JP3861655B2 - Hot metal pretreatment method - Google Patents

Hot metal pretreatment method Download PDF

Info

Publication number
JP3861655B2
JP3861655B2 JP2001326636A JP2001326636A JP3861655B2 JP 3861655 B2 JP3861655 B2 JP 3861655B2 JP 2001326636 A JP2001326636 A JP 2001326636A JP 2001326636 A JP2001326636 A JP 2001326636A JP 3861655 B2 JP3861655 B2 JP 3861655B2
Authority
JP
Japan
Prior art keywords
hot metal
desulfurization
gas
dephosphorization
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001326636A
Other languages
Japanese (ja)
Other versions
JP2003129120A (en
Inventor
直樹 菊池
秀次 竹内
崇 山内
嘉久 北野
将行 満園
建治 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001326636A priority Critical patent/JP3861655B2/en
Publication of JP2003129120A publication Critical patent/JP2003129120A/en
Application granted granted Critical
Publication of JP3861655B2 publication Critical patent/JP3861655B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶銑の予備処理方法に係わり、詳しくは、転炉等の製鋼炉で溶銑を脱炭して溶鋼とする前に、予め装入される溶銑から珪素、燐、硫黄等の不純物元素を除去し、製鋼炉の精錬負荷を軽減する技術に関する。
【0002】
【従来の技術】
近年、鋼材の特性要求が厳しくなっており、製鋼工程において不純物元素を低減させる負荷が増加している。その低減対象となる不純物元素としては、珪素、燐、硫黄、酸素等である。現在、これら不純物元素のうちの燐及び硫黄は、製鋼炉へ装入する前の溶銑の段階で除去することが普及している(これを、溶銑予備処理という)。
【0003】
この溶銑予備処理で溶銑の脱硫を行うには、CaO、ソーダ灰系フラックスを混銑車に保持した溶銑中へ吹き込んだり(これをインジェクション法という)、反応容器の溶銑鍋に保持した溶銑に脱硫剤を投入して機械撹拌を行ったり(機械攪拌式)、金属Mgを脱硫剤としてインジェクションする等の方法が利用されている。この脱硫剤としては、安価で、且つ事後にスラグ処理の問題が少ないCaO系フラックスの使用が望ましい。また、このうち、機械撹拌式の溶銑脱硫方法は、上添加されたCaO系フラックスを撹拌羽根の回転力で溶銑中に巻き込ませ、脱硫が生じる反応界面積を大きくすることにより、10ppm以下という低硫黄濃度域までの脱硫を可能とする。
【0004】
一方、予備処理における溶銑の脱燐方法としては、使用する反応容器で分類すると、転炉型、溶銑鍋型、トピード型等の方式があり、脱燐剤には、酸素源としての酸素ガス及び酸化鉄の他、CaOが主に使用される。
【0005】
ところで、特開昭55−76005号公報は、機械撹拌による溶銑の脱硫において、撹拌装置を通じて溶銑内に炭化水素ガスを吹き込み、脱硫反応を促進する技術を開示している。しかしながら、本発明者らが詳細に調査したところによれば、溶銑鍋の中心に設置された撹拌装置(中空の回転軸)を介して溶銑中に吹き込まれた炭化水素ガスは、該溶銑鍋の中央部に優先的に浮上し、上添加した脱硫剤が撹拌羽根の回転力で該中央部から溶銑の内部に巻き込まれるのを妨げ、脱硫反応を促進する効果が不十分であることが判明した。また、撹拌装置の回転軸内にガス流路を設ける必要があるので、撹拌羽根の構造が複雑になったり、寿命が低下するという問題もあった。また、特開2001−20006号公報は、機械撹拌式の脱硫方法において、上方より炭化水素ガスを溶銑1トン当たり、3リットル(標準状態)/min以上で吹き付けるか、又は炭化水素ガスを発生する固体若しくは液体を添加する方法を開示している。しかしながら、本発明者らが詳細に調査したところ、吹き付け時期により脱硫反応を促進する効果が変化するので、脱硫処理中を一定流量で吹き付けると、添加効率が低下するという問題、つまり添加した固体や液体の量に見合う反応が起きていないことが判明した。
【0006】
一般に、熱力学は、溶銑の脱硫反応は高温ほど、脱燐反応は低温ほど有利であることを教えている。従って、従来の溶銑予備処理では、処理中の温度降下を考慮し、脱硫反応を先に行い、その後引き続いて脱燐処理を行うのが一般的であった。しかしながら、後で行う脱燐処理において、前工程の脱流スラグの残留、持ちこみ、脱燐剤として使用する酸化鉄に含まれる硫黄、転炉内に付着する地金からの硫黄のピックアップが大きく、先に脱硫した溶銑中のS濃度が、後の脱燐処理中に増加するという所謂「復硫」現象が起きる。この脱燐処理や後工程の転炉では酸化反応が主体なので、脱硫が進行せず、低硫鋼を溶製するにあたっては、二次精錬(転炉から出鋼した溶鋼を真空脱ガス槽や取鍋を用い、さらに不純物元素やガスを除いたり、合金添加で成分調整を行ったりする精錬工程)において溶鋼を脱硫する必要が生じる。つまり、二次精錬での脱硫負荷が増加し、低硫鋼のコストアップや生産性の阻害に繋がる。
【0007】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、溶銑から従来より安価で、且つ効率良く脱硫を行うことの可能な溶銑の予備処理方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
発明者は、上記目的を達成するため、脱硫処理及び脱燐処理を行う順序を従来と逆にすることに着眼して鋭意研究を重ね、その成果を本発明に具現化した。
【0009】
すなわち、本発明は、脱炭精錬に供せられる溶銑から予め脱燐及び脱硫する溶銑の予備処理方法において、前記溶銑を酸素ガス、酸化鉄及びCaOを主体とした精錬剤で脱珪及び脱燐した後、溶銑鍋に払い出された溶銑の浴面上へ脱硫剤を投入すると共に、水素ガス又は分解して水素ガスを発生する炭化水素ガスを含むガスを、前記浴面上に溶銑1トン当たり水素ガス換算量で12リットル(標準状態)/min以上の流量で吹き付け、脱硫溶銑中に浸漬した攪拌羽根で機械的に攪拌して脱硫し、且つそのガスの吹き付け流量を、脱硫の前半より後半で多くすることを特徴とする溶銑の予備処理方法である
【0010】
本発明では、脱硫処理及び脱燐処理を行う順序を従来と逆にすると共に、従来は溶銑中に吹き込んでいた水素ガス又は分解して水素ガスを発生する炭化水素ガスを含むガスを、溶銑1トン当たり水素ガス換算量で12リットル(標準状態)/min以上の流量で溶銑の浴面上へ吹き付けるようにしたので、先に行った脱燐で形成されたスラグ(脱燐スラグという)が迅速に冷却されるようになる。その結果、脱硫を行っても該脱燐スラグから溶銑への復燐が起きず、溶銑から効率良く脱硫を行うことが可能になる。ここで、水素ガス換算量とは、水素ガス又は水素含有ガスについては水素ガスの量、炭化水素ガス又は炭化水素含有ガスについては、炭化水素ガスが分解して発生する水素ガスの量を言うものとする。
【0011】
【発明の実施の形態】
以下に、発明をなすに至った経緯に沿い、本発明の実施の形態を説明する。
【0012】
本発明では、脱硫に機械撹拌式を採用する。それは、撹拌羽根(インペラ)の回転力で、溶銑浴面に上添加した脱硫剤を該溶銑中に巻き込み、溶銑と脱硫剤との間の反応界面積を大きくすることにより、迅速な脱硫処理を可能とする。脱硫剤としては、CaO系、ソーダ灰系、Mg系等が使用されるが、コストや環境面からCaO系の脱硫剤が主流である。
【0013】
このCaO系脱硫剤による脱硫反応は、一般に(1)式で表される。
【0014】
[S]+CaO → (CaS) + [O] ……(1)
(1)式は、還元反応であり、反応界面を還元雰囲気にすると、より脱硫反応が促進する。また、発熱反応であるため、高温ほど脱硫反応は進行する。ここで、[ ]は溶銑中の成分(この場合、硫黄)、( )はスラグ中の成分を意味している。
【0015】
また、前記した従来技術で溶銑に吹き込んでいた炭化水素系ガスは、下記(2)式で示すように、300℃程度で完全に分解して水素ガスを発生する。その水素ガスは、雰囲気の酸素ガス、溶銑中の[O]と、(3)及び(4)式に示すように反応する。従って、系内を還元雰囲気にすると、前記(1)式の脱硫反応が促進されることになる。
【0016】
CnHm → nC + m/2 H2 ……(2)
1/2O2 + H2 → +H2O ……(3)
[O] + H2 → +H2O ……(4)
一方、溶銑の脱燐反応は、(5)式に示すように起きる。
【0017】
2[P]+5/2O2十3CaO → 3CaO・P25 ……(5)
この脱燐反応は、吸熱反応であり、低温ほど反応が進行する。また、酸化反応であるため、酸化雰囲気であるほど、脱燐反応が進行する。脱燐剤は、前記したように、酸素ガス、酸化鉄といった酸素源とCaOとが主体である。
【0018】
ところで、前述のように、低硫鋼を効率良く、且つ低コストで溶製するには、製鋼炉での脱炭段階ではなく、溶銑段階での低硫化が望ましい。そこで、本発明者らは、従来のように最初に脱硫処理を行ってから、その後引き続いて脱燐処理を行ってみた。その結果、この従来の方法では、後半の脱燐処理において、前半の脱硫処理で生成したスラグの持ち込み、脱燐剤として使用する酸化鉄、脱燐処理中の容器内の付着地金からのSピックアップで復S反応が起き、脱硫効率が悪いことが確認された。そのため、本発明者らは、脱燐処理と脱硫処理の処理順序を変える実験を行うことにした。使用した実験装置は、図1に示すような転炉型容器の脱燐装置及び図2に示すような溶銑鍋に機械攪拌手段を設けた脱硫装置でであり、それぞれの実験条件は、表1に示す通りである。
【0019】
【表1】

Figure 0003861655
【0020】
実験結果を表2に一括して示す。なお、表2では、脱硫→脱燐の実施順序を水準1、脱燐→脱硫の実施順序を水準2としている。表2によれば、脱硫を先に実施する水準1では、脱硫処理で低減したSが脱燐処理中に復Sしていることが明らかである。一方、脱燐を先に実施する水準2では、脱燐処理で低減したPが脱硫処理中に復Pしたが、その量はわずかであった。
【0021】
【表2】
Figure 0003861655
【0022】
また、それぞれの水準で処理後のスラグのEPMA分析を行ったところ、水準1では、脱硫処理後にCaO主体の球状スラグの周囲に存在していたSが脱燐処理中に復Sするのに対し、水準2では、脱燐処理後にほぼ溶融したスラグが脱硫処理によりCaO主体のスラグに包囲されて、球状になり、復Pが少ないことがわかった。両者を比べると、水準2が水準1に比べて到達S濃度が低い。これは、水準2では熱力学的に処理温度条件で不利であるにもかかわらず、復P、復S反応が少ないため、このような結果になったものと考えられる。同時に、各水準の脱硫処理前に酸素センサで溶銑中の酸素分圧を測定したところ、水準1の場合は、酸素活量が1ppmであったのに対し、水準2の場合は、4ppmと高い値であった。これは、水準2の場合、溶銑中のSiが極めて少ないこと及び脱燐処理後のスラグ中酸化鉄濃度が高いためと考えられる。各処理の後には、スラグドラッガーでスラグの除去を行ったが、完全には除去不可能であった。
【0023】
以上の実験結果より、本発明者らは、溶銑の予備処理方法としては、水準2のように脱燐処理を先に行ってから脱硫を行うのが有望と考え、本発明に係る溶銑の予備処理方法の1要件にすることにした。
【0024】
次に、前記した水準2の実験では、脱硫処理中にわずかであるが0.003mass%の復燐が認められた。しかしながら、この程度の復燐量であっても、最終製品である鋼の燐含有量の規格外れをきたしたり、あるいはそれを防止するために、溶銑予備処理後の溶銑を転炉等で溶鋼にまで脱炭精錬する際に、併せて脱燐処理するという精錬負荷(CaOや蛍石等の精錬フラックス使用量の増大、スラグ中のFeOを増大させるための脱炭精錬時間の延長、酸素原単位の増大、高反応性スラグによる転炉耐火物損傷の増大等)の増大を招くので、復燐量はできるだけ低減するのが望ましい。
【0025】
また、前述したように、脱燐処理によって生成したスラグは、スラグドラッガで除去しても完全には除去しきれず、脱硫処理の容器として使用する溶銑鍋内の溶銑浴面上に浮遊している。さらに、機械撹拌の際に添加する脱硫フラックスと共に溶銑中に巻き込まれたスラグは、脱硫フラックスの主成分であるCaOによって包囲されており、復燐を起こすことはないが、溶銑中に巻き込まれずに浮遊したままのスラグに関しては、復燐を生じる可能性がある。
【0026】
そこで、本発明者らは、この浮遊スラグの燐吸収能を高位に維持することを考え、熱伝導率の高い水素ガスや、分解して水素ガスを発生する炭化水素ガスを含むガスを、浴内に吹き込むのではなく、溶銑浴面に吹き付けて浮遊スラグを冷却することを想到した。特に、プロパン等の炭化水素ガスは、分解する際に吸熱するため、スラグの冷却により有効である。また、脱燐スラグを冷却することは、脱燐反応は低温ほど有利であるので、脱燐スラグの燐吸収能を高位に保持することになるし、冷却されたスラグは、粘性が高まり、あるいは凝固して、溶銑との反応性が低下するため、復燐の防止に好都合となると考えたのである。
【0027】
そして、引き続き水準2の脱硫処理での復燐を低減するために、炭化水素ガスとしてプロパンガスを選択し、その上吹き実験を行った。その実験条件を表3に、実験結果を図3に示す。
【0028】
【表3】
Figure 0003861655
【0029】
図3より、プロパンガスが水素ガス換算の流量で12リットル(標準状態)/min/t以上の範囲では、復燐がほとんど発生しないことが明らかである。また、プロパンガスの流量と脱硫率の関係も調査し、図4に示す関係を得た。ここで、復燐率は、下記(6)式で定義され、[%P]は溶銑中の燐濃度であり、脱硫率は、下記(7)式で定義され、[%S]は、溶銑中の硫黄濃度である。なお、添え字のi、fは、それぞれ復燐あるいは脱硫の処理前、処理後を表す。
【0030】
復燐率(%)=([%P]i−[%P]f)/[%P]i×100……(6)
脱硫率(%)=([%S]i−[%S]f)/[%S]i×100……(7)
また、図4より、プロパンガスが水素ガス換算の流量で12リットル(標準状態)/min/t以上で脱硫反応を促進する効果が認められる。脱硫処理前後の溶銑の酸素分圧は、処理前で4ppmから処理後で0.1〜0.5ppmまで低減した。このことから、プロパンガスの吹き付けにより、処理後の酸素分圧が低下し、脱硫反応に有利な還元雰囲気になっていることがわかる。プロパンガス吹き付け用ランスの先端は、湯面上の容器中心に近いほど良いこともわかった。
【0031】
そこで、本発明者らは、水素ガスや、分解して水素ガスを発生する炭化水素ガスを含むガスを、浴内に吹き込むのではなく、溶銑浴面に水素ガス換算で12リットル(標準状態)/min/t以上の流量で吹き付けて機械攪拌することを第2の要件にすることにしたのである。
【0032】
なお、本発明では、吹き付けるガスは、プロパンガスのみでなく、Cガス、H2ガス、LNG等、H2を含む、もしくは分解してH2を発生するようなガスであれば如何なるものでも良い。また、脱硫処理の前工程である脱珪、脱燐工程は、転炉型のみならず、トピード型、溶銑鍋型等いかなる処理方法であっても良い。
【0033】
次に、本発明者らは、脱硫効率に対してはプロパンガスの適切な吹き付け時期があると考え、脱硫剤の添加後からプロパンガスの流量を種々増加する実験を行った。その実験条件及び結果の一例を表4に示す。
【0034】
【表4】
Figure 0003861655
【0035】
表4より、脱硫剤の添加してある時間経過した後から(ここでは、4分)、プロパンガスの流量を増加すると、比較的少ないプロパンガスの使用量(原単位)でも、脱硫反応の促進効果が大きくなることが明らかになった。実験中の観察によると、添加後の脱硫剤が溶銑中に巻き込まれ、溶銑が湯面上に現れる時期からプロパンガスのフレームが攪拌子軸の周囲より溶銑内によく巻き込まれている様子が確認できた。
【0036】
そこで、本発明者らは、この経過時間に応じた水素発生ガスの添加量増加も本発明に加えることにした。つまり、経過時間の前半より後半で水素発生ガスの吹き付け量を増すのである。ここで、「前半」とは、脱硫剤が溶銑中に巻き込まれ、溶銑が湯面上に現れるまでの時期を、「後半」とはそれ以降の時期をいう。
【0037】
【実施例】
高炉からの溶銑を用いて、硫黄含有量が10ppm以下の低硫鋼を多数チャージ溶製した。その際、転炉へ供給する前の溶銑に対して、表5に示すような脱燐及び脱硫の順番で予備処理を行った。その脱燐及び脱硫処理の条件は、表6に一括して示す。使用装置には、図1及び図2に示したものを採用した。水素発生ガスとしては、ブロパンガスを採用し、その吹き込み条件は表3に示したものに準じるようにした。このような条件で多数チャージの溶製を行い、その結果は、表7に示すように、得られた溶鋼のS及びPの平均値で評価した。
【0038】
表7より、本発明法に係る溶銑の予備処理方法によれば、溶銑の低P化及びS化が高効率で実現できることが明らかである。
【0039】
【表5】
Figure 0003861655
【0040】
【表6】
Figure 0003861655
【0041】
【表7】
Figure 0003861655
【0042】
【発明の効果】
以上述べたように、本発明により、溶銑の脱燐反応及び脱硫反応の効率が向上し、低P、S化が促進される。その結果、転炉、二次精錬での精錬負荷も軽減され、安価な低燐硫鋼が溶製できるようになる。
【図面の簡単な説明】
【図1】脱燐に用いた転炉型実験装置を示す模式図である。
【図2】機械攪拌式の脱硫に用いた実験装置を示す模式図である。
【図3】溶銑の復燐率と吹き付けたプロパンガスの流量との関係を示す図である。
【図4】溶銑の脱硫率と吹き付けたプロパンガスの流量との関係を示す図である。
【符号の説明】
1 酸素ガスの上吹きランス
2 転炉
3 スラグ
4 溶銑
5 底吹きガス(窒素ガス)
6 攪拌用モータ
7 攪拌羽根
8 攪拌軸のカバー
9 水素発生ガスの吹き込み用ランス
10 フード
11 脱硫剤
12 溶銑鍋[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot metal pretreatment method, and in particular, before decarburizing hot metal in a steelmaking furnace such as a converter to form molten steel, an impurity element such as silicon, phosphorus, sulfur or the like from the hot metal charged in advance. It is related with the technology which removes and reduces the refining load of a steelmaking furnace.
[0002]
[Prior art]
In recent years, the requirements for the characteristics of steel materials have become stricter, and the load for reducing impurity elements in the steelmaking process has increased. Impurity elements to be reduced include silicon, phosphorus, sulfur, oxygen, and the like. Currently, it is widespread that phosphorus and sulfur among these impurity elements are removed at the stage of hot metal before charging into a steelmaking furnace (this is called hot metal pretreatment).
[0003]
In order to desulfurize the hot metal in this hot metal pretreatment, the desulfurizing agent is poured into the hot metal held in the hot metal pan of the reaction vessel by blowing CaO and soda ash flux into the hot metal held in the kneading car (this is called the injection method). Or the like, and mechanical agitation is performed (mechanical agitation type), or metal Mg is used as a desulfurization agent for injection. As this desulfurizing agent, it is desirable to use a CaO-based flux which is inexpensive and has few problems with slag treatment after the fact. Of these, the mechanical stirring type hot metal desulfurization method involves lowering 10 ppm or less by increasing the reaction interfacial area where desulfurization occurs by entraining the added CaO-based flux into the hot metal with the rotational force of the stirring blade. Desulfurization up to the sulfur concentration range is possible.
[0004]
On the other hand, as a dephosphorization method of hot metal in the pretreatment, there are methods such as a converter type, a hot metal ladle type, a torpedo type, etc., classified according to the reaction vessel to be used, and the dephosphorizing agent includes oxygen gas as an oxygen source and In addition to iron oxide, CaO is mainly used.
[0005]
JP-A-55-76005 discloses a technique for promoting desulfurization reaction by blowing hydrocarbon gas into hot metal through a stirrer in desulfurization of hot metal by mechanical stirring. However, according to a detailed investigation by the present inventors, the hydrocarbon gas blown into the hot metal via a stirring device (hollow rotating shaft) installed at the center of the hot metal hot pot It was found that the effect of accelerating the desulfurization reaction was insufficient because the desulfurization agent that floated preferentially in the central part was prevented from being trapped in the hot metal from the central part by the rotational force of the stirring blade. . Moreover, since it is necessary to provide a gas flow path in the rotating shaft of the stirring device, there is a problem that the structure of the stirring blade becomes complicated and the life is shortened. Japanese Patent Laid-Open No. 2001-20006 discloses that in a mechanical stirring type desulfurization method, hydrocarbon gas is blown from above at a rate of 3 liters (standard state) / min or more per ton of hot metal, or generates hydrocarbon gas. A method of adding a solid or liquid is disclosed. However, as a result of detailed investigations by the inventors, the effect of promoting the desulfurization reaction varies depending on the spraying timing, and therefore, when spraying at a constant flow rate during the desulfurization treatment, there is a problem that the addition efficiency decreases, that is, the added solid or It was found that there was no reaction commensurate with the amount of liquid.
[0006]
In general, thermodynamics teaches that hot metal desulfurization is more advantageous at higher temperatures and dephosphorization at lower temperatures. Therefore, in the conventional hot metal preliminary treatment, in consideration of the temperature drop during the treatment, the desulfurization reaction is generally performed first, and then the dephosphorization treatment is subsequently performed. However, in the dephosphorization treatment to be performed later, the pick-up of sulfur from iron oxide used as a dephosphorizing agent remains, carry in, and dephosphorization agent in the previous process, and sulfur from the metal that adheres to the converter, A so-called “resulfurization” phenomenon occurs in which the S concentration in the hot metal desulfurized first increases during the subsequent dephosphorization treatment. In this dephosphorization process and the converter in the post-process, the oxidation reaction is the main, so desulfurization does not proceed, and when melting low-sulfur steel, secondary refining (the molten steel discharged from the converter is used as a vacuum degassing tank or It is necessary to desulfurize the molten steel in a refining process that uses a ladle and further removes impurity elements and gases or adjusts the composition by adding an alloy. In other words, the desulfurization load in the secondary refining increases, leading to an increase in the cost of low-sulfur steel and an inhibition of productivity.
[0007]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide a hot metal pretreatment method capable of performing desulfurization from hot metal at a lower cost than before.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the inventor conducted intensive studies focusing on reversing the order of performing the desulfurization treatment and the dephosphorization treatment, and realized the results in the present invention.
[0009]
That is, the present invention relates to a hot metal pretreatment method in which dephosphorization and desulfurization is performed in advance from hot metal to be used for decarburization refining, and the hot metal is desiliconized and dephosphorized with a refining agent mainly composed of oxygen gas, iron oxide and CaO. After that, a desulfurizing agent is put on the hot metal bath surface discharged into the hot metal ladle, and hydrogen gas or a gas containing hydrocarbon gas that decomposes to generate hydrogen gas is added to the hot metal surface to 1 ton of hot metal. Sprayed at a flow rate of 12 liters (standard condition) / min or more in terms of hydrogen gas per hit, desulfurized by mechanical stirring with a stirring blade immersed in the desulfurized hot metal, and the flow rate of the gas from the first half of desulfurization This is a hot metal pretreatment method characterized in that it is increased in the second half .
[0010]
In the present invention, the order of performing the desulfurization treatment and the dephosphorization treatment is reversed from the conventional one, and the gas containing the hydrogen gas that has been blown into the hot metal or the hydrocarbon gas that generates hydrogen gas by decomposition is used as the hot metal 1. Since it was sprayed onto the hot metal bath surface at a flow rate of 12 liters (standard state) / min or more in terms of hydrogen gas per ton, the slag formed by the dephosphorization performed earlier (called dephosphorization slag) was quick. To cool down. As a result, dephosphorization from the dephosphorization slag to the hot metal does not occur even when desulfurization is performed, and it is possible to efficiently perform desulfurization from the hot metal. Here, the hydrogen gas equivalent amount means the amount of hydrogen gas for hydrogen gas or hydrogen-containing gas, and the amount of hydrogen gas generated by decomposition of hydrocarbon gas for hydrocarbon gas or hydrocarbon-containing gas. And
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the following, the embodiment of the present invention will be described along with the process leading to the invention.
[0012]
In the present invention, a mechanical stirring type is adopted for desulfurization. This is because the desulfurization agent added on the hot metal bath surface is entrained in the hot metal bath by the rotational force of the stirring blade (impeller), and the reaction interface area between the hot metal and the desulfurization agent is increased, thereby enabling rapid desulfurization treatment. Make it possible. As the desulfurizing agent, CaO-based, soda ash-based, Mg-based and the like are used, but CaO-based desulfurizing agents are mainly used from the viewpoint of cost and environment.
[0013]
The desulfurization reaction using the CaO-based desulfurizing agent is generally represented by the formula (1).
[0014]
[S] + CaO → (CaS) + [O] (1)
Formula (1) is a reduction reaction, and the desulfurization reaction is further promoted when the reaction interface is in a reducing atmosphere. Moreover, since it is an exothermic reaction, the desulfurization reaction proceeds as the temperature increases. Here, [] means a component in the hot metal (in this case, sulfur), and () means a component in the slag.
[0015]
Further, the hydrocarbon gas blown into the hot metal by the above-described prior art is completely decomposed at about 300 ° C. to generate hydrogen gas as shown by the following equation (2). The hydrogen gas reacts with the oxygen gas in the atmosphere and [O] in the hot metal as shown in the equations (3) and (4). Therefore, when the inside of the system is in a reducing atmosphere, the desulfurization reaction of the above formula (1) is promoted.
[0016]
CnHm → nC + m / 2 H 2 (2)
1 / 2O 2 + H 2 → + H 2 O (3)
[O] + H 2 → + H 2 O (4)
On the other hand, the hot metal dephosphorization reaction occurs as shown in equation (5).
[0017]
2 [P] + 5 / 2O 2 ten 3CaO → 3CaO · P 2 O 5 ...... (5)
This dephosphorization reaction is an endothermic reaction, and the reaction proceeds as the temperature decreases. Moreover, since it is an oxidation reaction, the dephosphorization reaction proceeds as the oxidizing atmosphere is reached. As described above, the dephosphorizing agent is mainly composed of oxygen source such as oxygen gas and iron oxide and CaO.
[0018]
By the way, as described above, in order to melt low-sulfur steel efficiently and at low cost, low sulfidation in the hot metal stage is desirable instead of the decarburization stage in the steelmaking furnace. Therefore, the present inventors first performed desulfurization treatment as in the prior art, and then performed dephosphorization treatment subsequently. As a result, in this conventional method, in the second half of the dephosphorization process, the slag produced in the first half of the desulfurization process, iron oxide used as a dephosphorization agent, S from the adhering metal in the container during the dephosphorization process are used. It was confirmed that the recovery S reaction occurred in the pickup and the desulfurization efficiency was poor. Therefore, the present inventors decided to conduct an experiment to change the treatment order of the dephosphorization treatment and the desulfurization treatment. The experimental apparatus used was a dephosphorization apparatus for a converter type container as shown in FIG. 1 and a desulfurization apparatus provided with a mechanical stirring means in a hot metal ladle as shown in FIG. As shown in
[0019]
[Table 1]
Figure 0003861655
[0020]
The experimental results are collectively shown in Table 2. In Table 2, the desulfurization → dephosphorization execution order is level 1, and the dephosphorization → desulfurization execution order is level 2. According to Table 2, at level 1 where desulfurization is performed first, it is clear that S reduced by the desulfurization treatment is restored during the dephosphorization treatment. On the other hand, in Level 2 where dephosphorization was first performed, P reduced by the dephosphorization process was restored during the desulfurization process, but the amount was small.
[0021]
[Table 2]
Figure 0003861655
[0022]
In addition, when EPMA analysis of the slag after the treatment at each level was performed, in the level 1, the S existing around the spherical slag mainly composed of CaO after the desulfurization treatment was recovered during the dephosphorization treatment. In Level 2, it was found that the slag almost melted after the dephosphorization process was surrounded by CaO-based slag by the desulfurization process, became spherical, and there was little recovery P. Comparing both, level 2 has a lower reached S concentration than level 1. This is considered to be the result of Level 2 because there are few recovery P and recovery S reactions, although the level 2 is thermodynamically disadvantageous in the processing temperature condition. At the same time, when the oxygen partial pressure in the hot metal was measured with an oxygen sensor before the desulfurization treatment at each level, the oxygen activity was 1 ppm in the case of level 1, whereas it was as high as 4 ppm in the case of level 2. Value. This is considered to be because, in the case of level 2, the amount of Si in the molten iron is extremely small and the iron oxide concentration in the slag after the dephosphorization treatment is high. After each treatment, slag was removed with a slag dragger, but it was not completely removed.
[0023]
From the above experimental results, the present inventors consider that it is promising to perform desulfurization first after dephosphorization treatment as in level 2 as a hot metal pretreatment method. I decided to make it one requirement of the processing method.
[0024]
Next, in the level 2 experiment described above, 0.003 mass% of recovered phosphorus was recognized although it was slight during the desulfurization treatment. However, even with this amount of recovered phosphorus, in order to prevent the phosphorous content of the final product from being out of specification or to prevent it, the hot metal after the hot metal pretreatment is converted into molten steel with a converter or the like. When decarburizing and refining, the dephosphorization load (increasing use of refining flux such as CaO and fluorite), extending decarburization refining time to increase FeO in slag, oxygen intensity And increase in damage to the converter refractory due to highly reactive slag), it is desirable to reduce the amount of phosphorus recovery as much as possible.
[0025]
Further, as described above, the slag produced by the dephosphorization process cannot be completely removed even if it is removed by the slag dragger, and is floating on the hot metal bath surface in the hot metal ladle used as a desulfurization process container. Furthermore, the slag entrained in the hot metal together with the desulfurization flux added during mechanical stirring is surrounded by CaO, which is the main component of the desulfurization flux, and does not cause rephosphorization, but is not entrained in the hot metal. For slag that remains floating, there is a possibility of rebound.
[0026]
Therefore, the present inventors considered that the phosphorus absorption capacity of this floating slag is maintained at a high level, and a gas containing hydrogen gas having high thermal conductivity or a hydrocarbon gas that decomposes to generate hydrogen gas is used as a bath. Instead of blowing in, it was thought that the floating slag was cooled by spraying on the hot metal bath surface. In particular, hydrocarbon gas such as propane absorbs heat when it is decomposed, so it is more effective for cooling slag. In addition, cooling the dephosphorization slag is more advantageous as the dephosphorization reaction is performed at a lower temperature, so that the phosphorus absorption capacity of the dephosphorization slag is maintained at a high level, and the cooled slag is increased in viscosity, or It was thought that it would be convenient for preventing recovery because it solidifies and the reactivity with hot metal decreases.
[0027]
Then, in order to reduce the rephosphorus in the level 2 desulfurization treatment, propane gas was selected as the hydrocarbon gas, and the top blowing experiment was conducted. The experimental conditions are shown in Table 3, and the experimental results are shown in FIG.
[0028]
[Table 3]
Figure 0003861655
[0029]
From FIG. 3, it is clear that almost no recovery occurs when the flow rate of propane gas is 12 liters (standard state) / min / t or more in terms of hydrogen gas. Further, the relationship between the flow rate of propane gas and the desulfurization rate was investigated, and the relationship shown in FIG. 4 was obtained. Here, the recovery rate is defined by the following equation (6), [% P] is the phosphorus concentration in the hot metal, the desulfurization rate is defined by the following equation (7), and [% S] is the hot metal concentration. It is the sulfur concentration inside. Note that the subscripts i and f represent before and after the treatment of dephosphorization or desulfurization, respectively.
[0030]
Recovery rate (%) = ([% P] i − [% P] f ) / [% P] i × 100 (6)
Desulfurization rate (%) = ([% S] i − [% S] f ) / [% S] i × 100 (7)
Moreover, from FIG. 4, the effect which accelerates | stimulates desulfurization reaction is recognized by propane gas being 12 liters (standard state) / min / t or more by the flow volume of hydrogen gas conversion. The oxygen partial pressure of the hot metal before and after the desulfurization treatment was reduced from 4 ppm before the treatment to 0.1 to 0.5 ppm after the treatment. From this, it can be seen that the partial pressure of oxygen after the treatment is reduced by blowing propane gas, and the reducing atmosphere is advantageous for the desulfurization reaction. It was also found that the tip of the propane gas spray lance should be closer to the center of the container on the surface of the hot water.
[0031]
Therefore, the present inventors do not blow hydrogen gas or a gas containing hydrocarbon gas that decomposes to generate hydrogen gas into the bath, but rather 12 liters (standard state) in terms of hydrogen gas on the hot metal bath surface. / min / t or more by blowing a flow rate is to to mechanical agitation and to the second requirement.
[0032]
In the present invention, the gas to be blown is not limited to propane gas, but may be any gas as long as it contains H 2 or decomposes to generate H 2 , such as C gas, H 2 gas, and LNG. . In addition, the desiliconization and dephosphorization process, which is a pre-process of the desulfurization process, may be any processing method such as a topped type or a hot metal ladle type as well as a converter type.
[0033]
Next, the present inventors considered that there is an appropriate timing for blowing propane gas for desulfurization efficiency, and conducted experiments for variously increasing the flow rate of propane gas after the addition of the desulfurizing agent. Table 4 shows an example of the experimental conditions and results.
[0034]
[Table 4]
Figure 0003861655
[0035]
From Table 4, after a certain period of time after the addition of the desulfurizing agent (here, 4 minutes), if the flow rate of propane gas is increased, the desulfurization reaction is promoted even with a relatively small amount of propane gas used (unit consumption). It became clear that the effect became large. According to observations during the experiment, it was confirmed that the desulfurizing agent after the addition was caught in the hot metal, and the flame of propane gas was caught in the hot metal from the periphery of the stirring bar shaft from the time when the hot metal appeared on the molten metal surface. did it.
[0036]
Therefore, the inventors decided to add to the present invention an increase in the amount of hydrogen generation gas added according to this elapsed time. That is, the amount of hydrogen generation gas sprayed increases from the first half to the second half of the elapsed time. Here, the “first half” means the time until the desulfurizing agent is caught in the hot metal and the hot metal appears on the molten metal surface, and the “second half” means the subsequent time.
[0037]
【Example】
Using hot metal from a blast furnace, many low-sulfur steels with a sulfur content of 10 ppm or less were charged and melted. At that time, the hot metal before being supplied to the converter was pretreated in the order of dephosphorization and desulfurization as shown in Table 5. The conditions for the dephosphorization and desulfurization treatment are collectively shown in Table 6. The apparatus shown in FIGS. 1 and 2 was used as the apparatus used. Blowpan gas was employed as the hydrogen generating gas, and the blowing conditions were in accordance with those shown in Table 3. Many charges were melted under such conditions, and the results were evaluated by the average values of S and P of the obtained molten steel as shown in Table 7.
[0038]
From Table 7, it is clear that according to the hot metal pretreatment method according to the present invention, lowering of P and S of hot metal can be realized with high efficiency.
[0039]
[Table 5]
Figure 0003861655
[0040]
[Table 6]
Figure 0003861655
[0041]
[Table 7]
Figure 0003861655
[0042]
【The invention's effect】
As described above, according to the present invention, the efficiency of hot metal dephosphorization reaction and desulfurization reaction is improved, and low P and S are promoted. As a result, the refining load in the converter and secondary refining is reduced, and inexpensive low-phosphorous steel can be melted.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a converter type experimental apparatus used for dephosphorization.
FIG. 2 is a schematic view showing an experimental apparatus used for mechanical stirring type desulfurization.
FIG. 3 is a diagram showing the relationship between the hot phosphorus recovery rate and the flow rate of sprayed propane gas.
FIG. 4 is a graph showing the relationship between the hot metal desulfurization rate and the flow rate of sprayed propane gas.
[Explanation of symbols]
1 Oxygen gas top lance 2 Converter 3 Slag 4 Hot metal 5 Bottom blowing gas (nitrogen gas)
6 Stirring motor 7 Stirring blade 8 Stirring shaft cover 9 Hydrogen generating gas blowing lance 10 Hood 11 Desulfurizing agent 12 Hot metal pan

Claims (1)

脱炭精錬に供せられる溶銑から予め脱燐及び脱硫する溶銑の予備処理方法において、
前記溶銑を酸素ガス、酸化鉄及びCaOを主体とした精錬剤で脱珪及び脱燐した後、溶銑鍋に払い出された溶銑の浴面上へ脱硫剤を投入すると共に、水素ガス又は分解して水素ガスを発生する炭化水素ガスを含むガスを、前記浴面上に溶銑1トン当たり水素ガス換算量で12リットル(標準状態)/min以上の流量で吹き付け、脱硫溶銑中に浸漬した攪拌羽根で機械的に攪拌して脱硫し、且つそのガスの吹き付け流量を、脱硫の前半より後半で多くすることを特徴とする溶銑の予備処理方法
In the hot metal pretreatment method for dephosphorization and desulfurization in advance from the hot metal used for decarburization refining,
After desiliconizing and dephosphorizing the hot metal with a refining agent mainly composed of oxygen gas, iron oxide and CaO, a desulfurizing agent is introduced onto the bath surface of the hot metal discharged to the hot metal ladle and hydrogen gas or decomposed. Stirrer blades which are immersed in desulfurized hot metal by spraying a gas containing hydrocarbon gas that generates hydrogen gas onto the bath surface at a flow rate of 12 liters (standard state) / min or more in terms of hydrogen gas per ton of hot metal The hot metal pretreatment method is characterized in that the desulfurization is performed by mechanically agitation and the flow rate of the gas is increased in the latter half of the first half of the desulfurization .
JP2001326636A 2001-10-24 2001-10-24 Hot metal pretreatment method Expired - Fee Related JP3861655B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001326636A JP3861655B2 (en) 2001-10-24 2001-10-24 Hot metal pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326636A JP3861655B2 (en) 2001-10-24 2001-10-24 Hot metal pretreatment method

Publications (2)

Publication Number Publication Date
JP2003129120A JP2003129120A (en) 2003-05-08
JP3861655B2 true JP3861655B2 (en) 2006-12-20

Family

ID=19142986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326636A Expired - Fee Related JP3861655B2 (en) 2001-10-24 2001-10-24 Hot metal pretreatment method

Country Status (1)

Country Link
JP (1) JP3861655B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5338124B2 (en) * 2008-04-23 2013-11-13 新日鐵住金株式会社 Method for desulfurizing and refining molten iron
JP5423614B2 (en) * 2010-08-18 2014-02-19 新日鐵住金株式会社 Hot metal desulfurization method

Also Published As

Publication number Publication date
JP2003129120A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
CA1058884A (en) Method of producing low sulfur steel
JP3608439B2 (en) Desulfurization method of molten iron alloy
JP3861655B2 (en) Hot metal pretreatment method
JP3918568B2 (en) Method for producing ultra-low sulfur steel
JP2008196026A (en) Method for preliminarily treating molten pig iron
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
JP2003239009A (en) Dephosphorization refining method of hot metal
JP2912963B2 (en) Slag reforming method as desulfurization pretreatment
JP5338124B2 (en) Method for desulfurizing and refining molten iron
JP2833736B2 (en) Hot metal pretreatment method
JP2006241561A (en) Method for preventing development of dust from transporting vessel for molten iron
JP3772725B2 (en) Steel melting method
JPH05156338A (en) Method for reusing low phosphorus converter slag
JP2003166009A (en) Desulfurization method for molten pig iron
JPS625964B2 (en)
JPH08225824A (en) Desulfurization of molten steel
JP2005200762A (en) Method for desulfurizing molten pig iron
JPH0860221A (en) Converter steelmaking method
JP4759832B2 (en) Hot phosphorus dephosphorization method
JP3988578B2 (en) Reuse method of desulfurization slag
JPH111714A (en) Steelmaking method
JP2842248B2 (en) Hot metal desulfurization method
JP2842231B2 (en) Pretreatment of hot metal by bottom-blown gas stirring
JPH0813016A (en) Method for dephosphorizing and desulfurizing molten iron

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Ref document number: 3861655

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees