気膨張に対するViは、3または4程度に過ぎない。液体膨張と蒸気膨張との間に差がある理由は、蒸気の体積が同じ温度、圧力条件下で対応する量の液体の体積の約80倍になるからである。また、液体を蒸気に変化させる相変化にもエネルギーが必要となる。膨張器が非常に大きな例えば10またはそれを超えるViを有する場合、入口過程の最後で液体は、膨張器の捕捉領域を画定する空洞を満たすことになる。膨張器は、さっと通るものすなわち過冷却液がない場合、あるいは、液体が膨張可能でなくてさっと通る速度が体積変化に一致しない場合は、適切に機能できない。従来技術の装置では、膨張器のPrまたはViを大幅に低減するように前絞り(pre−throttling)が使用される。従って、入口過程の最後では空洞領域内に2つの相が存在する。前絞りではエネルギーが利用されないのでエネルギーが浪費される。
【0004】
【課題を解決するための手段】
回転ベーンまたはツインスクリュー膨張器・圧縮機すなわちエクスプレッサ装置は、空気調和および冷凍装置において相変化を実現する膨張装置として使用される。回転ベーンまたはツインスクリューエクスプレッサは、膨張器が第1の段、圧縮機が第2の段となる二段装置が効果的であり、膨張器は、圧縮機を駆動する動力を与え、圧縮機は、装置圧縮機から凝縮器まで延びる吐出ラインへ圧縮された高圧冷媒を供給する。本発明の教示によれば、液体冷媒は、膨張器の入口へ供給される。入口過程の最後で、エクスプレッサ圧縮機吐出からの高圧蒸気は、捕捉領域へ供給される。これによって、膨張器は、液体対蒸気(liquid−to−vapor)膨張による機械的エネルギーを十分に引き出しながら、適切に機能する。始動時には、吐出ラインからの高温高圧気体の一部がエクスプレッサの膨張器へ直接供給され、それによって膨張器の回転が開始する。
【0005】
本発明の目的は、機械的エネルギーを引き出すように飽和液または過冷却液のその蒸気への高い効率による膨張を提供することである。
【0006】
本発明の別の目的は、エクスプレッサの回転速度または流量を制御することである。
【0007】
本発明の付加的な目的は、始動時に吐出気体をエクスプレッサの膨張器へ直接供給することである。
【0008】
本発明のさらなる目的は、エクスプレッサの膨張器へ供給される液体を前絞りする必要を除去することである。以下に明らかになるであろうこれらと他の目的は、本発明により実現される。
【0009】
基本的には、飽和液または過冷却液がエクスプレッサの膨張器へ供給される。入口過程の最後の直前にまたは入口過程の完了の直後に開始して、エクスプレッサ圧縮機吐出からの高圧蒸気が、膨張進行中に捕捉領域を画定する空洞へ供給される。
【0010】
本発明をより十分に理解するためには、添付の図面と関連させて以下の本発明の詳細な説明を参照する必要がある。
【0011】
【発明の実施の形態】
図1において、番号10は、全体として冷凍装置または空気調和装置を示す。装置10は、圧縮機12から始まって直列に吐出ライン14、凝縮器16、ライン18、エクスプレッサ20の形態の膨張装置、ライン22、蒸発器24、回路が完了する吸入ライン26、を備える。図2を参照すると、エクスプレッサ20は、回転ベーン装置として例示されており、名目上は各回転の半分が膨張器として機能し、さらに名目上は各回転の半分が圧縮機として機能し、それによって、エクスプレッサ20は効果的に、負荷などが均衡状態にある二段装置となる。例示するように、エクスプレッサ20は、対称的に周方向に間隔を置いた8つのベーンと回転軸Aとを有するロータ21を備え、これらのベーンはそれぞれV−1〜V−8で示される。ベーンV−1〜V−8は、シリンダ20−1が画定するシリンダ壁面を遠心力によりシールでき、あるいは必要または所望ならば、シリンダ壁面に接触するようにばね付勢できる。各ベーンの吐出側に溝を形成し、ベーンスロット内の空洞が流体を捕捉しかつ流体ばねとなるのを防止する。エクスプレッサ20のシリンダ20−1は、軸Bに対して一様な半径を有する。膨張器が、エクスプレッサ20の圧縮機に加えて蒸発器24に供給しているので、ライン22およびそのポート22−1を空洞C−4とC−5に関して非対称にすることで、シールされた空洞C−5により規定される膨張器20の圧縮機の入口体積は、空洞C−4の最大体積により規定されるエクスプレッサ20の膨張器の吐出体積に比較して低減される。代替として、シリンダ20−1の半径を変化させて、空洞C−4の最大体積よりは空洞C−5の最大体積を小さくすることができる。
【0012】
ベーンV−1は、ロータ21内のベーンV−1のスロット内へ十分に引き込まれているがシリンダ20−1の壁面にはシールするよう接触するように例示されている。ベーンV−2は、ロータ21内のベーンV−2のスロットから僅かに延びており、シリンダ20−1の壁面にシールするように接触する。ベーンV−1、V−2、ロータ21、シリンダ20−1の壁面の間に画定される空洞C−1には、高圧液体(飽和されたまたは過冷却された)冷媒が、凝縮器16の底部からライン18を介して供給される。空洞C−1内の流体圧力が作用できる面積は、ベーンV−1よりベーンV−2の方が大きいので、空洞C−1内の流体が加える力であって、例示するようにロータ21を時計回り方向に移動させる傾向のある力が存在する。空洞C−2は、空洞C−1に対して膨張過程において進んだ段階にあり、より大きな体積を有する。空洞C−1には、液体冷媒が供給されるが、空洞C−1がライン18と連通しなくなるように動く前にライン154と連通するようになると、蒸気の冷媒が供給され得る。空洞C−2は、ライン154と流体連通し、最初にライン154と接触するようになってからライン154と接触しなくなるように動くまでに体積が増加する間に、ライン154から高圧蒸気を供給される。従って、空洞C−2は、空洞C−1より大きいとはいえ、増加された体積は、空洞C−2が空洞C−1位置にあったときに空洞C−2に供給されたさっと通った液体冷媒によるものではなく蒸気の冷媒が供給されたものである。空洞C−2内の流体圧力が作用できる面積は、ベーンV−2よりベーンV−3の方が大きいので、空洞C−2内の流体が加える力であって、ロータ21を時計回り方向に移動させる傾向のある力が存在する。
【0013】
空洞C−3は、空洞C−2に対して膨張過程において進んだ段階にあり、より大きな体積を有する。蒸気の冷媒は、空洞C−3が空洞C−2位置にあったときに供給されているので、前絞りの必要性なしにおよび従来技術の装置の結果として生じるエネルギー/効率の損失なしに、膨張過程が起こり得る。空洞C−3内の流体圧力が作用できる面積は、ベーンV−3よりベーンV−4の方が大きいので、空洞C−3内の流体が加える力であって、ロータ21を時計回り方向に移動させる傾向のある力が存在する。空洞C−4は、膨張過程の最後になる。ベーンV−5がライン22に曝されるとすぐに、空洞C−4からの低圧液体冷媒がライン22に供給され、一方、低圧冷媒気体の一部が、ベーンV−5を通り過ぎて空洞C−5内へ流れる。通常、空洞C−4内の冷媒は、70〜86%程度が液体相であり、残りが蒸気相となるであろう。空洞C−5に流入する冷媒の蒸気相部分は、具体的冷媒、サイクル、装置構成によって規定されることになる。例えば、冷媒番号134aの冷媒の場合、再圧縮(recompress)される蒸気質量流量は、水冷冷凍機では、エクスプレッサ20に流入する全体の液体質量流量の6%となり、空冷冷凍機では、10%になるであろう。通常、再圧縮される蒸気は、エクスプレッサ20に流入する全体の液体質量流量の少なくとも5%となるであろう。ポート22−1の位置は、空洞C−5の密閉およびその最初の領域を画定する。冷媒番号134aの冷媒および水冷冷凍機を想定すると、空洞C−5に供給される蒸気の冷媒は、空洞C−4からの冷媒全体の6%程度である。代替として、シリンダ20−1の半径を変化させて、空洞C−4の最大体積よりは空洞C−5の最大体積を小さくすることができる。
【0014】
空洞C−5は、圧縮過程の最初の段階にあり、空洞C−4、C−5がそれらの最大体積の位置にあるときに、ポート22−1の位置により、または、空洞C−5の領域部分内のシリンダ20−1の壁面の低減された半径により、空洞C−5は、空洞C−4より小さな体積を有する。空洞C−4、C−5内の低い圧力は、他の空洞に比較してロータ21の回転を進めるまたは阻止するのに加える力が最小限となるが、正味の力は、時計回り方向のものとなる。空洞C−6は、圧縮の初期の段階において圧縮された気体状の冷媒の捕捉領域を表す。空洞C−6内の流体圧力が作用する面積は、ベーンV−7よりベーンV−6の方が大きいので、空洞C−6内の流体が加える力であって、ロータ21を反時計回り方向に移動させる傾向のある力が存在する。シリンダ20−1の壁面の低減された半径が、存在すると、流体の力に対するベーンV−6およびV−7の露出を低減する。圧縮される体積の低減によって、時計回り方向にロータ21を移動させる傾向がある膨張器内の対応する力の相殺が防止される。
【0015】
空洞C−7は、圧縮過程の最後の段階にある。空洞C−7内の流体圧力が作用する面積は、ベーンV−8よりベーンV−7の方が大きいので、空洞C−7内の圧縮された流体が加える力であって、ロータ21を反時計回り方向に移動させる傾向のある力が存在する。室C−2内のより高い圧力は、この力を相殺し、それによって、ロータ21は、時計回りに回転する。空洞C−8は、圧縮過程の吐出段階にあり、ライン150と連通し、名目上、圧縮機12の吐出圧力にある。空洞C−8は、高圧冷媒をライン14へ供給するライン150と流体連通する。また、ライン150は、圧縮機吐出圧力にある蒸気の冷媒をライン151へ供給し、このライン151は、制限されたライン152を介してライン154および空洞C−2と連続的に流体連通する。ライン151は、弁160を含むライン153を介してライン154および空洞C−2と選択的に流体連通する。弁160は、それを通る流量を制御するように脈動される電磁弁などのどのような適切な種類のものとすることもできる。電磁弁160は、液体レベル検出器162により検出される凝縮器16内の液体レベルに応じてマイクロプロセッサ170によって制御される。
【0016】
作動時は、圧縮機12からの高温高圧冷媒が、吐出ライン14を介して凝縮器16へ供給され、そこで、冷媒蒸気は、凝縮して液体となる。凝縮器16の底部からの液体冷媒は、ライン18を介してエクスプレッサ20へ供給され、そこで、空洞C−1からC−4により示される膨張過程を経験する。空洞C−4からの低圧液体/蒸気冷媒混合物は、ライン22を介して蒸発器24へ供給され、そこで、液体冷媒は蒸発して必要な空間を冷却し、結果として得られた気体状の冷媒は、圧縮器12へ吸入ライン26を介して供給され、サイクルは完了する。空洞C−4からの冷媒蒸気の一部は、エクスプレッサ20の圧縮機の空洞C−5へ供給される。空洞C−5からC−8により連続的に例示される圧縮過程において、低圧冷媒蒸気は、吐出ライン14の圧縮機12の吐出圧力に対応する圧力に圧縮される。空洞C−8はライン150内へ吐出し、ライン150は、空洞C−8からの高圧気体状の冷媒の一部をライン14へ供給し、そこで、この冷媒は、凝縮器16へ供給される高温高圧冷媒の量を効果的に増加させ、それによって、装置10の容量および効率を向上させる。ライン150内へ吐出された空洞C−8からの高圧蒸気の冷媒の一部は、ライン151へ流入し、制限されたライン152を介してライン154内へさらに空洞C−2内へ流れ、この空洞C−2は、高圧液体冷媒ライン18からちょうど今接続を切られたばかりか、あるいは、高圧液体冷媒ライン18に依然として接続されいているが今にも接続が切られそうになっている。制限されたライン152は、ロータ21の最低限の回転速度に付随する速度で空洞C−2内へと高圧蒸気の冷媒の流れを可能にする。ライン153は、制限されたライン152に並列になっており、電磁弁160を含み、この電磁弁は、凝縮器16内の液体レベル検出器162により検出される凝縮器16内の液体レベルに応答してマイクロプロセッサ170により制御される。ロータ21の回転速度は、弁160の開の程度により増加される。エクスプレッサの吐出に加えて、空洞C−2に供給されるこの高圧蒸気は、始動時にはエクスプレッサ20を駆動するために圧縮機12の吐出からライン14、150を介して到達することができる。冷媒蒸気が膨張過程の空洞C−2部分内に存在するので、膨張器は、適切に機能でき、液体対蒸気膨張による機械的エネルギーが十分に引き出され得る。
【0017】
ライン18から空洞C−1内へ通じる高圧液体入口ポート18−1が、液体対蒸気膨張Viとよく調和し、蒸気供給ポート154−1は、同じ圧力比における蒸気膨張Viとよく調和する。弁160を通して制御される高圧蒸気の流れ容量は、エクスプレッサ20の回転速度を制御する。ロータ21の最低限の速度および最低限の膨張の流れ容量(装置10の冷凍容量)は、弁160が閉のときに生じる。弁160は、エクスプレッサ20の流れ容量に対応するロータの速度を制御するのに使用される。弁160が十分に開のときに、ロータ21の速度すなわちエクスプレッサ20の流れ容量がその最大になる。
【0018】
通常、作動時にライン150を通る流れは、エクスプレッサ20の圧縮部分の吐出から吐出ライン14へのものとなる。しかしながら、始動時は、装置10内の圧力が少なくとも名目上均等になっていると想定すれば、吐出ライン14へ供給される圧縮機12の吐出の一部は、ライン150を介してエクスプレッサ20へ供給できる。図2から明らかなように、ライン150は、空洞C−8と流体連通しているが、そこではライン150は、ほとんど影響を及ぼさない。しかしながら、上述したように、空洞C−2内の加圧された流体が、ロータ21を時計回り方向に回転させる傾向がありそれによってエクスプレッサ20の始動を容易にするように、ライン150は、ライン151、152、154を介して空洞C−2と流体連通する。
【0019】
図3を参照すると、エクスプレッサ20’は、エクスプレッサ20のツインスクリューロータ同等物である。エクスプレッサ20’の構造の全ては、エクスプレッサ20の同等構造と同じに符号を付けてある。ロータ21’が1つだけ例示されているとはいえ、明らかなように、空洞C−1からC−4は、体積が連続的に増加して、エクスプレッサの膨張器部分を規定しており、空洞C−5から空洞C−8は、体積が連続的に減少して、エクスプレッサの圧縮機部分を規定している。ポート22−1の位置は、空洞C−5が閉じるのを遅らせ、それによって、空洞C−4の最大閉体積に対する空洞C−5の最大閉体積が低減する。必要または望ましいならば、ポート22−1は、空洞C−6内で圧縮過程の第1の捕捉領域が閉じることが生じるように、第1の捕捉領域が閉じるのを遅らせることができる。
【0020】
図4は、空洞が上述した空洞C−1位置から空洞C−8位置まで進行する間のエクスプレッサ20、20’内の膨張・圧縮過程を示すグラフである。低圧液体/蒸気吐出と呼ばれる中央領域部分は、図2に例示されたそれぞれの位置における空洞C−4、C−5に対応する。
【0021】
本発明の好ましい実施態様を例示、説明したが、当業者により他の変更もなされるであろう。従って、本発明の範囲は、特許請求の範囲によってのみ限定されるものである。
【図面の簡単な説明】
【図1】本発明を利用する冷凍装置または空気調和装置の概略図である。
【図2】エクスプレッサが回転ベーン装置である図1の装置のエクスプレッサの簡略図である。
【図3】エクスプレッサがツインスクリュー装置である図1の装置のエクスプレッサの簡略図である。
【図4】エクスプレッサ内の膨張・圧縮過程中の体積変化を示すグラフである。
【符号の説明】
18…ライン
18−1…高圧液体入口ポート
20…エクスプレッサ
20−1…シリンダ
21…ロータ
22…ライン
22−1…ポート
150、151、153、154…ライン
152…制限されたライン
154−1…蒸気供給ポート
160…弁
A、B…軸
C−1〜C−8…空洞
V−1〜V−8…ベーン

Claims (6)

  1. 直列に主圧縮機、吐出ライン、凝縮器、エクスプレッサ、蒸発器、吸入ラインを含む密閉型冷凍装置であって、
    前記エクスプレッサは、各サイクルの半分の間に膨張器として機能する部分と、各サイクルの他の半分の間に圧縮機として機能する部分とを有し、
    各サイクルの前記半分の前記膨張器部分は、体積が増加する複数の捕捉領域を含み、これらの捕捉領域は、前記凝縮器から液体冷媒を供給する手段と、前記エクスプレッサの前記圧縮機から吐出圧力を供給する手段と、前記蒸発器へおよび前記エクスプレッサの前記圧縮機へ排出する手段とに連続的に接続され、
    各サイクルの前記他の半分の前記圧縮機部分は、複数の捕捉領域を含み、これらの捕捉領域は、各サイクルの前記他の半分の間に連続的に体積が減少することを特徴とする密閉型冷凍装置。
  2. 前記膨張器部分の中の最大の捕捉領域は、前記圧縮機部分の中の最大の捕捉領域より体積が大きいことを特徴とする請求項1記載の密閉型冷凍装置。
  3. 前記エクスプレッサは、回転ベーン装置であることを特徴とする請求項1記載の密閉型冷凍装置。
  4. 前記膨張器部分の捕捉領域への前記エクスプレッサの前記圧縮機部分からの吐出圧力の前記供給を調整する手段をさらに含むことを特徴とする請求項1記載の密閉型冷凍装置。
  5. 前記エクスプレッサはスクリュー装置であることを特徴とする請求項1記載の密閉型冷凍装置。
  6. 前記密閉型冷凍装置は、始動時に前記吐出ラインを前記膨張器部分へ接続する手段をさらに含み、それによって、前記主圧縮機が、始動状態の間に前記エクスプレッサを駆動するように加圧冷媒蒸気を前記膨張器部分へ供給することを特徴とする請求項1記載の密閉型冷凍装置。
JP2003180772A 2002-06-25 2003-06-25 冷凍装置 Expired - Fee Related JP4056433B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/179,595 US6595024B1 (en) 2002-06-25 2002-06-25 Expressor capacity control

Publications (2)

Publication Number Publication Date
JP2004028574A true JP2004028574A (ja) 2004-01-29
JP4056433B2 JP4056433B2 (ja) 2008-03-05

Family

ID=22657218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003180772A Expired - Fee Related JP4056433B2 (ja) 2002-06-25 2003-06-25 冷凍装置

Country Status (6)

Country Link
US (1) US6595024B1 (ja)
EP (1) EP1376032A3 (ja)
JP (1) JP4056433B2 (ja)
KR (1) KR100527316B1 (ja)
CN (1) CN1220016C (ja)
TW (1) TWI224665B (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897681B2 (ja) * 2002-10-31 2007-03-28 松下電器産業株式会社 冷凍サイクル装置の高圧冷媒圧力の決定方法
US6898941B2 (en) * 2003-06-16 2005-05-31 Carrier Corporation Supercritical pressure regulation of vapor compression system by regulation of expansion machine flowrate
US6989989B2 (en) * 2003-06-17 2006-01-24 Utc Power Llc Power converter cooling
JP4403300B2 (ja) * 2004-03-30 2010-01-27 日立アプライアンス株式会社 冷凍装置
JP4389699B2 (ja) * 2004-07-07 2009-12-24 ダイキン工業株式会社 冷凍装置
JP2006132818A (ja) * 2004-11-04 2006-05-25 Matsushita Electric Ind Co Ltd 冷凍サイクル装置の制御方法およびそれを用いた冷凍サイクル装置
CN100575817C (zh) * 2005-05-06 2009-12-30 松下电器产业株式会社 制冷循环装置
WO2008115227A1 (en) * 2007-03-16 2008-09-25 Carrier Corporation Refrigerant system with variable capacity expander
JP5186951B2 (ja) * 2008-02-29 2013-04-24 ダイキン工業株式会社 空気調和装置
US10451471B2 (en) 2012-04-12 2019-10-22 Itt Manufacturing Enterprises Llc Method of determining pump flow in twin screw positive displacement pumps
RU2018104542A (ru) * 2015-08-14 2019-09-16 АйТиТи МЭНЬЮФЭКЧУРИНГ ЭНТЕРПРАЙЗИС ЭлЭлСи Устройство и способ определения подачи двухвинтовых объемных насосов
WO2019130268A1 (en) * 2017-12-29 2019-07-04 Ing. Enea Mattei S.P.A. Vane expander and related energy recovery circuit
WO2019130266A1 (en) * 2017-12-29 2019-07-04 Ing. Enea Mattei S.P.A. Energy recovery circuit from a thermal source and related energy recovery method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB660771A (en) * 1949-02-03 1951-11-14 Svenska Turbinfab Ab Improvements in refrigerating machinery
US4208885A (en) * 1970-07-29 1980-06-24 Schmerzler Lawrence J Expander-compressor transducer
US3934424A (en) * 1973-12-07 1976-01-27 Enserch Corporation Refrigerant expander compressor
US4187693A (en) * 1978-06-15 1980-02-12 Smolinski Ronald E Closed chamber rotary vane gas cycle cooling system
US4235079A (en) * 1978-12-29 1980-11-25 Masser Paul S Vapor compression refrigeration and heat pump apparatus
JPH09156358A (ja) * 1995-12-05 1997-06-17 Mitsubishi Motors Corp 車両用空調装置
GB2309748B (en) * 1996-01-31 1999-08-04 Univ City Deriving mechanical power by expanding a liquid to its vapour
SE9902024D0 (sv) * 1999-06-02 1999-06-02 Henrik Oehman Anordning vid en kylanordning med en köldmedieseparator
US6185956B1 (en) * 1999-07-09 2001-02-13 Carrier Corporation Single rotor expressor as two-phase flow throttle valve replacement
JP2001141315A (ja) * 1999-11-10 2001-05-25 Aisin Seiki Co Ltd 冷凍空調機

Also Published As

Publication number Publication date
TWI224665B (en) 2004-12-01
KR20040002533A (ko) 2004-01-07
EP1376032A2 (en) 2004-01-02
US6595024B1 (en) 2003-07-22
EP1376032A3 (en) 2007-02-28
CN1469093A (zh) 2004-01-21
KR100527316B1 (ko) 2005-11-09
TW200401095A (en) 2004-01-16
JP4056433B2 (ja) 2008-03-05
CN1220016C (zh) 2005-09-21

Similar Documents

Publication Publication Date Title
EP0787891B1 (en) Deriving mechanical power by expanding a liquid to its vapour
JP3799220B2 (ja) 複合型ロータ容積式装置および単一流体圧縮/膨張冷凍装置
JP4056433B2 (ja) 冷凍装置
CA2310871A1 (en) Capacity control of compressors
US20080310983A1 (en) Expander
CN102859295A (zh) 制冷循环装置
CN102483276A (zh) 制冷循环装置
JPH02140477A (ja) 二段式圧縮機
JP2011017455A (ja) ターボ冷凍機
JPH10508937A (ja) 冷却を実施する装置および方法
JP2003065615A (ja) 冷凍機
JP2010101613A (ja) 冷凍装置
WO2006013970A1 (ja) 冷凍サイクル装置
JP2008208758A (ja) 容積型膨張機、膨張機一体型圧縮機、および冷凍サイクル装置
JP2012093017A (ja) 冷凍サイクル装置
JP2010078257A (ja) 冷凍装置
JP5090932B2 (ja) エコノマイザを備えた遷臨界運転のための冷却装置
JP2014142158A (ja) 冷凍サイクル装置
JP2014149103A (ja) 冷凍サイクル装置
JP2013096602A (ja) 冷凍サイクル装置
WO2011161953A1 (ja) 冷凍サイクル装置
KR0161214B1 (ko) 스크롤 압축기
JP2007298207A (ja) 冷凍サイクル装置およびその制御法
JP2006284086A (ja) 冷凍装置
KR20000050610A (ko) 압축기의 보호장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20070206

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20070209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees