JP2004020486A - 超音波受信器および超音波流量計 - Google Patents

超音波受信器および超音波流量計 Download PDF

Info

Publication number
JP2004020486A
JP2004020486A JP2002178588A JP2002178588A JP2004020486A JP 2004020486 A JP2004020486 A JP 2004020486A JP 2002178588 A JP2002178588 A JP 2002178588A JP 2002178588 A JP2002178588 A JP 2002178588A JP 2004020486 A JP2004020486 A JP 2004020486A
Authority
JP
Japan
Prior art keywords
ultrasonic
capacitance
capacitor
ultrasonic transducer
vibrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002178588A
Other languages
English (en)
Other versions
JP3958124B2 (ja
Inventor
Takehiko Suginouchi
杉ノ内 剛彦
Hidetomo Nagahara
永原 英知
Akihisa Adachi
足立 明久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002178588A priority Critical patent/JP3958124B2/ja
Publication of JP2004020486A publication Critical patent/JP2004020486A/ja
Application granted granted Critical
Publication of JP3958124B2 publication Critical patent/JP3958124B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

【課題】使用環境の温度が変化しても確実に発振を防止することのできる超音波受信器を提供する。
【解決手段】超音波振動子11とオペアンプ13有する受信回路12とを含む超音波受信器10において、オペアンプ13の出力端子と反転入力端子との間に挿入された帰還抵抗15と並列に、超音波振動子11の静電容量以上の静電容量を備え、静電容量変化の温度特性が前記超音波振動子の圧電体と実質的に等しい容量体14を挿入する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、超音波受信器および超音波流量計に関する。
【0002】
【従来の技術】
超音波の波動現象を利用して情報を得る応用例として、魚群探知機、診断装置、距離計、流量計などが実現されている。これらの装置では、測定すべき対象中を伝播してきた超音波や、測定すべき対象から反射してきた超音波を超音波振動子によって検知し、電気的信号に変換する。一般に、この電気的信号は微弱であるため、電気的信号はオペアンプなどを含む受信回路によって増幅される。そして、増幅された信号に含まれる情報を解析することによって、距離、音速、方位などの物理量が求められる。
【0003】
超音波振動子は圧電体によって構成されており、容量性の素子である。このため、受信回路において超音波振動子の容量に起因した発振が生じ、受信した超音波振動に基づく電気的信号を正しく増幅できないという問題が生じることがある。この問題を以下に説明する。
【0004】
図9は、超音波振動子1から出力される信号を増幅する従来の受信回路2を示している。受信回路2はオペアンプ3を含み、オペアンプ3の出力端子と反転入力端子との間には帰還抵抗4が挿入されている。帰還抵抗4によって負帰還ループが形成され、オペアンプ3は反転増幅回路を構成している。このため、オペアンプ3の入力および出力の位相は180度回転している。
【0005】
超音波振動子1は上述したように容量性素子であるため、反転入力端子に超音波振動子1が接続されることにより、容量Ciが反転入力端子に付加される。この容量Ciは負帰還ループの位相を遅らせる。位相の遅れは、信号の周波数が高くなるにつれて大きくなる。
【0006】
反転増幅回路の増幅度が1以上であって、負帰還ループの位相が180度遅れると、オペアンプ3の入力および出力の位相は360度回転していることとなり、正帰還ループが構成される。このため、受信回路2は発振してしまう。
【0007】
受信回路2における発振を防止するために、反転入力端子に付加された容量Ci以上の容量Cfを備えたコンデンサ5をオペアンプ3の帰還抵抗4と並列に接続する方法が知られている。このようにすることによって、負帰還ループの位相の遅れを補償することができ、受信回路2の発振を防止することができるといわれている。
【0008】
【発明が解決しようとする課題】
受信回路2を含む超音波受信器が使用される環境はさまざまであり、使用環境の温度も一定の温度ではない。このため、超音波振動子1の容量Ciも温度によって変化してしまう。
【0009】
したがって、発振を防止するために挿入されたコンデンサ5の容量Cfが、ある温度において、容量Ci以上であっても、超音波受信器が使用される環境の温度が変化することによって、コンデンサ5の容量Cfが、容量Ciよりも小さくなる場合がある。この場合、超音波受信器2は発振する可能性がある。
【0010】
一方、使用環境の温度変化によって生じる超音波振動子1の容量Ciの増加を考慮して、コンデンサ5の容量を十分に大きくしておくことも考えられる。この場合、超音波振動子1の容量Ciに起因する発振を防止することはできる。しかし、超音波振動子1の容量Ciとコンデンサ5の容量Cfとの容量差が大きい場合には、付加したコンデンサ5に起因する新たな発振を起こすという問題が生じる。
【0011】
また、発振が生じない場合であっても、コンデンサ5によって形成される抵抗成分が帰還抵抗4に対して並列に接続されるため、オペアンプ3の出力端子と反転入力端子との間の抵抗値が帰還抵抗4の値より低下してしまう。受信回路2の増幅率は、このため、出力端子と反転入力端子との間の抵抗値に比例するため、コンデンサ5によって形成される抵抗成分は受信回路の増幅率を低下させる。また、コンデンサ5の抵抗成分は容量Cfに反比例するため、容量Cfが大きいほど、抵抗値の小さい抵抗成分が帰還抵抗4に対して並列に接続され、受信回路の増幅率をさらに低下させることとなる。その結果、超音波受信器におけるS/N比が悪化してしまう。
【0012】
本発明は、このような従来の問題を解決するためになされたものであって、その目的とするところは使用環境の温度が変化しても確実に発振を防止することのできる超音波受信器および超音波流量計を提供する。
【0013】
【課題を解決するための手段】
本発明の超音波受信器は、圧電体を含む超音波振動子であって、超音波を検知し、検知した超音波を電気的信号に変換する超音波振動子と、前記電気的信号を増幅するオペアンプと、前記オペアンプの出力端子と反転入力端子との間に挿入された帰還抵抗と、前記出力端子と前記反転入力端子との間に前記帰還抵抗と並列に挿入された容量体であって、前記超音波振動子の静電容量以上の静電容量を備え、静電容量変化の温度特性が前記超音波振動子と実質的に等しい容量体とを備える。
【0014】
また、本発明の超音波流量計は、圧電体を含む一対の超音波振動子と、前記超音波振動子を駆動するための送信回路と、前記超音波振動子により受信した信号を増幅する受信回路とを備え、前記一対の超音波振動子を用いて流体の流路中に超音波の伝播経路を形成し、前記伝播経路に沿って双方向に超音波を伝播させて双方向の伝播時間差を検出することにより、流体の流量を検出する。前記受信回路は、前記電気的信号を増幅するオペアンプと、前記オペアンプの出力端子と反転入力端子との間に挿入された帰還抵抗と、前記出力端子と前記反転入力端子との間において、前記帰還抵抗と並列に挿入された容量体であって、前記超音波振動子の静電容量以上の静電容量を備え、静電容量変化の温度特性が前記超音波振動子と実質的に等しい容量体とを備える。
【0015】
ある好ましい実施形態において、前記容量体および前記超音波振動子の静電容量をそれぞれCfおよびCiとするとき、CfおよびCiがCi≦Cf≦2×Ciの関係を満たす。
【0016】
ある好ましい実施形態において、前記容量体は、前記超音波振動子の静電容量と実質的に等しい静電容量を備えている。
【0017】
ある好ましい実施形態において、前記容量体は、前記超音波振動子の圧電体と同じ材料系からなる圧電体によって形成されている。
【0018】
ある好ましい実施形態において、前記容量体は、前記超音波振動子と同種の超音波振動子である。
【0019】
ある好ましい実施形態において、前記容量体および前記超音波振動子の静電容量変化の温度特性が、少なくとも−30℃から+80℃の範囲において等しい。
【0020】
また、本発明の超音波受信器は、圧電体を含む超音波振動子であって、超音波を検知し、検知した超音波を電気的信号に変換する超音波振動子と、前記電気的信号を増幅するオペアンプと、前記オペアンプの出力端子と反転入力端子との間に挿入された帰還抵抗と、前記出力端子と前記反転入力端子との間において、前記帰還抵抗と並列に挿入されており、前記超音波振動子と同一の構造を備えた容量体とを備える。
【0021】
また、本発明のガスメータは、ガスが流れる流路と、前記流路に設けられた上記いずれかの超音波流量計と、前記流路を流れるガスを遮断する遮断弁と、前記超音波流量計および遮断弁を制御する制御装置と備える。
【0022】
ある好ましい実施形態において、ガスメータは、前記超音波流量計の一対の超音波振動子および前記容量体を等しい温度に保つための調温手段を更に備える。
【0023】
【発明の実施の形態】
(第1の実施形態)
まず、本発明による超音波受信器を説明する。
【0024】
図1は、超音波受信器10の構成を示す回路図である。超音波受信器10は、魚群探知機、超音波診断装置、超音波距離計、超音波流量計など超音波を用いて計測が行われる種々の計測機器において受信器として用いられる。
【0025】
図1に示すように、超音波受信器10は、超音波振動子11および受信回路12を備える。超音波振動子11は、超音波受信器10が用いられる計測機器の用途に応じて、最適な共振周波数、共振インピーダンス、指向性などの特性を備えている。超音波振動子11の共振周波数等に特に制限はない。
【0026】
図2に示すように、超音波振動子11は、圧電体11aおよび圧電体11aを挟むように設けられた一対の電極11bを有する。圧電体11aには矢印で示すように分極処理が施されている。圧電体11aが超音波を受けると、圧電体11aが振動し、その機械的振動に基づく電気的信号が一対の電極11b間に発生する。圧電体11aは、チタン酸バリウム系(BaTiO)、チタン酸鉛系(PbTiO)、チタン酸・ジルコン酸鉛系(PbTiO・PbZrO)などを主成分とする圧電セラミック材料により形成されている。圧電体11aは、これらの主成分のみを含むものであってもよいし、他の添加元素を含んでいてもよい。また、他の組成を有する圧電セラミックス材料により形成されていてもよい。
【0027】
図1に示すように、受信回路12はオペアンプ13を含む。オペアンプ13には、市販されている増幅用オペアンプを用いることができる。オペアンプ13を反転増幅器として用いるため、超音波振動子11はオペアンプの反転入力端子に接続され、非反転入力端子は接地される。オペアンプ13の出力端子と反転入力端子との間には、帰還抵抗15が挿入されている。帰還抵抗15の抵抗値は、受信回路12に求められる増幅率に応じて決定される。
【0028】
また、出力端子と反転入力端子との間には、帰還抵抗15と並列に容量体14が挿入されている。容量体14の静電容量変化の温度特性は、超音波振動子11の静電容量変化の温度特性と実質的に等しい。2つの温度特性が等しい温度範囲は、超音波受信器10が用いられる用途に応じて適宜選択される。例えば、超音波受信器10が屋外に設置されるガスメータに使用される場合には、少なくとも−30℃から80℃の範囲において2つの温度特性が等しいことが好ましい。
【0029】
容量体14は、上述の温度特性が等しい温度範囲内の少なくともある温度において、超音波振動子11の静電容量Ci以上の静電容量Cfを備えている。好ましくは、容量体14の静電容量Cfおよび超音波振動子11の静電容量Ciは、Ci≦Cf≦2×Ciの関係を満たしている。より好ましくは、超音波振動子11および容量体14の静電容量は実質的に等しい。ここで実質的に等しいとは、容量体14の静電容量が超音波振動子11の圧電体11aの静電容量の+3%の範囲にあることを言う。
【0030】
容量体14の静電容量変化の温度特性と超音波振動子11の静電容量変化の温度特性とが等しいので、容量体14の静電容量が超音波振動子11の静電容量以上である場合には、温度特性が等しい範囲において容量体14の静電容量が超音波振動子11の静電容量以上になる。また、容量体14の静電容量が超音波振動子11の静電容量と等しい場合には、温度特性が等しい範囲において容量体14の静電容量は超音波振動子11の静電容量と等しい。
【0031】
静電容量変化の温度特性が超音波振動子11の圧電体11aと等しい限り、容量体14はどのような材料で形成されていてもよい。しかし、一般に、市販されているコンデンサは、所定の温度範囲において静電容量変化が小さくなるように作製されている。図3は、市販されている各種コンデンサのうち、代表的なコンデンサにおける静電容量変化の温度特性を示している。F特性のコンデンサは、静電容量の変化が問題とならないような用途に用いられる。温度による静電容量の変化が小さいことが要求される場合には、CH特性およびB特性のコンデンサが用いられ、これらのコンデンサの静電容量変化率は100ppm/℃以下である。
【0032】
これに対して、図3において、曲線11aで示すように、超音波振動子11の圧電体11aの静電容量変化率は一般に数千ppm/℃程度である。このため、市販のコンデンサを用いて、超音波振動子11の圧電体11aと静電容量変化の温度特性が実質的に等しい容量体14を実現することは難しい場合がある。
【0033】
そこで、本実施形態では、超音波振動子11の圧電体11aと同じ材料系からなる圧電体を用意し、その圧電体を容量体14として用いる。静電容量変化の温度特性は、用いる材料に固有の特性であるため、同じ材料系の圧電体からなる容量体を用いることによって、容量体14の静電容量変化の温度特性を超音波振動子11の圧電体11aとほぼ一致させることができる。ここで、同じ材料系とは、主成分が一致している2つ以上の材料をいう。2つの材料の主成分が等しければ、静電容量変化の温度特性も等しくなる。特に、容量体14を構成する圧電体と超音波振動子11の圧電体11aとの組成が一致する場合には、静電容量変化の温度特性も一致する。
【0034】
容量体14の静電容量は、圧電体の形状などを調整することによって所望の値となるように調節することができる。超音波振動子11と同じ静電容量を持つ容量体14を用いる場合には、例えば図4に示すように、圧電体11aと同じ材料で形成され、外径寸法の等しい圧電体14aを用い、一対の電極14bを圧電体14aに設けることによって、超音波振動子11の圧電体11aと同じ静電容量および同じ静電容量変化の温度特性を備えた容量体14を得ることができる。この場合、容量体14の圧電体14aは分極処理が施されていなくてもよい。分極状態にかかわらず、圧電体14aの容量は等しい。簡便にこのような容量体14を用意するために、超音波振動子11の圧電体11aと同じものを容量体14の圧電体14aとして用いてもよい。あるいは、超音波振動子11と同じものを容量体14として用いてもよい。
【0035】
このように、超音波振動子11と静電容量変化の温度特性が等しく、超音波振動子11の静電容量以上の容量を備えた容量体14を用いることによって、環境の温度変化により超音波振動子11の静電容量が変化しても、容量体14の静電容量も同様に変化する。このため、静電容量変化の温度特性が等しい範囲内のどの温度においても、容量体14の静電容量を超音波振動子11の静電容量以上にすることができる。したがって、受信回路12の発振を確実に防止することができる。つまり、ロバストな超音波受信器が実現する。
【0036】
また、容量体14の静電容量Cfおよび超音波振動子11の静電容量Ciが、Cf≦2×Ciの関係を満たしている場合には、容量体14の静電容量Cfと超音波振動子11の静電容量Ciとの差が小さいので、容量体14に起因する新たな発振を起こすことはない。
【0037】
さらに、静電容量および静電容量変化の温度特性が超音波振動子11と等しい容量体14を用いることによって、超音波受信回路10のS/N比を向上させることができる。この理由を詳述する。
【0038】
一例として、本実施形態の超音波受信器10において、超音波振動子11は、−30℃において、300pFの静電容量を備え、60℃になるとその静電容量が400pFに変化する場合考える。この超音波振動子11は、常温において400kHzの共振周波数を有する。共振周波数は、−30℃および60℃ではそれぞれ402kHzおよび398kHzに変動する。容量体14として、超音波振動子11と同一の圧電体であって、分極処理が施されていないものを用いる。つまり、容量体14の静電容量は−30℃において300pFであり、60℃において400pFである。帰還抵抗の抵抗値は1kΩである。
【0039】
また、比較例として、図9に示す従来の超音波受信器を考える。帰還抵抗に対して並列に挿入するコンデンサ5は、本願発明とは異なり、超音波振動子の圧電体と同じ静電容量変化の温度特性は備えていない。この場合、どの温度においても、コンデンサが確実に超音波振動子の圧電体の静電容量以上の値を備えるようにするためには、コンデンサは、超音波振動子11の静電容量の最大値である400pF以上の静電容量を備え、温度による静電容量変化は小さいことが必要である。このため、比較例には、−30℃から60℃において静電容量が400pFであるコンデンサ5を選ぶ。
【0040】
一般に、容量体は、R=1/(2πFC)(Fは周波数、Cは静電容量)によって規定される抵抗成分を持つ。このため、容量体14やコンデンサ5は、反転入力端子と出力端子との間に挿入されている帰還抵抗と合成抵抗を構成する。本実施形態の超音波受信器10および従来の超音波受信器を−30℃において、使用した場合、本実施形態の超音波受信器10の容量体14およびコンデンサ5の静電容量はそれぞれ300pFおよび400pFである。図5は、帰還抵抗に対して並列に接続される容量が300pFおよび400pFである場合の合成帰還抵抗の周波数依存性を示すグラフである。図5から明らかなように、400kHzにおいて、静電容量が300pFおよび400pFである場合、合成帰還抵抗はそれぞれ、580Ωおよび500Ω程度になる。
【0041】
したがって、超音波受信器を低温で使用する場合、本発明によれば、合成帰還抵抗は580Ωとなるのに対し、従来の超音波受信器によれば合成帰還抵抗は500Ωとなる。受信回路の増幅率は合成帰還抵抗値に比例するため、本発明によれば、低温において従来の超音波受信器よりも増幅率約16%大きくすることができる。その結果、S/N比を向上させることができる。
【0042】
(第2の実施形態)
以下、本発明の超音波流量計を説明する。図6は、超音波流量計20を示すブロック図である。超音波流量計20は、流体の流路25中に超音波の伝播経路を形成するように配置される第1の超音波振動子11Aおよび第2の超音波振動子11Bと、送信回路27と、受信回路12とを備えている。第1の超音波振動子11Aおよび第2の超音波振動子11Bは、切り替え手段26を介して受信回路12および送信回路27へ接続されており、切り替え手段26による選択によって、第1の超音波振動子11Aおよび第2の超音波振動子11Bのどちらか一方が選択的に送信回路27へ接続される。このとき、第1の超音波振動子11Aおよび第2の超音波振動子11Bのもう一方は受信回路12へ接続される。切り替え手段26は、リレーのような機械的なものであってもよいし、電子回路等によって構成されるものであってもよい。
【0043】
第1の超音波振動子11Aおよび第2の超音波振動子11Bは、それぞれが送信器および受信器として機能する。第1の超音波振動子11Aおよび第2の超音波振動子11Bに送信回路27および受信回路12がそれぞれ接続された場合には、第1の超音波振動子11Aから送信された超音波は第2の超音波振動子11Bによって検知される。第1の超音波振動子11Aおよび第2の超音波振動子11Bに受信回路12および送信回路27がそれぞれ接続された場合には、第2の超音波振動子11Bから送信された超音波は第1の超音波振動子11Aによって検知される。これら双方向の伝播路は、流路25を流れる流体の流れる方向に対して角度θをなしている。角度θの大きさは、10〜40度の範囲内から選択される。
【0044】
第1の超音波振動子11Aから第2の超音波振動子11Bへ超音波を伝播させる場合、超音波は流体の流れに対して順方向に進むため、その速度は速くなる。一方、第2の超音波振動子11Bから第1の超音波振動子11Aへ超音波を伝播させる場合、超音波は流体の流れに対して逆方向に進むため、その速度は遅くなる。従って、第1の超音波振動子11Aから第2の超音波振動子11Bへ超音波が伝播する時間t1と第2の超音波振動子11Bから第1の超音波振動子11Aへ超音波が伝播する時間t2との差から、流体の速度を求めることができる。また、流路25の断面積と流速との積から流量を求めることができる。
【0045】
第1の超音波振動子11Aと第2の超音波振動子11Bとの間の距離をLとし、流体の流速および超音波の音速をそれぞれVおよびCとする。
【0046】
この時、t1およびt2は以下の式で表される。
【0047】
【数1】
Figure 2004020486
【0048】
これらの式から流速Vは以下の式で表される。
【0049】
【数2】
Figure 2004020486
【0050】
流体の流速Vが求まれば、流路14の断面積と流速Vとの積から流量Qが求まる。
【0051】
第1の超音波振動子11Aおよび第2の超音波振動子11Bとしては、おおよそ20kHz以上の周波数で駆動され、超音波流量計として従来から使用される種々の超音波振動子を用いることができる。測定すべき流体の状態や種類、予測される流速などに応じて最適な周波数が適宜選択される。本実施形態では、例えば厚み振動モードで振動し、200kHzの共振周波数をもつ超音波振動子が用いられる。第1の超音波振動子11Aおよび第2の超音波振動子11Bは、図2に示すような圧電体11aをそれぞれ備える。第1の超音波振動子11Aおよび第2の超音波振動子11Bの共振特性、静電容量、および静電容量変化の温度特性は等しい。
【0052】
送信回路27は、第1の超音波振動子11Aおよび第2の超音波振動子11Bをその共振周波数で駆動する駆動信号を生成する。また、受信回路12には、図1に示すように、第1の実施形態で説明した超音波受信器10の受信回路12が用いられる。受信回路12の容量体14には、第1の超音波振動子11Aおよび第2の超音波振動子11Bとして用いられる同種の超音波振動子を用いる。したがって、容量体14は、第1の超音波振動子11Aおよび第2の超音波振動子11Bと等しい静電容量および静電容量変化の温度特性を備える。
【0053】
受信回路12の容量体14と第1の超音波振動子11Aおよび第2の超音波振動子11Bとは、少なくとも計測中、同じ温度に保たれることが好ましい。流路25を流れる流体の温度が超音波流量計20の設置されている環境の温度と著しく異なる場合には、流体に接している第1の超音波振動子11Aおよび第2の超音波振動子11Bと受信回路12の容量体14の温度が異なる可能性がある。このような場合には、容量体14も流体に接触するよう流路25に設けたり、容量体14を流体の温度と等しい恒温槽中に保持したりすることが好ましい。
【0054】
第1の超音波振動子11Aおよび第2の超音波振動子11Bは、切り替え手段26を介して受信回路12に接続される。第1の超音波振動子11Aまたは第2の超音波振動子11Bに到達した超音波は電気的信号に変換され、受信信号が受信回路12によって増幅される。
【0055】
受信回路12によって増幅された受信信号を処理するために、超音波流量計20は、ゼロクロス検知回路28、繰り返し回路29、計時回路30および流量算出手段31を備える。
【0056】
受信回路12によって増幅された受信信号は、ゼロクロス検知回路28へ送られる。ゼロクロス検知回路28では、受信信号が所定のレベルに達した直後のゼロクロスポイントが検知され、ゼロクロス検知信号が生成される。ゼロクロスポイントとは受信信号の振幅が正から負、または負から正へ変化する点をいう。このゼロクロスポイントを第1の超音波振動子11Aまたは第2の超音波振動子11Bにおいて超音波が到達した時刻としている。
【0057】
繰り返し回路29は、ゼロクロス検知信号に基づいて、所定の時間遅らせたタイミングでトリガ信号を生成し、トリガ信号を送信回路27へ出力する。ゼロクロス検知信号の生成からトリガ信号の生成までの時間を遅延時間と呼ぶ。送信回路27は、トリガ信号に基づいて、第1の超音波振動子11Aまたは第2の超音波振動子11Bを駆動し、次の超音波を発生させる。このように超音波の送信−受信−増幅・遅延−送信のループの繰り返すことをシングアラウンドと呼び、ループの回数をシングアラウンド回数と呼ぶ。
【0058】
計時回路30は、所定の回数、シングアラウンドを繰り返すのに要した時間を計測し、測定結果を流量算出手段31へ送る。
【0059】
次に、図6および図7を参照して、流体の流量を計測する手順を説明する。図7に示すように、トリガ信号21を送信回路27に入力し駆動信号を生成させ、第1の超音波振動子11Aから超音波を発生させる。流路25を伝播した超音波は、第2の超音波振動子11Bによって検知され、受信回路12によって受信信号22として受信される。ゼロクロス検知回路28では、受信信号22が所定のレベルに達した直後のゼロクロスポイントが検知され、ゼロクロス検知信号が生成される。繰り返し回路29は、ゼロクロス検知信号に基づいて、所定の遅延時間23を経た後にトリガ信号21’を生成し、送信回路27へトリガ信号21’を出力する。これにより、シングアラウンドの1ループを構成する。
【0060】
所定の回数(例えば50〜1000回)、シングアラウンドを繰り返した後、計時回路30は、ループを繰り返すのに要した全時間24を計測し、測定結果を流量算出手段31へ送る。全時間24から遅延時間23とシングアラウンド回数とを乗じた値を引き、更にシングアラウンド回数で除した値が、式(1)に示すt1となる。
【0061】
次に、切り替え手段26を用いて、送信回路27を第2の超音波振動子11Bへ接続し、受信回路12を第1の超音波振動子11Aへ接続する。そして、上述の手順と同様の手順により、第2の超音波振動子11Bから超音波を発生させ、第1の超音波振動子11Aで超音波を受信する。所定の回数、シングアラウンドを繰り返した後、計時回路30は、ループを繰り返すのに要した全時間24を計測し、測定結果を流量算出手段31へ送る。全時間24から遅延時間23とシングアラウンド回数とを乗じた値を引き、更にシングアラウンド回数で除した値が、式(1)に示すt2となる。
【0062】
式(2)に、t1およびt2の値と角度θを代入することによって、流体の流速Vが求まる。更に流路14の断面積をSとすれば、流量QはV×Sによって求めることができる。この流量Qは、単位時間あたりに流体が移動する量であり、流量Qを積分することによって流体の量を求めることができる。
【0063】
本発明の超音波流量計によれば、容量体14は、第1の超音波振動子11Aおよび第2の超音波振動子11Bと同じ静電容量変化の温度特性を備え、超音波振動子11の静電容量以上の容量を備えている。このため、環境温度の変化により、第1の超音波振動子11Aおよび第2の超音波振動子11Bの静電容量が変化しても、容量体14の静電容量は同様に変化する。
【0064】
その結果、どの温度においても、容量体14の静電容量を超音波振動子11の圧電体11aの静電容量以上にすることができ、受信回路12において、確実に発振することを防止することができる。これにより、超音波流量計のまわりの環境の温度が変化しても安定して流量を計測することができる。特に、超音波流量計が設置される環境の温度変化が激しい場合でも、高い精度で計測を行うことができる。
【0065】
また、第1の超音波振動子11Aおよび第2の超音波振動子11Bの圧電体11aと同じ静電容量変化の温度特性を容量体14が備えているため、容量体14の静電容量は、圧電体11aの静電容量より十分には大きくなくてもよい。その結果、受信回路におけるS/N比を向上させることができ、高い精度で計測が可能な超音波流量計が実現できる。
【0066】
(第3の実施形態)
以下、本発明の超音波流量計を備えたガスメータを説明する。
【0067】
図8は、配管31内を流れるガスの流量を計測するためのガスメータ30を模式的に示している。配管31内を流れるガスは、天然ガスやプロパンガスなど一般家庭で用いられるもののほか、水素や酸素等、その他の気体であってもよい。
【0068】
ガスメータ30は、配管31内を流れるガスの流量を計測するための超音波流量計20と、緊急時に配管31を流れるガスを遮断する遮断弁32と、超音波流量計20および遮断弁32を制御するマイコンなどの制御装置35と、超音波流量計20を用いて計測した流量や流量の積算値およびその他の情報を表示する表示部33と通信装置34とこれらを収納する筐体36とを備える。
【0069】
超音波流量計20には、図6に示す第2の実施形態の超音波流量計20を用いる。超音波流量計20の第1の超音波振動子11Aおよび第2の超音波振動子11Bは配管31に設置されている。超音波流量計20の受信回路を含む他の構成回路は、表示部33、通信装置34および制御装置35といっしょに基板上に設けられている。超音波流量計20の受信回路の容量体14も基板上に形成されている。
【0070】
超音波流量計20によって計測される流量に関するデータは、制御装置35によって処理されて表示部33に表示される。また、制御部35は、計測する流量に異常がないかを監視する。例えば、突然、大流量のガスが流れ始めた場合には、ガス漏れが生じていると判断して、遮断弁32を動作させ、ガスの供給を停止する。流量に関するデータやガス漏れに関する情報は通信装置34によって、ガス会社などに送信される。
【0071】
筐体36には調温手段として通気孔37が設けられており、通気孔37から取り入れられた外気が筐体36の内部にゆきわたる構造を採用している。これにより、筐体36の内部の温度を均一にし、離れて設置されている容量体14と第1の超音波振動子11Aおよび第2の超音波振動子11Bが同じ温度の外気にさらされ、第1の超音波振動子11Aおよび第2の超音波振動子11Bと容量体14とを等しい温度に保たれる。通気孔37に加えて、あるいは通気孔37に代えて、筐体36の内部の空気を攪拌するためのファンを設け、内部の空気の温度均一になるようにしてもよい。また、調温手段として、恒温槽や、第1の超音波振動子11Aおよび第2の超音波振動子11Bと容量体14とに接触するように設けられた循環式の冷却装置などを用いてもよい。
【0072】
ガスメータ30は屋外に設置されることが多いため、一日の気温差や、季節の移り変わりによる1日の平均気温差による影響を受け易い。このため。超音波流量計20の第1の超音波振動子11Aおよび第2の超音波振動子11Bは変動した気温により、その容量が変化し易い。しかし、本発明によれば、容量体14の静電容量は第1の超音波振動子11Aおよび第2の超音波振動子11Bと同じように変化するため、超音波流量計20の受信回路は常に最適な条件で帰還回路を構成する。このため、ガスメータ30がどのような温度に晒されても、受信回路が発振することなく、精度よく流量を算出することができる。
【0073】
【発明の効果】
本発明によれば、環境の温度変化により超音波振動子の静電容量が変化しても、オペアンプの帰還抵抗と並列に接続される容量体の静電容量も同様に変化する。このため、オペアンプの発振を確実に防止することのできる超音波受信器および超音波流量計が実現する。
【図面の簡単な説明】
【図1】本発明の超音波受信器を示す回路図である。
【図2】図1の超音波受信器に用いられる超音波振動子の構造を示す模式図である。
【図3】コンデンサおよび図2の超音波振動子の静電容量変化の温度特性を示すグラフである。
【図4】図1の超音波受信器に用いられる容量体の構造を示す模式図である。
【図5】帰還抵抗および帰還抵抗に対して並列に接続される容量体の合成抵抗の周波数依存性を示すグラフである。
【図6】本発明の超音波流量計を示すブロック図である。
【図7】図6に示す超音波流量計を用いて行う測定を説明する図である。
【図8】本発明のガスメータを示す模式図である。
【図9】従来の超音波受信器示すブロック図である。
【符号の説明】
1、11 超音波振動子
2、12 受信回路
3、13 オペアンプ
4、15 帰還抵抗
5 コンデンサ
10 超音波受信器
11A 第1の超音波振動子
11B 第2の超音波振動子
14 容量体
20 超音波流量計
25 流路
26 切り替え手段
27 送信回路
30 ガスメータ
32 遮断弁
33表示部
34 通信装置
35 制御装置
37 通気孔

Claims (15)

  1. 圧電体を含む超音波振動子であって、超音波を検知し、検知した超音波を電気的信号に変換する超音波振動子と、
    前記電気的信号を増幅するオペアンプと、
    前記オペアンプの出力端子と反転入力端子との間に挿入された帰還抵抗と、
    前記出力端子と前記反転入力端子との間に前記帰還抵抗と並列に挿入された容量体であって、前記超音波振動子の静電容量以上の静電容量を備え、静電容量変化の温度特性が前記超音波振動子と実質的に等しい容量体と、
    を備えた超音波受信器。
  2. 前記容量体および前記超音波振動子の静電容量をそれぞれCfおよびCiとするとき、CfおよびCiがCi≦Cf≦2×Ciの関係を満たす請求項1に記載の超音波受信器。
  3. 前記容量体は、前記超音波振動子の静電容量と実質的に等しい静電容量を備えている請求項1に記載の超音波受信器。
  4. 前記容量体は、前記超音波振動子の圧電体と同じ材料系からなる圧電体によって形成されている請求項1から3のいずれかに記載の超音波受信器。
  5. 前記容量体は、前記超音波振動子と同種の超音波振動子である請求項4に記載の超音波受信器。
  6. 前記容量体および前記超音波振動子の静電容量変化の温度特性が、少なくとも−30℃から+80℃の範囲において等しい、請求項1から5のいずれかに記載の超音波受信器。
  7. 圧電体を含む超音波振動子であって、超音波を検知し、検知した超音波を電気的信号に変換する超音波振動子と、
    前記電気的信号を増幅するオペアンプと、
    前記オペアンプの出力端子と反転入力端子との間に挿入された帰還抵抗と、
    前記出力端子と前記反転入力端子との間において、前記帰還抵抗と並列に挿入されており、前記超音波振動子と同一の構造を備えた容量体と、
    を備えた超音波受信器。
  8. 圧電体を含む一対の超音波振動子と、前記超音波振動子を駆動するための送信回路と、前記超音波振動子により受信した信号を増幅する受信回路とを備え、前記一対の超音波振動子を用いて流体の流路中に超音波の伝播経路を形成し、前記伝播経路に沿って双方向に超音波を伝播させて双方向の伝播時間差を検出することにより、流体の流量を検出する超音波流量計であって、
    前記受信回路は、
    前記超音波振動子により受信した信号を増幅するオペアンプと、
    前記オペアンプの出力端子と反転入力端子との間に挿入された帰還抵抗と、
    前記出力端子と前記反転入力端子との間において、前記帰還抵抗と並列に挿入された容量体であって、前記超音波振動子の静電容量以上の静電容量を備え、静電容量変化の温度特性が前記超音波振動子と実質的に等しい容量体と、
    を備えた超音波流量計。
  9. 前記容量体および前記超音波振動子の静電容量をそれぞれCfおよびCiとするとき、CfおよびCiがCi≦Cf≦2×Ciの関係を満たす請求項8に記載の超音波流量計。
  10. 前記容量体は、前記超音波振動子の静電容量と実質的に等しい静電容量を備えている請求項8に記載の超音波流量計。
  11. 前記容量体は、前記超音波振動子の圧電体と同じ材料系からなる圧電体から形成されている請求項8から10のいずれかに記載の超音波流量計。
  12. 前記容量体は、前記超音波振動子と同種の超音波振動子である請求項11に記載の超音波流量計。
  13. 前記容量体および前記超音波振動子の静電容量変化の温度特性が、少なくとも−30℃から+80℃の範囲において等しい、請求項8から12のいずれかに記載の超音波流量計。
  14. ガスが流れる流路と、
    前記流路に設けられた請求項8から13のいずれかに記載の超音波流量計と、
    前記流路を流れるガスを遮断する遮断弁と、
    前記超音波流量計および遮断弁を制御する制御装置と、
    を備えたガスメータ。
  15. 前記超音波流量計の一対の超音波振動子と前記容量体とを等しい温度に保つための調温手段を更に備える請求項14に記載のガスメータ。
JP2002178588A 2002-06-19 2002-06-19 超音波受信器および超音波流量計 Expired - Fee Related JP3958124B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002178588A JP3958124B2 (ja) 2002-06-19 2002-06-19 超音波受信器および超音波流量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002178588A JP3958124B2 (ja) 2002-06-19 2002-06-19 超音波受信器および超音波流量計

Publications (2)

Publication Number Publication Date
JP2004020486A true JP2004020486A (ja) 2004-01-22
JP3958124B2 JP3958124B2 (ja) 2007-08-15

Family

ID=31176270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002178588A Expired - Fee Related JP3958124B2 (ja) 2002-06-19 2002-06-19 超音波受信器および超音波流量計

Country Status (1)

Country Link
JP (1) JP3958124B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002338A (ja) * 2009-06-18 2011-01-06 Panasonic Electric Works Co Ltd 移動物体検出装置
WO2011021078A1 (ja) * 2009-06-18 2011-02-24 パナソニック電工株式会社 移動物体検出装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002338A (ja) * 2009-06-18 2011-01-06 Panasonic Electric Works Co Ltd 移動物体検出装置
WO2011021078A1 (ja) * 2009-06-18 2011-02-24 パナソニック電工株式会社 移動物体検出装置
US8218395B2 (en) 2009-06-18 2012-07-10 Panasonic Corporation Moving object detecting apparatus

Also Published As

Publication number Publication date
JP3958124B2 (ja) 2007-08-15

Similar Documents

Publication Publication Date Title
JP5177890B2 (ja) 超音波流量計
US9080906B2 (en) Ultrasonic flow meter with zero impedance measuring electronics
CN111356905B (zh) 超声波流速计量
JP2003337055A (ja) 流量計測装置
Gao et al. A miniaturized transit-time ultrasonic flowmeter based on ScAlN piezoelectric micromachined ultrasonic transducers for small-diameter applications
JPH0791997A (ja) 流体の流量又は流速測定方法及び装置
JP3958124B2 (ja) 超音波受信器および超音波流量計
JP2017187310A (ja) 超音波流量計
JP2003014515A (ja) 超音波流量計
EP3329222B1 (en) A method for determining a flow rate for a fluid in a flow tube of a flow measurement system, as well as a corresponding flow measurement system
JP4797515B2 (ja) 超音波式流れ計測装置
JP2004028994A (ja) 超音波流量計および流量の計測方法
TW202212782A (zh) 傳播時間測定裝置
US11709083B2 (en) Flow-rate measuring apparatus capable of accurately measuring flow rate of fluid containing foreign objects
JP2008164329A (ja) 超音波流量計
JP2003329502A (ja) 超音波流量計および超音波流量計の自己診断方法
JP2012107874A (ja) 超音波流量計
JP2013246065A (ja) 超音波流量計
JP2012007976A (ja) 超音波流速流量計
JP3696229B2 (ja) 超音波流量計および流量の計測方法
JP2006275512A (ja) 流量計測装置
JP2004085420A (ja) 流量計測装置
KR20100007215A (ko) 초음파 유량계의 초음파 트랜스듀서 제어방법과, 이러한방법이 적용된 초음파 유량계
JP2001249038A (ja) 流量計測装置
JP2005189147A (ja) 超音波流量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070509

R150 Certificate of patent or registration of utility model

Ref document number: 3958124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees