JP2004018915A - Process for refining molten metal - Google Patents

Process for refining molten metal Download PDF

Info

Publication number
JP2004018915A
JP2004018915A JP2002173767A JP2002173767A JP2004018915A JP 2004018915 A JP2004018915 A JP 2004018915A JP 2002173767 A JP2002173767 A JP 2002173767A JP 2002173767 A JP2002173767 A JP 2002173767A JP 2004018915 A JP2004018915 A JP 2004018915A
Authority
JP
Japan
Prior art keywords
molten metal
refining
lance
refractory
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002173767A
Other languages
Japanese (ja)
Other versions
JP3835358B2 (en
Inventor
Kenichi Shimodaira
下平 賢一
Hisaki Kato
加藤 久樹
Shinichi Yamamoto
山本 愼一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002173767A priority Critical patent/JP3835358B2/en
Publication of JP2004018915A publication Critical patent/JP2004018915A/en
Application granted granted Critical
Publication of JP3835358B2 publication Critical patent/JP3835358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the refractory cost spent for a lance by increasing the number of cycles the lance can be used when refining a molten metal by top-blowing oxygen against the molten metal housed inside a vessel, dipping the refractory-coated immersion lance into the molten metal and blowing a stirring gas, a refining agent or a flux from this lance. <P>SOLUTION: When refining the molten metal by top-blowing oxygen against the molten metal 2 housed inside the vessel 5 and blowing at least one chosen from the stirring gas, the refining agent or the flux through the refractory-coated immersion lance 8 dipped into the molten metal, the lance is raised or lowered along with the progression of the refinery process. Moreover, between refinery cycles, the lance is rotated around its central axis to increase the number of cycles it can be used. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、溶融金属保持容器内に収容された溶融金属に対して酸素を上吹きすると共に、耐火物で被覆された浸漬ランスを溶融金属中に浸漬させ、この耐火物被覆浸漬ランスから攪拌用ガス又は精錬剤若しくは造滓剤を吹き込みながら溶融金属を精錬する溶融金属精錬方法に関するものである。
【0002】
【従来の技術】
溶銑予備処理における予備脱燐処理のように、溶融金属保持容器内に収容された溶融金属に対して酸素を上吹きして溶融金属を精錬する場合には、反応効率を向上させるために、耐火物被覆浸漬ランスを溶融金属中に浸漬させ、この耐火物被覆浸漬ランスから攪拌用ガスを吹き込み、溶融金属を攪拌しながら精錬することが一般的に行われている。この場合、耐火物被覆浸漬ランスから精錬剤や造滓剤を吹き込むことも行われている。
【0003】
このような溶融金属の精錬においては、反応生成物や精錬剤及び造滓剤の添加によって溶融金属保持容器内には溶融状態のスラグが形成される。このスラグは耐火物に対して強力な浸食剤として作用するため、溶融金属保持容器及び耐火物被覆浸漬ランスの当該スラグと接触する部位のスラグによる溶損を防止すべく、このような精錬に用いられる溶融金属保持容器及び耐火物被覆浸漬ランスにおいては、溶融状態のスラグと接触する部位である所謂スラグライン部には、一般に、スラグに対する耐食性に優れた耐火物が施工されている。
【0004】
これにより、溶融金属保持容器及び耐火物被覆浸漬ランスの使用回数は飛躍的に向上し、耐火物コストは大幅に改善された。
【0005】
【発明が解決しようとする課題】
しかしながら、近年の需要家の高品質化への要求等によって鉄鋼製造における溶銑の予備脱燐処理の比率は拡大し、現状では高炉から出銑されるほぼ全ての溶銑に対して予備脱燐処理が施されるようになった。これに伴って予備脱燐処理に費やされる耐火物コストが増大し、このような状況下においては溶銑の予備脱燐処理における更なる耐火物コストの削減が切望されていた。
【0006】
本発明は上記事情に鑑みてなされたもので、その目的は、溶銑の予備脱燐処理や予備脱珪処理のように、溶融金属保持容器内に収容された溶融金属に対して酸素を上吹きすると共に、耐火物被覆浸漬ランスを溶融金属中に浸漬させ、この耐火物被覆浸漬ランスから攪拌用ガス又は精錬剤若しくは造滓剤を吹き込みながら溶融金属を精錬する際に、この耐火物被覆浸漬ランスの使用回数を延長させて、耐火物被覆浸漬ランスに費やす耐火物コストを削減することのできる溶融金属精錬方法を提供することである。
【0007】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく、溶銑の予備脱燐処理及び予備脱珪処理において鋭意検討を重ねた。以下に検討結果を説明する。
【0008】
先ず、溶銑の予備脱燐処理や予備脱珪処理で使用した耐火物被覆浸漬ランスの損耗状況を調査した。前述のように、耐火物被覆浸漬ランスのスラグライン部には、スラグに対する耐食性に優れた耐火物が施工されている。損耗状況の調査結果から、耐火物被覆浸漬ランスのスラグライン部の溶損量は大きいものの、耐火物被覆浸漬ランスの使用回数を制限するまでには溶損しておらず、耐火物被覆浸漬ランスの使用回数を制限しているのは、主に、スラグライン部よりも上方の、大気と接触している部位における損耗であることが判明した。そこで、この原因を検討した。
【0009】
溶銑の予備脱燐処理や予備脱珪処理では、溶銑湯面に向けて上吹きランスから酸素を吹き付けながら精錬している。溶銑中には炭素が含有されており、予備脱燐処理や予備脱珪処理では、供給する酸素と溶銑中の炭素との反応を極力抑えるような酸素供給速度で精錬を行うものの、炭素が溶銑中に高濃度で含有されるため、酸素と炭素との反応が少なからず生ずる。
【0010】
この酸素と炭素との反応によってCOガスが発生し、発生したCOガスは大気中の酸素と反応してCO ガスが生成される。発生したCOガスが酸素と反応してCO ガスが生成される現象を二次燃焼と呼ぶ。即ち、溶銑湯面近傍ではCOガスであったものが、集塵機に吸引されて溶銑保持容器内を上昇するに伴って大気及び上吹き酸素と接触し、容器内で二次燃焼していることが分かった。
【0011】
この二次燃焼により熱が発生し、二次燃焼により発生する熱によって耐火物被覆浸漬ランスのスラグライン部よりも上方の部位が局部的に溶損する。溶損される部位は、溶銑湯面位置からほぼ一定の位置にあり且つ上吹きランスに対向する側であり、そのため、局所的に損傷し、耐火物被覆浸漬ランスの使用回数を制限していることが判明した。
【0012】
そこで、精錬の経過に伴って、耐火物被覆浸漬ランスを上昇させる又は下降させる若しくはその軸芯に対して回転させ、二次燃焼により損傷する箇所を分散させることによって、耐火物被覆浸漬ランスの使用回数を延長させることができるとの知見を得た。又、耐火物被覆浸漬ランスを回転させる場合には、前ヒートの精錬と後ヒートの精錬との間に所定角度だけ回転させることによっても、同様の効果が得られるとの知見を得た。
【0013】
本発明は、上記知見に基づきなされたものであって、第1の発明に係る溶融金属の精錬方法は、保持容器内に収容された溶融金属に酸素を上吹きすると共に、溶融金属中に浸漬させた耐火物被覆浸漬ランスを介して攪拌用ガス、精錬剤、造滓剤のうちの少なくとも一種以上を吹き込みながら溶融金属を精錬する際に、精錬の経過に伴って前記耐火物被覆浸漬ランスを上昇させる又は下降させることを特徴とするものである。
【0014】
第2の発明に係る溶融金属の精錬方法は、第1の発明において、更に、精錬と精錬との間の期間に、前記耐火物被覆浸漬ランスをその軸芯に対して回転させることを特徴とするものである。
【0015】
第3の発明に係る溶融金属の精錬方法は、保持容器内に収容された溶融金属に酸素を上吹きすると共に、溶融金属中に浸漬させた耐火物被覆浸漬ランスを介して攪拌用ガス、精錬剤、造滓剤のうちの少なくとも一種以上を吹き込みながら溶融金属を精錬する際に、精錬中又は精錬と精錬との間の期間に、前記耐火物被覆浸漬ランスをその軸芯に対して回転させることを特徴とするものである。
【0016】
第4の発明に係る溶融金属の精錬方法は、第1ないし第3の発明の何れかにおいて、前記溶融金属が溶銑であって、前記耐火物被覆浸漬ランスから攪拌用ガスを吹き込みながら溶銑中の燐又は珪素を除去することを特徴とするものである。
【0017】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を説明する。図1は、本発明に係る予備脱燐処理を実施する際に用いた溶銑の脱燐処理設備の概略図、図2は、図1に示す耐火物被覆浸漬ランスの拡大図、図3は、本発明に係る予備脱燐処理における耐火物被覆浸漬ランス位置の一例を示す概略図で、(a)は予備脱燐処理開始時の位置を示し、(b)は予備脱燐処理終了時の位置を示す図、図4は、本発明に係る予備脱燐処理における耐火物被覆浸漬ランス位置の他の例を示す概略図で、(a)は予備脱燐処理開始時の位置を示し、(b)は予備脱燐処理終了時の位置を示す図である。
【0018】
図1において、高炉(図示せず)から出銑された溶銑2を収容した取鍋型の溶銑保持容器5は、台車6に搭載されて脱燐処理設備1に搬入されている。脱燐処理設備1には、上吹きランス7と耐火物被覆浸漬ランス8とが設置されており、上吹きランス7及び耐火物被覆浸漬ランス8は、溶銑保持容器5内を上下移動可能な構造となっており、耐火物被覆浸漬ランス8は、更に、その軸芯を回転軸として回転可能な構造となっている。上吹きランス7からは、工業用純酸素等の気体酸素源が脱燐剤として溶銑2に吹き付けられる。
【0019】
図2に示すように、耐火物被覆浸漬ランス8の溶銑保持容器5内のスラグ15と接触する部位には、スラグ15に対する耐食性に優れた耐火物材料からなるスラグライン部16が、高さ方向にLの長さで設置されている。スラグ15は、高炉からの出銑時における高炉スラグの混入、並びに、反応生成物や添加した精錬剤及び造滓剤により形成される。尚、本発明においては、スラグライン部16の設置は必ずしも必要ではないが、耐火物被覆浸漬ランス8の使用回数を高めるために設置することが好ましい。
【0020】
耐火物被覆浸漬ランス8は、貯蔵タンク9及び貯蔵タンク10と接続されており、貯蔵タンク9に収容された固体酸素源3及び貯蔵タンク10に収容された生石灰4を、窒素やAr等の不活性ガスを搬送ガスとして溶銑2中に吹き込み添加することができる。固体酸素源3は脱燐剤として添加するものであり、鉄鉱石やミルスケール等を用いればよい。生石灰4は脱燐用フラックスであり、脱燐反応により生成された燐酸化物と反応して燐をスラグ15中に固定すると共に、生成するスラグ15の塩基度を調整するためのものである。この場合に、生石灰4に他のフラックスを混合しても、又、生石灰4の替わりに他のフラックスを使用してもよい。尚、貯蔵タンク9内の固体酸素源3及び貯蔵タンク10内の生石灰4は、それぞれ独立に添加量及び添加時間を制御して吹き込むことができるようになっており、又、耐火物被覆浸漬ランス8から窒素やAr等の不活性ガスのみを吹き込み、溶銑2を攪拌することもできる。
【0021】
脱燐処理設備1には、更に、ホッパー11、12と、原料搬送用コンベア13と、シュート14とからなる原料供給設備が設置されており、この原料供給設備を用いて、ホッパー11内の固体酸素源3及びホッパー12内の生石灰4を溶銑保持容器5内に上置き添加することもできるようになっている。
【0022】
次に、このような構成の脱燐処理設備1を用いた本発明に係る、溶銑2の予備脱燐処理方法を説明する。
【0023】
耐火物被覆浸漬ランス8から攪拌用ガスとして窒素やAr等の不活性ガスを吹き込むと共に、脱燐用フラックスとして生石灰4を、シュート14を介して溶銑2に上置きするか若しくは耐火物被覆浸漬ランス8を介して溶銑2中に吹き込みながら、溶銑保持容器5内に収容された溶銑2に向けて上吹きランス7から気体酸素源を連続的に吹き付ける。脱燐用フラックスである生石灰4の投入量は、溶銑2中の珪素濃度、硫黄濃度及び燐濃度に応じて変更することができる。
【0024】
酸素源が気体酸素源のみでは溶銑温度が上昇し過ぎて脱燐反応が阻害される場合もあるので、必要に応じて固体酸素源3を、シュート14を介して連続的或いは断続的に上置き添加するか、若しくは、耐火物被覆浸漬ランス8を介して連続的に溶銑2中に吹き込み添加する。固体酸素源3を添加することによって溶銑温度を低下させることができる。気体酸素源添加量と固体酸素源添加量との比は、溶銑2中の珪素濃度、燐濃度及び炭素濃度に応じて適宜変更する。又、冷却材として鉄スクラップを添加してもよい。
【0025】
この予備脱燐処理において、精錬の経過に伴って耐火物被覆浸漬ランス8を上昇させる又は下降させる若しくはその軸芯を回転軸として回転させる。更には、耐火物被覆浸漬ランス8を回転させながら上昇又は下降させてもよい。ここで、耐火物被覆浸漬ランス8を予備脱燐処理中に回転させる場合には、予備脱燐処理中に少なくとも耐火物被覆浸漬ランス8が半回転以上回転するならば、特に回転数について限定する必要はない。
【0026】
図3は、耐火物被覆浸漬ランス8を上昇させた例であり、一方、図4は、耐火物被覆浸漬ランス8を下降させた例である。この場合に、添加した生石灰4やSiO 等の反応生成物により、予備脱燐処理中に形成されるスラグ15の量を予め把握しておき、スラグライン部16が予備脱燐処理開始時から終了時まで常にスラグ15と接触するようにすることが好ましい。
【0027】
そのためには、スラグライン部16の必要長さLを予め定め、必要長さLのスラグライン部16を有する耐火物被覆浸漬ランス8を用い、例えば、耐火物被覆浸漬ランス8を上昇させる場合には、図3(a)に示すようにスラグライン部16の上端側を溶銑2の湯面位置として予備脱燐処理を開始し、予備脱燐処理の経過に伴ってスラグ15の湯面の上昇速度よりも速い速度で耐火物被覆浸漬ランス8を上昇させる。一方、耐火物被覆浸漬ランス8を下降させる場合には、図4(a)に示すようにスラグライン部16の下端側を溶銑2の湯面位置として予備脱燐処理を開始し、図4(b)に示すようにスラブライン部16の上端位置がスラグ15の湯面位置よりも高い位置で予備脱燐処理を終了させる。このようにすることで、スラグライン部16を常にスラグ15と接触させ、耐火物被覆浸漬ランス8のスラグ15による溶損を抑えることができる。当然ではあるが、耐火物被覆浸漬ランス8にスラグライン部16を設置しない場合には、このような作業は不必要であり、攪拌用ガスが溶銑2中に吹き込まれる状態を確保することが可能な限り、耐火物被覆浸漬ランス8の任意の位置を開始点として任意の速度で上昇又は下降させることができる。
【0028】
又、前回の予備脱燐処理の終了から次回の予備脱燐処理の開始時までの期間に、耐火物被覆浸漬ランス8を所定の角度で、例えば150度程度づつ回転させてもよい。耐火物被覆浸漬ランス8を、予備脱燐処理の休止期間に回転させ且つ予備脱燐処理中に上昇又は下降させることで、耐火物被覆浸漬ランス8の二次燃焼による損耗箇所がより一層均一化され、耐火物被覆浸漬ランス8の使用回数を長期化させることができる。
【0029】
このようにして溶銑2を予備脱燐処理することにより、耐火物被覆浸漬ランス8の二次燃焼により損傷する箇所を分散させることができ、耐火物被覆浸漬ランス8の使用回数を延長させることが可能となる。その結果、耐火物被覆浸漬ランス8に費やす耐火物コストを削減することが可能となる。
【0030】
尚、上記説明は溶銑の予備脱燐処理の例で説明したが、本発明は、溶銑の予備脱燐処理に限るものではなく、溶銑の予備脱珪処理のみならず、保持容器内に収容された溶融金属に酸素を上吹きすると共に、溶融金属中に浸漬させた耐火物被覆浸漬ランスを介して攪拌用ガス、精錬剤、造滓剤のうちの少なくとも一種以上を吹き込みながらこの溶融金属を精錬する場合には、種々の溶融金属の精錬に適用することができる。又、予備脱燐処理も上記説明に限るものではなく、例えば混銑車による予備脱燐処理であっても、本発明を適用することができる。
【0031】
【実施例】
高炉から出銑された135トンの溶銑を、図1に示す脱燐処理設備を用いて予備脱燐処理する際に本発明を適用した。用いた耐火物被覆浸漬ランスの長さは約9mであり、スラグライン部の長さLを600mmの範囲に設置した。用いた溶銑は、炭素濃度が4.5mass%、珪素濃度が0.2mass%、燐濃度が0.09〜0.11mass%で、溶銑温度は1330〜1350℃であった。
【0032】
耐火物被覆浸漬ランスから窒素を搬送用ガスとして生石灰を吹き込むと共に、上吹きランスから酸素を供給し且つ鉄鉱石を固体酸素源としてシュートから上置き添加して予備脱燐処理を実施した。この予備脱燐処理により生成されるスラグ量は、スラグ厚みで換算すると約400mmであった。即ち、予備脱燐処理中に溶銑保持容器内のスラグ厚みはほぼ400mm増加することになる。
【0033】
そこで、前述の図3(a)に示すように予備脱燐処理開始時はスラグライン部の上端側を溶銑湯面位置とし、予備脱燐処理の経過に伴って耐火物被覆浸漬ランスを上昇させ、処理終了時までに450mm上昇させた。尚、処理開始時には、前工程の予備脱珪処理に生成した100mm厚み程度のスラグが残留していた。
【0034】
このようにして、溶銑の予備脱燐処理を実施した結果、耐火物被覆浸漬ランスの使用回数は平均値で66回であった。従来、同一材質の耐火物被覆浸漬ランスを移動させずに使用した場合の耐火物被覆浸漬ランスの平均使用回数が54回であったのに比べて、大幅に使用回数を延長させることができた。それに伴って耐火物コストは大幅に削減された。
【0035】
【発明の効果】
以上説明したように、本発明によれば、耐火物被覆浸漬ランスの二次燃焼により損傷する箇所を分散させることができ、耐火物被覆浸漬ランスの使用回数を延長させることが可能となり、その結果、耐火物被覆浸漬ランスに費やす耐火物コストを大幅に削減することができ、工業上有益な効果がもたらされる。
【図面の簡単な説明】
【図1】本発明に係る予備脱燐処理を実施する際に用いた溶銑の脱燐処理設備の概略図である。
【図2】図1に示す耐火物被覆浸漬ランスの拡大図である。
【図3】本発明に係る予備脱燐処理における耐火物被覆浸漬ランス位置の一例を示す概略図で、(a)は予備脱燐処理開始時の位置を示し、(b)は予備脱燐処理終了時の位置を示す図である。
【図4】本発明に係る予備脱燐処理における耐火物被覆浸漬ランス位置の他の例を示す概略図で、(a)は予備脱燐処理開始時の位置を示し、(b)は予備脱燐処理終了時の位置を示す図である。
【符号の説明】
1 脱燐処理設備
2 溶銑
3 固体酸素源
4 生石灰
5 溶銑保持容器
6 台車
7 上吹きランス
8 耐火物被覆浸漬ランス
9 貯蔵タンク
10 貯蔵タンク
11 ホッパー
12 ホッパー
13 原料搬送用コンベア
14 シュート
15 スラグ
16 スラグライン部
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, oxygen is blown upward to a molten metal contained in a molten metal holding container, and an immersion lance coated with a refractory is immersed in the molten metal. The present invention relates to a molten metal refining method for refining molten metal while blowing gas, a refining agent or a slag-making agent.
[0002]
[Prior art]
When refining molten metal by blowing oxygen upward on the molten metal contained in the molten metal holding vessel, as in the pre-phosphorus treatment in the hot metal pretreatment, the refractory It is a common practice to immerse a lance in a molten metal for immersion in a molten metal, to blow a stirring gas from the lance for immersion in a refractory coating, and to refine the molten metal while stirring the molten metal. In this case, a refining agent or a slag-making agent is also blown from a refractory-coated immersion lance.
[0003]
In the refining of such a molten metal, a slag in a molten state is formed in the molten metal holding container by adding a reaction product, a refining agent, and a slag-making agent. Since this slag acts as a strong erosion agent for refractories, the slag is used for such refining in order to prevent melting of the molten metal holding container and the refractory-coated lance in contact with the slag. In the molten metal holding container and the refractory-covered immersion lance to be used, a so-called slag line portion that is in contact with the slag in a molten state is generally provided with a refractory having excellent corrosion resistance to slag.
[0004]
As a result, the number of times the molten metal holding container and the refractory-coated immersion lance were used was dramatically improved, and the refractory cost was greatly improved.
[0005]
[Problems to be solved by the invention]
However, due to the recent demand for higher quality from consumers, etc., the ratio of pre-phosphorus treatment of hot metal in steel production has expanded, and at present, pre-phosphorus treatment is performed on almost all hot metal discharged from blast furnaces. It has been applied. As a result, the cost of the refractory spent in the preliminary dephosphorization treatment has increased, and under such circumstances, there has been a keen desire to further reduce the refractory cost in the preliminary dephosphorization treatment of the hot metal.
[0006]
The present invention has been made in view of the above circumstances, and an object thereof is to blow oxygen upward into a molten metal contained in a molten metal holding container, such as a preliminary dephosphorization treatment or a preliminary desiliconization treatment of hot metal. The refractory-coated immersion lance is immersed in the molten metal, and when refining the molten metal while blowing a stirring gas or a refining agent or a slag-making agent from the refractory-coated immersion lance, It is an object of the present invention to provide a molten metal refining method capable of reducing the cost of refractory spent on a refractory coating immersion lance by extending the number of times of use of the metal.
[0007]
[Means for Solving the Problems]
Means for Solving the Problems The present inventors have conducted intensive studies on the preliminary dephosphorization treatment and preliminary desiliconization treatment of hot metal in order to solve the above problems. The results of the study are described below.
[0008]
First, the wear condition of the refractory-covered immersion lance used in the preliminary dephosphorization treatment and the preliminary desiliconization treatment of the hot metal was investigated. As described above, a refractory having excellent corrosion resistance to slag is applied to the slag line portion of the refractory-coated immersion lance. From the results of the investigation of the wear situation, although the amount of erosion in the slag line of the lance for refractory coating immersion was large, the lance did not melt by the time the number of times of use of the lance for refractory coating immersion was restricted. It has been found that the reason for limiting the number of times of use is mainly wear at a portion above the slag line portion that is in contact with the atmosphere. Therefore, this cause was examined.
[0009]
In preliminary dephosphorization and preliminary desiliconization of hot metal, refining is performed while blowing oxygen from the top blowing lance toward the hot metal surface. Hot metal contains carbon.In the pre-phosphorus removal treatment and pre-siliconization treatment, refining is performed at an oxygen supply rate that minimizes the reaction between the supplied oxygen and the carbon in the hot metal. Due to its high concentration, the reaction between oxygen and carbon occurs to some extent.
[0010]
The reaction between oxygen and carbon generates CO gas, and the generated CO gas reacts with oxygen in the atmosphere to generate CO 2 gas. The phenomenon in which the generated CO gas reacts with oxygen to generate CO 2 gas is called secondary combustion. That is, what was CO gas in the vicinity of the hot metal surface was sucked by the dust collector and came into contact with the atmosphere and the top-blown oxygen as it rose in the hot metal holding container, causing secondary combustion in the container. Do you get it.
[0011]
The secondary combustion generates heat, and the heat generated by the secondary combustion locally melts a portion of the refractory-coated lance above the slag line. The portion to be melted is located at a substantially constant position from the molten metal surface and is on the side facing the top blowing lance, and therefore is locally damaged and limits the number of times the refractory-coated lance can be used. It has been found.
[0012]
Therefore, as the refining progresses, the refractory coating dipping lance is raised or lowered or rotated with respect to the axis thereof to disperse the portion damaged by the secondary combustion, thereby using the refractory coating dipping lance. The knowledge that the number of times can be extended was obtained. In addition, it has been found that the same effect can be obtained by rotating the refractory coating immersion lance by a predetermined angle between the refining of the pre-heating and the refining of the post-heating.
[0013]
The present invention has been made based on the above findings, and the method for refining molten metal according to the first invention is to blow oxygen upward into the molten metal contained in the holding vessel and immerse the molten metal in the molten metal. When refining the molten metal while blowing at least one of a stirring gas, a refining agent, and a slag-making agent through the refractory-coated immersion lance, the refractory-coated immersion lance is moved along with the refining process. It is characterized by being raised or lowered.
[0014]
The method for refining molten metal according to the second invention is the method according to the first invention, further comprising rotating the refractory-coated immersion lance with respect to its axis during a period between refining and refining. Is what you do.
[0015]
In the method for refining a molten metal according to the third invention, the molten metal contained in the holding container is blown upward with oxygen, and the gas for agitation and refining is passed through a refractory-coated immersion lance immersed in the molten metal. Agent, when refining the molten metal while blowing at least one or more of the slag-making agents, during refining or during the period between refining and refining, rotate the refractory coating immersion lance with respect to its axis It is characterized by the following.
[0016]
The method for refining molten metal according to a fourth invention is the method for refining molten metal according to any one of the first to third inventions, wherein the molten metal is hot metal, and It is characterized by removing phosphorus or silicon.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic diagram of a hot metal dephosphorization treatment facility used when performing the preliminary dephosphorization treatment according to the present invention, FIG. 2 is an enlarged view of the refractory coating immersion lance shown in FIG. 1, and FIG. FIG. 3 is a schematic view showing an example of a position of a refractory coating immersion lance in a preliminary dephosphorization process according to the present invention, wherein (a) shows a position at the start of the preliminary dephosphorization process, and (b) is a position at the end of the preliminary dephosphorization process. FIG. 4 is a schematic view showing another example of the position of the refractory coating immersion lance in the preliminary dephosphorization treatment according to the present invention, wherein (a) shows the position at the start of the preliminary dephosphorization treatment, and (b) () Is a diagram showing the position at the time of completion of the preliminary dephosphorization treatment.
[0018]
In FIG. 1, a ladle-type hot metal holding container 5 containing hot metal 2 tapped from a blast furnace (not shown) is mounted on a bogie 6 and carried into the dephosphorization treatment equipment 1. The dephosphorization treatment equipment 1 is provided with an upper blowing lance 7 and a refractory coating immersion lance 8, and the upper blowing lance 7 and the refractory coating immersion lance 8 can move up and down in the hot metal holding vessel 5. The refractory-coated immersion lance 8 is configured to be rotatable about its axis as a rotation axis. From the upper blowing lance 7, a gaseous oxygen source such as industrial pure oxygen is blown to the hot metal 2 as a dephosphorizing agent.
[0019]
As shown in FIG. 2, a slag line section 16 made of a refractory material having excellent corrosion resistance to the slag 15 is provided at a portion of the refractory-coated lance 8 that comes into contact with the slag 15 in the hot metal holding container 5. At a length of L. The slag 15 is formed by mixing of the blast furnace slag at the time of tapping from the blast furnace, the reaction product, and the added refining agent and slag-making agent. In the present invention, the slag line portion 16 is not necessarily required, but is preferably provided to increase the number of times the refractory-coated lance 8 is used.
[0020]
The refractory coating immersion lance 8 is connected to the storage tank 9 and the storage tank 10, and converts the solid oxygen source 3 stored in the storage tank 9 and the quick lime 4 stored in the storage tank 10 into an unreacted lime such as nitrogen or Ar. The active gas can be added as a carrier gas by blowing into the hot metal 2. The solid oxygen source 3 is added as a dephosphorizing agent, and iron ore, mill scale, or the like may be used. The quicklime 4 is a flux for dephosphorization, and is used for fixing phosphorus in the slag 15 by reacting with the phosphorus oxide generated by the dephosphorization reaction, and for adjusting the basicity of the generated slag 15. In this case, another flux may be mixed with the quicklime 4, or another flux may be used instead of the quicklime 4. The solid oxygen source 3 in the storage tank 9 and the quick lime 4 in the storage tank 10 can be blown independently by controlling the amount and time of addition. The molten metal 2 can be stirred by blowing only inert gas such as nitrogen or Ar from 8.
[0021]
The dephosphorization treatment equipment 1 is further provided with a raw material supply equipment comprising hoppers 11 and 12, a raw material transport conveyor 13 and a chute 14, and the solid material in the hopper 11 is The oxygen source 3 and the quicklime 4 in the hopper 12 can be placed in the hot metal holding vessel 5 and added.
[0022]
Next, a method of preliminarily dephosphorizing the hot metal 2 according to the present invention using the dephosphorization treatment equipment 1 having such a configuration will be described.
[0023]
An inert gas such as nitrogen or Ar is blown from the refractory coating immersion lance 8 as a stirring gas, and quick lime 4 is placed on the hot metal 2 via the chute 14 as a dephosphorizing flux, or the refractory coating immersion lance is used. A gas oxygen source is continuously blown from the upper blowing lance 7 toward the hot metal 2 accommodated in the hot metal holding container 5 while blowing into the hot metal 2 through the hot metal 8. The amount of the quicklime 4 that is the dephosphorizing flux can be changed according to the silicon concentration, the sulfur concentration, and the phosphorus concentration in the hot metal 2.
[0024]
If the oxygen source is only a gaseous oxygen source, the hot metal temperature may be too high and the dephosphorization reaction may be hindered. Therefore, the solid oxygen source 3 is continuously or intermittently placed via the chute 14 if necessary. It is added or it is blown into the hot metal 2 continuously through the refractory coating immersion lance 8 and added. The hot metal temperature can be lowered by adding the solid oxygen source 3. The ratio between the gas oxygen source addition amount and the solid oxygen source addition amount is appropriately changed according to the silicon concentration, the phosphorus concentration, and the carbon concentration in the hot metal 2. Further, iron scrap may be added as a coolant.
[0025]
In this preliminary dephosphorization treatment, the refractory coating immersion lance 8 is raised or lowered as the refining progresses, or the lance 8 is rotated around its axis as a rotation axis. Further, the refractory coating immersion lance 8 may be raised or lowered while rotating. Here, when rotating the refractory coating immersion lance 8 during the preliminary dephosphorization treatment, if the refractory coating immersion lance 8 rotates at least half a rotation during the preliminary dephosphorization treatment, the rotation speed is particularly limited. No need.
[0026]
FIG. 3 is an example in which the refractory coating immersion lance 8 is raised, while FIG. 4 is an example in which the refractory coating immersion lance 8 is lowered. In this case, the amount of the slag 15 formed during the preliminary dephosphorization process is grasped in advance by the added reaction products such as the quicklime 4 and SiO 2 , and the slag line section 16 starts from the start of the preliminary dephosphorization process. It is preferable that the slag 15 is always contacted until the end.
[0027]
For this purpose, the required length L of the slag line portion 16 is determined in advance, and the refractory-coated immersion lance 8 having the slag line portion 16 having the required length L is used. As shown in FIG. 3 (a), the preliminary dephosphorization process is started with the upper end side of the slag line portion 16 as the molten metal surface position of the hot metal 2, and the molten metal surface of the slag 15 rises with the progress of the preliminary dephosphorization process. The refractory-coated lance 8 is raised at a speed higher than the speed. On the other hand, when lowering the refractory coating immersion lance 8, as shown in FIG. 4 (a), the lower end side of the slag line section 16 is set to the molten metal surface of the hot metal 2 to start the preliminary dephosphorization treatment. As shown in b), the preliminary dephosphorization process is terminated at a position where the upper end position of the slab line portion 16 is higher than the molten metal surface position of the slag 15. By doing so, the slag line portion 16 is always brought into contact with the slag 15, and it is possible to suppress the erosion of the lance 8 by the slag 15. Needless to say, when the slag line section 16 is not installed in the refractory coating immersion lance 8, such a work is unnecessary, and it is possible to secure a state in which the stirring gas is blown into the hot metal 2. As long as possible, the lance 8 can be raised or lowered at an arbitrary speed with an arbitrary position of the refractory-coated lance 8 as a starting point.
[0028]
Further, during the period from the end of the previous preliminary dephosphorization to the start of the next preliminary dephosphorization, the refractory coating immersion lance 8 may be rotated at a predetermined angle, for example, by about 150 degrees. By rotating the refractory coating immersion lance 8 during the pause of the pre-phosphorus removal treatment and raising or lowering it during the pre-phosphorus removal treatment, the wear point of the refractory coating immersion lance 8 due to the secondary combustion is further uniformized. Thus, the number of times the refractory-coated lance 8 is used can be lengthened.
[0029]
By preliminarily dephosphorizing the hot metal 2 in this manner, the portions damaged by the secondary combustion of the refractory coating immersion lance 8 can be dispersed, and the number of times the refractory coating immersion lance 8 can be used can be extended. It becomes possible. As a result, it is possible to reduce the refractory cost spent on the refractory-coated immersion lance 8.
[0030]
Although the above description has been given of the example of the preliminary dephosphorization of the hot metal, the present invention is not limited to the preliminary dephosphorization of the hot metal. Refining the molten metal while blowing at least one of a stirring gas, a refining agent, and a slag-making agent through a refractory-coated immersion lance immersed in the molten metal while blowing oxygen upward on the molten metal. In this case, the present invention can be applied to refining of various molten metals. Further, the preliminary dephosphorization treatment is not limited to the above description, and the present invention can be applied to, for example, a preliminary dephosphorization treatment using a mixed iron wheel.
[0031]
【Example】
The present invention was applied to a case where 135 tons of hot metal discharged from a blast furnace was subjected to a preliminary dephosphorization treatment using the dephosphorization treatment equipment shown in FIG. The length of the refractory-coated immersion lance used was about 9 m, and the length L of the slag line portion was set in a range of 600 mm. The hot metal used had a carbon concentration of 4.5 mass%, a silicon concentration of 0.2 mass%, a phosphorus concentration of 0.09 to 0.11 mass%, and a hot metal temperature of 1330 to 1350 ° C.
[0032]
Preliminary dephosphorization treatment was performed by injecting quicklime from a refractory-coated immersion lance using nitrogen as a carrier gas, supplying oxygen from a top-blown lance and adding iron ore from a chute as a solid oxygen source. The amount of slag generated by this preliminary dephosphorization treatment was about 400 mm in terms of slag thickness. That is, the slag thickness in the hot metal holding vessel increases by approximately 400 mm during the preliminary dephosphorization treatment.
[0033]
Therefore, as shown in FIG. 3 (a), at the start of the preliminary dephosphorization treatment, the upper end side of the slag line portion is set to the hot metal surface position, and the refractory coating immersion lance is raised with the progress of the preliminary dephosphorization treatment. By the end of the treatment, it was raised by 450 mm. At the start of the treatment, slag having a thickness of about 100 mm generated in the preliminary desiliconization treatment in the previous step remained.
[0034]
As a result of performing the preliminary dephosphorization treatment of the hot metal in this way, the number of times the refractory-coated lance was used was 66 times on average. Conventionally, the average number of times of use of the refractory-coated immersion lance when the lance of the same material was used without moving the lance was 54 times. . As a result, refractory costs have been significantly reduced.
[0035]
【The invention's effect】
As described above, according to the present invention, it is possible to disperse the portions damaged by the secondary combustion of the refractory coating immersion lance, and it is possible to extend the number of times the refractory coating immersion lance is used. Thus, the cost of the refractory spent on the refractory-coated immersion lance can be significantly reduced, and an industrially beneficial effect is brought about.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a hot metal dephosphorization treatment facility used when performing a preliminary dephosphorization treatment according to the present invention.
FIG. 2 is an enlarged view of the refractory coating immersion lance shown in FIG.
FIG. 3 is a schematic view showing an example of a lance position of a refractory coating immersion lance in a preliminary dephosphorization treatment according to the present invention, wherein (a) shows a position at the start of the preliminary dephosphorization treatment, and (b) shows a preliminary dephosphorization treatment. It is a figure showing a position at the time of end.
FIGS. 4A and 4B are schematic views showing another example of a lance position for refractory coating immersion in the preliminary dephosphorization treatment according to the present invention, wherein FIG. 4A shows a position at the start of the preliminary dephosphorization treatment, and FIG. It is a figure which shows the position at the time of completion | finish of a phosphorus process.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Dephosphorization treatment equipment 2 Hot metal 3 Solid oxygen source 4 Quick lime 5 Hot metal holding container 6 Cart 7 Top blowing lance 8 Refractory coating immersion lance 9 Storage tank 10 Storage tank 11 Hopper 12 Hopper 13 Material conveyor 14 Chute 15 Slag 16 Slag Line section

Claims (4)

保持容器内に収容された溶融金属に酸素を上吹きすると共に、溶融金属中に浸漬させた耐火物被覆浸漬ランスを介して攪拌用ガス、精錬剤、造滓剤のうちの少なくとも一種以上を吹き込みながら溶融金属を精錬する際に、精錬の経過に伴って前記耐火物被覆浸漬ランスを上昇させる又は下降させることを特徴とする、溶融金属の精錬方法。Along with blowing oxygen upward on the molten metal contained in the holding container, at least one or more of a stirring gas, a refining agent, and a slag-making agent are blown through a refractory-coated immersion lance immersed in the molten metal. A method for refining a molten metal, which comprises raising or lowering the refractory coating immersion lance as the refining progresses while refining the molten metal. 更に、精錬と精錬との間の期間に、前記耐火物被覆浸漬ランスをその軸芯に対して回転させることを特徴とする、請求項1に記載の溶融金属の精錬方法。The method for refining molten metal according to claim 1, wherein the refractory-coated immersion lance is rotated with respect to its axis during a period between refining. 保持容器内に収容された溶融金属に酸素を上吹きすると共に、溶融金属中に浸漬させた耐火物被覆浸漬ランスを介して攪拌用ガス、精錬剤、造滓剤のうちの少なくとも一種以上を吹き込みながら溶融金属を精錬する際に、精錬中又は精錬と精錬との間の期間に、前記耐火物被覆浸漬ランスをその軸芯に対して回転させることを特徴とする、溶融金属の精錬方法。Along with blowing oxygen upward on the molten metal contained in the holding container, at least one or more of a stirring gas, a refining agent, and a slag-making agent are blown through a refractory-coated immersion lance immersed in the molten metal. A method for refining molten metal, comprising: rotating the refractory-coated immersion lance with respect to its axis during refining or during refining when refining the molten metal. 前記溶融金属が溶銑であって、前記耐火物被覆浸漬ランスから攪拌用ガスを吹き込みながら溶銑中の燐又は珪素を除去することを特徴とする、請求項1ないし請求項3の何れか1つに記載の溶融金属の精錬方法。The molten metal is hot metal, and phosphorus or silicon in the hot metal is removed while blowing a gas for stirring from the refractory-coated immersion lance, wherein the molten metal is hot metal. The method for refining molten metal according to the above.
JP2002173767A 2002-06-14 2002-06-14 Method for refining molten metal Expired - Fee Related JP3835358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002173767A JP3835358B2 (en) 2002-06-14 2002-06-14 Method for refining molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002173767A JP3835358B2 (en) 2002-06-14 2002-06-14 Method for refining molten metal

Publications (2)

Publication Number Publication Date
JP2004018915A true JP2004018915A (en) 2004-01-22
JP3835358B2 JP3835358B2 (en) 2006-10-18

Family

ID=31172915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002173767A Expired - Fee Related JP3835358B2 (en) 2002-06-14 2002-06-14 Method for refining molten metal

Country Status (1)

Country Link
JP (1) JP3835358B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264186A (en) * 2004-03-16 2005-09-29 Jfe Steel Kk Immersion lance coated with refractory and molten iron treating apparatus provided with this lance
WO2006021066A1 (en) 2004-08-27 2006-03-02 De Castro Marcio Moraes System of gas and/or gas and powders injection in liquid metals throough rotary refractory lance
CN107723416A (en) * 2017-11-15 2018-02-23 钢铁研究总院 A kind of ladle rotation spray gun dephosphorization apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264186A (en) * 2004-03-16 2005-09-29 Jfe Steel Kk Immersion lance coated with refractory and molten iron treating apparatus provided with this lance
JP4561135B2 (en) * 2004-03-16 2010-10-13 Jfeスチール株式会社 Refractory-coated immersion lance and hot metal treatment apparatus including the same
WO2006021066A1 (en) 2004-08-27 2006-03-02 De Castro Marcio Moraes System of gas and/or gas and powders injection in liquid metals throough rotary refractory lance
JP2008510883A (en) * 2004-08-27 2008-04-10 カストロ,マルシオ モラエス デ A device for injecting gas and / or gas and powder into liquid metal through a rotary heat-resistant lance
CN107723416A (en) * 2017-11-15 2018-02-23 钢铁研究总院 A kind of ladle rotation spray gun dephosphorization apparatus

Also Published As

Publication number Publication date
JP3835358B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
JP2006274349A (en) Method for refining steel
JP5983492B2 (en) Hot metal pretreatment method
JP3835358B2 (en) Method for refining molten metal
JP6540632B2 (en) Dephosphorization method of hot metal
JP3577997B2 (en) Hot metal desulfurization method
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP2003119511A (en) Method for operating steelmaking furnace during steelmaking process
JP4419594B2 (en) Hot metal refining method
JP4863334B2 (en) Hot metal pretreatment method
JP4779464B2 (en) Method for producing low phosphorus hot metal
JP3665600B2 (en) Hot metal dephosphorization method
JP4406142B2 (en) Hot phosphorus dephosphorization method
JP4561135B2 (en) Refractory-coated immersion lance and hot metal treatment apparatus including the same
JP2003166009A (en) Desulfurization method for molten pig iron
JP7107292B2 (en) Hot metal dephosphorization treatment method
JP4857830B2 (en) Converter steelmaking method
JP3861655B2 (en) Hot metal pretreatment method
JPH0860221A (en) Converter steelmaking method
JPS61104014A (en) Method for reducing mn ore with high efficiency in oxidation refining furnace
JPH08199218A (en) Converter process recycling decarburized slag
JPS58174518A (en) Manufacture of low hydrogen steel
JP2006138003A (en) Method for treating molten iron
JPH1150121A (en) Restraining of slag foaming
JP2005248219A (en) Molten iron pretreatment method
JP2001040409A (en) Method for dephosphorizing molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060717

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees