JP6273947B2 - Desulfurization treatment method for molten steel - Google Patents

Desulfurization treatment method for molten steel Download PDF

Info

Publication number
JP6273947B2
JP6273947B2 JP2014058320A JP2014058320A JP6273947B2 JP 6273947 B2 JP6273947 B2 JP 6273947B2 JP 2014058320 A JP2014058320 A JP 2014058320A JP 2014058320 A JP2014058320 A JP 2014058320A JP 6273947 B2 JP6273947 B2 JP 6273947B2
Authority
JP
Japan
Prior art keywords
molten steel
cao
desulfurization
steel
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014058320A
Other languages
Japanese (ja)
Other versions
JP2015183202A (en
Inventor
恵一郎 河西
恵一郎 河西
康介 久米
康介 久米
玲洋 松澤
玲洋 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014058320A priority Critical patent/JP6273947B2/en
Publication of JP2015183202A publication Critical patent/JP2015183202A/en
Application granted granted Critical
Publication of JP6273947B2 publication Critical patent/JP6273947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、溶鋼の二次精錬処理中に行う溶鋼の脱硫処理方法に関し、より具体的には、RH等の真空処理装置を用いて、溶鋼を撹拌している最中に粉状のCaOを吹き込むか、もしくは吹き付けて行う溶鋼の脱硫処理方法に関する。   The present invention relates to a molten steel desulfurization treatment method performed during secondary refining treatment of molten steel, and more specifically, powdered CaO is added while stirring molten steel using a vacuum treatment apparatus such as RH. The present invention relates to a desulfurization treatment method for molten steel that is blown or sprayed.

鋼材中において、一般にS(硫黄)は鋼材の加工性や機械的性質を低下させるために、その含有濃度を低くしておくことが望まれている。そのために溶銑段階で脱硫処理されるほか、低硫鋼溶製時には溶鋼段階でも脱硫処理されることが多い。このため、溶銑段階でも溶鋼段階でも、脱硫処理を合理的に行うための工夫が従来から数多く為されている。   In steel materials, S (sulfur) is generally desired to have a low concentration in order to reduce the workability and mechanical properties of steel materials. Therefore, in addition to desulfurization treatment at the hot metal stage, desulfurization treatment is often performed at the molten steel stage when producing low-sulfur steel. For this reason, many ideas have been conventionally made to rationally perform the desulfurization treatment in both the hot metal stage and the molten steel stage.

溶鋼の脱硫処理時に良好な脱硫効率を得るための方法としては、特許文献1に記載された発明のように、脱硫剤としてCaO−CaF系のフラックスを用いると共に、溶鋼上のスラグ組成の適正化、すなわち溶鋼上スラグの(FeO)+(MnO)濃度を下げることが代表的である。CaFはCaOの溶融滓化を促進し生成スラグの融点を下げて流動性を高めるほか、反応性が高いために脱硫効率を向上させる。 As a method for obtaining a good desulfurization efficiency at desulfurization treatment of molten steel, as in the invention described in Patent Document 1, the use of the flux of CaO-CaF 2 based as desulfurizing agent, the proper slag composition on the molten steel Typically, reducing the (FeO) + (MnO) concentration of slag on molten steel is typical. CaF 2 promotes melting and melting of CaO and lowers the melting point of the produced slag to increase fluidity, and also improves desulfurization efficiency because of its high reactivity.

しかし、CaFを含有するフラックスを使用すると、脱硫処理後のスラグにFが含まれることになり、例えばスラグを路盤材等に再利用する際にFが溶出して周辺環境に悪影響を及ぼす可能性がある。したがって、このスラグを厳格に管理したり、再利用する際に制約を設けたりする必要が生じ、スラグ処理の負荷やコストが高くなってしまう問題がある。また、CaFは生成スラグの融点を下げたり、反応性が高いという優れた効果を有しているが、それ故に耐火物を溶損させ易い特性も有していて、耐火物の寿命やコストの点からも使用が好ましくない。 However, if a flux containing CaF 2 is used, F will be contained in the slag after the desulfurization treatment. For example, when the slag is reused for roadbed materials, etc., F may be dissolved and adversely affect the surrounding environment. There is sex. Therefore, it is necessary to strictly manage the slag or to set a restriction when it is reused, and there is a problem that the load and cost of the slag processing are increased. In addition, CaF 2 has an excellent effect of lowering the melting point of the generated slag and having high reactivity. Therefore, it has a characteristic that the refractory is easily melted, and the life and cost of the refractory are reduced. From the point of view, use is not preferable.

そこで、近年では、CaFを使用せずに脱硫処理する技術の開発が進められてきた。そのような技術として、例えば特許文献2に記載された発明のように、添加するCaOの溶融性向上等を目的にCaO−Al系のフラックスを用いる技術や、特許文献3に記載された発明のように、CaOと金属CaまたはCa合金との混合物を脱硫剤として用いる技術等が開示されている。しかし、CaO−Al系のフラックスやCaOと金属CaまたはCa合金との混合物を脱硫剤として用いると、フラックス(脱硫剤)のコストが嵩んでしまう難点がある。 Therefore, in recent years, development of technology for desulfurization treatment without using CaF 2 has been advanced. As such a technique, for example, a technique using a CaO—Al 2 O 3 -based flux for the purpose of improving the meltability of CaO to be added, as in the invention described in Patent Document 2, or described in Patent Document 3 As in the invention, a technique using a mixture of CaO and metallic Ca or Ca alloy as a desulfurizing agent is disclosed. However, when a CaO—Al 2 O 3 -based flux or a mixture of CaO and metallic Ca or Ca alloy is used as a desulfurization agent, there is a problem that the cost of the flux (desulfurization agent) increases.

その上、良好な脱硫効率を得るためには、溶鋼上スラグの(FeO)+(MnO)濃度を下げなければならない。しかし、そうするとスラグの融点が上がって流動性が低下してしまうために、脱硫効率向上を妨げる悪影響が問題となる。したがって、CaOの溶融滓化を促進し生成スラグの融点を下げて流動性を高めるという優れた効果を有しているCaFの使用を、単に止めるということでは問題が解決されない。 Moreover, in order to obtain good desulfurization efficiency, the (FeO) + (MnO) concentration of the slag on molten steel must be lowered. However, if it does so, since melting | fusing point of slag will raise and fluidity | liquidity will fall, the bad influence which prevents a desulfurization efficiency improvement becomes a problem. Therefore, simply suspending the use of CaF 2 which has the excellent effect of promoting the melt hatching of CaO and lowering the melting point of the produced slag to increase the fluidity does not solve the problem.

溶鋼上スラグの(FeO)+(MnO)濃度を下げる方法としては、特許文献1に記載されているように、転炉からの出鋼時に、金属AlまたはAl含有フラックスを取鍋内に投入して溶鋼上スラグを改質する方法が一般的である。しかし、この方法では、溶鋼上スラグの(FeO)+(MnO)濃度を下げると溶鋼の脱酸を伴うために、溶鋼中の窒素濃度[N]が上昇してしまう難点がある。そのため、例えば製品中の[N]≦30ppmが求められるような低N鋼には、適用することが困難である。出鋼完了後にAl等をスラグに投入してスラグを改質するなら、溶鋼中[N]の上昇は抑制されるが、代わりにスラグを改質するためのコストが上昇する。その上、スラグ中に含まれているPがAlで還元されて溶鋼中に戻り易くなり、例えば製品中の[P]≦0.010質量%が求められる様な極低P鋼の脱硫処理には、適用することが容易でない。 As a method for reducing the (FeO) + (MnO) concentration of the slag on molten steel, as described in Patent Document 1, a metal Al or Al-containing flux is introduced into a ladle when steel is output from a converter. Thus, a method of reforming slag on molten steel is common. However, in this method, if the (FeO) + (MnO) concentration of the slag on the molten steel is lowered, the deoxidation of the molten steel is accompanied, so that the nitrogen concentration [N] in the molten steel increases. Therefore, for example, it is difficult to apply to a low N steel in which [N] ≦ 30 ppm in the product is required. If the slag is reformed by adding Al or the like to the slag after the completion of the steel output, the increase in [N] in the molten steel is suppressed, but the cost for reforming the slag increases instead. In addition, P 2 O 5 contained in the slag is easily reduced by Al and easily returned to the molten steel. For example, an extremely low P steel in which [P] ≦ 0.010 mass% in the product is required. It is not easy to apply to desulfurization treatment.

特開平5−214424号公報JP-A-5-214424 特開2011−236456号公報JP 2011-236456 A 特開2003−342631号公報Japanese Patent Application Laid-Open No. 2003-342631

本発明の課題は、従来一般的に用いられていたCaFを使用せず、出鋼時に取鍋内へAlを添加して溶鋼を脱酸したり、溶鋼上のスラグを改質したりせずに、しかも特許文献2,3に記載された発明のようにCaO−Al系のフラックスやCaOと金属CaまたはCa合金との混合物を脱硫剤として用いたりせずに、より安価で合理的な溶鋼脱硫処理手段を提供することである。 The problem of the present invention is that, without using CaF 2 which has been generally used conventionally, Al is added into the ladle at the time of steelmaking to deoxidize the molten steel, or to modify the slag on the molten steel. In addition, as in the inventions described in Patent Documents 2 and 3, a CaO—Al 2 O 3 based flux or a mixture of CaO and metal Ca or Ca alloy is not used as a desulfurization agent, and it is cheaper. It is to provide a reasonable molten steel desulfurization treatment means.

(1)転炉を用いてC含有量が0.01〜0.10質量%の溶鋼を製造した後、当該転炉から取鍋への出鋼中にAlを添加せずに、出鋼完了時の溶鋼の化学組成を、質量%で、C:0.04〜0.20%、Si:0.1〜0.5%,Mn:0.1〜1.5%に調整し、
その後、真空槽と浸漬管を有し、取鍋内の溶鋼中に浸漬管を浸漬して減圧下で精錬する二次精錬装置を用いて溶鋼中にCaO粉を吹き込むか、もしくは吹き付けて行う溶鋼の脱硫処理方法であって、
前記溶鋼の出鋼後から引き続いてAlを添加せずに前記二次精錬装置を用いる二次精錬を開始して、該二次精錬継続中に該溶鋼にCaを溶鋼1t当たりで0.05〜0.10kg添加し、そのCa添加と同時にもしくはその添加完了直後にAlを添加して溶鋼中のsol.Al濃度を0.020〜0.100質量%に調整し、
さらに、該二次精錬を継続して、該溶鋼中にCaO粉を吹き込むか、前記真空槽内の該溶鋼にCaO粉を吹き付けること
を特徴とする溶鋼の脱硫処理方法
(1) After producing molten steel with a C content of 0.01 to 0.10% by mass using a converter, the steel output is completed without adding Al during the steel output from the converter to the ladle. The chemical composition of molten steel at the time was adjusted to C: 0.04 to 0.20%, Si: 0.1 to 0.5%, Mn: 0.1 to 1.5% in mass%,
Then, the molten steel which has a vacuum tank and a dip tube, and blows or blows CaO powder into the molten steel using a secondary smelting apparatus that immerses the dip tube in the molten steel in the ladle and refines it under reduced pressure. A desulfurization processing method of
The secondary refining using the secondary refining apparatus is started without adding Al continuously after the molten steel is discharged, and Ca is added to the molten steel at 0.05 to 1 ton of molten steel during the secondary refining. 0.10 kg was added, Al was added simultaneously with the Ca addition or immediately after the addition was completed, and sol. Adjust the Al concentration to 0.020-0.100 mass% ,
Furthermore, the secondary refining is continued, and a CaO powder is blown into the molten steel, or a CaO powder is sprayed onto the molten steel in the vacuum tank .

本発明によって、従来一般的に用いられていたCaFを使用せず、出鋼時に取鍋内へAlを添加して溶鋼を脱酸したり、溶鋼上のスラグを改質したりせずに、しかもCaO−Al系のフラックスやCaOと金属CaまたはCa合金との混合物を脱硫剤として用いたりせずに、安価で合理的に溶鋼脱硫処理を行うことができる。 According to the present invention, without using CaF 2 that has been generally used in the past, without adding deoxidation of the molten steel by adding Al into the ladle at the time of steelmaking, or modifying the slag on the molten steel Moreover, the molten steel desulfurization treatment can be performed reasonably at low cost without using a CaO—Al 2 O 3 -based flux or a mixture of CaO and metallic Ca or Ca alloy as a desulfurization agent.

本発明は、転炉からの出鋼時にAlまたはAl合金を脱酸剤として使用する必要がないため、製品中の[N]≦30ppmが求められるような低窒素鋼や、製品中の[P]≦0.010質量%が求められるような極低燐鋼の脱硫処理に、特に適している。   In the present invention, since it is not necessary to use Al or an Al alloy as a deoxidizing agent when steel is output from a converter, low nitrogen steel that requires [N] ≦ 30 ppm in the product or [P in the product] ] ≦ 0.010 mass% is particularly suitable for desulfurization treatment of ultra-low phosphorus steel.

図1は、試験Iにおいて、生石灰粉の吹込み量を2kg/tとして脱硫処理した後に溶鋼中から採取した溶鋼サンプル中の介在物組成の分布を示すグラフである。FIG. 1 is a graph showing the distribution of inclusion composition in a molten steel sample taken from molten steel after desulfurization treatment with a quick lime powder injection rate of 2 kg / t in Test I. 図2は、試験IにおけるCaO粉インジェクション継続中の溶鋼脱硫率の推移と、試験IIにおけるCa添加後のCaO粉インジェクション継続中の溶鋼脱硫率の推移とを、対比して示すグラフである。FIG. 2 is a graph showing, in comparison, the transition of the molten steel desulfurization rate while continuing CaO powder injection in Test I and the transition of the molten steel desulfurization rate while continuing CaO powder injection after adding Ca in Test II. 図3は、試験IにおけるCaO粉インジェクションに伴う溶鋼中介在物の組成変化を、CaO粉吹込み量別に、横軸にCaOとAlとの質量濃度比(CaO/Al)をとり、縦軸にその介在物のS質量濃度をとって示すグラフである。FIG. 3 shows the composition change of inclusions in molten steel accompanying CaO powder injection in Test I, with the CaO and Al 2 O 3 mass concentration ratio (CaO / Al 2 O 3 ) on the horizontal axis for each CaO powder injection amount. Is a graph showing the S mass concentration of the inclusions on the vertical axis. 図4は、試験IIにおけるCaO粉インジェクションに伴う溶鋼中介在物の組成変化を、CaO粉吹込み量別に、横軸にCaOとAlとの質量濃度比(CaO/Al)をとり、縦軸にその介在物のS質量濃度をとって示すグラフである。FIG. 4 shows the composition change of inclusions in molten steel due to CaO powder injection in Test II, with the CaO and Al 2 O 3 mass concentration ratio (CaO / Al 2 O 3 ) on the horizontal axis for each CaO powder injection amount. Is a graph showing the S mass concentration of the inclusions on the vertical axis. 図5は、Ca吹込み直後の溶鋼中の介在物の組成を、横軸に酸化物換算したCa濃度、縦軸にS濃度を取って示すグラフである。FIG. 5 is a graph showing the composition of inclusions in the molten steel immediately after Ca blowing, with the horizontal axis representing the Ca concentration in terms of oxide and the vertical axis representing the S concentration. 図6は、試験Iおよび試験IIにおいて調査した、RHでの二次精錬前後の溶鋼上スラグの(FeO+MnO)%と脱硫反応効率とを並べて示すグラフである。FIG. 6 is a graph showing the (FeO + MnO)% and the desulfurization reaction efficiency of the slag on the molten steel before and after the secondary refining with RH, investigated in Test I and Test II.

本発明を実施するための形態を説明する。以降の説明では、化学組成に関する「%」は「質量%」を意味する。   A mode for carrying out the present invention will be described. In the following description, “%” related to chemical composition means “% by mass”.

本発明は、転炉を用いて溶鋼を製造した後、当該転炉から取鍋への出鋼中にAlを添加せずにSiとMnを添加し、その後、真空槽と浸漬管を有し、取鍋内の溶鋼中に浸漬管を浸漬して減圧下で精錬する二次精錬装置を用いて、引き続きAlを添加せずに減圧下での二次精錬を開始し、溶鋼にCaを添加すると同時に、もしくはCaの添加完了直後にAlを添加し、さらに、その後、溶鋼中にCaO粉を吹き込むか、真空槽内の溶鋼にCaO粉を吹き付けることを特徴とする、溶鋼の脱硫処理方法である。   In the present invention, after manufacturing molten steel using a converter, Si and Mn are added without adding Al to the steel discharged from the converter to the ladle, and then a vacuum tank and a dip tube are provided. Then, using a secondary refining equipment that smelts the dip tube in the molten steel in the ladle and refines under reduced pressure, secondary refining under reduced pressure is started without adding Al, and Ca is added to the molten steel. At the same time or immediately after the addition of Ca is completed, Al is added, and then CaO powder is blown into the molten steel, or CaO powder is sprayed onto the molten steel in the vacuum tank. is there.

より具体的には、転炉を用いてC:0.01〜0.10%の溶鋼を製造した後、当該転炉から取鍋への出鋼中にAlを添加せずに、フェロシリコンやフェロマンガン等のSiやMnを含有する合金鉄を添加し、必要に応じてC源も添加して、出鋼完了時の溶鋼の化学組成を、C:0.04〜0.20%、Si:0.1〜0.5%,Mn:0.1〜1.5%に調整する。出鋼中にフェロシリコンやフェロマンガン等を添加して溶鋼の化学成分を上記の範囲に調整することにより、Alを添加しなくても取鍋内の溶鋼が適度に脱酸されると共に、取鍋内溶鋼上のスラグも本発明に係る脱硫処理の障害にならない程度まで脱酸される。   More specifically, after producing molten steel of C: 0.01 to 0.10% using a converter, without adding Al during steel output from the converter to a ladle, ferrosilicon or An alloy iron containing Si or Mn such as ferromanganese is added, and a C source is also added if necessary, and the chemical composition of the molten steel at the time of completion of steel production is C: 0.04 to 0.20%, Si : 0.1 to 0.5%, Mn: 0.1 to 1.5%. By adjusting the chemical composition of the molten steel to the above range by adding ferrosilicon, ferromanganese, etc. to the steel output, the molten steel in the ladle is appropriately deoxidized without adding Al, and The slag on the molten steel in the pan is also deoxidized to the extent that it does not hinder the desulfurization treatment according to the present invention.

この後、真空槽と浸漬管を有し、取鍋内の溶鋼中に浸漬管を浸漬して減圧下で精錬するRH等の二次精錬装置を用いて、脱ガスや溶鋼中成分の調整を必要に応じて行うと共に溶鋼中に少量のCaを添加して溶鋼を脱酸し、それと同時にもしくはそのCaの添加を完了した直後に当概溶鋼にAlを添加して、sol.Al:0.020〜0.100%の範囲で当概溶鋼の向け先製品規格に合致するようにAl濃度を調整する。その後、二次精錬を中断せずに、続けて当該溶鋼中にCaOを添加して溶鋼を脱硫処理する。   After this, use a secondary refining equipment such as RH that has a vacuum tank and a dip tube, immerses the dip tube in the molten steel in the ladle and refines it under reduced pressure, and adjusts the components in the molten steel. When necessary, a small amount of Ca is added to the molten steel to deoxidize the molten steel, and at the same time or immediately after the addition of the Ca is completed, Al is added to the molten steel. Al: The Al concentration is adjusted in the range of 0.020 to 0.100% so as to meet the destination product specification of this generally molten steel. Then, without interrupting secondary refining, CaO is continuously added to the molten steel to desulfurize the molten steel.

したがって本発明を実施するための二次精錬装置には、例えば、特開2000−73116号公報の図1に示された装置(RH−PB)や、特開昭62−196317号公報の3図(イ)に示された装置(RHインジェクション)のように、溶鋼を真空槽内に吸い上げて環流させる等の溶鋼撹拌機構と、その溶鋼撹拌中の溶鋼にCa源を添加する装置と、CaO源を吹き付けるか、もしくは吹き込む装置とが付設されている必要がある。   Therefore, the secondary refining apparatus for carrying out the present invention includes, for example, the apparatus (RH-PB) shown in FIG. 1 of Japanese Patent Laid-Open No. 2000-73116, and FIG. As in the apparatus (RH injection) shown in (a), a molten steel stirring mechanism for sucking and circulating the molten steel into the vacuum chamber, an apparatus for adding a Ca source to the molten steel being stirred, and a CaO source Or a device for blowing must be attached.

溶鋼中に浸漬する浸漬管は、1本でも2本以上でも良い。また、Ca源は金属Caのほか、カルシウムシリコンやカルシウムフェライト等の合金の形態でも良い。その添加方法は、Caの質量で溶鋼1t当たり0.05〜0.10kgを、ワイヤー状にして浸漬管の近くから溶鋼中に送り込むか、最大粒径が1mm以下の粉状にして真空槽内に設置されている上吹きランスから溶鋼面へ吹き付けるか、あるいは溶鋼中に浸漬させたランスからインジェクションして添加すればよい。   One or two or more dip tubes may be immersed in the molten steel. The Ca source may be in the form of an alloy such as calcium silicon or calcium ferrite in addition to the metal Ca. The addition method is 0.05 to 0.10 kg per 1 ton of molten steel in the form of a wire in the form of a wire and is fed into the molten steel from the vicinity of the dip tube, or the maximum particle size is 1 mm or less in the form of powder and the inside of the vacuum chamber It may be added by spraying from the upper spray lance installed on the surface of the molten steel or by injecting from a lance immersed in the molten steel.

CaO源は、CaOを90%以上含有する生石灰を通常用いるが、CaO−Al系のフラックスを用いることもできる。ただし、CaO源の添加は、上吹きランスを用いて真空槽内の溶鋼に吹き付けるか、浸漬ランスを用いて溶鋼中に吹き込むか、或いは浸漬管に設けた羽口から溶鋼中に吹き込むか、いずれにしてもArなどのキャリアガスと共に吹付けるか、吹き込むかにより行う必要がある。したがって、CaO源は粉状である必要があり、最大粒径は1mm以下が想定される。但し、溶鋼中での溶解やSとの反応の速さを考えると粒径は細かいほど好ましいと言え、具体的には最大粒径が0.5mm以下等の微粉を用いることが好ましい。 As the CaO source, quick lime containing 90% or more of CaO is usually used, but CaO—Al 2 O 3 type flux can also be used. However, the CaO source may be added by spraying the molten steel in the vacuum tank using an upper blowing lance, blowing it into the molten steel using an immersion lance, or blowing it into the molten steel from a tuyere provided on a dip tube. Anyway, it is necessary to carry out by blowing with a carrier gas such as Ar. Therefore, the CaO source needs to be powdery, and the maximum particle size is assumed to be 1 mm or less. However, considering the speed of dissolution in molten steel and the reaction with S, it can be said that the smaller the particle size, the more preferable. Specifically, it is preferable to use fine powder having a maximum particle size of 0.5 mm or less.

このCa源およびCaO源の溶鋼中への添加は、次の手順で行う。上記したように、出鋼完了時に化学組成を、C:0.04〜0.20%、Si:0.1〜0.5%、Mn:0.1〜1.5%に調整した溶鋼を、前記した二次精錬装置を用いて先ずCaを添加する。そのCa質量は、溶鋼1t当たり0.05〜0.10kgとすることが好ましい。このCaの添加と同時にまたはCaの添加を完了した直後にAlをsol.Al:0.020〜0.100%であって、かつ製品規格の範囲内に収まるように添加し、その後CaO源を供給する。   The addition of the Ca source and the CaO source into the molten steel is performed according to the following procedure. As described above, the molten steel whose chemical composition was adjusted to C: 0.04 to 0.20%, Si: 0.1 to 0.5%, and Mn: 0.1 to 1.5% at the completion of steel production First, Ca is added using the secondary refining apparatus described above. The Ca mass is preferably 0.05 to 0.10 kg per ton of molten steel. Simultaneously with the addition of Ca or immediately after the completion of the addition of Ca, Al is sol. Al: 0.020 to 0.100% and added so as to be within the range of product specifications, and then a CaO source is supplied.

C,Si,Mn,sol.Alの4成分を上記のように順番に調整することは、溶鋼1t当たりで0.05〜0.10kgという少量のCaを溶鋼に吹き付けるか吹き込むかして溶鋼中の酸素と反応させてCaOを生成させ、その次にAlを添加してCa添加により脱酸された後に残っている溶鋼中酸素と反応させてAlを生成させ、それを先に溶鋼中に生成させておいたCaOと反応させてCaO−Alを生成させ、さらにその生成したCaO−Alを続けて供給されるCaOと反応させて、溶鋼中硫黄との反応効率を高めるという、本発明に係る脱硫処理の基本的な技術思想を実施するために重要である。 C, Si, Mn, sol. In order to adjust the four components of Al in order as described above, a small amount of 0.05 to 0.10 kg of Ca per 1 ton of molten steel is blown into or blown into the molten steel and reacted with oxygen in the molten steel to cause CaO. Then, Al is added and reacted with oxygen in the molten steel remaining after deoxidation by addition of Ca to produce Al 2 O 3 , which was previously produced in the molten steel. It is reacted with to produce a CaO-Al 2 O 3, further reacted with CaO is continuously supplied to CaO-Al 2 O 3 which generated them, of increasing the reaction efficiency between the molten steel sulfur, the present invention This is important for implementing the basic technical idea of such desulfurization treatment.

転炉からの出鋼時にAlを添加せずに向先製品の規格上必要なSiとMnを添加して、取鍋内の溶鋼とスラグとを脱酸しておくことで、二次精錬中にCaを添加したりCaOを添加したりして行う溶鋼の脱硫反応進行をスラグ中の酸素が妨害するという状況を、合理的に回避することができる。   During secondary refining by adding Si and Mn, which are required in the specifications of the destination product, without adding Al when steel is output from the converter, and deoxidizing the molten steel and slag in the ladle. The situation in which oxygen in the slag obstructs the progress of the desulfurization reaction of the molten steel by adding Ca or adding CaO to the steel can be reasonably avoided.

また、Alを添加せずにSiとMnを添加して溶鋼を脱酸しておくことで、溶鋼中にAlが殆ど無い状態で適量の酸素が存在しているため、所定の少量Ca添加によって溶鋼中にCaOを生成させて分散させておくことができる。 In addition, by adding Si and Mn without adding Al and deoxidizing the molten steel, an appropriate amount of oxygen is present in the molten steel with almost no Al 2 O 3, so a predetermined small amount CaO can be produced and dispersed in molten steel by addition of Ca.

このような状態で、製品規格上必要なsol.Al:0.020〜0.10%になるようにAlを添加すると、先に溶鋼中に分散させておいた生成CaOと新たにAlを添加して生成させたAlとが反応して、CaO−Al化合物がCaOの供給前から生成される。 In such a state, the sol. When Al is added so as to be 0.020 to 0.10%, the produced CaO previously dispersed in the molten steel reacts with Al 2 O 3 produced by newly adding Al. Thus, the CaO—Al 2 O 3 compound is generated before the supply of CaO.

この条件下で微粉のCaOを吹込みまたは吹付けによって供給することで、先に生成させておいたCaO−Al化合物を核にして、それらの化合物と新たに供給されたCaO粉とが合体し、CaO−Al化合物中のCaO濃度が徐々に高まって、脱硫効率向上効果を奏するようになるという経過をたどると考える。 By supplying fine powder of CaO by blowing or spraying under these conditions, the compound and the newly supplied CaO powder are prepared using the previously formed CaO-Al 2 O 3 compound as a nucleus. Are combined, and the CaO concentration in the CaO—Al 2 O 3 compound gradually increases, so that the effect of improving the desulfurization efficiency is achieved.

従来の溶鋼脱硫処理では、CaO−CaF系の脱硫フラックスを用いることが多かった。この理由は、(1)脱硫剤であるCaOは融点が高く単独では溶融し難いために、CaFを併用して溶融させること、及び(2)溶鋼上スラグのS吸収能力(サルファイドキャパシティ)をCaOとCaFとを併用して高め、溶鋼の脱硫を促進すると共に当該スラグから溶鋼中への復硫を抑制すること、の2つの効果により高効率に脱硫できたからと考えられる。しかし、CaF含有フラックスの使用には前記した問題があることから、CaFを含まないフラックスを用いる脱硫方法の開発が進められてきた。 In the conventional molten steel desulfurization treatment, a CaO—CaF 2 -based desulfurization flux is often used. This is because (1) CaO, which is a desulfurizing agent, has a high melting point and is difficult to melt alone, so that it is melted together with CaF 2 and (2) S absorption capacity of slag on molten steel (sulfide capacity) This is considered to be due to the fact that desulfurization of molten steel was promoted by two effects of enhancing CaO and CaF 2 in combination to promote desulfurization of the molten steel and suppressing sulfurization from the slag into the molten steel. However, the use of CaF 2 -containing flux has the above-mentioned problems, and therefore, development of a desulfurization method using a flux not containing CaF 2 has been advanced.

しかし、前述したように、開示された発明ではCaO−Al系の脱硫フラックスを用意して用いたり、CaとCaOとを併用してCaによる脱硫を行ったりと、コスト的に高価になる。また、それらの発明はAlを用いて十分に脱酸した後に脱硫フラックスを添加するために、溶鋼中にNが吸収されてしまったり、スラグから溶鋼中にPが戻ってしまったりという問題がある。 However, as described above, in the disclosed invention, a CaO—Al 2 O 3 -based desulfurization flux is prepared and used, or when Ca and CaO are used together and desulfurization with Ca is performed, it is expensive. Become. Moreover, since those inventions add desulfurization flux after fully deoxidizing using Al, there exists a problem that N will be absorbed in molten steel or P will return in molten steel from slag. .

これに対し、本発明では、二次精錬装置で所定の少量のCaを添加する前には、Alを添加しない。したがって、溶鋼中にNが吸収されたりスラグからPが戻ったりする問題は大幅に小さくなっている。また、Caは溶鋼中Sと反応させて脱硫するためでなく、溶鋼中の酸素と反応させて微細なCaOを溶鋼中に分散させる目的で使用する。この微細なCaOは、続いて添加するAlが残りの酸素と反応してAlを生成すると、その生成Alと反応して比較的に融点の低いCaO−Al系介在物となる核となる。この介在物が核となって、続けて供給されるCaO粉と反応して脱硫能力の高いCaO−Al系介在物となり、この介在物が溶鋼中Sと反応して溶鋼を脱硫するようにする。 In contrast, in the present invention, Al is not added before a predetermined small amount of Ca is added in the secondary refining apparatus. Therefore, the problem that N is absorbed in the molten steel or P returns from the slag is greatly reduced. Moreover, Ca is used not for the purpose of desulfurization by reacting with S in the molten steel but for the purpose of dispersing fine CaO in the molten steel by reacting with oxygen in the molten steel. The fine CaO subsequently the Al generates Al 2 O 3 reacts with the remaining oxygen to be added, the product Al 2 O 3 and reacts with lower CaO-Al 2 O 3 system having a melting point relatively It becomes a nucleus that becomes an inclusion. This inclusion serves as a nucleus and reacts with the continuously supplied CaO powder to form a CaO—Al 2 O 3 -based inclusion having a high desulfurization capability. This inclusion reacts with S in the molten steel to desulfurize the molten steel. Like that.

したがって、添加したCaは、CaSとはならずに、脱硫能力の高いCaO−Al系介在物を生成させる核となるようにして、それがSを吸収するように制御するので、効率の高い脱硫が達成されるのである。 Therefore, the added Ca does not become CaS but serves as a nucleus that generates CaO—Al 2 O 3 inclusions having a high desulfurization capability, and is controlled so as to absorb S. High desulfurization is achieved.

このような本発明は、次のような実験による確認を経て完成された。   The present invention as described above has been completed through confirmation by the following experiment.

CaFを使用しない場合、まず上記(1)のようにCaOの溶融を促進させられないという懸念がある。この懸念に関して、試験Iとして従来発明のように、転炉からの出鋼時にSiやMnと共にAlを添加して溶鋼とスラグとを脱酸した後、RHで成分調整等を済ませてからCaO粉を溶鋼中に吹き込む試験と、試験IIとして本発明のように、転炉からの出鋼時にSiやMnを添加するとともにAlを添加せずに溶鋼とスラグとを脱酸した後、RHで成分調整等を済ませてCaを添加し、続けてAlを添加し、その後にCaO粉を溶鋼中に吹き込む試験とを行って、溶鋼中の介在物の性状を比較調査した。 When CaF 2 is not used, there is a concern that the melting of CaO cannot be promoted as in (1) above. Regarding this concern, as in Test I, as in the case of the conventional invention, after deoxidizing the molten steel and slag by adding Al together with Si and Mn at the time of steel from the converter, the CaO powder is adjusted with RH and the like. After the deoxidation of the molten steel and slag without adding Al and adding Si and Mn at the time of steel leaving from the converter as test II in the present invention as a test II, the component is formed with RH. After adjustment and the like, Ca was added, Al was subsequently added, and then a test in which CaO powder was blown into the molten steel was conducted, and the properties of the inclusions in the molten steel were comparatively investigated.

但し試験Iの出鋼時のAl添加量は、先述したNピックアップ等の影響が出ない範囲で行い、具体的にはsol.Al濃度が0.001%を超えない範囲(0.5kg/t程度)で添加した。   However, the amount of Al added at the time of steel production in Test I is within a range that does not affect the above-described N pickup and the like. The Al concentration was added within a range not exceeding 0.001% (about 0.5 kg / t).

試験I(従来型)
転炉で溶鋼中[C]を0.03〜0.08%に脱炭吹錬した溶鋼400tに対し、転炉から取鍋への出鋼時には溶鋼にSi、MnおよびAlを添加して、出鋼完了時点での溶鋼成分をC:0.04〜0.20%、Si:0.1〜0.5%,Mn:0.1〜1.5%、sol.Al:0.001%以下に調整した。その後に、RHを用いて溶鋼環流処理を開始し、最大粒径が0.5mm以下の生石灰粉を、特開昭62−196317号公報の3図(イ)に示された浸漬ランスを通じて、溶鋼1t当たりのCaO質量で1〜4kg吹き込んだ。
Test I (conventional type)
For 400t of molten steel that was decarburized and blown to 0.03-0.08% in the molten steel in the converter, Si, Mn, and Al were added to the molten steel when steel was discharged from the converter to the ladle. The molten steel components at the time of completion of steel production were C: 0.04 to 0.20%, Si: 0.1 to 0.5%, Mn: 0.1 to 1.5%, sol. Al: 0.001% The following adjustments were made. Thereafter, molten steel reflux treatment was started using RH, and quick lime powder having a maximum particle size of 0.5 mm or less was passed through the immersion lance shown in FIG. 3 (A) of JP-A-62-296317. 1-4 kg was blown in the mass of CaO per ton.

試験II(本発明型)
転炉で溶鋼中[C]を0.03〜0.08%に脱炭吹錬した溶鋼400tに対し、転炉から取鍋への出鋼時には溶鋼にAlを一切添加せず、SiとMnを添加して脱酸し、出鋼完了時点での溶鋼成分をC:0.04〜0.20%、Si:0.1〜0.5%,Mn:0.1〜1.5%に調整し、その後にRHを用いて、その溶鋼環流処理中にCaをカルシウムシリコンにより特開昭62−196317号公報の3図(イ)に示された浸漬ランスを通じて、溶鋼1t当たりのCa質量で0.05〜0.12kg吹き込むと同時に、Alを添加して、さらにsol.Alを0.020〜0.100%とした後、最大粒径が0.5mm以下の生石灰粉を、Caを吹き込んだのと同じ浸漬ランスを通じて溶鋼1t当たりのCaO質量で1〜3kg吹き込んだ。
Test II (Invention type)
For 400t of molten steel that was decarburized and blown to 0.03-0.08% in the molten steel in the converter, Al was not added to the molten steel at the time of steel removal from the converter to the ladle. Is added to deoxidize, and the molten steel components at the time of completion of steel production are changed to C: 0.04 to 0.20%, Si: 0.1 to 0.5%, Mn: 0.1 to 1.5% After adjustment, using RH, during the molten steel recirculation treatment, Ca is converted into calcium by calcium silicon through a dipping lance shown in FIG. 3 (A) of Japanese Patent Laid-Open No. 62-196317. At the same time as 0.05-0.12 kg was blown in, Al was added and sol. After Al was adjusted to 0.020 to 0.100%, quick lime powder having a maximum particle size of 0.5 mm or less was blown in an amount of 1 to 3 kg at a CaO mass per 1 ton of molten steel through the same immersion lance as that into which Ca was blown.

これらの結果を、図1〜6に示す。   These results are shown in FIGS.

先ず、図1は、試験I(従来型)において、生石灰粉の吹込み量を2kg/tとして脱硫処理した後に溶鋼中から採取した溶鋼サンプル中の介在物組成の分布を示すグラフである。このグラフ中の「第1回の丸囲み数字」は、それぞれ第1回目の調査対象溶鋼から採取した溶鋼サンプルの番号である。第2回目では溶鋼サンプルを3個採取したが、いずれも同様な分析結果であったために、3個目のみについて結果を図示した。   First, FIG. 1 is a graph showing the distribution of inclusion composition in a molten steel sample taken from molten steel after desulfurization treatment with a quick lime powder injection rate of 2 kg / t in Test I (conventional type). The “first rounded numbers” in this graph are the numbers of the molten steel samples collected from the first investigation target molten steel. In the second round, three molten steel samples were collected. Since all the results were the same, only the third sample was shown.

この調査結果において、介在物を構成していた化合物の成分は基本的にCaOとAlであったため、図1のグラフの横軸にはCaO−Alの2元系でのAl濃度を示し、縦軸には各溶鋼サンプル中にランダムに見つけた介在物の個数(N数)をAl濃度別に示した。 In this investigation result, since the components of the compound constituting the inclusion were basically CaO and Al 2 O 3 , the horizontal axis of the graph of FIG. 1 shows the binary system of CaO—Al 2 O 3 . The Al 2 O 3 concentration is shown, and the number of inclusions (N number) randomly found in each molten steel sample is shown on the vertical axis for each Al 2 O 3 concentration.

この結果、このような脱硫処理後の溶鋼中介在物は、CaOが35%でAlが65%というものが中心であると分かった。このような介在物は、1600℃でのAl飽和濃度の組成に該当している。 As a result, it was found that the inclusions in the molten steel after such desulfurization treatment were mainly CaO 35% and Al 2 O 3 65%. Such inclusions correspond to the composition of Al 2 O 3 saturation concentration at 1600 ° C.

Alの起源は、脱酸による生成が考えられるが、この結果よりCaOを単体で吹き込んでも溶鋼中に存在しているAlと反応してCaO−Al化合物を生成することにより、十分に溶融しているものが多いことが分かった。CaOを生石灰等の単体で吹き込んで脱硫効率を高めようとする場合、そのCaOの融点は溶鋼温度よりもはるかに高いので、そのような生石灰等の単体のままでは目的達成が困難であると考えられてきた。そのために、従来ではCaFを用いたり、CaO−Al系フラックスを用いたりしていた。 The origin of Al 2 O 3 can be considered to be generated by deoxidation. From this result, even if CaO is blown alone, it reacts with Al 2 O 3 present in the molten steel to produce a CaO—Al 2 O 3 compound. By doing so, it was found that many were sufficiently melted. When CaO is blown with a simple substance such as quicklime to increase the desulfurization efficiency, the melting point of the CaO is much higher than the molten steel temperature, so it is difficult to achieve the purpose with such a simple substance such as quicklime. Has been. Therefore, conventionally, CaF 2 or a CaO—Al 2 O 3 type flux has been used.

しかし、吹き込んだCaOと溶鋼中に存在しているAlとが反応してCaO−Al化合物を生成するのであれば、その反応に必要な最少限のAlが存在していればよいと考えられる。その必要な最少限のAl量は、溶鋼脱硫処理温度(約1600℃)で液相となり、かつCaOの活量を高位に保つことができる、60%CaO−40%Alを生成させる量が適当と推察される。 However, if the blown CaO reacts with Al 2 O 3 present in the molten steel to produce a CaO—Al 2 O 3 compound, the minimum Al 2 O 3 necessary for the reaction is present. It is thought that it should have done. The minimum amount of Al 2 O 3 required is 60% CaO-40% Al 2 O 3 which becomes a liquid phase at the molten steel desulfurization temperature (about 1600 ° C.) and can keep the activity of CaO high. It is presumed that the amount that produces is appropriate.

図2は、試験IにおけるCaO粉インジェクション継続中の溶鋼脱硫率の推移と、試験IIにおけるCa添加後のCaO粉インジェクション継続中の溶鋼脱硫率の推移とを、対比して示すグラフである。   FIG. 2 is a graph showing, in comparison, the transition of the molten steel desulfurization rate while continuing CaO powder injection in Test I and the transition of the molten steel desulfurization rate while continuing CaO powder injection after adding Ca in Test II.

脱硫率の定義は以下とする。   The definition of desulfurization rate is as follows.

脱硫率(%)={(CaO粉吹込前[S]%)−(CaO粉吹込後[S]%)}/(CaO粉吹込前[S]%)×100
この試験Iにおいて、CaO粉の添加量が溶鋼1t当たりで4kgまで増えるにつれて脱硫率が上昇しているので、CaO粉の単独添加でも溶鋼脱硫が進行していることは分かる。
Desulfurization rate (%) = {(before CaO powder injection [S]%) − (after CaO powder injection [S]%)} / (before CaO powder injection [S]%) × 100
In this test I, the desulfurization rate increases as the amount of CaO powder added increases to 4 kg per ton of molten steel, so that it can be seen that molten steel desulfurization proceeds even when CaO powder is added alone.

ただし、この条件ではCaO粉の添加前に溶鋼中に多量のAlが存在しているために、CaO粉吹込み量が少ないインジェクション初期には溶鋼中に見つかる介在物の組成がAlのままに近く、そのような介在物は溶鋼中Sの吸収が少ないものと考えられる。 However, since a large amount of Al 2 O 3 is present in the molten steel before the addition of CaO powder under these conditions, the composition of inclusions found in the molten steel is Al 2 at the initial stage of injection when the amount of CaO powder blown is small. remains near O 3, such inclusions are believed absorption in the molten steel S is small.

一方、試験IIでは、少量のCaを添加した後にCaO粉のインジェクションを始めるので、その際のCaO粉添加量の増加に伴う溶鋼脱硫率の推移を示している。CaO粉のインジェクションを開始した後の脱硫率の向上速度は、Caを添加していない試験Iの場合よりも明らかに高いことが確認された。   On the other hand, in Test II, since the injection of CaO powder is started after a small amount of Ca is added, the transition of the molten steel desulfurization rate with the increase of the CaO powder addition amount at that time is shown. It was confirmed that the rate of improvement of the desulfurization rate after starting the injection of CaO powder was clearly higher than in the case of Test I in which no Ca was added.

この効果は、試験IIでは溶鋼中にAl脱酸に伴うAlがない状態でCaが少量添加されて、溶鋼中酸素濃度を低減すると共にCaOを生成しているので、その状態で製品規格に合致するようにAlが添加される結果、溶鋼中で生成されるAl量が試験Iに比べて少なく、生成されるAlは先に溶鋼中に生成されているCaOと反応してCaO−Al化合物となることに起因すると考えられる。また、このような介在物は、先に図1に関して説明したように、溶鋼中で溶融していることが期待され、溶鋼中のSとの反応と吸収に有利であると考えられる。 In Test II, a small amount of Ca is added to the molten steel in the absence of Al 2 O 3 due to Al deoxidation in the molten steel to reduce the oxygen concentration in the molten steel and produce CaO. results Al is added to conform to the standards, small compared to the amount of Al 2 O 3 generated in molten steel test I, Al 2 O 3 to be generated are generated in the molten steel above CaO It is thought that it originates in reacting with to become a CaO—Al 2 O 3 compound. In addition, as described above with reference to FIG. 1, such inclusions are expected to be melted in the molten steel and are considered to be advantageous for reaction and absorption with S in the molten steel.

そこで、試験Iと試験IIのそれぞれについてCaO吹込み量の増加に伴う溶鋼中介在物組成の変化状況を調査した。   Then, the change situation of the inclusion composition in molten steel with the increase in CaO blowing amount was investigated about each of Test I and Test II.

図3,4は、CaO粉インジェクションに伴う溶鋼中介在物の組成変化を、CaO粉吹込み量別に、横軸にCaOとAlとの質量濃度比(CaO/Al)をとり、縦軸にその介在物のS質量濃度をとって示すグラフである。 3 and 4 show the composition change of inclusions in molten steel accompanying CaO powder injection, and the mass concentration ratio (CaO / Al 2 O 3 ) of CaO and Al 2 O 3 on the horizontal axis according to the amount of CaO powder blown. The vertical axis represents the S mass concentration of the inclusions.

試験Iにおける介在物組成の変化は、図3のグラフに示したように、CaO吹込み量が少ない初期段階ではCaO/Alが小さく、純Alに近いCaO/Alが0〜1.0未満のものであった。このような介在物は溶鋼中で固相であって、S吸収能力が低いために、介在物中のS含有濃度は実質0%であった。しかし、CaO吹込み量が3kg/tを超えると、CaO/Alが1.0付近から2.0を超えるものも存在していて、介在物が溶融状態にあってS吸収能力も高まってくるため、介在物中のS含有濃度も高くなっていた。 As shown in the graph of FIG. 3, the change in inclusion composition in Test I is such that CaO / Al 2 O 3 is small in the initial stage where the amount of CaO blown is small, and CaO / Al 2 O close to pure Al 2 O 3. 3 was 0 to less than 1.0. Such inclusions are in a solid phase in the molten steel, and the S-absorbing ability is low, so the S-containing concentration in the inclusions was substantially 0%. However, when the CaO blowing amount exceeds 3 kg / t, some CaO / Al 2 O 3 exceeds 1.0 from about 1.0, and the inclusions are in a molten state and the S absorption capacity is also high. Since it increased, the S content concentration in the inclusions was also high.

一方、試験IIにおける介在物組成の変化は、図4のグラフに示したように、CaOの吹き込みを始める前の時点からCaO/Alが1.0〜2.0のものが認められたので、前記した添加Ca起源のCaOがAlと反応して、CaO吹き込み前からCaO−Al化合物を形成していたことが確認された。その後、CaO吹込み量を増やして行くと、CaO吹込み量が1kg/tでもCaO/Alが0近くから2.0を超えるものまで認められ、Ca初期添加をしてない試験Iの介在物と違って、CaO吹き込みの初期段階からCaO/Alが1.0を超えるCaO−Al化合物が存在していた。このような化合物は溶鋼中で液相であってS吸収能力も高いので、介在物中にSを吸収したことが確認された。 On the other hand, as shown in the graph of FIG. 4, the change in the inclusion composition in Test II was observed when CaO / Al 2 O 3 was 1.0 to 2.0 from the time before the start of CaO blowing. were so, CaO additive Ca origin described above reacts with Al 2 O 3, it had formed a CaO-Al 2 O 3 compound from the previous blowing CaO was confirmed. Thereafter, when the CaO blowing amount was increased, even when the CaO blowing amount was 1 kg / t, the CaO / Al 2 O 3 was recognized from near 0 to over 2.0, and the test I without initial Ca addition was performed. Unlike the inclusions, CaO—Al 2 O 3 compounds with CaO / Al 2 O 3 exceeding 1.0 were present from the initial stage of CaO blowing. Since such a compound is in a liquid phase in molten steel and has a high S absorption capacity, it was confirmed that S was absorbed in the inclusions.

このように、図2〜4のグラフにより示した調査結果により、前記した推察が正しいこと、すなわち初期にAl生成量を抑えてCaを添加したことにより、脱硫効率が向上したことが確認された。 As described above, according to the investigation results shown in the graphs of FIGS. 2 to 4, it is confirmed that the above-described inference is correct, that is, desulfurization efficiency is improved by adding Ca while suppressing the generation amount of Al 2 O 3 in the initial stage. confirmed.

ところで、Caは高価であるため、必要最低限の量で最大効果を享受することが望ましい。そこで、初期に吹き込むCaの必要量について検討を行った。一般的に極低S鋼は[Mn]や[Si]を或る程度含有しており、転炉出鋼時にAlを使用しなくても、ある程度SiやMn系の合金を添加し、成分調整を行う場合が多い。   By the way, since Ca is expensive, it is desirable to receive the maximum effect with the minimum necessary amount. Therefore, the necessary amount of Ca blown in the initial stage was examined. In general, ultra-low S steel contains [Mn] and [Si] to some extent, and even if Al is not used at the time of steel leaving the converter, Si or Mn alloy is added to some extent to adjust the components. Is often performed.

本発明は、そのような条件での適用を想定していることから、転炉から取鍋への出鋼中にAlを添加せずに、出鋼完了時の溶鋼の化学組成を、C:0.04〜0.20%、Si:0.1〜0.5%,Mn:0.1〜1.5%に調整することを発明特定事項の一つとして規定している。そこで、その同じ条件下で試験Iと試験IIを行って、Ca添加条件やCaO吹込み条件等を調査検討した。   Since the present invention is assumed to be applied under such conditions, the chemical composition of the molten steel at the time of completion of the steel output is determined by adding C during the steel output from the converter to the ladle, and C: The adjustment to 0.04 to 0.20%, Si: 0.1 to 0.5%, and Mn: 0.1 to 1.5% is specified as one of the matters specifying the invention. Therefore, Test I and Test II were performed under the same conditions, and Ca addition conditions and CaO blowing conditions were investigated.

この条件下では、溶鋼中の溶存酸素は30ppm程度となっている。この条件下であれば、溶鋼中の酸素量を低減してAl添加によるAl生成量を抑えるためのCa添加必要量を、コスト的に問題がない程度まで少なくできることが期待される。そこで、図2のグラフに示したように、Ca添加量を溶鋼1t当たりで0.05kgとして、その後製品規格に見合うsol.Al濃度になるようにAlを添加してからCaO粉をインジェクションしてみた結果、CaO吹込み初期から従来法よりも脱硫率が高く、所期のCa添加効果を発揮していることが確認された。 Under this condition, the dissolved oxygen in the molten steel is about 30 ppm. Under these conditions, it is expected that the required amount of Ca addition for reducing the amount of oxygen in the molten steel and suppressing the amount of Al 2 O 3 produced by the addition of Al can be reduced to a point where there is no problem in terms of cost. Therefore, as shown in the graph of FIG. 2, the Ca addition amount is set to 0.05 kg per 1 ton of molten steel, and sol. As a result of injecting CaO powder after adding Al so as to have an Al concentration, it was confirmed that the desulfurization rate is higher than the conventional method from the initial stage of CaO blowing and that the desired Ca addition effect is exhibited. It was.

Ca量を増加するとCaO吹込み原単位当たりの脱硫率が高まったために、吹込みCaOによる脱硫効率は向上すると分かったが、Ca量が0.12kg/tの場合のCa吹込み直後の溶鋼中の介在物組成を見ると、CaSが多量に生成していることが分かった。本発明は、Ca添加によってCaが直接脱硫反応を起こすことは意図していないため、CaSが多量に生成してしまうのは本発明の技術的思想から外れている。   It was found that the desulfurization rate per unit injection of CaO increased when the amount of Ca was increased, so that the desulfurization efficiency by injection CaO was improved, but in the molten steel immediately after Ca injection when the amount of Ca was 0.12 kg / t. From the inclusion composition, it was found that a large amount of CaS was produced. Since the present invention does not intend to cause a direct desulfurization reaction due to the addition of Ca, a large amount of CaS is not included in the technical idea of the present invention.

図5は、Ca吹込み直後の溶鋼中の介在物の組成を、横軸に酸化物換算したCa濃度、縦軸にS濃度を取って示すグラフである。   FIG. 5 is a graph showing the composition of inclusions in the molten steel immediately after Ca blowing, with the horizontal axis representing the Ca concentration in terms of oxide and the vertical axis representing the S concentration.

図5のグラフに示したように、CaOとして40%を超えた付近から、ある傾きを持ってS濃度が上昇している傾向がみられた。これは、40%とはCaO−Al系において溶鋼温度で液相となる組成であり、その傾きはCaとSの化学量論比と近いことから、CaO換算で濃度の高い介在物はCaO+CaSとなっている可能性が高いものである。Ca添加量が0.05kg/tや0.06kg/tと比べて、それが0.12kg/tのほうが吹込み直後の高S濃度介在物生成量が多かったことから、Ca量が多くなるとそのCaが直接脱硫剤として機能してしまうことが示唆された。そのような条件でCaを使用することは、コスト面から見て非常に負荷が高いため、初期のCa量としては0.1kg/t程度で十分であると言える。 As shown in the graph of FIG. 5, there was a tendency that the S concentration increased with a certain slope from the vicinity of over 40% as CaO. This is a composition in which 40% is a liquid phase at the molten steel temperature in the CaO—Al 2 O 3 system, and since the slope is close to the stoichiometric ratio of Ca and S, inclusions having a high concentration in terms of CaO Is likely to be CaO + CaS. Compared with 0.05 kg / t or 0.06 kg / t, the amount of Ca added increases because the amount of inclusions of high S-concentration inclusions immediately after blowing was higher when the amount of Ca was 0.12 kg / t. It was suggested that the Ca functions directly as a desulfurization agent. The use of Ca under such conditions has a very high load in terms of cost, so it can be said that an initial Ca amount of about 0.1 kg / t is sufficient.

なお、出鋼時に多量のAl等で脱酸することで出鋼中に脱酸生成Alを十分に発生させ二次精錬での処理前までの浮上を促進することでも同様の効果を得られるが、出鋼時に多量のAlで脱酸する場合には、背景技術の欄で述べたような課題があり、本手法ではこれを回避できる利点がある。 The same effect can be obtained by deoxidizing with a large amount of Al or the like at the time of steel output to sufficiently generate deoxidized Al 2 O 3 in the steel output and promoting floating before the treatment in secondary refining. Although it is obtained, when deoxidizing with a large amount of Al at the time of steel production, there are problems as described in the background art section, and this method has an advantage of avoiding this.

また、CaFを使用しない場合には、前記したように溶鋼上スラグのS吸収能力(サルファイドキャパシティ)が低下して、溶鋼中から介在物となって浮上して一旦スラグ中に入ったSが溶鋼に戻ってしまう復硫の増大が懸念される。一般的に復硫の抑制には溶鋼上スラグの(FeO)+(MnO)濃度を下げることが有効であるが、本手法の場合、溶存したCaがスラグ−メタル界面においてスラグを還元し、スラグの(FeO)+(MnO)濃度を低下する役割も果たすことが期待される。 When CaF 2 is not used, as described above, the S absorption capacity (sulfide capacity) of the slag on the molten steel is reduced, and the S that once floats as an inclusion from the molten steel and enters the slag. There is concern about the increase in sulfurization that returns to molten steel. In general, it is effective to reduce the (FeO) + (MnO) concentration of slag on molten steel in order to suppress sulfurization. However, in this method, dissolved Ca reduces slag at the slag-metal interface, and slag It is also expected to play a role of reducing the (FeO) + (MnO) concentration.

そこで、図6には、試験Iおよび試験IIにおいて調査した、RHでのCaO粉吹込後の溶鋼上スラグの(FeO+MnO)%と脱硫反応効率とを並べて示す。ここで、脱硫反応効率(K値)は、次の(i)式のように定義している。   Therefore, FIG. 6 shows (FeO + MnO)% of the slag on the molten steel after CaO powder injection with RH and the desulfurization reaction efficiency, which were investigated in Test I and Test II. Here, the desulfurization reaction efficiency (K value) is defined as the following equation (i).

K値=ln{(脱硫処理前[S]%/脱硫処理後[S]%)}/CaO原単位(kg/t)・・・(i)
K値は、脱硫時の脱硫剤利用効率を表す指標で、横軸に粉体原単位、縦軸に対数(ln)で[S]を取った場合の傾きに相当する。この値が大きいほど、同一粉体量での脱硫率が高く、効率が良いと言える。
K value = ln {(before desulfurization treatment [S]% / after desulfurization treatment [S]%)} / CaO basic unit (kg / t) (i)
The K value is an index representing the desulfurization agent utilization efficiency at the time of desulfurization, and corresponds to the slope when [S] is taken as the powder basic unit on the horizontal axis and logarithm (ln) on the vertical axis. It can be said that the larger this value, the higher the desulfurization rate with the same amount of powder and the higher the efficiency.

図6のグラフに示したように、試験Iの生石灰粉吹込みだけでの脱硫処理と比べてスラグの(FeO+MnO)濃度が低く、それに応じて脱硫反応効率(K値)が高かったことが確認された。Caを添加した試験IIでは溶鋼上スラグの(FeO+MnO)濃度が低いこともあって、それが脱硫剤にCaFを用いないことによるスラグのS吸収能力(サルファイドキャパシティ)低下の悪影響を補っているため、スラグからの復硫が起き難くなって、脱硫剤としてはCaOの吹込みのみでも良好な脱硫処理が実現できていると考えられる。 As shown in the graph of FIG. 6, it was confirmed that the slag (FeO + MnO) concentration was lower than the desulfurization treatment in which only the quick lime powder was blown in Test I, and the desulfurization reaction efficiency (K value) was higher accordingly. It was done. In Test II with addition of Ca, the (FeO + MnO) concentration of the slag on the molten steel is low, which compensates for the adverse effect of reducing the S absorption capacity (sulfide capacity) of the slag by not using CaF 2 as a desulfurization agent. Therefore, it is unlikely that sulfurization from slag occurs, and it is considered that a satisfactory desulfurization treatment can be realized only by blowing CaO as a desulfurization agent.

金属CaまたはCa合金を活用する例としては、先述した特許文献3のような例もある。その場合のCaの役割は、溶鋼中の酸素活量を低減することが目的となっているが、上述の通り本発明の様にベースとしての脱硫剤をCaOと考えた場合には、Caの目的は過度のAlの生成によってCaOの活量を下げないことである。したがって、この場合には、金属Caは初期に一括して吹き込んだほうが有効である。また、初期に吹き込むほうが図6のグラフにより示したような鍋上スラグの酸化度低減効果も処理初期から享受することができる。以上から、初期にCaを吹き込むほうが必要Ca量として少なくすることができるといえる。 As an example of utilizing the metal Ca or Ca alloy, there is an example such as Patent Document 3 described above. In this case, the role of Ca is to reduce the oxygen activity in the molten steel. However, as described above, when the desulfurizing agent as a base is considered as CaO as in the present invention, The purpose is not to reduce the activity of CaO by excessive production of Al 2 O 3 . Therefore, in this case, it is more effective to blow metal Ca all at once in the initial stage. In addition, the effect of reducing the degree of oxidation of the pan slag as shown in the graph of FIG. From the above, it can be said that the amount of Ca required can be reduced by blowing Ca in the initial stage.

以下、実施例を示す。   Examples are shown below.

転炉で脱珪脱燐脱炭吹錬を行った溶鋼400tを取鍋に出鋼した後、RH真空脱ガス装置での処理中に粉体を吹き込むことで溶鋼脱硫を行った。転炉出鋼時にはMn合金及びSi合金によって脱酸を行い、[Si],[Mn]をそれぞれ0.1%、1.1%とした。二次精錬では、処理初期に金属Caを30%含有したカルシウムシリコンを、特開昭62−196317号公報の3図(イ)に示された装置(RHインジェクション)のインジェクションランスを通じて、Ca質量で0.06kg/t吹き込むと同時に、Alを0.5kg/t投入して、sol.Al濃度を0.033%にした。その直後、連続して最大粒径が0.5mmの生石灰により上記のインジェクションランスを通じて、3kg/tのCaO粉の吹込みを行った。   400 t of molten steel subjected to desiliconization, dephosphorization and decarburization blowing in a converter was taken out into a ladle, and then molten steel was desulfurized by blowing powder during the treatment in the RH vacuum degassing apparatus. Deoxidation was performed with a Mn alloy and a Si alloy at the time of leaving the converter, and [Si] and [Mn] were set to 0.1% and 1.1%, respectively. In the secondary refining, calcium silicon containing 30% of metallic Ca in the initial stage of treatment is converted into Ca mass through the injection lance of the apparatus (RH injection) shown in FIG. 3 (A) of Japanese Patent Laid-Open No. Sho 62-196317. At the same time as 0.06 kg / t was blown, 0.5 kg / t of Al was charged and sol. The Al concentration was 0.033%. Immediately thereafter, 3 kg / t of CaO powder was blown through the injection lance with quick lime having a maximum particle size of 0.5 mm.

その結果、[S]は33ppmから14ppmまで低減した。このときの脱硫反応効率(K値)は、0.29であった。   As a result, [S] was reduced from 33 ppm to 14 ppm. The desulfurization reaction efficiency (K value) at this time was 0.29.

一方、転炉にて同一の操業を行い、RHにてカルシウムシリコンを吹き込むことなくCaO粉を4.3kg/t吹き込んだところ、[S]は40ppmから18ppmまでしか低下しなかった。このときの脱硫反応効率(K値)は、0.19であり、RH処理の初期にCaを添加する本発明の実施結果に比べて低い反応効率であった。   On the other hand, when the same operation was carried out in the converter and CaO powder was blown in 4.3 kg / t without blowing calcium silicon in RH, [S] decreased only from 40 ppm to 18 ppm. The desulfurization reaction efficiency (K value) at this time was 0.19, which was lower than the result of the present invention in which Ca was added at the initial stage of the RH treatment.

Claims (1)

転炉を用いてC含有量が0.01〜0.10質量%の溶鋼を製造した後、当該転炉から取鍋への出鋼中にAlを添加せずに、出鋼完了時の溶鋼の化学組成を、質量%で、C:0.04〜0.20%、Si:0.1〜0.5%,Mn:0.1〜1.5%に調整し、
その後、真空槽と浸漬管を有し、取鍋内の溶鋼中に浸漬管を浸漬して減圧下で精錬する二次精錬装置を用いて溶鋼中にCaO粉を吹き込むか、もしくは吹き付けて行う溶鋼の脱硫処理方法であって、
前記溶鋼の出鋼後から引き続いてAlを添加せずに前記二次精錬装置を用いる二次精錬を開始して、該二次精錬継続中に該溶鋼にCaを溶鋼1t当たりで0.05〜0.10kg添加し、そのCa添加と同時にもしくはその添加完了直後にAlを添加して溶鋼中のsol.Al濃度を0.020〜0.100質量%に調整し、
さらに、該二次精錬を継続して、該溶鋼中にCaO粉を吹き込むか、前記真空槽内の該溶鋼にCaO粉を吹き付けること
を特徴とする溶鋼の脱硫処理方法。
After manufacturing molten steel having a C content of 0.01 to 0.10% by mass using a converter, Al is not added during the steel output from the converter to the ladle, and the molten steel at the time of completion of steel output. The chemical composition is adjusted in mass% to C: 0.04 to 0.20%, Si: 0.1 to 0.5%, Mn: 0.1 to 1.5%,
Then, the molten steel which has a vacuum tank and a dip tube, and blows or blows CaO powder into the molten steel using a secondary smelting apparatus that immerses the dip tube in the molten steel in the ladle and refines it under reduced pressure. A desulfurization processing method of
The secondary refining using the secondary refining apparatus is started without adding Al continuously after the molten steel is discharged, and Ca is added to the molten steel at 0.05 to 1 ton of molten steel during the secondary refining. 0.10 kg was added, Al was added simultaneously with the Ca addition or immediately after the addition was completed, and sol. Adjust the Al concentration to 0.020-0.100 mass% ,
Furthermore, the secondary refining is continued, and a CaO powder is blown into the molten steel, or a CaO powder is sprayed onto the molten steel in the vacuum tank.
JP2014058320A 2014-03-20 2014-03-20 Desulfurization treatment method for molten steel Active JP6273947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014058320A JP6273947B2 (en) 2014-03-20 2014-03-20 Desulfurization treatment method for molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014058320A JP6273947B2 (en) 2014-03-20 2014-03-20 Desulfurization treatment method for molten steel

Publications (2)

Publication Number Publication Date
JP2015183202A JP2015183202A (en) 2015-10-22
JP6273947B2 true JP6273947B2 (en) 2018-02-07

Family

ID=54350104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014058320A Active JP6273947B2 (en) 2014-03-20 2014-03-20 Desulfurization treatment method for molten steel

Country Status (1)

Country Link
JP (1) JP6273947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115418430B (en) * 2022-07-17 2023-07-28 新疆八一钢铁股份有限公司 Operation method for duplex smelting ladle cold steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696734B2 (en) * 1990-04-09 1994-11-30 住友金属工業株式会社 Method for producing clean steel with excellent resistance to hydrogen-induced cracking
JP3221812B2 (en) * 1995-03-06 2001-10-22 新日本製鐵株式会社 Low oxygen steel smelting method
JP3463573B2 (en) * 1998-08-31 2003-11-05 住友金属工業株式会社 Manufacturing method of ultra clean ultra low sulfur steel

Also Published As

Publication number Publication date
JP2015183202A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
CN1074712A (en) The method of refining of high purity steel
RU2608865C2 (en) Method of desulphurising steel
JP2008063647A (en) Method for desulfurizing molten steel
JPH09217110A (en) Method for melting extra-low sulfur steel
JP5272479B2 (en) Method for desulfurizing and refining molten iron
JP6273947B2 (en) Desulfurization treatment method for molten steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP5888194B2 (en) Desulfurization method for molten steel
JP2012184501A (en) Method for desulfurizing molten steel
JP5333542B2 (en) Desulfurization method for molten steel and molten iron alloy
JP2007254844A (en) Method for desulfurizing molten steel
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
JP5338124B2 (en) Method for desulfurizing and refining molten iron
JP4984928B2 (en) Hot metal desulfurization method
JP2021059759A (en) Production method of ultra-low sulfur stainless steel
JP4534734B2 (en) Melting method of low carbon high manganese steel
TWI823400B (en) Dephosphorization method of molten iron
JPH08225824A (en) Desulfurization of molten steel
JP5293759B2 (en) Desulfurization method for molten steel
JP4360239B2 (en) Method for desulfurization of molten steel in vacuum degassing equipment
JP5481899B2 (en) Hot metal desulfurization agent and desulfurization treatment method
JP5272480B2 (en) Method for desulfurizing and refining molten iron
JPH10102135A (en) Method for desulfurizing molten steel
JP2008260997A (en) Desulfurization method of molten steel
JP2024016505A (en) Melting method of high purity steel

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R151 Written notification of patent or utility model registration

Ref document number: 6273947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350