JP2017187310A - 超音波流量計 - Google Patents

超音波流量計 Download PDF

Info

Publication number
JP2017187310A
JP2017187310A JP2016074366A JP2016074366A JP2017187310A JP 2017187310 A JP2017187310 A JP 2017187310A JP 2016074366 A JP2016074366 A JP 2016074366A JP 2016074366 A JP2016074366 A JP 2016074366A JP 2017187310 A JP2017187310 A JP 2017187310A
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic transducer
upstream
types
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016074366A
Other languages
English (en)
Inventor
秋山 徹
Toru Akiyama
徹 秋山
晃好 勝見
Akiyoshi Katsumi
晃好 勝見
達哉 初野
Tatsuya Hatsuno
達哉 初野
浩一 花村
Koichi Hanamura
浩一 花村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonic Corp
Original Assignee
Sonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonic Corp filed Critical Sonic Corp
Priority to JP2016074366A priority Critical patent/JP2017187310A/ja
Publication of JP2017187310A publication Critical patent/JP2017187310A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】流体の流速及び流量を精度良く測定することが可能な超音波流量計を提供すること。【解決手段】超音波流量計は、流体が流れる流路の上流側と下流側に当該流路を挟んで対向配置され超音波信号を送受信する一対の超音波振動子と、超音波振動子を駆動する駆動部と、上流側の超音波振動子から送信された超音波信号が下流側の超音波振動子に到達するまでの時間と、下流側の超音波振動子から送信された超音波信号が上流側の超音波振動子に到達するまでの時間との時間差を相互相関法により算出し、算出した時間差に基づき流体の流速及び流量を算出する算出部とを含み、超音波振動子は、2種類以上の共振周波数を有する振動子である。【選択図】図1

Description

本発明は、超音波流量計に関する。
水や空気などの流体の流量を計測する超音波流量計として、流体が流れる流路の上流側と下流側に流路を挟んで対向配置された一対の超音波素子を有する超音波流量計が知られている(例えば、特許文献1)。この超音波流量計は、上流側の超音波素子から送信された超音波信号が下流側の超音波素子に到達するまでの時間tと、下流側の超音波素子から送信された超音波信号が上流側の超音波素子に到達するまでの時間tとの差Δtに基づいて、流路を流れる流体の平均流速度および流量を求める。到達時間の差Δtを求める手法として、相互相関法が知られている。相互相関法では、上流側での受信信号と下流側での受信信号との相互相関が演算され、その相互相関値から到達時間の差Δtが求められる。
特開平7−311062号公報
図9は、従来の超音波流量計で得られる受信信号の一例を示す図である。図中横軸は時間を示し、縦軸は強度を示す。また、下流側での受信信号を実線で示し、上流側での受信信号を点線で示している。図9(A)、図9(B)に示す例では、どちらも上流側の受信信号の位相が下流側の受信信号に対して1周期遅れている。また、図9(A)に示す例では、下流側での受信信号の強度と上流側での受信信号の強度が同等であるが、図9(B)に示す例では、下流側での受信信号の強度と上流側での受信信号の強度が異なっている。図9(A)に示す例では、図中aで示す部分で2つの波形が一致していないように見える(相互相関値は低くなる)。一方、図9(B)に示す例では、実際には位相が1周期分ずれているにも関わらず、図中bで示す部分で2つの波形が一致していないように見える(相互相関値は高くなる)。実際の到達時間から1周期分ずれている場合に高い相互相関値が得られると、到達時間の差の計算結果が1周期分間違った値となってしまう。このような現象は「一波飛び」と呼ばれる。従来の超音波流量計では、受信信号の周波数が一定であるため、図9(B)に示すように下流側での受信信号の強度と上流側での受信信号の強度(振幅)が異なる場合や、受信信号以外のノイズ信号が大きい場合に、「一波飛び」と呼ばれる現象が発生し易くなり、測定精度が大きく低下してしまうことがあった。
本発明は、以上のような課題に鑑みてなされたものであり、その目的とするところは、流体の流速及び流量を精度良く測定することが可能な超音波流量計を提供することにある。
(1)本発明は、流体が流れる流路の上流側と下流側に当該流路を挟んで対向配置され超音波信号を送受信する一対の超音波振動子と、前記超音波振動子を駆動する駆動部と、上流側の前記超音波振動子から送信された超音波信号が下流側の前記超音波振動子に到達するまでの時間と、下流側の前記超音波振動子から送信された超音波信号が上流側の前記超音波振動子に到達するまでの時間との時間差を相互相関法により算出し、算出した時間差に基づき前記流体の流速及び流量を算出する算出部とを含み、前記超音波振動子は、2
種類以上の共振周波数を有する振動子である、超音波流量計に関する。
本発明によれば、超音波振動子として、2種類以上の共振周波数を有する振動子を用いることで、流体の流速及び流量を精度良く測定することができる。
(2)また本発明に係る超音波流量計では、前記駆動部は、前記2種類以上の共振周波数のうち高い方の共振周波数で送信側の前記超音波振動子を駆動してもよい。
本発明によれば、超音波振動子が有する2種類以上の共振周波数のうち高い方の共振周波数で送信側の超音波振動子を駆動することで、流体の流速及び流量を精度良く測定することができる。
(3)また本発明に係る超音波流量計では、前記駆動部は、前記2種類以上の共振周波数のうち高い方の共振周波数よりも高い周波数で送信側の前記超音波振動子を駆動してもよい。
本発明によれば、超音波振動子が有する2種類以上の共振周波数のうち高い方の共振周波数よりも高い周波数で送信側の超音波振動子を駆動することで、流体の流速及び流量を精度良く測定することができる。
本実施形態の超音波流量計の構成の一例を示す図である。 本実施形態の超音波流量計で用いる超音波振動子のアドミタンス特性の一例を示す図である。 本実施形態の超音波流量計で得られる受信信号の一例を示す図である。 3種類の周波数の波形と、3種類の周波数の波形を合成して得られた合成波形とを示す図である。 本実施形態の超音波流量計における上流側の受信信号と下流側の受信信号との相互相関の計算結果を示す図である。 2種類の周波数の波形と、2種類の周波数の波形を合成して得られた合成波形とを示す図である。 超音波振動子を駆動するための駆動信号の一例を示す図である。 超音波振動子として共振周波数600kHzの振動子を用いて、送信側の超音波振動子を周波数600kHzで駆動した場合における測定結果と、送信側の超音波振動子を周波数1200kHzで駆動した場合における測定結果を示す図である。 従来の超音波流量計で得られる受信信号の一例を示す図である。
以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。
図1は、本実施形態の超音波流量計の構成の一例を示す図である。なお本実施形態の超音波流量計は図1の構成要素(各部)の一部を省略した構成としてもよい。超音波流量計1は、超音波振動子10(10a、10b)と、駆動部20と、演算処理部及び記憶部を有する処理部100とを含む。
超音波振動子10a、10bは、流体(気体又は液体)が流れる流路30の上流側と下流側に流路30を挟んで対向配置される一対の振動子である。流路30の上流側に配置された超音波振動子10aと下流側に配置された超音波振動子10bは、流路30を流れる
流体を介して超音波信号を送受信する。超音波振動子10a、10bで得られた受信信号(受波信号)は、AD変換器(図示省略)によりデジタルデータに変換され、処理部100に出力される。駆動部20は、超音波振動子10a、10bを振動させるための駆動信号を生成して超音波振動子10a、10bを駆動する。なお、図1に示す例では、超音波振動子10a、10bがそれぞれ、送信側の超音波振動子としても受信側の超音波振動子としても機能するように構成しているが、流路30の上流側と下流側のそれぞれに、送信側と受信側の2つの超音波振動子を配置するように構成してもよい。
処理部100は、制御部110と、算出部120とを含む。制御部110は、駆動部20を制御するための制御信号を生成して、超音波振動子10a、10bに交互に繰り返して超音波信号(超音波パルス)を送受信させる制御を行う。
算出部120は、超音波振動子10a、10bからの受信信号に基づいて、上流側の超音波振動子10aから送信された超音波信号が下流側の超音波振動子10bに到達するまでの時間tと、下流側の超音波振動子10bから送信された超音波信号が上流側の超音波振動子10aに到達するまでの時間tとの時間差Δtを相互相関法により算出する。相互相関法としては、積和演算、フーリエ変換、I−Q変換、ヒルベルト変換等を用いることができる。
そして、算出部120は、算出した時間差Δtに基づき流路30を流れる流体の流速や流量を算出する。ここで、流体の流速をV(単位:m/s)とし、超音波振動子10a、10b間の距離をL(単位:m)とし、超音波伝播軸と流路30の中心軸とがなす角度をθとし、静止気体或いは液体中の音速をC(単位:m/s)とすると、時間t、tは、式(1)、(2)で表され、式(1)、(2)より、時間t、tと流速Vとの関係は、式(3)のようになる。
Figure 2017187310
算出部120は、式(3)に従って流体の流速Vを求める。また、流速Vに流路30の断面積を乗じることで流体の流量を求めることができる。
本実施形態の超音波流量計1では、超音波振動子10a、10bとして、2種類以上の共振周波数を有する振動子を用いる。超音波振動子は、その成型形状によって2種類以上の共振周波数を有する。例えば、振動方向であるx軸方向とy軸方向(x軸方向と直交する方向)とで長さの異なる超音波振動子は、x軸方向とy軸方向とで異なる共振周波数を有する。
図2は、本実施形態の超音波流量計1で用いられる超音波振動子10(2種類以上の共振周波数を有する振動子)のアドミタンス特性の一例を示す図である。本実施形態で用いる超音波振動子10は、共振周波数600kHzの振動子であるが、この1次共振周波数(600kHz)の高周波側に、900kHz(1次共振周波数の3/2倍)、1200
kHz(1次共振周波数の2倍)等の共振周波数を有している。
本実施形態の超音波流量計1では、超音波振動子10の2種類以上の共振周波数のうち高い方の共振周波数(900kHz又は1200kHz)で送信側の超音波振動子10を駆動して振動させる。
図3は、送信側の超音波振動子10を中心周波数1200kHzで駆動した場合に受信側の超音波振動子10で得られる受信信号の一例を示す図である。図3に示す受信信号の波形は、600kHzの周波数成分と、900kHzの周波数成分と、1200kHzの周波数成分とが合成された波形となっている。すなわち、超音波振動子10を2種類以上の共振周波数を有する振動子とし、そのうち高い方の共振周波数(1200kHz)で送信側の超音波振動子10を駆動すると、当該高い方の共振周波数の周波数成分と、それよりも低い方の共振周波数(600kHz、900kHz)の周波数成分とが合成された波形が受信信号として得られる。
図4は、3種類の周波数の波形(模擬データ)と、3種類の周波数の波形を合成して得られた合成波形とを示す図である。図4に示すように、所定のエンベロープをもつ波形W(600kHzの波形)と波形W(900kHzの波形)と波形W(1200kHzの波形)とを合成して得られる合成波形Wは、図3に示す受信信号(実データ)と同様の波形となっている。
このように、本実施形態の超音波流量計1で得られる受信信号は、2種類以上の周波数成分が合成された波形となるため、非周期的で複雑な波形となる。そのため、本実施形態の超音波流量計1では、上流側での受信信号と下流側での受信信号の位相を1周期ずらした場合に2つの波形は重なり合うことなく相互相関値が小さくなる。
図5は、本実施形態の超音波流量計1における上流側の受信信号と下流側の受信信号との相互相関の計算結果を示す図である。図5に示すように、上流側での受信信号と下流側での受信信号の位相が一致している場合の相互相関値Cmは、位相が1周期ずれている場合の相互相関値Cdと比べて大幅に高くなっている。従って、本実施形態の超音波流量計1では、「一波飛び」と呼ばれる現象が発生せず、流体の流速や流量を精度良く測定することができる。
上記例では、受信信号の波形が3種類の周波数成分が合成された波形となる場合について説明したが、受信信号の波形が2種類の周波数成分が合成された波形となるように構成してもよい。図6(A)に、2種類の周波数の波形(模擬データ)を示し、図6(B)に、2種類の周波数の波形を合成して得られた合成波形を示す。図6(A)に実線で示す低周波成分(周波数T)と、図6(A)に点線で示す高周波成分(周波数2T)とを合成すると、図6(B)に示すように、複雑な波形の合成波形が得られる。
図7(A)は、超音波振動子10を駆動するための駆動信号(駆動部20が生成する駆動信号)の一例を示す図である。図中横軸は時間を示し、縦軸は電圧を示す。図7(A)に示す駆動信号の周波数は、2種類以上の共振周波数のうち高い方の共振周波数である1200kHzである。超音波振動子10を駆動する周波数は、2種類以上の共振周波数のうち高い方の共振周波数と同じかそれよりも高い周波数であって、超音波振動子10を共振周波数で振動させることができる周波数であればよい。ここでは、駆動信号を2周期分のパルスとしているが、パルスの周期の数(波数)は任意である。パルスの波数を多くすれば強度の大きな受信信号を得ることができる。また、矩形波パルスに代えて正弦波パルスを駆動信号として用いてもよい。
また、図7(B)に示すように、デルタ関数に近似した単一パルスを駆動信号として用いてもよい。また、電圧が0Vから所定電圧に急激に立ち上がる信号(図7(C))や、電圧が所定電圧から0Vに急激に立ち下がる信号(図7(D))を駆動信号として用いてもよい。このように電圧が急激に立ち上がる(或いは、急激に立ち下がる)信号を駆動信号として用いて送信側の超音波振動子10を駆動すると、受信信号の強度は小さくなるものの、2種類以上の共振周波数のうち高い方の共振周波数で超音波振動子10を駆動する場合と同様に、2種類以上の周波数成分が合成された複雑な波形の受信信号が得られる。
図8(A)に、超音波振動子として共振周波数600kHzの振動子を用いて、送信側の超音波振動子を周波数600kHzで駆動した場合(従来の手法)における測定結果を示し、図8(B)に、送信側の超音波振動子を周波数1200kHzで駆動した場合(本実施形態の手法)における測定結果を示す。図中横軸は時間を示し、縦軸は流体(液体)の流量(ml/分)を示す。図8(A)に示す測定結果では、液体中の気泡により超音波の散乱が発生することで測定値が大きく変動している。一方、図8(B)に示す本実施形態の手法における測定結果では、図8(A)に示す従来の手法における測定結果と比べて測定値が安定している。
1 超音波流量計、10 超音波振動子、20 駆動部、30 流路、100 処理部、110 制御部、120 算出部

Claims (3)

  1. 流体が流れる流路の上流側と下流側に当該流路を挟んで対向配置され超音波信号を送受信する一対の超音波振動子と、
    前記超音波振動子を駆動する駆動部と、
    上流側の前記超音波振動子から送信された超音波信号が下流側の前記超音波振動子に到達するまでの時間と、下流側の前記超音波振動子から送信された超音波信号が上流側の前記超音波振動子に到達するまでの時間との時間差を相互相関法により算出し、算出した時間差に基づき前記流体の流速及び流量を算出する算出部とを含み、
    前記超音波振動子は、2種類以上の共振周波数を有する振動子である、超音波流量計。
  2. 請求項1において、
    前記駆動部は、
    前記2種類以上の共振周波数のうち高い方の共振周波数で送信側の前記超音波振動子を駆動する、超音波流量計。
  3. 請求項1において、
    前記駆動部は、
    前記2種類以上の共振周波数のうち高い方の共振周波数よりも高い周波数で送信側の前記超音波振動子を駆動する、超音波流量計。
JP2016074366A 2016-04-01 2016-04-01 超音波流量計 Pending JP2017187310A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016074366A JP2017187310A (ja) 2016-04-01 2016-04-01 超音波流量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074366A JP2017187310A (ja) 2016-04-01 2016-04-01 超音波流量計

Publications (1)

Publication Number Publication Date
JP2017187310A true JP2017187310A (ja) 2017-10-12

Family

ID=60045519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074366A Pending JP2017187310A (ja) 2016-04-01 2016-04-01 超音波流量計

Country Status (1)

Country Link
JP (1) JP2017187310A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084985A1 (ja) * 2019-10-29 2021-05-06 オムロン株式会社 伝搬時間測定装置
CN113375737A (zh) * 2020-06-15 2021-09-10 郑州大学 时差式超声气体流量计的流速计量方法
WO2022030251A1 (ja) 2020-08-07 2022-02-10 オムロン株式会社 伝搬時間測定装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185674U (ja) * 1974-12-27 1976-07-09
JPS5886524U (ja) * 1981-12-08 1983-06-11 横河電機株式会社 超音波送受波器
JP2000249583A (ja) * 1999-03-02 2000-09-14 Matsushita Electric Ind Co Ltd 超音波流量計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185674U (ja) * 1974-12-27 1976-07-09
JPS5886524U (ja) * 1981-12-08 1983-06-11 横河電機株式会社 超音波送受波器
JP2000249583A (ja) * 1999-03-02 2000-09-14 Matsushita Electric Ind Co Ltd 超音波流量計

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021084985A1 (ja) * 2019-10-29 2021-05-06 オムロン株式会社 伝搬時間測定装置
TWI759886B (zh) * 2019-10-29 2022-04-01 日商歐姆龍股份有限公司 傳播時間測定裝置
EP4053512A4 (en) * 2019-10-29 2023-11-15 OMRON Corporation DISTRIBUTION TIME MEASUREMENT DEVICE
CN113375737A (zh) * 2020-06-15 2021-09-10 郑州大学 时差式超声气体流量计的流速计量方法
CN113375737B (zh) * 2020-06-15 2024-01-12 郑州大学 时差式超声气体流量计的流速计量方法
WO2022030251A1 (ja) 2020-08-07 2022-02-10 オムロン株式会社 伝搬時間測定装置
TWI772111B (zh) * 2020-08-07 2022-07-21 日商歐姆龍股份有限公司 傳播時間測定裝置

Similar Documents

Publication Publication Date Title
US11333676B2 (en) Beam shaping acoustic signal travel time flow meter
CN110383014B (zh) 用于测量管道中流体的流速的设备和方法
JP2002131105A (ja) 超音波流速測定方法
JP2017187310A (ja) 超音波流量計
US11137276B1 (en) All digital travel time flow meter using time reversed acoustics
JP2005172556A (ja) 超音波流量計
JP4797515B2 (ja) 超音波式流れ計測装置
JP6187343B2 (ja) 超音波測定器
JP6149250B2 (ja) 超音波流量計
JP3436179B2 (ja) 超音波流量計及び流量計測方法
RU118743U1 (ru) Ультразвуковой расходомер
JPWO2005119182A1 (ja) 流体の流量測定方法及び流量測定装置
JP2005300244A (ja) 超音波流量計
RU2284015C2 (ru) Способ измерения расхода потока и устройство для его осуществления
EP4067833B1 (en) All digital travel time flow meter using time reversed acoustics
RU2549245C1 (ru) Способ определения скоростей в движущейся среде
JP4284746B2 (ja) 流量演算方法
JP2012107874A (ja) 超音波流量計
JPS6040916A (ja) 超音波流速・流量計の温度変化誤差の補正法
SU735922A1 (ru) Коррел ционный измеритель скорости потока
JP6674252B2 (ja) クランプオン形超音波流量計
SU964543A1 (ru) Ультразвуковой измеритель скорости потока газовых сред
JP2001165764A (ja) 超音波の伝搬時間測定方法
JP2004020569A (ja) 超音波流量測定方法
JP2005172657A (ja) 超音波送受波器およびそれを用いた超音波流量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191029