RU2549245C1 - Способ определения скоростей в движущейся среде - Google Patents

Способ определения скоростей в движущейся среде Download PDF

Info

Publication number
RU2549245C1
RU2549245C1 RU2014151904/93A RU2014151904A RU2549245C1 RU 2549245 C1 RU2549245 C1 RU 2549245C1 RU 2014151904/93 A RU2014151904/93 A RU 2014151904/93A RU 2014151904 A RU2014151904 A RU 2014151904A RU 2549245 C1 RU2549245 C1 RU 2549245C1
Authority
RU
Russia
Prior art keywords
signal
transducer
medium
speed
propagation
Prior art date
Application number
RU2014151904/93A
Other languages
English (en)
Inventor
Александр Николаевич Греков
Николай Александрович Греков
Original Assignee
Морской гидрофизический институт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Морской гидрофизический институт filed Critical Морской гидрофизический институт
Priority to RU2014151904/93A priority Critical patent/RU2549245C1/ru
Application granted granted Critical
Publication of RU2549245C1 publication Critical patent/RU2549245C1/ru

Links

Abstract

Изобретение относится к измерительной технике и преимущественно предназначено для использования в системах контроля и измерения скорости и расхода жидких и газообразных продуктов. Оно может быть использовано при транспортировке топливных продуктов, в водоснабжении, медицинской технике, а также в океанографии при измерении скорости течений в морях и океанах. Технический результат изобретения -повышение точности измерения при контроле параметров потока. Точность измерения скорости потока можно повысить, зная скорость распространения звука в среде и величины задержек в электронных схемах и акустических преобразователях.

Description

Изобретение относится к измерительной технике, и может быть использовано для определения скоростей потоков жидкостей и газов как в открытых средах (реки, моря и т.п.), так и в закрытых (каналы, скважины, трубопроводы и т.п.), а также для прецизионного измерения расходов и точного весового учета количества различных жидких и газообразных сред, протекающих по трубопроводам.
Известен ряд способов определения скорости потока, основанных на исключении из процесса измерения скорости распространения звука (ультразвука) в среде. Известен ультразвуковой способ измерения скорости потока среды в трубопроводе [1], согласно которому используют расположенные на противоположных стенках трубопровода излучающий преобразователь и два приемных преобразователя. Осуществляют излучение ультразвуковых импульсов по направлению потока жидкости и против направления потока, симметрично под заданным углом. Принимают прошедшие поток импульсы и сравнивают их. Вводят компенсирующее воздействие путем перестройки акустической базы, причем начинают его с момента выделения первого импульса одним из приемников и заканчивают его по достижении равенства отрезков времени распространения импульсов по направлению потока и против него. О величине измеряемой скорости судят по величине компенсирующего воздействия.
Сходными с признаками заявленного изобретения являются такие признаки аналога: излучение звуковых импульсов по направлению потока и против потока, прием излученных импульсов и преобразование их в электрические сигналы, измерение времени распространения импульсов от источника излучения до приемника импульсов.
Недостатком рассматриваемого аналога является сложность электромеханического канала для определения эквивалентной акустической базы.
Наиболее близким к заявленному изобретению по совокупности существенных признаков и по технической сущности является способ измерения скоростей в движущейся среде [2], выбранный в качестве прототипа. Способ заключается в том, что в потоке среды жестко устанавливают излучатель звука между двумя приемниками звука на неравных базовых расстояниях DO и DП. Излучают звуковую волну против направления движения среды и по направлению движения и принимают излучаемую волну двумя приемниками. Преобразуют принятые звуковые сигналы в электрические. Формируют узкие импульсы в моменты перехода через "О" излучаемого и принятых электрических сигналов. Измеряют времена запаздывания ТО и ТП между узкими импульсами излучаемого и принятых сигналов (между моментами посылки и приема). И по математическим выражениям, основанными на использовании значений DО, DП, ТΌ и ТП, вычисляют значения скорости потока и скорости распространения звука в потоке.
Сходными с признаками заявленного изобретения являются такие признаки прототипа: излучение звуковой волны по направлению потока среды и против направления потока, прием излученных звуковых сигналов, преобразование их в электрические сигналы, вычисление значений скорости потока среды и скорости распространения звука в среде.
Достоинствами прототипа является исключение нестабильной скорости распространения звука из процесса измерения скорости потока и универсальность способа.
Недостатком прототипа является то, что в нем не учитываются временные задержки на преобразование сигналов в измерительных схемах и акустических преобразователях. Но эти временные задержки могут приводить к дополнительным погрешностям при прецизионных измерениях скорости потока, что обусловливает недостаточную точность измерений. Фактически, во всех известных одноканальных акустических измерителях дополнительно устанавливаются преобразователи, позволяющие измерять скорость звука в среде.
Кроме того, необходимость использования излучателя и двух приемников, устанавливаемых друг от друга на двух неравных базовых расстояниях, значительно усложняет техническую реализацию прототипа.
В основу изобретения поставлена задача создания универсального (пригодного для широкого перечня жидких и газообразных сред) способа определения скоростей в движущейся среде, который обеспечивает возможность использования текущего значения скорости звука, получаемого при одновременном измерении скорости потока, для более точного измерения массового (весового) расхода перемещаемой среды, и совокупность существенных признаков которого обеспечивает новое техническое свойство - устранение фактора влияния на результат измерений скоростей в движущейся среде временных задержек на преобразование сигналов, вызванных измерительными схемами и преобразователями.
Указанное новое свойство обусловливает достижение технического результата изобретения - повышение точности измерений.
Дополнительным техническим результатом является упрощение технической реализации определения скоростей.
Поставленная задача, решается тем, что в способе определения скоростей в движущейся среде, согласно которому излучают звуковую волну по направлению потока среды и против направления потока, принимают излученные звуковые сигналы, преобразуют их в электрические и определяют значения скорости потока среды и скорости распространения звука в среде, новым является то, что излучение и прием сигналов осуществляют двумя преобразователями, размещенными в потоке на расстоянии L, измеряют значения τ11 - время распространения сигнала от первого преобразователя до второго, τ12 - время распространения сигнала от первого преобразователя до второго плюс время возвращения отраженного от второго преобразователя сигнала обратно к первому преобразователю, измеряют значения τ21 - время распространения сигнала от второго преобразователя до первого, τ22 - время распространения сигнала от второго преобразователя до первого плюс время возвращения отраженного от первого преобразователя сигнала обратно ко второму преобразователю, рассчитывают текущее значение С1 скорости распространения звука в среде по выражению
Figure 00000001
повторяют цикл излучения и приема сигналов и измеряют значения τ31 - время распространения сигнала от первого преобразователя до второго, τ32 - время распространения сигнала от первого преобразователя до второго плюс время возвращения отраженного от второго преобразователя сигнала обратно к первому преобразователю, измеряют значения τ41 - время распространения сигнала от второго преобразователя до первого, τ42 - время распространения сигнала от второго преобразователя до первого плюс время возвращения отраженного от первого преобразователя сигнала обратно ко второму преобразователю, рассчитывают текущее значение С2 скорости распространения звука в среде для второго цикла измерений по выражению
Figure 00000002
вычисляют значение С скорости распространения звука в среде как среднее арифметическое значений С1 и С2 вычисляют текущие значения V1 и V2 скорости потока среды, соответственно для первого и второго циклов измерений, по системе выражений
Figure 00000003
где τm - сумма значения задержки преобразования электрического сигнала в акустический сигнал первым преобразователем и значения задержки преобразования акустического сигнала в электрический сигнал вторым преобразователем;
τn - сумма значения задержки преобразования электрического сигнала в акустический сигнал вторым преобразователем и значения задержки преобразования акустического сигнала в электрический сигнал первым преобразователем,
и вычисляют значение V скорости потока среды как среднее арифметическое значений V1 и V2.
Сущность заявленного способа, основанного на исключении из процесса измерения скорости распространения звука в среде, поясняется на конкретном примере его осуществления.
Рассмотрим случай, когда пьезопреобразователи расположены в жидкой среде. Расстояние между ними равно L, а скорость звука в среде - С. Первый пьезопреобразователь имеет задержку сигнала при передаче τ1 и задержку сигнала при приеме τ4. Второй пьезопреобразователь имеет задержку сигнала при передаче τ3 и задержку сигнала при приеме τ2. Величину времени τL1 распространения сигнала по потоку и времени τL2 распространения сигнала против потока можно выразить как:
Figure 00000004
Figure 00000005
где V- скорость потока.
Время τ11 излучения сигнала первым преобразователем, прохождения сигнала от первого пьезопреобразователя до второго пьезопреобразователя и приема сигнала вторым преобразователем равно
Figure 00000006
Время τ21 излучения сигнала вторым преобразователем, прохождения сигнала от второго пьезопреобразователя до первого пьезопреобразователя и приема сигнала первым преобразователем равно
Figure 00000007
Время τ12 излучения сигнала первым преобразователем, прохождения сигнала от первого пьезопреобразователя до второго пьезопреобразователя и назад и приема сигнала первым преобразователем равно
Figure 00000008
Время τ22 излучения сигнала вторым преобразователем, прохождения сигнала от второго пьезопреобразователя до первого пьезопреобразователя и назад и приема сигнала вторым преобразователем равно
Figure 00000009
Сумму времен сигналов τ11 и τ21 (при V2<<С2) можно записать как:
Figure 00000010
а сумму времен сигналов τ21 и τ22:
Figure 00000011
где τЗадержки1234.
Из разности величин (τ1121) и (τ1222) определим величину скорости C1 распространения ультразвука по формуле (1). Измерение величины скорости потока V организуют циклически с временным разделением. В первом и втором цикле измерения, которые длятся миллисекунды^ по измеренным параметрам τ11, τ21, τ31, τ41 определяются скорости V1 и V2 из системы уравнений (3). С учетом того, что задержки τm и τn в основном изменяются от температуры и на практике определено, что их постоянная времени лежит в пределах нескольких минут, можно считать, что за два цикла измерения τm=const и τn=const. Также принимаем, что в пределах двух циклов измерения скорость звука в жидкости не изменилась.
Следовательно, используя систему уравнений (3) и вычисленное значение скорости звука в жидкости по уравнению:
Figure 00000012
где C1 - скорость звука, вычисленная по формуле (1) для первого цикла,
С2 - скорость звука, вычисленная по формуле (2) для второго цикла, определяем величины V1 и V2 в пределах двух циклов измерения. Средняя величина
Figure 00000013
скорости течения в этих пределах определяется, как:
Figure 00000014
Источники информации:
1. Авторское свидетельство СССР № 1068716, класс G 01 F 1/66, приоритет 02.06.1981, опубликовано 23.01.1084.
2. Патент Российской Федераций № 2167433, класс G 01 S 15/00, G 01 F 1/66, приоритет 26.06.1997, опубликовано 20.05.2001 - прототип.

Claims (1)

  1. Способ определения скоростей в движущейся среде, основанный на исключении из процесса измерения скорости распространения звука в среде, заключающийся в том, что излучают звуковую волну по направлению потока среды и против направления потока, принимают излученные звуковые сигналы, преобразуют их в электрические и определяют значения скорости потока среды и скорости распространения звука в среде, отличающийся тем, что излучение и прием сигналов осуществляют двумя преобразователями, размещенными в потоке на расстоянии L, измеряют значения τ11 - время распространения сигнала от первого преобразователя до второго, τ12 - время распространения сигнала от первого преобразователя до второго плюс время возвращения отраженного от второго преобразователя сигнала обратно к первому преобразователю, измеряют значения τ21 - время распространения сигнала от второго преобразователя до первого, τ22 - время распространения сигнала от второго преобразователя до первого плюс время возвращения отраженного от первого преобразователя сигнала обратно ко второму преобразователю, рассчитывают текущее значение С1 скорости распространения звука в среде по выражению
    Figure 00000015

    повторяют цикл излучения и приема сигналов и измеряют значения τ31 - время распространения сигнала от первого преобразователя до второго, τ32 - время распространения сигнала от первого преобразователя до второго плюс время возвращения отраженного от второго преобразователя сигнала обратно к первому преобразователю, измеряют значения τ41 - время распространения сигнала от второго преобразователя до первого, τ42 - время распространения сигнала от второго преобразователя до первого плюс время возвращения отраженного от первого преобразователя сигнала обратно ко второму преобразователю, рассчитывают текущее значение С2 скорости распространения звука в среде для второго цикла измерений по выражению
    Figure 00000016

    вычисляют значение С скорости распространения звука в среде как среднее арифметическое значений С1 и С2, вычисляют текущие значения V1 и V2 скорости потока среды, соответственно для первого и второго циклов измерений, по системе выражений
    Figure 00000017

    где τm - сумма значения задержки преобразования электрического сигнала в акустический сигнал первым преобразователем и значения задержки преобразования акустического сигнала в электрический сигнал вторым преобразователем;
    τn - сумма значения задержки преобразования электрического сигнала в акустический сигнал вторым преобразователем и значения задержки преобразования акустического сигнала в электрический сигнал первым преобразователем,
    и вычисляют значение V скорости потока среды как среднее арифметическое значений V1 и V2.
RU2014151904/93A 2014-12-18 2014-12-18 Способ определения скоростей в движущейся среде RU2549245C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014151904/93A RU2549245C1 (ru) 2014-12-18 2014-12-18 Способ определения скоростей в движущейся среде

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014151904/93A RU2549245C1 (ru) 2014-12-18 2014-12-18 Способ определения скоростей в движущейся среде

Publications (1)

Publication Number Publication Date
RU2549245C1 true RU2549245C1 (ru) 2015-04-20

Family

ID=53289628

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014151904/93A RU2549245C1 (ru) 2014-12-18 2014-12-18 Способ определения скоростей в движущейся среде

Country Status (1)

Country Link
RU (1) RU2549245C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932040A (zh) * 2017-03-14 2017-07-07 浙江正泰仪器仪表有限责任公司 一种气体流量的计量方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106932040A (zh) * 2017-03-14 2017-07-07 浙江正泰仪器仪表有限责任公司 一种气体流量的计量方法
CN106932040B (zh) * 2017-03-14 2019-06-21 浙江正泰仪器仪表有限责任公司 一种气体流量的计量方法

Similar Documents

Publication Publication Date Title
RU2657343C2 (ru) Расходомер с улучшенным временем прохождения сигнала
JP6727308B2 (ja) 改良型ビーム整形音響信号伝搬時間差式流量計
JP5321106B2 (ja) 超音波計測器
RU2660011C1 (ru) Способ и устройство для ультразвукового измерения расхода накладным методом и схемное устройство для управления ультразвуковым измерением расхода накладным методом
RU2549245C1 (ru) Способ определения скоростей в движущейся среде
JP2017187310A (ja) 超音波流量計
RU2649421C1 (ru) Ультразвуковой расходомер с металлическим датчиком
RU2562001C1 (ru) Способ поверки доплеровского измерителя скорости течений
RU2593622C1 (ru) Способ измерения радиальной скорости объекта по его шумоизлучению
RU2339915C1 (ru) Способ определения расхода компонентов двухфазного потока и система для его осуществления
RU172103U1 (ru) Ультразвуковой расходомер с металлическим датчиком
RU2478917C2 (ru) Расходомер жидких сред в безнапорных трубопроводах
RU2801203C1 (ru) Способ акустического измерения скорости звука и потока жидкости или газа при изменении окружающей температуры
RU2791667C1 (ru) Способ ультразвукового измерения параметров газовоздушных гомогенных потоков
JPS6040916A (ja) 超音波流速・流量計の温度変化誤差の補正法
Biernacki et al. Non-invasive Ultrasound Doppler Effect Based Method of Liquid Flow Velocity Estimation in Pipe
RU2333499C2 (ru) Акустический способ измерения скорости и направления потока жидкости или газа и устройство (его варианты) для его осуществления
RU2410647C1 (ru) Способ измерения расхода жидких сред и ультразвуковой расходомер (варианты)
SU684349A1 (ru) Ультразвуковой измеритель давлени в жидких средах
SU718787A1 (ru) Способ определени составл ющих скорости течени жидкости или газа
RU2375707C1 (ru) Способ контроля наличия газа в потоке жидкости (варианты)
RU2411456C1 (ru) Расходомер жидких и газовых сред в напорных трубопроводах
EA043606B1 (ru) Усовершенствованный времяпролетный расходомер с формированием луча звукового сигнала

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191203