JP5338124B2 - Method for desulfurizing and refining molten iron - Google Patents

Method for desulfurizing and refining molten iron Download PDF

Info

Publication number
JP5338124B2
JP5338124B2 JP2008112930A JP2008112930A JP5338124B2 JP 5338124 B2 JP5338124 B2 JP 5338124B2 JP 2008112930 A JP2008112930 A JP 2008112930A JP 2008112930 A JP2008112930 A JP 2008112930A JP 5338124 B2 JP5338124 B2 JP 5338124B2
Authority
JP
Japan
Prior art keywords
desulfurization
molten iron
slag
refining
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008112930A
Other languages
Japanese (ja)
Other versions
JP2009263705A (en
Inventor
雄司 小川
昌文 瀬々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008112930A priority Critical patent/JP5338124B2/en
Publication of JP2009263705A publication Critical patent/JP2009263705A/en
Application granted granted Critical
Publication of JP5338124B2 publication Critical patent/JP5338124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refining method for highly efficiently and stably performing desulfurization treatment in a simpler manner without using an LF apparatus and a vacuum-degassing apparatus having high equipment cost and high treatment cost and without adversely affecting environment. <P>SOLUTION: In desulfurization refining of molten iron, hydrogen gas or inert gas containing &ge;30 vol.% hydrogen gas is blown from above desulfurization slag covering the molten iron surface, while performing desulfurization by adding an desulfurizing agent to the molten iron. In another embodiment, in the first step, the desulfurization is performed by adding the desulfurizing agent and in the second step, a part or the whole of the desulfurization slag covering the molten iron surface in the first step is left, and the hydrogen-containing gas is blown from above the left slag. Blowing the hydrogen-containing gas advances vaporization desulfurization from the desulfurization slag, so that the desulfurization from the molten iron into the slag continues, and excellent desulfurization ability is displayed. Further, as the desulfurizing agent, flux substantially containing no fluorine is used and furthermore, the generated slag is used again as the desulfurizing agent. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、極低硫鋼を溶製するための溶鉄の脱硫精錬方法に関する。   The present invention relates to a method for desulfurizing and refining molten iron for melting ultra-low sulfur steel.

一般に、炭素鋼で極低硫鋼(溶鋼の硫黄濃度で[S]≦14ppm)を製造するには、まず溶銑の段階で、ソーダ灰、金属Mg系あるいは石灰系の脱硫剤を用い、強力に予備脱硫を行ない、溶銑の硫黄濃度を20〜50ppm程度に低下させる。そして、該溶銑を転炉等で脱炭精錬を行なった後、得られた溶鋼に対し更に二次精錬を行って脱硫し、最終目標の硫黄濃度にする。その二次精錬で行う脱硫には、下記のような方法が利用される。
(1)取鍋、蓋及び加熱用電極からなる所謂「LF装置」を用い、電気エネルギーによる昇熱とスラグ−メタル精錬とを行い脱硫する方法
(2)取鍋に保持した溶鋼に、ガス吹き込みノズルを介して脱硫剤を大気下で吹き込み脱硫する方法
(3)取鍋に保持した溶鋼をRH等の真空脱ガス槽内で環流させ、上方より脱硫剤を吹き付け、脱硫する方法
(4)取鍋に保持した溶鋼をVOD真空脱ガス槽内にセットし、強撹拌して脱硫する方法
Generally, in order to produce extremely low-sulfur steel (Sulfur concentration of molten steel [S] ≦ 14ppm) with carbon steel, first use soda ash, metallic Mg-based or lime-based desulfurizing agent at the hot metal stage to Pre-desulfurization is performed to reduce the sulfur concentration of the hot metal to about 20 to 50 ppm. Then, after decarburizing and refining the hot metal in a converter or the like, the obtained molten steel is further subjected to secondary refining to desulfurize to a final target sulfur concentration. The following methods are used for desulfurization performed in the secondary refining.
(1) A method of desulfurization using a so-called “LF device” consisting of a ladle, a lid, and a heating electrode, and performing desulfurization by heating with electric energy and slag-metal refining (2) Gas blowing into the molten steel held in the ladle Method of desulfurization by blowing desulfurizing agent in the atmosphere through a nozzle (3) Method of desulfurizing by circulating the molten steel held in the ladle in a vacuum degassing tank such as RH and spraying the desulfurizing agent from above (4) A method in which molten steel held in a pan is set in a VOD vacuum degassing tank and desulfurized by vigorous stirring.

LF装置やVOD真空脱ガス槽を用いない方法としては、予め溶銑の予備処理段階で硫黄濃度を10〜35ppmに低下させた後、プリメルトフラックスの利用と溶鋼中Al濃度の制御により、2ppm以下の硫黄濃度を安定して溶製する方法も提案されている(特許文献1)。   As a method that does not use an LF device or a VOD vacuum degassing tank, the sulfur concentration is reduced to 10 to 35 ppm in advance in the hot metal pretreatment stage, and then 2 ppm or less by using premelt flux and controlling the Al concentration in the molten steel. There has also been proposed a method for producing a stable sulfur concentration (Patent Document 1).

また、簡便に極低硫鋼を製造する方法として、フリーボード内の酸素濃度を低く制御しつつCaO系フラックスとAlを添加する方法も提案されている(特許文献2)。   In addition, as a method for easily producing ultra-low sulfur steel, a method of adding CaO-based flux and Al while controlling the oxygen concentration in the free board low has been proposed (Patent Document 2).

また、特許文献3には、平衡酸素分圧を0.2〜0.8気圧に制御したガスをスラグに吹き付けることで、溶鉄からスラグへの脱硫に併せてスラグからの気化脱硫を進行させる方法が提案されている。   Patent Document 3 discloses a method in which vaporized desulfurization from slag is advanced in conjunction with desulfurization from molten iron to slag by blowing a gas whose equilibrium oxygen partial pressure is controlled to 0.2 to 0.8 atm to slag. Has been proposed.

なお、極低硫鋼を製造する場合には、スラグの脱硫能を高めるために、蛍石などのフッ素を含む脱硫剤を使用するのが一般的となっている。   When producing ultra-low sulfur steel, it is common to use a desulfurization agent containing fluorine such as fluorite in order to enhance the desulfurization ability of slag.

特開平9−217110号公報JP-A-9-217110 特開2004−107716号公報JP 2004-107716 A 特開平1−165709号公報JP-A-1-165709

LF装置を用いる方法は、電力エネルギーで精錬用フラックスを溶かし、溶鋼浴面を覆い、保温に有効な技術である。また、溶融し難い精錬用フラックスでも利用でき、スラグの硫黄保持能力(サルファイドキャパシティ)を高めることができるので、脱硫反応効率が高いという利点がある。しかしながら、LF装置を用いる場合は、多大な電力エネルギーを使うために、製造コストが高くなるばかりでなく、溶製時間が長く、生産性も低いという問題点があった。   The method using the LF apparatus is a technique effective for heat insulation by melting the refining flux with electric power energy and covering the molten steel bath surface. In addition, it can be used even in refining fluxes that are difficult to melt, and the sulfur retention capacity (sulfide capacity) of slag can be increased, which has the advantage of high desulfurization reaction efficiency. However, when the LF apparatus is used, there is a problem in that not only the manufacturing cost increases because of the use of a large amount of electric energy, but also the melting time is long and the productivity is low.

また、VOD真空脱ガス槽を用いる方法は、撹拌力が大きいので、脱硫反応効率は大きいが、溶製時間が長く、処理コストが高いという問題があった。また、溶鋼の強撹拌により、取鍋の内張り耐火物の溶損が著しく大きくなるという問題も生じていた。   Further, the method using the VOD vacuum degassing tank has a problem that the desulfurization reaction efficiency is large because of the large stirring force, but the melting time is long and the processing cost is high. Moreover, the problem that the melting loss of the refractory lining the ladle becomes remarkably large due to the strong stirring of the molten steel has occurred.

特許文献1に記載の方法では、溶銑予備処理と二次精錬での二段精錬が必須となるため、溶銑予備処理に要する時間と費用が莫大になる。また、目標達成が不十分の時には、RH真空脱ガス槽を用いたさらなる脱硫処理、つまり二次精錬だけで2段階の脱硫処理が必要とされるという課題があった。   In the method described in Patent Document 1, since two-stage refining in hot metal pretreatment and secondary refining is essential, the time and cost required for hot metal pretreatment are enormous. Further, when the achievement of the target is insufficient, there is a problem that further desulfurization treatment using the RH vacuum degassing tank, that is, two-stage desulfurization treatment is required only by secondary refining.

また、特許文献2に記載の方法では、硫黄濃度5ppm以下の極低硫鋼の溶製は不可能であり、またAlを使用するため、材質上Al濃度規制がある鋼種やアルミナ系介在物の存在が許されない鋼種には適用できないという課題もあった。   In addition, in the method described in Patent Document 2, it is impossible to melt extremely low-sulfur steel with a sulfur concentration of 5 ppm or less, and since Al is used, the steel type and alumina inclusions that have Al concentration restrictions on the material are used. There was also a problem that it could not be applied to steel types that were not allowed to exist.

特許文献3に記載の方法では、脱硫と同時に脱珪や脱りん精錬も行うため、脱硫能力に限界があり、硫黄濃度30ppm未満の低硫鋼には適用できないという課題があった。   In the method described in Patent Document 3, since desiliconization and dephosphorization are performed simultaneously with desulfurization, there is a limit in desulfurization capability, and there is a problem that it cannot be applied to low-sulfur steel with a sulfur concentration of less than 30 ppm.

さらに、極低硫鋼製造時に一般的に使用されるフッ素を含有するフラックスで脱硫処理を行うと、処理後のスラグにもフッ素が残留する。そのため、スラグ中のフッ素が環境に及ぼす影響を考慮し、鋼の精錬においてもフッ素源の使用を抑えることが要請されている。   Furthermore, when the desulfurization process is performed with a flux containing fluorine that is generally used when manufacturing ultra-low sulfur steel, fluorine remains in the slag after the process. Therefore, in consideration of the influence of fluorine in the slag on the environment, it is required to suppress the use of a fluorine source in steel refining.

本発明は、設備費や処理コストの高いLF装置や真空脱ガス装置を使うことなく、また環境に悪影響を与えることなく、より簡便に、高効率でかつ安定して脱硫処理する精錬方法を提供することを課題とする。   The present invention provides a refining method for performing a desulfurization process more simply, efficiently and stably without using an LF apparatus or a vacuum degassing apparatus with high equipment costs and processing costs and without adversely affecting the environment. The task is to do.

かかる課題を解決するため、本発明の要旨とするところは、以下の通りである。
(1)溶鉄を脱硫精錬するに際し、脱硫剤を添加して脱硫精錬開始時点から、溶鉄表面を覆った脱硫スラグに、当該脱硫スラグの上部から水素ガスまたは水素ガスを30体積%以上含む不活性ガスを吹き付けることを特徴とする溶鉄の脱硫精錬方法。
(2)溶鉄を脱硫精錬するに際し、第一工程として脱硫剤を添加して脱硫を施し、第二工程として溶鉄表面を覆った第一工程の脱硫スラグの一部あるいは全部を残し、該スラグ上部から水素ガスまたは水素ガスを30体積%以上含む不活性ガスを吹き付けることを特徴とする溶鉄の脱硫精錬方法。
(3)脱硫剤として実質的にフッ素を含まないフラックスを使用することを特徴とする上記(1)又は(2)記載の溶鉄の脱硫精錬方法。
(4)上記(1)〜(3)いずれかに記載の溶鉄の脱硫精練方法で発生したスラグを、前記脱硫剤として用いることを特徴とする上記(1)〜(3)いずれかに記載の溶鉄の脱硫精練方法。
In order to solve this problem, the gist of the present invention is as follows.
(1) When desulfurizing and refining molten iron, from the start of desulfurization refining by adding a desulfurizing agent, desulfurization slag covering the surface of the molten iron contains 30% by volume or more of hydrogen gas or hydrogen gas from the top of the desulfurization slag A method for desulfurizing and refining molten iron, characterized by blowing gas.
(2) When desulfurizing and refining molten iron, desulfurization is performed by adding a desulfurizing agent as a first step, and part or all of the desulfurization slag of the first step covering the surface of the molten iron is left as a second step. A method for desulfurizing and refining molten iron, characterized by spraying hydrogen gas or an inert gas containing 30% by volume or more of hydrogen gas.
(3) The method for desulfurizing and refining molten iron according to (1) or (2) above, wherein a flux containing substantially no fluorine is used as a desulfurizing agent.
(4) The slag generated by the desulfurization scouring method for molten iron according to any one of the above (1) to (3) is used as the desulfurization agent, according to any one of the above (1) to (3) Desulfurization smelting method for molten iron.

本発明により、設備費や処理コストの高いLF装置や真空脱ガス装置を使うことなく、また環境に悪影響を与えることなく、より簡便に、かつ高効率で、安定した極低硫鋼を製造することが可能となった。   According to the present invention, a stable ultra-low-sulfur steel is manufactured more easily, efficiently, and stably without using an LF apparatus or a vacuum degassing apparatus with high equipment costs and processing costs, and without adversely affecting the environment. It became possible.

通常の脱硫処理においては、CaO源を添加し、下記(A)式で脱硫反応を進行させる。
CaO+→CaS+ (A)
フラックスとの反応性を向上させるために、またスラグの脱硫能を高めるために、アルミナ源やフッ素源をCaOに混合したり、鉄中の酸素活量を下げるために金属Al等を添加して脱酸したり、雰囲気を減圧化、不活性ガス化したり、という工夫がなされている。溶銑段階では金属Mgを添加して脱酸しつつMgSの形で脱硫する場合もあるが、MgSは不安定であり、最終的にCaSの形でスラグ中に固定される。
In a normal desulfurization treatment, a CaO source is added, and the desulfurization reaction proceeds according to the following formula (A).
CaO + S → CaS + O (A)
In order to improve the reactivity with the flux and to improve the desulfurization ability of the slag, an alumina source or a fluorine source is mixed with CaO, or metal Al or the like is added to lower the oxygen activity in iron. Ingenuity has been made such as deoxidation, decompression of the atmosphere, and inert gas. In the hot metal stage, Mg may be desulfurized in the form of MgS while adding metal Mg, but MgS is unstable and is finally fixed in the slag in the form of CaS.

いずれにしても、平衡硫黄濃度はスラグの硫黄保持能力(サルファイドキャパシティ)と鉄中の酸素活量に依存し、フラックス(スラグ)のみでの脱硫能力には限界があった。   In any case, the equilibrium sulfur concentration depends on the sulfur retention capacity (sulfide capacity) of slag and the oxygen activity in iron, and the desulfurization capacity with flux (slag) alone is limited.

これに対し、本発明者らは、種々の脱硫実験を行う中で、脱硫処理後の硫黄を含むスラグに水素を含有するガスを吹き付けると、雰囲気の酸素分圧の低減により溶鉄の酸素活量も低下して上記(A)式が促進されると同時に、下記(B)式で示される反応により極めて高い気化脱硫能力を有することを知見した。
(S)+H2→H2S↑ (B)
本発明は、その水素によるスラグからの気化脱硫反応を活用したものである。
On the other hand, when the present inventors conducted various desulfurization experiments and sprayed a gas containing hydrogen on the slag containing sulfur after the desulfurization treatment, the oxygen activity of the molten iron was reduced by reducing the oxygen partial pressure of the atmosphere. And the above formula (A) was promoted, and at the same time, it was found that the reaction represented by the following formula (B) has an extremely high vapor desulfurization ability.
(S) + H 2 → H 2 S ↑ (B)
The present invention utilizes the vaporization desulfurization reaction from slag by hydrogen.

以下、本発明の詳細と好ましい実施形態について説明する。   Hereinafter, details and preferred embodiments of the present invention will be described.

本発明では、脱硫処理を施していない、またはある程度事前脱硫処理を施した溶銑や溶鋼を精錬容器に装入する。精錬容器は、トーピードカーでも転炉でも取鍋でも良いが、本発明は転炉のように大きなフリーボードを必須としないことから、トーピードカーや取鍋で実施できる点が特徴である。更に、取鍋は浸漬方式の円筒状の蓋(浸漬管)を溶湯表面に浸漬させ、浸漬管内部の溶湯表面を脱硫に有利なアルゴンガス雰囲気にし易い利点がある。取鍋の上面全面を覆う蓋をかぶせ、取鍋内の溶湯表面全体を不活性ガス雰囲気とすることも可能である。   In the present invention, hot metal or molten steel that has not undergone desulfurization treatment or has undergone some degree of preliminary desulfurization treatment is charged into a refining vessel. The smelting vessel may be a torpedo car, a converter, or a ladle. However, the present invention does not require a large free board as in the converter, and is characterized in that it can be implemented with a torpedo car or a ladle. Further, the ladle has an advantage that a dipping type cylindrical lid (immersion tube) is immersed in the molten metal surface, and the molten metal surface inside the immersion tube is easily made into an argon gas atmosphere advantageous for desulfurization. It is also possible to cover the entire upper surface of the ladle with an inert gas atmosphere over the entire molten metal surface in the ladle.

上記溶銑や溶鋼を精錬容器に装入した後、処理段階(溶銑もしくは溶鋼)や鋼種に応じて適宜選択した生石灰、生石灰とアルミナ源の混合物、生石灰と金属Mgの混合物、生石灰と蛍石の混合物等の脱硫剤を添加し、底吹きガスによる攪拌や機械式攪拌により脱硫剤と溶鉄を混合しつつ第一工程である脱硫処理を施す。なお第一工程の脱硫は、上記の通り脱硫処理によりSが溶鉄上のスラグに含まれるものであれば特に脱硫方法や形態は問わない。   After charging the above hot metal or molten steel into a refining vessel, quick lime, a mixture of quick lime and alumina source, a mixture of quick lime and metal Mg, a mixture of quick lime and metal Mg, a mixture of quick lime and fluorite A desulfurization treatment as the first step is performed while mixing the desulfurization agent and the molten iron by bottom blowing gas or mechanical stirring. The desulfurization in the first step is not particularly limited as long as S is contained in the slag on the molten iron by the desulfurization treatment as described above.

次に、第二工程として、第一工程で生成した脱硫スラグの一部あるいは全部を残し、精錬容器上に設置したランスより水素を含む不活性ガスを吹き付ける。ここで、脱硫スラグの一部だけを残す場合は、少なくとも溶鉄表面の全面をスラグが覆っていれば良い。   Next, as a second step, a part or all of the desulfurization slag generated in the first step is left, and an inert gas containing hydrogen is blown from a lance installed on the refining vessel. Here, when only a part of the desulfurized slag is left, it is sufficient that the slag covers at least the entire surface of the molten iron.

溶鉄中の硫黄は鉄との親和力が強いため、水素ガスを吹き付けても気化脱硫が進行しないが、スラグ中の硫黄は上記(B)式の反応により迅速に気化する。この気化脱硫反応により、溶鉄中のS濃度は第一工程後よりも第二工程後で更に低減する。第二工程後の溶鉄中S濃度を第一工程後のS濃度の50%以下とすることが、本発明の効果が大きく発揮される好適な条件である。   Since sulfur in molten iron has a strong affinity with iron, vapor desulfurization does not proceed even when hydrogen gas is blown, but sulfur in slag is rapidly vaporized by the reaction of the above formula (B). By this vaporization desulfurization reaction, the S concentration in the molten iron is further reduced after the second step than after the first step. Setting the S concentration in the molten iron after the second step to 50% or less of the S concentration after the first step is a suitable condition for greatly exerting the effect of the present invention.

本発明者は種々の脱硫実験から、水素濃度が30体積%超のガスを用いることで大幅に気化脱硫速度が向上することを知見した。気化脱硫速度の観点からは、水素濃度が高い方が望ましく、純水素ガスが最良の実施の形態であるが、ガスコストの点からは水素濃度が低い方が望ましく、処理後の目標硫黄濃度と要求処理時間によって30〜100体積%の間で水素濃度は適宜選択可能である。   The present inventor has found from various desulfurization experiments that the vaporization desulfurization rate is greatly improved by using a gas having a hydrogen concentration of more than 30% by volume. From the viewpoint of vaporization desulfurization rate, a higher hydrogen concentration is desirable, and pure hydrogen gas is the best embodiment, but from the viewpoint of gas cost, a lower hydrogen concentration is desirable, and the target sulfur concentration after treatment The hydrogen concentration can be appropriately selected between 30 and 100% by volume depending on the required treatment time.

この場合、水素ガスを希釈する不活性ガスは、溶銑を処理する場合には、後の脱炭精錬工程で脱窒が進行するため、安価な窒素ガスが望ましいが、溶鋼を処理する場合には吸窒を避けるためアルゴンガスが望ましい。   In this case, the inert gas for diluting the hydrogen gas is preferably an inexpensive nitrogen gas because the denitrification proceeds in the subsequent decarburization and refining process when processing the hot metal, but when processing the molten steel, Argon gas is desirable to avoid nitrogen absorption.

本発明において、水素ガス又は水素ガスを含む不活性ガスを、溶鉄表面を覆った脱硫スラグの上部から吹き付ける。即ち、吹き付けたガスが脱硫スラグを突き抜けて溶鉄表面まで到達することがないように吹き付けている。従って、溶鉄が溶鋼である場合においても、吹き付けた水素含有ガスに起因する溶鋼中水素濃度の上昇は発生しない。   In the present invention, hydrogen gas or an inert gas containing hydrogen gas is blown from the top of the desulfurized slag covering the surface of the molten iron. That is, the sprayed gas is sprayed so as not to penetrate the desulfurization slag and reach the molten iron surface. Therefore, even when the molten iron is molten steel, an increase in the hydrogen concentration in the molten steel due to the sprayed hydrogen-containing gas does not occur.

この第二工程の気化脱硫を利用した脱硫工程は、第一工程である脱硫剤による脱硫工程と同時に行っても構わない。即ち、第一工程と第二工程とに分割せず、溶鉄を脱硫精錬するに際し、脱硫剤を添加して脱硫を施しながら、溶鉄表面を覆った脱硫スラグの上部から水素ガスまたは水素ガスを30体積%以上含む不活性ガスを吹き付けることとしてもよい。   The desulfurization step using vaporization desulfurization in the second step may be performed simultaneously with the desulfurization step using the desulfurization agent that is the first step. That is, when the molten iron is desulfurized and refined without being divided into the first step and the second step, hydrogen gas or hydrogen gas is added from the upper part of the desulfurized slag covering the molten iron surface while adding a desulfurizing agent and performing desulfurization. It is good also as spraying the inert gas containing volume% or more.

さらに好ましくは、第一工程と第二工程とに分割した上で、第一工程において溶鉄中のS量(質量%)が処理前S量(質量%)の20〜70%に低減した後に、第一工程の脱硫スラグの一部あるいは全部を残し、第二工程として気化脱硫を実施すると更に望ましい。この理由は以下の2点である。1点目は、溶鉄中のS量が処理前S量の70%超、すなわち脱硫率が30%未満の段階では、未だスラグ中のS濃度が低いために気化脱硫率が低く、十分な気化脱硫効果が得られない、ということである。2点目は、溶鉄中のS量が処理前S量の20%未満、すなわち脱硫率が80%超の段階まで第一工程を続けると、脱硫の進行が緩慢もしくは停滞しているために、処理時間がかかり過ぎる、ということである。   More preferably, after dividing into the first step and the second step, the S amount (mass%) in the molten iron in the first step is reduced to 20 to 70% of the pre-treatment S amount (mass%), It is more desirable to leave part or all of the desulfurization slag in the first step and perform vaporization desulfurization as the second step. There are two reasons for this. The first point is that when the amount of S in molten iron exceeds 70% of the amount of S before treatment, that is, when the desulfurization rate is less than 30%, the vaporization desulfurization rate is low because the S concentration in the slag is still low, and sufficient vaporization is achieved. This means that the desulfurization effect cannot be obtained. The second point is that when the first step is continued until the S amount in the molten iron is less than 20% of the pre-treatment S amount, that is, the desulfurization rate exceeds 80%, the progress of desulfurization is slow or stagnant. It takes too much processing time.

また、請求項1、2記載の溶鉄表面を覆った脱硫スラグ上部から水素ガスまたは水素ガスを含む不活性ガスを吹き込む際に、前記溶鉄を撹拌することも可能である。撹拌は溶鉄底部のポーラスプラグからアルゴンガスを吹き込むことが望ましく、溶鉄前面を実質的に前記脱硫スラグが覆う状態を維持するために、溶鉄1トンあたり、0.1(Nl/分)〜0.5(Nl/分)の吹き込みガス流量が好ましい。   In addition, when the inert gas containing hydrogen gas or hydrogen gas is blown from the upper part of the desulfurization slag that covers the surface of the molten iron according to claims 1 and 2, it is possible to stir the molten iron. Stirring is preferably performed by blowing argon gas from a porous plug at the bottom of the molten iron. In order to maintain the state where the molten iron front is substantially covered with the desulfurized slag, 0.1 (Nl / min) to 0. A blown gas flow rate of 5 (Nl / min) is preferred.

さらに、本発明においては、大部分の硫黄は気化してスラグから抜けるため、脱硫精錬後のスラグは、次の脱硫精錬処理の脱硫剤として再利用することも可能となる。再利用が可能となることで、新しい脱硫剤を使用する量や、脱硫精練スラグの排出量を大幅に低減することができ、脱硫処理コストや脱硫精練スラグの処理コスト低減に顕著な効果が発揮できる。   Furthermore, in the present invention, most of the sulfur is vaporized and escapes from the slag, so that the slag after desulfurization refining can be reused as a desulfurization agent for the next desulfurization refining treatment. By reusing it, the amount of new desulfurizing agent used and the amount of desulfurized slag slag discharged can be greatly reduced, and it has a significant effect on reducing the desulfurization treatment cost and desulfurization slag treatment cost. it can.

本発明ではまた、フッ素を実質的に添加しなくても十分に高い脱硫能が得られることを特徴としている。気化脱硫を進行させることで脱硫スラグ中のS濃度が低下するので、スラグ中にフッ素を含有させて滓化を促進するまでもなく、十分な脱硫能力を具備しているからである。実質的に添加しないこととは、脱硫精錬後のスラグからフッ素(F)の溶出が顕著には認められないことを指すもので、本発明者らの知見では精錬後のスラグ組成においてFが1質量%以下となる場合を指す。Fが0.5質量%以下であれば更に好ましい。   The present invention is also characterized in that a sufficiently high desulfurization ability can be obtained without substantially adding fluorine. This is because the S concentration in the desulfurized slag is lowered by the progress of vaporization desulfurization, so that sufficient desulphurization capability is provided without promoting the hatching by containing fluorine in the slag. The fact that it is not substantially added means that the elution of fluorine (F) is not recognized remarkably from the slag after desulfurization refining. According to the knowledge of the present inventors, F is 1 in the slag composition after refining. The case where it becomes below mass%. More preferably, F is 0.5% by mass or less.

(実施例1)
高炉から出銑した溶銑を溶銑鍋(350トン)に装入し、第一工程として機械攪拌であるKR装置を用いて脱硫精錬処理を行った。脱硫精錬前の溶銑中S濃度は、0.021〜0.025質量%であった。脱硫精錬剤としては、粒径1mm以下の生石灰粉を溶銑1トン当り5kg使用した。生石灰粉の上方添加後10分間のインペラーによる機械攪拌を行った。その後、インペラーを引き上げ、第二工程として、KR装置に設置した上吹きランスを挿入して、スラグ上面に水素濃度の異なる水素、窒素混合ガスを30Nm3/時の供給速度で5分間吹き付け、溶銑には100Nl/分(約0.29Nl/分・溶銑トン)のアルゴンガスをポーラスプラグより供給した。
Example 1
The hot metal discharged from the blast furnace was charged into a hot metal ladle (350 tons), and desulfurization and refining treatment was performed using a KR apparatus as mechanical stirring as the first step. The S concentration in the hot metal before desulfurization refining was 0.021 to 0.025 mass%. As the desulfurization refining agent, 5 kg of quick lime powder having a particle size of 1 mm or less was used per ton of hot metal. Mechanical stirring with an impeller for 10 minutes after the upward addition of quicklime powder was performed. Thereafter, the impeller is pulled up, and as the second step, an upper blowing lance installed in the KR apparatus is inserted, and hydrogen and nitrogen mixed gases having different hydrogen concentrations are sprayed on the slag upper surface at a supply rate of 30 Nm 3 / hour for 5 minutes. Was supplied with argon gas of 100 Nl / min (about 0.29 Nl / min / ton of molten iron) from a porous plug.

各実施例の結果を、脱硫処理条件とともに表1に示す。なお、表1に示す各平均値は各条件での10〜20chの脱硫処理での値を平均したものである。No.1〜6の実施例が本発明例である。いずれも実施例では安定して処理後のS濃度0.003質量%未満となっており、処理後のスラグ中S濃度も再利用が可能な低濃度となっていることが確認された。   The results of each example are shown in Table 1 together with the desulfurization treatment conditions. In addition, each average value shown in Table 1 averages the value in 10-20ch desulfurization process in each condition. No. Examples 1 to 6 are examples of the present invention. In each example, the S concentration after the treatment was stably less than 0.003 mass%, and it was confirmed that the S concentration in the slag after the treatment was also a low concentration that could be reused.

No.7〜10が比較例である。No.7、8は吹き付けガス中の水素濃度が本発明の下限未満であり、No.9は水素含有ガスの吹き付けを行わず、No.10はガス吹き付けの前に脱硫スラグを全量排出したために、いずれも処理後Sが高く、脱硫を十分に進行させることができなかった。   No. 7 to 10 are comparative examples. No. Nos. 7 and 8 indicate that the hydrogen concentration in the blowing gas is less than the lower limit of the present invention. No. 9 does not spray a hydrogen-containing gas. No. 10 discharged the entire amount of desulfurized slag before gas blowing. Therefore, in all cases, S was high after treatment, and desulfurization could not proceed sufficiently.

Figure 0005338124
Figure 0005338124

(実施例2)
転炉から出鋼した溶鋼を溶鋼鍋(350トン)に装入し、浸漬管を有するCAS装置を用いて脱硫精錬処理を行った。CAS装置とは、溶鋼鍋内の溶鋼上部から円筒形状の浸漬管を挿入し、浸漬管を溶鋼表面に浸漬し、取鍋底からアルゴンガスを吹き込み、アルゴンガスが円筒状の浸漬管内部に浮上することで浸漬管内部をアルゴンガス雰囲気とした上で、浸漬管内部の溶湯に合金添加等の二次精錬を行う装置である。脱硫精錬前の溶鋼中S濃度は、0.005〜0.010質量%であった。脱硫精錬剤としては、粒径1mm以下の生石灰粉とアルミナ粉を質量比6:4で混合したものを溶銑1トン当り5kg使用した。浸漬管内の雰囲気をアルゴンガスで置換した後、第一工程として、精錬剤を上方から添加し、溶鋼鍋底部に設置したポーラスプラグより100Nl/分(約0.29Nl/分・溶鋼トン)のアルゴンガスで10分間攪拌した。その後、第二工程として、CAS装置に設置した上吹きランスを挿入して、スラグ上面に水素濃度の異なる水素、アルゴン混合ガスを30Nm3/時の供給速度で5分間吹き付けた。なおこの際も、溶鋼鍋底部に設置したポーラスプラグより100Nl/分(約0.29Nl/分・溶鋼トン)のアルゴンガスで攪拌している。
(Example 2)
The molten steel discharged from the converter was charged into a molten steel pan (350 tons), and desulfurization refining treatment was performed using a CAS apparatus having a dip tube. The CAS device is a cylindrical dip tube inserted from the top of the molten steel in the molten steel pan, the dip tube is immersed in the molten steel surface, argon gas is blown from the bottom of the ladle, and the argon gas floats inside the cylindrical dip tube. This is an apparatus for performing secondary refining such as addition of an alloy to the molten metal inside the dip tube after setting the inside of the dip tube to an argon gas atmosphere. The S concentration in the molten steel before desulfurization refining was 0.005 to 0.010 mass%. As the desulfurization refining agent, a mixture of quick lime powder having a particle diameter of 1 mm or less and alumina powder in a mass ratio of 6: 4 was used at 5 kg per ton of hot metal. After replacing the atmosphere in the dip tube with argon gas, as the first step, a refining agent is added from above and argon of 100 Nl / min (about 0.29 Nl / min / molten steel ton) from a porous plug installed at the bottom of the molten steel pan Stir with gas for 10 minutes. Thereafter, as a second step, an upper blowing lance installed in the CAS device was inserted, and hydrogen and argon mixed gas having different hydrogen concentrations were sprayed on the upper surface of the slag for 5 minutes at a supply rate of 30 Nm 3 / hour. In this case as well, stirring is performed with argon gas of 100 Nl / min (about 0.29 Nl / min / molten steel ton) from a porous plug installed at the bottom of the molten steel pan.

実施例No.1の水準のみ、第一工程と第二工程とに分割せず、脱硫精錬開始時点から上吹きランスを挿入して、水素、アルゴン混合ガスを上部から15Nm3/時の供給速度で吹き付けながら、上記同条件でポーラスプラグからのアルゴンガスにより溶鋼を攪拌しつつ脱硫精錬を施した。 Example No. Only the level 1 is not divided into the first step and the second step, and an upper blowing lance is inserted from the start of desulfurization refining, and a mixed gas of hydrogen and argon is blown from the top at a supply rate of 15 Nm 3 / hour. Under the same conditions, desulfurization refining was performed while stirring the molten steel with argon gas from a porous plug.

各実施例の結果を、脱硫処理条件とともに表2に示す。なお、表2に示す各平均値は各条件での10〜20chの脱硫処理での値を平均したものである。No.1〜7の実施例が本発明例である。いずれも実施例では安定して処理後のS濃度0.001質量%未満となっており、極低硫鋼が製造可能なことが確認された。   The results of each example are shown in Table 2 together with the desulfurization treatment conditions. In addition, each average value shown in Table 2 averages the value in the desulfurization process of 10-20ch in each condition. No. Examples 1 to 7 are examples of the present invention. In any of the examples, the S concentration after the treatment was stably less than 0.001% by mass, and it was confirmed that extremely low sulfur steel could be produced.

No.8〜11が比較例である。No.8、9は吹き付けガス中の水素濃度が本発明の下限未満であり、No.10は水素含有ガスの吹き付けを行わず、No.11はガス吹き付けの前に脱硫スラグを全量排出したために、いずれも処理後Sが高く、脱硫を十分に進行させることができなかった。   No. 8 to 11 are comparative examples. No. Nos. 8 and 9 indicate that the hydrogen concentration in the blowing gas is less than the lower limit of the present invention. No. 10 does not spray a hydrogen-containing gas. Since No. 11 discharged | emitted all the desulfurization slag before gas blowing, all were high S after a process and desulfurization was not able to fully advance.

Figure 0005338124
Figure 0005338124

Claims (4)

溶鉄を脱硫精錬するに際し、脱硫剤を添加して脱硫精錬開始時点から、溶鉄表面を覆った脱硫スラグに、当該脱硫スラグの上部から水素ガスまたは水素ガスを30体積%以上含む不活性ガスを吹き付けることを特徴とする溶鉄の脱硫精錬方法。 When desulfurizing and refining molten iron, a desulfurizing agent is added and desulfurizing and refining is started , and then desulfurized slag covering the surface of the molten iron is sprayed with hydrogen gas or an inert gas containing 30% by volume or more of hydrogen gas from above the desulfurized slag. A method for desulfurizing and refining molten iron. 溶鉄を脱硫精錬するに際し、第一工程として脱硫剤を添加して脱硫を施し、第二工程として溶鉄表面を覆った第一工程の脱硫スラグの一部あるいは全部を残し、該スラグ上部から水素ガスまたは水素ガスを30体積%以上含む不活性ガスを吹き付けることを特徴とする溶鉄の脱硫精錬方法。   When the molten iron is desulfurized and refined, a desulfurizing agent is added as a first step to perform desulfurization, and as a second step, a part or all of the desulfurized slag in the first step covering the surface of the molten iron is left, and hydrogen gas is supplied from the top of the slag. Or the desulfurization refining method of the molten iron characterized by spraying the inert gas which contains hydrogen gas 30 volume% or more. 脱硫剤として実質的にフッ素を含まないフラックスを使用することを特徴とする請求項1または2記載の溶鉄の脱硫精錬方法。   The method for desulfurizing and refining molten iron according to claim 1 or 2, wherein a flux containing substantially no fluorine is used as the desulfurizing agent. 請求項1〜3のいずれかに記載の溶鉄の脱硫精練方法で発生したスラグを、前記脱硫剤として用いることを特徴とする請求項1〜3のいずれかに記載の溶鉄の脱硫精練方法。   The method for desulfurizing and purifying molten iron according to any one of claims 1 to 3, wherein slag generated by the method for desulfurizing and refining molten iron according to any one of claims 1 to 3 is used as the desulfurizing agent.
JP2008112930A 2008-04-23 2008-04-23 Method for desulfurizing and refining molten iron Active JP5338124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008112930A JP5338124B2 (en) 2008-04-23 2008-04-23 Method for desulfurizing and refining molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008112930A JP5338124B2 (en) 2008-04-23 2008-04-23 Method for desulfurizing and refining molten iron

Publications (2)

Publication Number Publication Date
JP2009263705A JP2009263705A (en) 2009-11-12
JP5338124B2 true JP5338124B2 (en) 2013-11-13

Family

ID=41389927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008112930A Active JP5338124B2 (en) 2008-04-23 2008-04-23 Method for desulfurizing and refining molten iron

Country Status (1)

Country Link
JP (1) JP5338124B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102031336B (en) * 2010-11-29 2012-06-20 湖南斯瑞摩科技有限公司 Particle magnesium desulfurizer/particle magnesium alloy desulfurizer based on magnesium, magnesium alloy and waste materials thereof and preparation method
KR102168836B1 (en) * 2018-12-18 2020-10-22 주식회사 포스코 Refining method of high-purity molten steel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452611A (en) * 1977-10-05 1979-04-25 Nippon Steel Corp Hot iron desulfurization method including regeneration of desulfurizing agent by gasification desulfurization
JPS61143505A (en) * 1984-12-14 1986-07-01 Kawasaki Steel Corp Refining method of high alloy steel
JP3861655B2 (en) * 2001-10-24 2006-12-20 Jfeスチール株式会社 Hot metal pretreatment method
JP2003138306A (en) * 2001-10-29 2003-05-14 Nippon Steel Corp Method for desulfurizing molten iron using plastics
JP2003166009A (en) * 2001-11-28 2003-06-13 Kawasaki Steel Corp Desulfurization method for molten pig iron

Also Published As

Publication number Publication date
JP2009263705A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
JP5910579B2 (en) Melting method of ultra-low nitrogen pure iron
JP5272479B2 (en) Method for desulfurizing and refining molten iron
JP6645374B2 (en) Melting method of ultra low sulfur low nitrogen steel
JP5338124B2 (en) Method for desulfurizing and refining molten iron
JP5200324B2 (en) Desulfurization method for molten steel
JP5458706B2 (en) Method for desulfurizing and refining molten iron
JP3918568B2 (en) Method for producing ultra-low sulfur steel
JP5200380B2 (en) Desulfurization method for molten steel
JP2020180341A (en) Melting method of ultra-low nitrogen steel
JP6024192B2 (en) Method for preventing hot metal after desulphurization
JP5272480B2 (en) Method for desulfurizing and refining molten iron
WO2007116939A1 (en) Method of smelting highly clean steel with extremely low sulfur content
JP5493878B2 (en) Method for desulfurizing and refining molten iron
JP4534734B2 (en) Melting method of low carbon high manganese steel
JP4984928B2 (en) Hot metal desulfurization method
JP6273947B2 (en) Desulfurization treatment method for molten steel
TWI823400B (en) Dephosphorization method of molten iron
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP2008260997A (en) Desulfurization method of molten steel
US20240229177A1 (en) Method for dephosphorization of molten iron
CN117441032A (en) Secondary refining method of molten steel and manufacturing method of steel
JP2021098881A (en) Method for desulfurizing molten steel
TW202246528A (en) Method for refining molten iron
CN117529566A (en) Method for denitriding molten steel, method for simultaneously denitriding and desulfurizing molten steel, and method for producing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130722

R151 Written notification of patent or utility model registration

Ref document number: 5338124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350