JP2004022808A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2004022808A
JP2004022808A JP2002175674A JP2002175674A JP2004022808A JP 2004022808 A JP2004022808 A JP 2004022808A JP 2002175674 A JP2002175674 A JP 2002175674A JP 2002175674 A JP2002175674 A JP 2002175674A JP 2004022808 A JP2004022808 A JP 2004022808A
Authority
JP
Japan
Prior art keywords
resin
semiconductor device
resin sealing
mask
squeegee
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002175674A
Other languages
Japanese (ja)
Inventor
Tadanori Okubo
大久保 忠宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002175674A priority Critical patent/JP2004022808A/en
Publication of JP2004022808A publication Critical patent/JP2004022808A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor device and its manufacturing method, which can surely solder an outer connection electrode in mounting and improve reliability of the mounting without generating mounting defect or the like of the device by ensuring prescribed standoffs dimension. <P>SOLUTION: The device has a tape 22 provided with a solder ball 23 in one major surface, a semiconductor chip 24 mounted on the other major surface of the tape 22, a conductive connection part connecting the semiconductor chip 24 and the solder ball 23, and a resin sealing part 28 sealing the conductive connection part by printing silicone resin 34 in the one major surface of the tape 22 by using a squeegee and a predetermined mask. The resin sealing part 28 is formed by cutting another end 36b of a print resin part 36, wherein a resin bank 37 of a squeegee movement direction terminal part positioned outside a forming outer circumferential line 33 of the tape 22 is formed, upon formation of the tape 22. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えばBGAタイプの半導体装置等に好適する半導体装置及びその製造方法に関する。
【0002】
【従来の技術】
周知の通り、BGAタイプの半導体装置におけるパッケージの樹脂封止方式には、トランスファーモールド方式やディスペンス方式、印刷方式等、各種の方式が有る。そのうちの特に印刷方式は、液状の封止樹脂材料を使用する封止方式としては、ディスペンス方式に比べ生産性が高く、将来性の有る封止方式である。また、このような印刷方式は、封止部分の形状に合わせてスリットの形成された金属薄板でなるマスクの上に封止樹脂材料を塗布した後、マスクの下面に封止部を下方側から押し付けたままの状態で、合成樹脂製あるいは金属製のへらのスキージをスリットに沿って移動させ、封止樹脂材料をスリットの形状に合わせて封止部に印刷するものである。
【0003】
以下、従来技術を図10及び図13を参照して説明する。図10は半導体装置を示す図で、図10(a)は平面図、図10(b)は図10(a)におけるX矢視方向の断面図であり、図11は図10(a)におけるY矢視方向の断面図であり、図12は半導体チップを搭載したテープ部材にマスクをセットした状態を示す図であり、図13は樹脂封止部を印刷する状況を示す図で、図13(a)は印刷開始状態を示す断面図、図13(b)は印刷終了状態を示す断面図である。
【0004】
図10及び図11において、BGAタイプの半導体装置1は、基材であるテープ2の一主面に外部接続電極の半田ボール3が行列をなすよう複数配列され、さらに他主面に半導体チップ4が搭載されるようにして構成されている。また半田ボール3と半導体チップ4とは、半田ボール3の配列に沿ってテープ2に貫通形成された長孔5を介してボンディングワイヤ6により各対応部分が接続され、導電接続部7を形成している。そして半田ボール3と半導体チップ4を接続する導電接続部7は、テープ2の一主面側から、例えばシリコーン樹脂等の所定粘度の液状封止樹脂材料を長孔5に沿って印刷により覆うように設けてなる樹脂封止部8によって封止されている。
【0005】
また、このような構成の半導体装置1の製造過程は、次のようなものとなっている。すなわち、例えば3列15連、計45個の半導体装置1が形成でき、一主面に半田ボール3を搭載する図示しない配線パターンが形成された大寸法のテープ部材9に、その装置形成領域10内における他主面の所定位置に半導体チップ4を搭載する。続いて、半導体チップ4と配線パターンの対応する部分同士の導電接続をボンディングワイヤ6により行い導電接続部7を形成する。
【0006】
次に、テープ部材9よりも大寸法の金属薄板でなる印刷用マスク11を、図12に示すように半導体チップ4の搭載等がなされたテープ部材9の一主面上方の所定位置にセットする。マスク11には、テープ部材9の各装置形成領域10内に形成され、導電接続部7が設けられた長孔5に対応して、スリット12が各装置形成領域10内に両端部が位置するようにして複数形成されている。
【0007】
次に、マスク11の上面の各スリット12の一端部分に、所定粘度の液状封止樹脂材料のシリコーン樹脂13を所定量塗布する。そして図13(a)に示すように、マスク11の下面に、半導体チップ4の搭載されたテープ部材9の一主面を下方側から押し付け、スリット12の一端部分に、金属製へらのスキージ14のナイフエッジ状に形成された先端をマスク11の上面に当接させる。
【0008】
その後、スキージ14の先端をマスク11の上面に当接させながら、図13(b)に示すように各装置形成領域10毎にスリット12の他端部分まで移動させ、マスク11のスリット12を介して印刷によりシリコーン樹脂13を塗布し、導電接続部7を覆うスリット12と略同形状の樹脂印刷を行い樹脂封止部8を各装置形成領域10に形成する。
【0009】
樹脂封止部8を形成した後、マスク11の下面からテープ部材9を外す。続いて、配線パターンに半田ボール3を固着、搭載する。その後、各装置形成領域10を示す成形外周線15に沿ってテープ部材9を切断し、個々の半導体装置1に分離する。そして、個々に分離された半導体装置1は、図示しない実装基板等の所定個所に、半田ボール3を半田付けすることによって実装される。
【0010】
しかしながら上記の従来技術においては、半導体装置1を実装基板等に実装する際、半田ボール3が所定の個所に確実に半田付けできず、半導体装置1の実装が不確実になってしまうものが生じたりする虞があった。また、これにより半導体装置1の実装の信頼性をより高いものとすることが難しいものとなっていた。
【0011】
そこで、半導体装置1を調べたところ、基材のテープ2の一主面に樹脂封止部8を形成する際、スキージ14をスリット12の一端部から他端部に移動させることによって、図13(b)に示すようにスキージ14の移動方向終端部であるスリット12の他端部側に封止樹脂材料のシリコーン樹脂13の樹脂溜り16が生じるように樹脂印刷がなされる。これは封止樹脂材料等の液状樹脂材料が、その粘度が一定以上の高い値の場合、スキージ移動の終了部分では樹脂材料の量がかき集められて多くなり、スキージ14の移動方向始端部や移動方向中間部よりも樹脂高さが高くなる傾向を持っているからである。そして、この現象は物理的に安定しているが、半導体チップの搭載等がなされたテープ部材中の樹脂高さは常に一定のばらつきを持つ。
【0012】
このため、上記のように形成したものの樹脂封止部8の高さ(樹脂高さ)が、図11に示すように中間部は略同一高さであるものの、スリット12の他端部側に形成されたシリコーン樹脂13の樹脂溜り16により部分的に高くなってしまい、半田ボール3の頂点と樹脂封止部8の頂点との間のスタンドオフ寸法Sが小さく、所定のスタンドオフ寸法Sが確保できないものが生じてしまうことになり、半導体装置1を実装する際に、半田ボール3が確実に半田付けできなくなり、実装が不確実なってしまうことが生じる。
【0013】
例えばある種の半導体装置1で、半田ボール3の直径が0.5mm、確保すべきスタンドオフ寸法Sが0.3mmの場合、許容される樹脂封止部8の最高の高さ(樹脂高さ)は、0.2mmとなる。一方、樹脂封止部8で封止するボンディングワイヤ6のループ高さは0.05mm程度であるから、樹脂封止部8の高さ(樹脂高さ)は、0.05mm〜0.2mmが必要である。これに対し、実際の装置における樹脂封止部8の高さ(樹脂高さ)のばらつきは、0.07mm〜0.18mm程度で、半田ボール3の半田付けの確実性をより高めようとする場合には、さらに樹脂封止部8の高さ(樹脂高さ)のばらつきを少ないものとする必要が有る。
【0014】
また一方、BGAタイプの半導体装置1では、今後の装置の小形化、高集積化による半田ボール3の数の増加に伴い、半田ボール3の直径は小さなものとなる。そして、樹脂封止部8の高さ(樹脂高さ)に要求される寸法範囲は厳しいものとなり、よりばらつきを少なくすることが求められる。ちなみに、半田ボール3の直径が0.4mmで、確保すべきスタンドオフ寸法Sが0.3mm、ボンディングワイヤ6のループ高さが0.05mmの場合、要する樹脂印刷封止部8の高さ(樹脂高さ)は、0.05mm〜0.1mmで、現状の樹脂封止部8の高さ(樹脂高さ)のばらつきでは、対応できない。
【0015】
【発明が解決しようとする課題】
上記のような状況に鑑みて本発明はなされたもので、その目的とするところは所定のスタンドオフ寸法を確保することができ、これにより、実装時に外部接続電極を確実に半田付けすることができ、装置の実装不良等を生じず、実装の信頼性を向上させることができる半導体装置及びその製造方法を提供することにある。
【0016】
【課題を解決するための手段】
本発明の半導体装置及びその製造方法は、外部接続電極が一主面に設けられた基材と、この基材の他主面に搭載された半導体チップと、この半導体チップと前記外部接続電極とを接続する導電接続部と、この導電接続部を前記基材の一主面に封止樹脂材料をスキージと所定パターンのマスクを用いて印刷することによって封止した樹脂封止部を備えてなる半導体装置において、前記樹脂封止部は、前記基材の成形外周部分より外方に位置するスキージ移動方向終端部を、前記基材の成形時に同時に切除して形成したものであることを特徴とするものであり、
さらに、前記樹脂封止部が、スキージ移動方向始端部を基材の成形外周部分より外方に位置させていて、前記基材の成形時に前記スキージ移動方向始端部も同時に切除して形成したものであることを特徴とするものであり、
さらに、樹脂封止部を複数有していることを特徴とするものであり、
また、外部接続電極を設ける配線パターンが一主面に設けられた母基材の他主面に複数の半導体チップを搭載し、前記半導体チップと前記配線パターンとを導電接続した後、前記母基材の一主面に封止樹脂材料をスキージと所定パターンのマスクを用いて印刷して樹脂封止部を形成し、前記半導体チップと前記配線パターンとの導電接続部を封止し、その後、前記外部接続電極を前記は緯線パターンに搭載し、前記母基材の成形外周位置で切断して個々装置に分離する半導体装置の製造方法において、前記母基材に複数の前記半導体チップを、樹脂封止部がスキージ移動方向に直線上に配列されるよう搭載すると共に、前記マスクの前記樹脂封止部に対応するスリットを、スキージ移動方向終端部が前記母基材の成形外周位置より外方位置となるように設け、また略同一直線上に配列される複数の前記樹脂封止部を形成するための樹脂印刷部を同時に印刷し形成することを特徴とする方法であり、
さらに、前記マスクの樹脂封止部に対応するスリットを、スキージ移動方向始端部が母基材の成形外周位置よりも外方となるように設けたことを特徴とする方法であり、
さらに、前記マスクの略同一直線上に配列される複数の樹脂封止部に対応するスリットを、各樹脂封止部毎に設けると共に、前記スリットのスキージ移動方向終端部を同方向側となるようにしたことを特徴とする方法であり、
さらに、略同一直線上に配列される複数の前記樹脂封止部を、複数列同時に印刷し形成することを特徴とする方法である。
【0017】
【発明の実施の形態】
以下本発明の一実施形態を、図1乃至図9を参照して説明する。図1は半導体装置を示す図で、図1(a)は平面図、図1(b)は図1(a)におけるA矢視方向の断面図であり、図2は図1(a)におけるB矢視方向の断面図であり、図3は半導体チップを搭載したテープ部材の平面図であり、図4はテープ部材の要部である1つの装置形成領域を示す平面図であり、図5は図4におけるC矢視方向の断面図であり、図6は半導体チップを搭載したテープ部材にマスクをセットした状態を示す図であり、図7は半導体チップを搭載したテープ部材に印刷樹脂部を印刷し半田ボールを搭載した状態を示す平面図であり、図8は変形形態における半導体チップを搭載したテープ部材にマスクをセットした状態を示す図であり、図9は変形形態における半導体チップを搭載したテープ部材に印刷樹脂部を印刷し半田ボールを搭載した状態を示す平面図である。
【0018】
図1乃至図9において、BGAタイプの半導体装置21は、ポリイミド樹脂等の絶縁性基材でなるテープ22の一主面に外部接続電極の半田ボール23が、7×3の行列をなすよう配線パターン23aに固着、搭載されて複数配列され、さらに他主面に半導体チップ24が搭載されるようにして構成されている。また半田ボール23と半導体チップ24とは、半田ボール23の配列に沿いテープ22に貫通形成された長孔25を介してボンディングワイヤ26により各対応部分が接続されており、この接続部分に導電接続部27を形成している。そして半田ボール23と半導体チップ24を接続する導電接続部27は、テープ22の一主面側からの、例えばシリコーン樹脂等の所定粘度の液状封止樹脂材料を長孔25に沿って印刷し覆うことによって設けてなる印刷封止部28により封止されている。
【0019】
また、このような構成の半導体装置21の製造過程は、次のようなものとなっている。すなわち、例えば3列15連、計45個の半導体装置21が形成でき、一主面に半田ボール23を搭載する配線パターン23aが形成された大寸法のテープ部材29に、その装置形成領域30内における他主面の所定位置に半導体チップ24を搭載する。続いて、半導体チップ24と配線パターン23aの対応する部分同士の導電接続をボンディングワイヤ26により行い、導電接続部27を長孔25内及びそれに沿った近傍に形成する。
【0020】
次に、テープ部材29よりも大寸法の金属薄板でなる印刷用マスク31を、図6に示すように半導体チップ24の搭載等がなされたテープ部材29の一主面上方の所定位置にセットする。マスク31には、テープ部材29の例えば3列15連の列方向に隣接する装置形成領域30の複数の長孔25のうち、長手方向の略同一直線上に並ぶ各長孔25に対し連続して開口するように、複数のスリット32が形成されている。なお、スリット32の長手方向各端部32a,32bは、テープ部材29の外縁側に位置する装置形成領域30を囲む成形外周線33より、例えば1mm程度外方に位置するものとなっている。
【0021】
次に、マスク31の上面の各スリット32の一端部32aを含みその近傍に、所定粘度の液状封止樹脂材料のシリコーン樹脂34を所定量塗布する。そして、マスク31の下面に半導体チップ24の搭載されたテープ部材29の一主面を下方側から押し付け、スリット32の一端部32a近傍に、金属製へらのスキージ35のナイフエッジ状に形成された先端をマスク31の上面に当接させる。
【0022】
その後、スキージ35の先端をマスク31の上面に当接させながら、スリット32の他端部32bまで移動させ、マスク31のスリット32を介して印刷によりシリコーン樹脂34を塗布し、略同一直線上に並ぶ各導電接続部27を覆うスリット32と略同形状の3つの装置形成領域30にまたがる印刷樹脂部36を形成する。形成された印刷樹脂部36は、その高さ(樹脂高さ)がスキージ35の移動方向始端部である一端部36aや中間部よりも、移動方向終端部である他端部36bに、シリコーン樹脂34の樹脂溜り37が形成されて部分的に高くなっている。なお、中間部は略同一高さに形成され、また印刷樹脂部36の一端部36aは他よりもやや低い部位を有するよう形成される。
【0023】
印刷樹脂部36を形成した後、マスク31の下面からテープ部材29を外す。続いて、配線パターン23aに半田ボール23を固着、搭載する。その後、各装置形成領域30を示す成形外周線33に沿ってテープ部材29を切断し、個々の半導体装置21に分離する。この時、印刷樹脂部36のやや低い部位を有する一端部36aと、他よりも高い部分を有する他端部36bは、テープ部材29の外縁側に位置する装置形成領域30の成形外周線33より外方に位置するため、切断除去され、個々に分離された半導体装置21には残らず、半導体装置21には印刷樹脂部36の中間部によって形成された樹脂封止部28のみが残る。そして、この後、個々に分離された半導体装置21は、図示しない実装基板等の所定個所に、半田ボール23を半田付けすることによって実装される。
【0024】
以上の過程を経て半導体装置21は製造され、印刷樹脂部36の高さ(樹脂高さ)が一番高くなる他端部36bと、高さの低い部位を有する一端部36aとが切り落とされ、高さのばらつきの少ない中間部で樹脂封止部28が形成されるため、図1及び図2に示すように形成された半導体装置21は、樹脂封止部28が略同一高さのばらつきの少ないものとなっており、またその高さも部分的に高い他端部36bがないだけ低いものとなっているので、半田ボール23の頂点との間のスタンドオフ寸法Sも、所定のスタンドオフ寸法Sを十分に確保できる。また印刷樹脂部36の高さが低くなる一端部36aを切り落とすことから、自ずと端部側に位置する導電接続部27のボンディングワイヤ26も、十分な厚さのシリコーン樹脂34で覆うようにして封止することができる。
【0025】
この結果、半導体装置21を図示しない実装基板等に実装する際にも、半田ボール23が所定の個所に確実に半田付けでき、半導体装置21の実装が不良になってしまったり、不確実になってしまったりする虞がなく、半導体装置21の実装の信頼性をより高いものとすることができる。また、樹脂封止部28の高さを低いものとし、高さのばらつきを少ないものとすることができることから、装置の小形化、高集積化に対しても、十分に対応することができる。
【0026】
なお、上記の実施形態においては、マスク31に形成したスリット32を、隣接する装置形成領域30の長手方向に略同一直線上に並ぶ各長孔25に対し連続して開口するものとし、さらに両端部32a,32bをテープ部材29の外縁側に位置する装置形成領域30を囲む成形外周線33より外方に位置させたものとして印刷樹脂部36を形成し、その後、印刷樹脂部36の両端部36a,36bを切断除去するようにして分割し、半導体装置21を形成するようにしたが、以下に図8及び図9を用いて説明する変形形態のように構成してもよい。変形形態は上記実施形態と異なるマスクを用いて半導体装置21を形成するもので、上記実施形態と異なる点を中心に図8及び図9を参照して説明する。
【0027】
すなわち、変形形態における製造過程は、例えば3列15連、計45個の半導体装置21が形成できる上記実施形態と同一のテープ部材29に、その他主面に半導体チップ24を搭載する。そして、半導体チップ24と配線パターン23aの対応する部分同士の導電接続をボンディングワイヤ26により行い、導電接続部27を長孔25内及びそれに沿った近傍に形成する。
【0028】
次に、テープ部材29よりも大寸法の金属薄板でなる印刷用マスク41を、図8に示すように半導体チップ24の搭載等がなされたテープ部材29の一主面上方の所定位置にセットする。マスク41には、テープ部材29の各装置形成領域30内に形成され、導電接続部27が設けられた各長孔25に対応して、長手方向を同一にするスリット42が複数形成されている。各スリット42は、両端部42a,42bが各装置形成領域30外、例えば装置形成領域30を囲む成形外周線33より、1mm程度外方に位置するようにして開口している。
【0029】
次に、マスク41の上面の各スリット42の一端部42aを含みその近傍に、所定粘度の液状封止樹脂材料のシリコーン樹脂34を所定量塗布する。そして、マスク41の下面に半導体チップ24の搭載されたテープ部材29の一主面を下方側から押し付け、スリット42の一端部42a近傍に、金属製へらのスキージ35のナイフエッジ状に形成された先端をマスク41の上面に当接させる。
【0030】
その後、スキージ35の先端をマスク41の上面に当接させながら、スリット42の他端部42bまで移動させ、マスク41のスリット42を介して印刷によりシリコーン樹脂34を塗布し、導電接続部27を覆うスリット42と略同形状の印刷樹脂部43を形成する。形成された印刷樹脂部43は、その高さ(樹脂高さ)がスキージ35の移動方向始端部である一端部43aや中間部よりも移動方向終端部である他端部43bに、シリコーン樹脂34の樹脂溜り37が形成されて部分的に高くなっている。なお、中間部は略同一高さに形成され、また一端部43aは他よりもやや低い部位を有するよう形成される。
【0031】
印刷樹脂部43を形成した後、マスク31の下面からテープ部材29を外す。続いて、配線パターン23aに半田ボール23を固着、搭載する。その後、各装置形成領域30を示す成形外周線33に沿ってテープ部材29を切断し、個々の半導体装置21に分離する。この時、印刷樹脂部43のやや低い部位を有する一端部43aと、他よりも高い部分を有する他端部43bは、装置形成領域30の成形外周線33より外方に位置するため、切断除去され、個々に分離された半導体装置21には残らず、半導体装置21には印刷樹脂部43の中間部によって形成された樹脂封止部28のみが残る。そして、この後、個々に分離された半導体装置21は、図示しない実装基板等の所定個所に、半田ボール23を半田付けすることによって実装される。
【0032】
以上の通り、本変形形態においても、半導体装置21は、印刷樹脂部43の高さ(樹脂高さ)が一番高くなる他端部43bと、高さの低い部位を有する一端部43aとが切り落とされ、高さのばらつきの少ない中間部で樹脂封止部28が形成されるため、上記実施形態と同様の効果を有する。
【0033】
【発明の効果】
以上の説明から明らかなように、本発明によれば、所定のスタンドオフ寸法を確保することができると共に、実装時に外部接続電極を確実に半田付けすることができ、装置の実装不良等を生じず、実装の信頼性を向上させることができる等の効果を奏する。
【図面の簡単な説明】
【図1】本発明の一実施形態の半導体装置を示す図で、図1(a)は平面図、図1(b)は図1(a)におけるA矢視方向の断面図である。
【図2】図1(a)におけるB矢視方向の断面図である。
【図3】本発明の一実施形態に係る半導体チップを搭載したテープ部材の平面図である。
【図4】本発明の一実施形態に係るテープ部材の要部である1つの装置形成領域を示す平面図である。
【図5】図4におけるC矢視方向の断面図である。
【図6】本発明の一実施形態における半導体チップを搭載したテープ部材にマスクをセットした状態を示す図である。
【図7】本発明の一実施形態における半導体チップを搭載したテープ部材に印刷樹脂部を印刷し半田ボールを搭載した状態を示す平面図である。
【図8】本発明の一実施形態の変形形態における半導体チップを搭載したテープ部材にマスクをセットした状態を示す図である。
【図9】本発明の一実施形態の変形形態における半導体チップを搭載したテープ部材に印刷樹脂部を印刷し半田ボールを搭載した状態を示す平面図である。
【図10】従来技術における半導体装置を示す図で、図10(a)は平面図、図10(b)は図10(a)におけるX矢視方向の断面図である。
【図11】図10(a)におけるY矢視方向の断面図である。
【図12】従来技術における半導体チップを搭載したテープ部材にマスクをセットした状態を示す図である。
【図13】従来技術における樹脂封止部を印刷する状況を示す図で、図13(a)は印刷開始状態を示す断面図、図13(b)は印刷終了状態を示す断面図である。
【符号の説明】
22…テープ
23…半田ボール
24…半導体チップ
27…導電接続部
28…樹脂封止部
29…テープ部材
30…装置形成領域
31…マスク
32…スリット
33…成形外周線
34…シリコーン樹脂
35…スキージ
36…印刷樹脂部
36a…印刷樹脂部の一端部
36b…印刷樹脂部の他端部
37…樹脂溜り
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor device suitable for, for example, a BGA type semiconductor device and the like and a method for manufacturing the same.
[0002]
[Prior art]
As is well known, there are various methods such as a transfer molding method, a dispensing method, and a printing method as a resin sealing method of a package in a BGA type semiconductor device. Among them, the printing method, in particular, is a sealing method using a liquid sealing resin material which has higher productivity than the dispensing method and has a future prospect. In addition, in such a printing method, after applying a sealing resin material on a mask made of a thin metal plate having slits formed in accordance with the shape of the sealing portion, a sealing portion is formed on a lower surface of the mask from below. In this state, the squeegee made of synthetic resin or metal is moved along the slit while being pressed, and the sealing resin material is printed on the sealing portion according to the shape of the slit.
[0003]
Hereinafter, the related art will be described with reference to FIGS. 10A and 10B are views showing a semiconductor device, FIG. 10A is a plan view, FIG. 10B is a cross-sectional view in the direction of the arrow X in FIG. 10A, and FIG. 11 is a view in FIG. FIG. 12 is a sectional view taken in the direction of the arrow Y, FIG. 12 is a view showing a state in which a mask is set on a tape member on which a semiconductor chip is mounted, and FIG. 13 is a view showing a situation in which a resin sealing portion is printed. FIG. 13A is a cross-sectional view showing a printing start state, and FIG. 13B is a cross-sectional view showing a printing end state.
[0004]
10 and 11, in a BGA type semiconductor device 1, a plurality of solder balls 3 of external connection electrodes are arranged in a matrix on one main surface of a tape 2 as a base material, and a semiconductor chip 4 is formed on another main surface. Is configured to be mounted. The corresponding portions of the solder balls 3 and the semiconductor chips 4 are connected to each other by bonding wires 6 through long holes 5 formed through the tape 2 along the arrangement of the solder balls 3 to form the conductive connection portions 7. ing. The conductive connecting portion 7 connecting the solder ball 3 and the semiconductor chip 4 covers a liquid sealing resin material having a predetermined viscosity, such as a silicone resin, from the one main surface side of the tape 2 along the long hole 5 by printing. Are sealed by a resin sealing portion 8 provided in the first embodiment.
[0005]
The manufacturing process of the semiconductor device 1 having such a configuration is as follows. That is, for example, a total of 45 semiconductor devices 1 in three rows and 15 stations can be formed, and a large-sized tape member 9 on which a wiring pattern (not shown) for mounting the solder balls 3 is formed on one principal surface is provided with the device forming region 10. The semiconductor chip 4 is mounted at a predetermined position on the other main surface in the inside. Subsequently, the conductive connection between the semiconductor chip 4 and the corresponding portion of the wiring pattern is performed by the bonding wire 6 to form the conductive connection portion 7.
[0006]
Next, as shown in FIG. 12, a printing mask 11 made of a thin metal plate larger than the tape member 9 is set at a predetermined position above one main surface of the tape member 9 on which the semiconductor chip 4 is mounted. . In the mask 11, slits 12 are formed in each device forming region 10 of the tape member 9 and slits 12 are located at both ends in each device forming region 10 corresponding to the long holes 5 in which the conductive connection portions 7 are provided. A plurality is formed as described above.
[0007]
Next, a predetermined amount of a silicone resin 13 of a liquid sealing resin material having a predetermined viscosity is applied to one end of each slit 12 on the upper surface of the mask 11. Then, as shown in FIG. 13A, one main surface of the tape member 9 on which the semiconductor chip 4 is mounted is pressed against the lower surface of the mask 11 from below, and one end of the slit 12 is fitted to a metal spatula squeegee 14. Is brought into contact with the upper surface of the mask 11.
[0008]
Thereafter, the tip of the squeegee 14 is moved to the other end portion of the slit 12 for each device forming area 10 as shown in FIG. Then, a silicone resin 13 is applied by printing, and resin printing having substantially the same shape as the slit 12 covering the conductive connection portion 7 is performed to form a resin sealing portion 8 in each device forming region 10.
[0009]
After forming the resin sealing portion 8, the tape member 9 is removed from the lower surface of the mask 11. Subsequently, the solder balls 3 are fixed and mounted on the wiring pattern. After that, the tape member 9 is cut along the formed outer peripheral line 15 indicating each device forming region 10, and separated into individual semiconductor devices 1. Then, the individually separated semiconductor devices 1 are mounted by soldering the solder balls 3 to predetermined locations such as a mounting board (not shown).
[0010]
However, in the above-described conventional technique, when the semiconductor device 1 is mounted on a mounting board or the like, there is a case where the solder balls 3 cannot be securely soldered to predetermined locations and the mounting of the semiconductor device 1 becomes uncertain. Or there was a risk of This has made it difficult to increase the reliability of mounting the semiconductor device 1.
[0011]
When the semiconductor device 1 was examined, the squeegee 14 was moved from one end of the slit 12 to the other end when the resin sealing portion 8 was formed on one main surface of the tape 2 of the base material. As shown in (b), resin printing is performed so that a resin pool 16 of a silicone resin 13 as a sealing resin material is formed on the other end side of the slit 12 which is the end of the squeegee 14 in the moving direction. This is because when the viscosity of the liquid resin material such as the sealing resin material is a high value equal to or higher than a certain value, the amount of the resin material is increased at the end of the movement of the squeegee due to the scraping, and the starting end of the movement direction of the squeegee 14 and the movement thereof are increased. This is because the resin height tends to be higher than the middle part in the direction. Although this phenomenon is physically stable, the resin height in the tape member on which the semiconductor chip is mounted or the like always has a certain variation.
[0012]
For this reason, although the height (resin height) of the resin sealing portion 8 formed as described above is substantially the same at the intermediate portion as shown in FIG. The height is partially increased by the resin pool 16 of the formed silicone resin 13, the stand-off dimension S X between the top of the solder ball 3 and the top of the resin sealing portion 8 is small, and the predetermined stand-off dimension S 0 is that there arises a can not be ensured, when mounting the semiconductor device 1, the solder balls 3 can no longer be reliably soldered, it occurs that implementation becomes uncertain.
[0013]
For example, in certain semiconductor device 1, 0.5 mm diameter of the solder ball 3, if the standoff dimension S 0 to be secured in 0.3 mm, the maximum height of the resin sealing portion 8 to be acceptable (resin High Is 0.2 mm. On the other hand, since the loop height of the bonding wire 6 sealed by the resin sealing portion 8 is about 0.05 mm, the height (resin height) of the resin sealing portion 8 is 0.05 mm to 0.2 mm. is necessary. On the other hand, the variation of the height (resin height) of the resin sealing portion 8 in the actual device is about 0.07 mm to 0.18 mm, and the reliability of the soldering of the solder balls 3 is further enhanced. In this case, it is necessary to further reduce the variation in the height (resin height) of the resin sealing portion 8.
[0014]
On the other hand, in the BGA type semiconductor device 1, the diameter of the solder ball 3 becomes smaller as the number of the solder balls 3 increases due to the future miniaturization and higher integration of the device. The dimensional range required for the height (resin height) of the resin sealing portion 8 becomes severe, and it is required to further reduce the variation. Incidentally, in 0.4mm diameter of the solder balls 3, the height of the case is the standoff dimension S 0 to be secured 0.3 mm, loop height of the bonding wires 6 is 0.05 mm, required resin printing sealing part 8 (Resin height) is 0.05 mm to 0.1 mm, which cannot be accommodated by the current variation in the height of the resin sealing portion 8 (resin height).
[0015]
[Problems to be solved by the invention]
The present invention has been made in view of the above situation, and a purpose thereof is to secure a predetermined stand-off dimension, thereby securely soldering an external connection electrode during mounting. It is an object of the present invention to provide a semiconductor device and a method of manufacturing the same, which can improve the reliability of mounting without causing device mounting failure and the like.
[0016]
[Means for Solving the Problems]
A semiconductor device and a method of manufacturing the same according to the present invention include a substrate having an external connection electrode provided on one main surface, a semiconductor chip mounted on another main surface of the substrate, and a semiconductor chip and the external connection electrode. And a resin sealing portion in which the conductive connecting portion is sealed by printing a sealing resin material on one main surface of the base material using a squeegee and a mask having a predetermined pattern. In the semiconductor device, the resin sealing portion may be formed by cutting off a squeegee moving direction end portion located outside of a molding outer peripheral portion of the base material at the same time as molding the base material. To do
Further, the resin sealing portion has a squeegee moving direction start end located outside of a molding outer peripheral portion of the base material, and the squeegee movement direction start end is simultaneously cut off when the base material is molded. Is characterized in that,
Further, it is characterized by having a plurality of resin sealing portions,
In addition, a plurality of semiconductor chips are mounted on the other main surface of the mother substrate on which a wiring pattern for providing external connection electrodes is provided on one main surface, and the semiconductor chip and the wiring pattern are conductively connected. A sealing resin material is printed on one main surface of the material by using a squeegee and a mask having a predetermined pattern to form a resin sealing portion, and a conductive connection portion between the semiconductor chip and the wiring pattern is sealed. In the method of manufacturing a semiconductor device in which the external connection electrodes are mounted on the latitudinal pattern and cut at an outer peripheral position of the molding of the mother substrate and separated into individual devices, a plurality of the semiconductor chips are formed on the mother substrate by resin. The sealing portion is mounted so as to be arranged in a straight line in the squeegee moving direction, and the slit corresponding to the resin sealing portion of the mask is formed such that the squeegee moving direction end portion is located outward from the molding outer peripheral position of the base material. location and Provided so that, also is substantially method characterized by simultaneously printing form a plurality of said resin sealing portion resin printing portion for forming a arranged on the same straight line,
Further, a slit corresponding to the resin sealing portion of the mask, a squeegee moving direction start end portion is provided such that it is located outside the molding outer peripheral position of the mother substrate,
Further, slits corresponding to a plurality of resin sealing portions arranged on substantially the same straight line of the mask are provided for each resin sealing portion, and the squeegee moving direction end of the slit is on the same side. A method characterized in that
Further, the method is characterized in that a plurality of resin sealing portions arranged on substantially the same straight line are simultaneously formed by printing in a plurality of rows.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1A and 1B are views showing a semiconductor device, FIG. 1A is a plan view, FIG. 1B is a cross-sectional view in the direction of arrow A in FIG. 1A, and FIG. 2 is a view in FIG. 3 is a plan view of a tape member on which a semiconductor chip is mounted, FIG. 4 is a plan view showing one device forming area which is a main part of the tape member, and FIG. FIG. 6 is a cross-sectional view in the direction of arrow C in FIG. 4, FIG. 6 is a view showing a state in which a mask is set on a tape member on which a semiconductor chip is mounted, and FIG. FIG. 8 is a plan view showing a state in which a solder ball is mounted on the tape, and FIG. 8 is a view showing a state in which a mask is set on a tape member on which the semiconductor chip in the modified embodiment is mounted. FIG. Print the printed resin part on the mounted tape member Is a plan view showing a state mounted with Tavor.
[0018]
1 to 9, in a BGA type semiconductor device 21, solder balls 23 of external connection electrodes are arranged on one main surface of a tape 22 made of an insulating base material such as a polyimide resin so as to form a 7 × 3 matrix. A plurality of semiconductor chips 24 are mounted and fixed on the pattern 23a, and are mounted on the other main surface. The corresponding portions of the solder balls 23 and the semiconductor chips 24 are connected to each other by bonding wires 26 through elongated holes 25 formed through the tape 22 along the arrangement of the solder balls 23. A portion 27 is formed. The conductive connection portion 27 that connects the solder ball 23 and the semiconductor chip 24 is formed by printing a liquid sealing resin material having a predetermined viscosity, such as a silicone resin, from the one main surface side of the tape 22 along the long hole 25. In this way, it is sealed by the printing sealing portion 28 provided.
[0019]
The manufacturing process of the semiconductor device 21 having such a configuration is as follows. That is, for example, a total of 45 semiconductor devices 21 in three rows and 15 stations can be formed, and a large-sized tape member 29 in which a wiring pattern 23a on which a solder ball 23 is mounted is formed on one main surface is formed in the device formation region 30. The semiconductor chip 24 is mounted at a predetermined position on the other main surface in the above. Subsequently, a conductive connection between the corresponding portions of the semiconductor chip 24 and the wiring pattern 23a is made by the bonding wire 26, and a conductive connection portion 27 is formed in the elongated hole 25 and in the vicinity thereof.
[0020]
Next, as shown in FIG. 6, a printing mask 31 made of a thin metal plate larger than the tape member 29 is set at a predetermined position above one main surface of the tape member 29 on which the semiconductor chip 24 is mounted. . In the mask 31, of the plurality of long holes 25 in the device forming region 30 adjacent to the tape member 29 in, for example, three rows and fifteen consecutive columns, continuous with the long holes 25 arranged substantially on the same straight line in the longitudinal direction. A plurality of slits 32 are formed so as to open. Each end 32a, 32b in the longitudinal direction of the slit 32 is located, for example, about 1 mm outward from the formed outer peripheral line 33 surrounding the device forming area 30 located on the outer edge side of the tape member 29.
[0021]
Next, a predetermined amount of a silicone resin 34 of a liquid sealing resin material having a predetermined viscosity is applied to and near one end 32a of each slit 32 on the upper surface of the mask 31. Then, one main surface of the tape member 29 on which the semiconductor chip 24 is mounted is pressed against the lower surface of the mask 31 from below, and is formed in a knife edge shape of a metal spatula squeegee 35 near one end 32a of the slit 32. The tip is brought into contact with the upper surface of the mask 31.
[0022]
Thereafter, the tip of the squeegee 35 is moved to the other end portion 32b of the slit 32 while being in contact with the upper surface of the mask 31, and the silicone resin 34 is applied by printing through the slit 32 of the mask 31, and is substantially co-linear. A printing resin portion is formed to extend over three device forming regions 30 having substantially the same shape as the slits 32 covering the conductive connection portions 27 arranged in a line. The height (resin height) of the formed printing resin portion 36 is larger than that of the one end portion 36a, which is the starting end portion of the squeegee 35 in the movement direction, or the middle portion, of the other end portion 36b, which is the end portion in the movement direction, of the silicone resin. 34 resin reservoirs 37 are formed and partially elevated. The intermediate portion is formed at substantially the same height, and one end 36a of the printing resin portion 36 is formed to have a portion slightly lower than the other.
[0023]
After forming the printing resin portion 36, the tape member 29 is removed from the lower surface of the mask 31. Subsequently, the solder balls 23 are fixed and mounted on the wiring pattern 23a. After that, the tape member 29 is cut along the forming outer peripheral line 33 indicating each device forming region 30, and separated into individual semiconductor devices 21. At this time, one end portion 36a having a slightly lower portion of the printing resin portion 36 and the other end portion 36b having a higher portion than the other are formed by a molding outer peripheral line 33 of the device forming region 30 located on the outer edge side of the tape member 29. Since it is located outside, it does not remain in the semiconductor device 21 which has been cut and removed and is individually separated. In the semiconductor device 21, only the resin sealing portion 28 formed by the intermediate portion of the printing resin portion 36 remains. Thereafter, the individually separated semiconductor devices 21 are mounted by soldering a solder ball 23 to a predetermined location such as a mounting board (not shown).
[0024]
Through the above process, the semiconductor device 21 is manufactured, and the other end portion 36b where the height (resin height) of the printing resin portion 36 is the highest and the one end portion 36a having the lower portion are cut off. Since the resin sealing portion 28 is formed at the intermediate portion where the height variation is small, the semiconductor device 21 formed as shown in FIGS. 1 and 2 has the resin sealing portion 28 having substantially the same height variation. Since the height is small and the height is low because there is no other high end 36b, the stand-off dimension S between the solder ball 23 and the apex is also a predetermined stand-off dimension. the S 0 can be sufficiently secured. In addition, since the one end 36a at which the height of the printing resin portion 36 is reduced is cut off, the bonding wire 26 of the conductive connecting portion 27 located on the end side is naturally covered with the silicone resin 34 having a sufficient thickness. Can be stopped.
[0025]
As a result, even when the semiconductor device 21 is mounted on a mounting board or the like (not shown), the solder balls 23 can be reliably soldered to predetermined locations, and the mounting of the semiconductor device 21 becomes defective or unreliable. There is no danger that the semiconductor device 21 will be mounted more reliably. Further, since the height of the resin sealing portion 28 can be made small and the variation in height can be made small, it is possible to sufficiently cope with miniaturization and high integration of the device.
[0026]
In the above-described embodiment, the slits 32 formed in the mask 31 are continuously opened with respect to the long holes 25 which are arranged substantially on the same straight line in the longitudinal direction of the adjacent device forming region 30. The printing resin portion 36 is formed assuming that the portions 32a and 32b are located outside the molding outer peripheral line 33 surrounding the device forming region 30 located on the outer edge side of the tape member 29, and thereafter, both ends of the printing resin portion 36 Although the semiconductor device 21 is formed by dividing the semiconductor device 21 by cutting and removing 36a and 36b, the semiconductor device 21 may be configured as a modified example described below with reference to FIGS. In the modified embodiment, the semiconductor device 21 is formed using a mask different from that of the above embodiment, and a description will be given with reference to FIGS.
[0027]
That is, in the manufacturing process according to the modified embodiment, for example, the semiconductor chip 24 is mounted on the other main surface on the same tape member 29 as that of the above-described embodiment in which a total of 45 semiconductor devices 21 can be formed in three rows and 15 stations. Then, the conductive connection between the corresponding portions of the semiconductor chip 24 and the wiring pattern 23a is made by the bonding wire 26, and the conductive connection portion 27 is formed in the elongated hole 25 and in the vicinity thereof.
[0028]
Next, a printing mask 41 made of a thin metal plate larger than the tape member 29 is set at a predetermined position above one main surface of the tape member 29 on which the semiconductor chip 24 is mounted as shown in FIG. . The mask 41 has a plurality of slits 42 formed in each device forming area 30 of the tape member 29 and corresponding to the long holes 25 provided with the conductive connection portions 27 and having the same longitudinal direction. . Each slit 42 is opened such that both end portions 42 a and 42 b are located outside the device forming region 30, for example, about 1 mm outside the formed outer peripheral line 33 surrounding the device forming region 30.
[0029]
Next, a predetermined amount of a silicone resin 34 of a liquid sealing resin material having a predetermined viscosity is applied to and around one end 42a of each slit 42 on the upper surface of the mask 41. Then, one main surface of the tape member 29 on which the semiconductor chip 24 is mounted is pressed against the lower surface of the mask 41 from below, and is formed in a knife edge shape of a metal spatula squeegee 35 near one end 42a of the slit 42. The tip is brought into contact with the upper surface of the mask 41.
[0030]
Thereafter, the tip of the squeegee 35 is moved to the other end 42 b of the slit 42 while being in contact with the upper surface of the mask 41, and the silicone resin 34 is applied by printing through the slit 42 of the mask 41, and the conductive connection 27 is formed. A printing resin part 43 having substantially the same shape as the covering slit 42 is formed. The formed printing resin portion 43 has a height (resin height) at one end 43a, which is the starting end in the moving direction of the squeegee 35, and at the other end 43b, which is the end in the moving direction rather than the intermediate portion, of the silicone resin 34. Is formed and partially elevated. The intermediate portion is formed at substantially the same height, and the one end 43a is formed to have a portion slightly lower than the other.
[0031]
After forming the printing resin portion 43, the tape member 29 is removed from the lower surface of the mask 31. Subsequently, the solder balls 23 are fixed and mounted on the wiring pattern 23a. After that, the tape member 29 is cut along the forming outer peripheral line 33 indicating each device forming region 30, and separated into individual semiconductor devices 21. At this time, the one end 43a having a slightly lower portion of the printing resin portion 43 and the other end 43b having a portion higher than the other are located outside the molding outer peripheral line 33 of the device forming region 30, so that they are cut and removed. Then, only the resin sealing portion 28 formed by the intermediate portion of the printing resin portion 43 remains in the semiconductor device 21 without remaining in the individually separated semiconductor device 21. Thereafter, the individually separated semiconductor devices 21 are mounted by soldering a solder ball 23 to a predetermined location such as a mounting board (not shown).
[0032]
As described above, also in the present modification, in the semiconductor device 21, the other end 43b in which the height (resin height) of the printing resin portion 43 is the highest and the one end 43a having the low height portion are included. Since the resin sealing portion 28 is cut off and formed at the intermediate portion where the height variation is small, the same effect as in the above embodiment can be obtained.
[0033]
【The invention's effect】
As apparent from the above description, according to the present invention, a predetermined standoff dimension can be ensured, and the external connection electrode can be securely soldered at the time of mounting, which causes a mounting failure of the device. In addition, there is an effect that the reliability of mounting can be improved.
[Brief description of the drawings]
FIGS. 1A and 1B are views showing a semiconductor device according to an embodiment of the present invention, FIG. 1A is a plan view, and FIG. 1B is a cross-sectional view in the direction of arrow A in FIG.
FIG. 2 is a cross-sectional view in the direction of arrow B in FIG.
FIG. 3 is a plan view of a tape member on which a semiconductor chip according to one embodiment of the present invention is mounted.
FIG. 4 is a plan view showing one device forming area which is a main part of the tape member according to one embodiment of the present invention.
FIG. 5 is a sectional view taken in the direction of arrow C in FIG. 4;
FIG. 6 is a view showing a state in which a mask is set on a tape member on which a semiconductor chip is mounted according to one embodiment of the present invention.
FIG. 7 is a plan view showing a state in which a printed resin portion is printed on a tape member on which a semiconductor chip is mounted and solder balls are mounted according to an embodiment of the present invention.
FIG. 8 is a view showing a state in which a mask is set on a tape member on which a semiconductor chip is mounted according to a modification of one embodiment of the present invention.
FIG. 9 is a plan view showing a state in which a printed resin portion is printed on a tape member on which a semiconductor chip is mounted and a solder ball is mounted according to a modification of one embodiment of the present invention.
10A and 10B are diagrams showing a semiconductor device according to a conventional technique, wherein FIG. 10A is a plan view, and FIG. 10B is a cross-sectional view in the direction of arrow X in FIG. 10A.
11 is a cross-sectional view in the direction of arrow Y in FIG.
FIG. 12 is a view showing a state in which a mask is set on a tape member on which a semiconductor chip is mounted according to a conventional technique.
13A and 13B are diagrams showing a state in which a resin sealing portion is printed according to the related art. FIG. 13A is a cross-sectional view showing a printing start state, and FIG. 13B is a cross-sectional view showing a printing end state.
[Explanation of symbols]
Reference numeral 22: Tape 23: Solder ball 24: Semiconductor chip 27: Conductive connection part 28: Resin sealing part 29: Tape member 30: Device forming area 31: Mask 32 ... Slit 33: Molded outer line 34 ... Silicone resin 35: Squeegee 36 ... Printing resin part 36a ... One end part 36b of printing resin part ... Other end part 37 of printing resin part ... Resin pool

Claims (7)

外部接続電極が一主面に設けられた基材と、この基材の他主面に搭載された半導体チップと、この半導体チップと前記外部接続電極とを接続する導電接続部と、この導電接続部を前記基材の一主面に封止樹脂材料をスキージと所定パターンのマスクを用いて印刷することによって封止した樹脂封止部を備えてなる半導体装置において、前記樹脂封止部は、前記基材の成形外周部分より外方に位置するスキージ移動方向終端部を、前記基材の成形時に同時に切除して形成したものであることを特徴とする半導体装置。A base having an external connection electrode provided on one main surface, a semiconductor chip mounted on the other main surface of the base, a conductive connection portion connecting the semiconductor chip and the external connection electrode, and a conductive connection In a semiconductor device comprising a resin sealing portion sealed by printing a sealing resin material on one main surface of the base material using a squeegee and a mask of a predetermined pattern, the resin sealing portion, A semiconductor device, wherein a squeegee moving end portion located outside of a molding outer peripheral portion of the base material is cut off at the same time as molding of the base material. 前記樹脂封止部が、スキージ移動方向始端部を基材の成形外周部分より外方に位置させていて、前記基材の成形時に前記スキージ移動方向始端部も同時に切除して形成したものであることを特徴とする請求項1記載の半導体装置。The resin sealing portion has a squeegee moving direction start end located outside of a molding outer peripheral portion of the base material, and the squeegee moving direction start end is simultaneously cut off when the base material is formed. The semiconductor device according to claim 1, wherein: 樹脂封止部を複数有していることを特徴とする請求項1または請求項2記載の半導体装置。3. The semiconductor device according to claim 1, comprising a plurality of resin sealing portions. 外部接続電極を設ける配線パターンが一主面に設けられた母基材の他主面に複数の半導体チップを搭載し、前記半導体チップと前記配線パターンとを導電接続した後、前記母基材の一主面に封止樹脂材料をスキージと所定パターンのマスクを用いて印刷して樹脂封止部を形成し、前記半導体チップと前記配線パターンとの導電接続部を封止し、その後、前記外部接続電極を前記は緯線パターンに搭載し、前記母基材の成形外周位置で切断して個々装置に分離する半導体装置の製造方法において、前記母基材に複数の前記半導体チップを、樹脂封止部がスキージ移動方向に直線上に配列されるよう搭載すると共に、前記マスクの前記樹脂封止部に対応するスリットを、スキージ移動方向終端部が前記母基材の成形外周位置より外方位置となるように設け、また略同一直線上に配列される複数の前記樹脂封止部を形成するための樹脂印刷部を同時に印刷し形成することを特徴とする半導体装置の製造方法。After mounting a plurality of semiconductor chips on the other main surface of the mother substrate provided with the wiring pattern on which the external connection electrodes are provided on one main surface, and electrically conductively connecting the semiconductor chip and the wiring pattern, A sealing resin material is printed on one main surface using a squeegee and a mask having a predetermined pattern to form a resin sealing portion, and a conductive connection portion between the semiconductor chip and the wiring pattern is sealed. In a method of manufacturing a semiconductor device in which connection electrodes are mounted on a weft pattern and cut at a molding outer peripheral position of the mother substrate and separated into individual devices, a plurality of the semiconductor chips are resin-sealed on the mother substrate. The parts are mounted so as to be arranged on a straight line in the squeegee moving direction, and the slit corresponding to the resin sealing portion of the mask, the end of the squeegee moving direction is located outside the molding outer peripheral position of the base material. It will be The method of manufacturing a semiconductor device provided, also substantially characterized in that simultaneously printed to form a plurality of said resin sealing portion resin printing portion for forming a arranged on the same straight line on. 前記マスクの樹脂封止部に対応するスリットを、スキージ移動方向始端部が母基材の成形外周位置よりも外方となるように設けたことを特徴とする請求項4記載の半導体装置の製造方法。5. The manufacturing method of a semiconductor device according to claim 4, wherein a slit corresponding to the resin sealing portion of the mask is provided such that a starting end of the squeegee moving direction is located outside a molding outer peripheral position of the base material. Method. 前記マスクの略同一直線上に配列される複数の樹脂封止部に対応するスリットを、各樹脂封止部毎に設けると共に、前記スリットのスキージ移動方向終端部を同方向側となるようにしたことを特徴とする請求項4記載の半導体装置の製造方法。Slits corresponding to a plurality of resin sealing portions arranged on substantially the same straight line of the mask are provided for each resin sealing portion, and the end of the slit in the squeegee moving direction is on the same side. 5. The method for manufacturing a semiconductor device according to claim 4, wherein: 略同一直線上に配列される複数の前記樹脂封止部を、複数列同時に印刷し形成することを特徴とする請求項4乃至請求項6のいずれかに記載の半導体装置の製造方法。7. The method of manufacturing a semiconductor device according to claim 4, wherein a plurality of resin sealing portions arranged on substantially the same straight line are simultaneously formed by printing in a plurality of rows.
JP2002175674A 2002-06-17 2002-06-17 Semiconductor device and its manufacturing method Pending JP2004022808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002175674A JP2004022808A (en) 2002-06-17 2002-06-17 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002175674A JP2004022808A (en) 2002-06-17 2002-06-17 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004022808A true JP2004022808A (en) 2004-01-22

Family

ID=31174254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002175674A Pending JP2004022808A (en) 2002-06-17 2002-06-17 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004022808A (en)

Similar Documents

Publication Publication Date Title
US7858443B2 (en) Leadless integrated circuit package having standoff contacts and die attach pad
US6013946A (en) Wire bond packages for semiconductor chips and related methods and assemblies
KR100673490B1 (en) Semiconductor device and manufacturing method thereof
US7215017B2 (en) Wafer level package, wafer level packaging procedure for making wafer level package
US8252630B2 (en) Semiconductor device, method of manufacturing the semiconductor device, flip chip package having the semiconductor device and method of manufacturing the flip chip package
KR100212607B1 (en) Semiconductor chip package
JPH08172143A (en) Printed wiring board and electronic device using it
JP2001326295A (en) Semiconductor device and frame for manufacturing the same
KR980012316A (en) Semiconductor device and manufacturing method thereof
TW200845350A (en) Dual or multiple row package
JPH08321671A (en) Bump electrode structure and manufacture thereof
KR101041228B1 (en) Test pads on flash memory cards
JP4547252B2 (en) System and method for improving solder joint reliability in integrated circuit packages
JP3632024B2 (en) Chip package and manufacturing method thereof
US7015585B2 (en) Packaged integrated circuit having wire bonds and method therefor
JP2004022808A (en) Semiconductor device and its manufacturing method
KR100587033B1 (en) method of fabricating chip size package
JP4754105B2 (en) Semiconductor device and manufacturing method thereof
JP2006196734A (en) Semiconductor device and its manufacturing method
KR100246367B1 (en) Semiconductor package and manufacturing method
JPH0846091A (en) Ball grid array semiconductor device
KR100505394B1 (en) Wafer-level chip size semiconductor package and its manufacturing method
JP2751897B2 (en) Ball grid array mounting structure and mounting method
JP2000068404A (en) Substrate for bga package
JPH10112514A (en) Semiconductor device and its manufacture