JP3463573B2 - Manufacturing method of ultra clean ultra low sulfur steel - Google Patents

Manufacturing method of ultra clean ultra low sulfur steel

Info

Publication number
JP3463573B2
JP3463573B2 JP24516698A JP24516698A JP3463573B2 JP 3463573 B2 JP3463573 B2 JP 3463573B2 JP 24516698 A JP24516698 A JP 24516698A JP 24516698 A JP24516698 A JP 24516698A JP 3463573 B2 JP3463573 B2 JP 3463573B2
Authority
JP
Japan
Prior art keywords
molten steel
desulfurization
flux
slag
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24516698A
Other languages
Japanese (ja)
Other versions
JP2000073116A (en
Inventor
光裕 沼田
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP24516698A priority Critical patent/JP3463573B2/en
Publication of JP2000073116A publication Critical patent/JP2000073116A/en
Application granted granted Critical
Publication of JP3463573B2 publication Critical patent/JP3463573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、高清浄極低硫鋼の
溶製方法に関する。 【0002】 【従来の技術】S(硫黄)は鋼材、特に厚板材の機械的
特性、耐腐食性を低下させる不純物であり、特にライン
パイプ用鋼では水素誘起割れの原因となる。近年の製品
要求性能はますます向上しており、一層のS低減が要求
されている。また、介在物も水素誘起割れの起点となる
ため、介在物低減、すなわち清浄度の向上が同時に要求
される。 【0003】一方、製鋼工程においてSを低減する処理
は脱硫処理と呼ばれるが、脱硫処理ではSを低減するこ
とに加え、短時間でかつ簡便な方法で処理を完了するこ
とも重要である。これは、溶鋼温度の低下や脱硫剤の大
量消費等によるコスト悪化を抑制するためである。 【0004】製鋼工程での脱硫処理は大きく分けて2種
類の方法がある。一つは脱硫能力の高いスラグを溶鋼表
面に形成させ、溶鋼をガスバブリング等の手法により撹
拌する方法である。攪拌によって、溶鋼とスラグ間の反
応を促進させ、溶鋼中Sをスラグ中へ移行させる方法で
ある。この場合のスラグ組成はCaOを40〜60重量
%含有したCaO−Al2 3 −SiO2 系スラグが一
般的に用いられる。このスラグにMgOやCaF2 が含
有させる場合もある。 【0005】もう一つの方法は、脱硫能力の高いフラッ
クスをガスとともに溶鋼中に吹き込む方法(インジェク
ション法)である。この方法では、溶鋼に吹き込まれた
脱硫フラックスが溶鋼中を浮上していく過程で溶鋼中S
と反応し、反応後のSは溶鋼表面のスラグに吸収される
ことによって、脱硫が進行する。 【0006】いずれの方法においても、下記(1) 式に示
す化学反応で脱硫が進行する。 【0007】 (CaO)+S=(CaS)+O (1) ただし、(CaO)はスラグまたは脱硫フラックス中の
CaO、(CaS)はスラグまたは脱硫フラックス中の
CaS、SおよびOは溶鋼中のSおよびOである。 【0008】(1) 式から明らかなように、脱硫をより進
行させるには、(ア) CaO量を増大させる、(イ) 溶鋼中
O濃度を低くする、(ウ) スラグまたはフラックス中のC
aS飽和溶解度を増加させる、ことが有効である。具体
的には(ア) に対してはスラグ量または脱硫フラックス量
の増量、(イ) に対してはAl、Ca等での脱酸強化、
(ウ) に対してはスラグや脱硫フラックスへのCaF2
アルミナの所定量配合、がある。また、CaF2 やアル
ミナの配合はスラグや脱硫フラックスの融点を低下させ
る効果もあるため、溶鋼中Sとの反応速度を早める効果
もある。 【0009】上記に基づき、これまでに様々な脱硫方法
が提案されてきた。また、近年では、脱硫に加え清浄度
向上も目的とした技術が提案されている。 【0010】例えば、特開平4−99811号公報に
は、脱酸した溶鋼にCaOを吹き込み、その後Ca合金
を添加する介在物微細化方法が示されている。 【0011】特開昭56−98415号公報には、溶鋼
に浸漬させたランスからArガスを吹き込み、脱硫し、
その後Ca合金を添加する方法が提案されている。 【0012】以上のように、従来技術では、製品性能確
保のため、脱硫とCa添加の両方が行われる場合が多
い。近年のCa添加方法としては、清浄度向上や工程省
略の観点からRH式などの真空脱ガス装置を用いる技術
がある。 【0013】例えば、特開平5−239538号公報に
は、真空槽内溶鋼下降管付近にCa添加剤を添加する方
法が開示されており、蒸発性の高いCaを高歩留まりと
することができるとしている。 【0014】特開平6−2028号公報には、RH真空
脱ガス装置において、溶鋼下降流にAlなどの脱酸剤と
CaO−Al2 3 などのフラックスを同時に同一箇所
に添加する方法が示されており、これにより、清浄度を
極めて高くできるとしている。 【0015】 【発明が解決しようとする課題】しかし、上記の従来技
術には下記に示す問題があり、実操業において適用する
のは困難であることが多い。 【0016】第1に清浄度悪化の問題があった。前記特
開昭56−98415号公報に開示された技術のよう
に、溶鋼にArガスでバブリングし、スラグとの反応を
促進させることにより脱硫を施す場合、ガスバブリング
の影響によりスラグが溶鋼に巻き込まれ、そのスラグ滴
が溶鋼中に残留し、これが介在物となってしまう。前記
特開平4−99811号公報に開示された技術のよう
に、脱硫フラックスを溶鋼に吹き込む場合でも、吹き込
みガスによるスラグ巻き込みが発生する他、脱硫フラッ
クスの一部が溶鋼に残留してしまう。 【0017】前記特開平5−239538号公報に開示
された技術のように、RH真空脱ガス装置の真空槽内の
溶鋼表面に脱硫フラックスを吹き付ける場合でも、溶鋼
に残留する脱硫フラックス量が増加してしまうという問
題があった。 【0018】第2に処理時間の問題があった。脱硫反応
を促進するためにはスラグを完全に溶融することが必要
である。しかし、Arガスでバブリングする方法は攪拌
力が不十分でバブリングを開始してもスラグの溶融に時
間を要し、脱硫反応は速やかには進行しない。 【0019】これに比べて、脱硫フラックスを溶鋼に吹
き込む場合は、脱硫フラックスが溶鋼中Sと速やかに反
応し、かつ、フラックスと溶鋼との接触界面積が大きい
ため、フラックスとSとの反応による脱硫効率は極めて
高い。 【0020】脱硫反応後、フラックスは溶鋼表面のスラ
グに吸収されるが、スラグ組成が脱硫に適したものでな
ければ、フラックスに伴ってスラグに吸収されたSが再
び、溶鋼に戻る反応が起きる。この現象は、前記(1) 式
に示す反応が左へ進行することであるが、溶鋼が脱硫フ
ラックス吹き込みのキャリアガスに撹拌されるため、
(1) 式の左側への反応が加速されてしまう。この溶鋼へ
Sの戻る反応を抑制するにはスラグ組成も脱硫に適した
組成に制御する必要がある。従って、スラグ組成制御処
理実施に伴い、処理時間の大幅な延長となる。 【0021】RH真空脱ガス装置の真空槽内に脱硫フラ
ックスを吹き付けるときの脱硫速度は脱硫フラックスの
吹き付け速度に依存する。しかし、減圧下であることや
設備上の制約から、吹き付け速度に限界があるために、
必ずしも脱硫速度を十分にあげることができない。 【0022】すなわち、従来の技術では(a) 十分な清浄
度向上が得られない、(b) 極低S濃度まで脱硫するのに
時間がかかりすぎる、という二つの大きな課題があっ
た。 【0023】本発明の課題は、より短時間で溶鋼を脱硫
して、S濃度を極めて低い濃度まで低減すると同時に、
介在物のない高い清浄度を持った鋼を製造する方法を提
供することにある。 【0024】 【課題を解決するための手段】発明者らは前述した課題
を解決するために、以下の検討をした。脱硫を効率よく
進行させるには、前述したように脱硫フラックスを用い
ることが適当である。しかし、通常の吹き込みでは、結
果的にスラグからSが溶鋼に戻る復硫反応が起きる。そ
こで、スラグと溶鋼との復硫反応を抑制した状態で、脱
硫フラックスを添加する方法が必要である。 【0025】上記の観点からすると、スラグと溶鋼との
反応が極めて遅いRH真空脱ガス装置を用いて、溶鋼表
面に脱硫フラックスを吹き付ける方法が最も適してい
る。しかし、単に真空槽内の溶鋼表面に脱硫フラックス
を吹き付けるのみでは、前述した課題、すなわち脱硫時
間が長いこと、清浄度が悪化することなどの問題点は解
決されない。 【0026】次に、真空槽内の溶鋼表面に脱硫フラック
スを吹き付けた場合、脱硫速度を向上させる方法を検討
した。脱硫を進行させるには前記(1) 式で述べたよう
に、脱酸を強化すればよい。 【0027】脱酸用のAl添加量を増すと、(ア) アルミ
ナ介在物が多数生成すること、(イ)脱酸を強化するには
Al濃度をかなり上昇させなければならず、この場合、
Alが製品成分で許される上限を越えてしまうこと、か
らAlによる脱酸は不適当である。そこで、微量でも十
分に脱酸を強化できるCaを用いて脱酸を強化すれば良
いという着想に至った。 【0028】脱酸にCaを用いた場合、溶鋼中のアルミ
ナ介在物を低融点・低比重の液体CaO−Al2 3
介在物に形態を変化させられる。この液体介在物は、ア
ルミナ介在物に比較して、溶鋼から浮上分離しやすいた
め、清浄度向上にも有利である。また、介在物をCaO
−Al2 3 系の液体介在物に制御すると、吹き付け添
加された脱硫フラックスと溶鋼中でより合体・巨大化
し、介在物除去促進と脱硫フラックス残留防止の両方に
効果がある。 【0029】従って、高効率で脱硫すると同時に清浄度
を向上させるには、Ca脱酸された溶鋼に対し、RH真
空脱ガス装置の真空槽内の溶鋼表面に脱硫フラックスを
吹き付ければ良いと考えた。脱硫フラックスは脱硫能の
高いCaO含有フラックスが適当である。 【0030】しかし、この方法にはCaが容易に蒸発し
てしまうという問題がある。Ca脱酸を行った後に、真
空脱ガス処理を行うと、蒸発により急速にCa濃度が低
下するため、脱硫フラックス吹き付け中にCa添加効果
が低下してしまう。 【0031】真空槽内の溶鋼に脱硫フラックスとCa含
有物質を吹き付けたり、溶鋼上から添加したりする場
合、Caは真空槽内で速やかに蒸発してしまうため、C
a濃度を十分に上げることができず、脱硫効率、清浄度
共に向上しない。 【0032】脱硫フラックスを取鍋内溶鋼に吹き込み、
Ca含有物質を真空槽内溶鋼に添加した場合も同様の問
題がある。 【0033】本発明者らは、RH真空脱ガス装置におけ
る処理中もCa濃度を維持する方法を検討した結果、真
空槽内の溶鋼表面に脱硫フラックスを吹き付けつつ、取
鍋内溶鋼中に連続的にCa含有物質を添加する方法が最
も効果的であることを見いだした。 【0034】この方法によれば、Caは大気圧下での添
加となるためCaは十分取鍋内の溶鋼に溶解し、脱酸に
寄与すると同時に、アルミナ介在物をCaO−Al2
3 系の液体介在物へ形態を変化させる。次に取鍋の溶鋼
は真空槽内へ移動するが、ここで、Caの一部が蒸発し
ても、溶鋼は十分に脱酸されているために、脱硫フラッ
クスの脱硫効果は極めて大きくなる。さらに、真空槽内
で吹き付け添加された脱硫フラックスは溶鋼流に乗っ
て、取鍋に還流移動するが、取鍋内ではCa添加が行わ
れているため、その効果により、さらに脱硫が進行す
る。 【0035】上記知見に基づいて、完成した本発明の要
旨は、「RH真空脱ガス装置の真空槽内の溶鋼表面にC
aOを含有するフラックスを吹き付けつつ、取鍋内の溶
鋼にCaおよび/またはCa合金を添加することを特徴
とする高清浄極低硫鋼の製造方法」にある。 【0036】 【発明の実施の形態】本発明の実施形態を、転炉とRH
真空脱ガス装置を用いて実施する場合を例に説明する。
転炉処理終了後、溶鋼を取鍋へ出鋼する。取鍋をRH真
空脱ガス装置へ移動し真空脱ガス処理を開始する。 【0037】本発明はスラグを活用しないので、特にそ
の組成を制御する必要はないが、より脱硫効率を高める
ために、出鋼時スラグ改質を実施したり、バブリング等
でスラグ改質を実施してもよい。また、スラグ組成はC
aO−Al2 3 系スラグが望ましく、より好ましく
は、重量比でCaO/Al2 3 =0.9〜2.5、F
eO+MnO濃度2重量%以下としておくことが望まし
い。 【0038】真空脱ガス処理開始後、本発明の処理を開
始する。ただし、本発明の処理の前に、RH真空脱ガス
装置にてAlと酸素ガスを用いた昇温処理を施しても良
い。また、Ca脱酸をより強化するために、製品規格上
許される範囲でAl濃度を高めておいてもよい。 【0039】図1はRH真空脱ガス装置における本発明
の処理概要を示す縦断面図である。同図において符号1
は真空槽、2は取鍋、3は溶鋼、4は上昇管、5は下降
管、6は真空槽の排気管、7はCaOを含むフラックス
を吹き付ける上吹きランス、8はフラックス、9はCa
および/またはCa合金を内包するワイヤ、10はワイ
ヤ供給装置である。 【0040】同図に示すように、上吹きランス7からフ
ラックス8を真空槽1内の溶鋼3の表面に吹き付け、同
時に取鍋2内の溶鋼3にCaおよび/またはCa合金を
添加する。同図においてはCaおよび/またはCa合金
はこれを内包するワイヤとして、ワイヤ供給装置10か
ら供給される例を示している。 【0041】フラックス8は脱硫能の高いCaOを含有
していればよいが、CaOの含有濃度は40重量%以上
が望ましい。この濃度未満であると、脱硫効率低下やフ
ラックス量増大に伴う処理時間延長となってしまうから
である。また、より効率を高めるためにフラックス8に
CaF2 を含有させたり、MgOを含有させてもよい。 【0042】フラックスの吹き付け速度VF (kg/
(溶鋼トン・分))は0.5≦VF ≦1.3が望まし
い。VF が0.5未満となると、脱硫に要する時間が長
くなり、1.3を超えて高くなると、フラックス吹き付
け時の溶鋼からのスプラッシュ発生量が大きくなってし
まう。 【0043】取鍋へ添加するCaおよび/またはCa合
金は、金属Caや、CaSi、CaAlなどのCa合金
またはこれらの混合物でもよい。また、脱硫をさらに促
進させるために、Caおよび/またはCa合金にCaO
を含有するフラックスを混合してもよい。以下では、C
aおよび/またはCa合金を単にCaともいう。 【0044】Caの添加速度Vc (kg/(溶鋼トン・
分))はCa純分換算で、0.01≦Vc ≦0.1が望
ましい。Vc が0.01未満となると、Ca濃度を脱硫
に効果を与えるに十分な濃度に上げるのに、時間がかか
りすぎてしまう。Vc が0.1を越えて高くなると、C
a添加中に一部気化したCa蒸気による撹拌効果が強く
なりすぎ、スラグの巻き込み、スラグ−溶鋼間の反応の
進行等の問題が生じてしまう。さらに、Vc が0.1を
越えて高くなると、Ca濃度が高くなりすぎてCaS介
在物が新たに生成し、清浄度を悪化させてしまう。 【0045】図2は取鍋の溶鋼面位置でのRH真空脱ガ
ス装置との位置関係を示す水平断面図である。同図にお
いて図1と同一部品は同一符号で表す。 【0046】Caの添加位置は取鍋内で安定的に添加で
きる位置であればよく、図2の好ましい添加領域として
示す範囲がよい。すなわち、RH真空脱ガス装置の上昇
管および下降管の直下および周辺を避けた位置である。
上昇管の直近にCaを添加すると、Caが溶鋼と十分反
応するまえに、真空槽内にCaが移動してしまうため、
Caが活発に蒸発してしまい、溶鋼中のCa濃度をあげ
ることができない。一方、下降管の直近にCaを添加す
ると、Ca蒸気が下降流と衝突し、溶鋼流動が減衰し、
溶鋼の撹拌も失われるため、脱硫、脱酸、介在物形態制
御等、全ての反応が不安定になる恐れがある。また、上
昇管、下降管の外側(取鍋壁との間)も作業性、反応の
均一性等の点から好ましい位置ではない。 【0047】Caの添加方法としては、連続的に添加で
きる方法であればいかなる方法でもよいが、好ましくは
Caおよび/またはCa合金を内包した金属ワイヤを溶
鋼に送り込むワイヤ−フィ−ディング法が望ましい。こ
の方法は、吹き込み法と違いArガスを用いないため、
不要なガス撹拌によるスラグ巻き込みを回避できるから
である。 【0048】Caの添加は脱硫フラックス吹き付け開始
と同時に開始すればよいが、Caの効果をより高めるに
は、Ca添加を脱硫フラックス吹き付け2分前程度から
開始すればより望ましい。 【0049】処理時の真空度は150Torr以下が望
ましい。真空度が150Torrを超えて高くなると、
溶鋼の環流が遅くなり、処理時間が長くなってしまうか
らである。 【0050】本発明に従って、CaOを含有するフラッ
クスを真空槽内の溶鋼に吹き付けつつ、同時に取鍋内の
溶鋼にCa(同図の例ではワイヤ−フィ−ディング法に
よるCaSi合金)を連続的に添加した場合の溶鋼中S
濃度の推移と清浄度の推移を調査した。併せて、従来方
法による脱硫処理の溶鋼中S濃度、清浄度を調査した。 【0051】図3は本発明および従来方法による脱硫処
理の処理時間と溶鋼中Sの濃度の関係を示すグラフであ
る。 【0052】図4は本発明および従来方法による脱硫処
理の処理時間と溶鋼中の介在物個数の関係を示すグラフ
である。同図は処理前の介在物個数を1とし、各処理時
間経過後の採取サンプルの介在物個数を指数として示し
たものである。 【0053】図3および図4には、本発明の方法に従
い、真空槽内の溶鋼にフラックスのみを吹き付け、取鍋
溶鋼にはCaを添加した場合(●)、真空槽内の溶鋼に
脱硫フラックスとCaを吹き付け、取鍋には何も添加し
ない場合(▼)、大気圧下で取鍋中の溶鋼に脱硫フラッ
クスとCaを吹き込んだ場合(■)、および下降管付近
でフラックスとCa合金を混合したものをワイヤフィー
ディングで添加した場合(○)を示す。 【0054】図3および図4から明らかなように、本発
明のフラックスとCaとを全く別の位置から同時に添加
する方法は、他法に比較して、高速で脱硫が進行すると
ともに、溶鋼中介在物が急速に除去される。 【0055】 【実施例】転炉で脱炭後、取鍋中の溶鋼250トンにA
lを添加し、スラグにはAl含有炭酸カルシウムを添加
し、スラグ中のFeO、MnO濃度を合計で1.4重量
%とした。その後、取鍋をRH真空脱ガス装置に移動
し、真空脱ガス処理を開始した。 【0056】処理開始後、溶鋼にAlを添加し、真空槽
内の溶鋼表面に酸素ガスを吹き付けて溶鋼温度を上昇さ
せた。この昇温処理後、真空度を1Torrとした。本
発明開始前の溶鋼中Al濃度は0.045重量%、Mn
濃度1.3重量%、C濃度0.05重量%である。上記
の処理後、本発明例と比較例の試験を実施した。 【0057】本発明例は以下の処理を行った。真空槽内
で溶鋼に吹き付けた脱硫フラックスは、80重量%Ca
O、10重量%CaF2 、10重量%MgOであり、吹
き付け速度は0.5〜1.3kg/トン/分とした。取
鍋内の溶鋼に添加したCaとしては、30重量%Ca−
70重量%Siなる組成のCaSi合金で、ワイヤーフ
ィーディング法により添加した。添加速度はCa純分換
算で0.05〜0.1kg/(トン・分)とした。処理
時間は10分とした。 【0058】脱硫処理後、最終合金調整を行った後、真
空脱ガス処理を終了し、連続鋳造機によって鋳造した。
鋳造されたスラブを圧延し、ラインパイプに加工し、N
ACE条件の耐サワーガス性能評価試験によって性能を
確認した。なお製品はAPI規格X70である。 【0059】表1は、処理前、処理後、製品におけるS
濃度、清浄度指数、N濃度、NACE試験の結果を示
す。NACE試験結果は、○が合格、×は不合格を示す
(本発明例:試験No.1〜4)。 【0060】比較例として、Caを取鍋溶鋼に添加せず
に、真空槽内溶鋼表面に脱硫フラックスを10分間吹き
付けた場合(比較例(1) 試験No.5〜8)と、真空脱
ガス処理中の取鍋のスラグ中にCaO/Al2 3
1.5なる組成のスラグを上から添加し、取鍋の溶鋼に
同様の脱硫フラックスを10分間吹き込んだ場合(比較
例(2) 試験No.9〜12)の結果を表1に併せて示
す。 【0061】表1に示すように、本発明例(No.1〜
4)では、S濃度は1〜2ppmまで低下したのに比
べ、同じ10分間の処理をした比較例(1) 、(2) とも、
S濃度は6ppm以上にとどまった。 【0062】介在物については、本発明例が、0.1〜
0.2の介在物指数であったのに対し、比較例(1) (2)
とも介在物指数は0.5以上で清浄度は不十分であっ
た。すなわち、比較例(1) ではCaをせず、十分な清浄
度向上の効果がないため、介在物指数が高くなったと考
えられる。比較例(2) では、取鍋内にフラックスを投入
するためのキャリアガスによって、上層スラグと溶鋼と
が攪拌され、取鍋スラグから介在物を巻き込んだため、
比較例(1) よりも介在物指数が高くなり、キャリアガス
攪拌による大気の巻き込みもあって、窒素濃度も比較例
(1) より高くなったと考えられる。 【0063】これに対して、本発明方法では溶鋼中のS
濃度、酸素濃度を著しく低減できるため、処理中に脱窒
反応が進行し窒素濃度も低減できることがわかった。 【0064】本発明の方法ではそのほか、介在物の形態
制御も同時に行われるため、脱硫後にCa処理を施さな
くてもよいという利点がある。 【0065】以上のように、本発明方法による鋼を用い
れば、ラインパイプ等に加工したときにも耐サワーガス
性能が確保できることがわかった。 【0066】 【表1】 【0067】 【発明の効果】本発明によれば、高能率で脱硫と介在物
の低減を行うことができ、介在物の形態制御も同時に行
われるため、後工程でCa処理を施さなくても高清浄極
低硫の耐サワーガス鋼の製造が可能である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a very clean ultra-low sulfur steel. [0002] S (sulfur) is an impurity which lowers the mechanical properties and corrosion resistance of steel materials, especially thick plates, and causes hydrogen-induced cracking particularly in linepipe steels. In recent years, required performance of products has been further improved, and further reduction of S is required. In addition, inclusions also serve as starting points of hydrogen-induced cracking, so that reduction of inclusions, that is, improvement of cleanliness, is also required. [0003] On the other hand, the treatment for reducing S in the steel making process is called desulfurization treatment. In the desulfurization treatment, it is important to complete the treatment in a short time and a simple method in addition to reducing S. This is to suppress cost deterioration due to a decrease in the temperature of the molten steel, a large consumption of the desulfurizing agent, and the like. [0004] Desulfurization treatment in the steel making process is roughly classified into two types. One is a method in which slag having a high desulfurization ability is formed on the surface of molten steel, and the molten steel is stirred by a method such as gas bubbling. In this method, the reaction between the molten steel and the slag is promoted by stirring to transfer S in the molten steel into the slag. The slag composition in the CaO-Al 2 O 3 -SiO 2 system slag containing 40-60 wt% of CaO is generally used. In some cases, this slag contains MgO or CaF 2 . [0005] Another method is a method of injecting a flux having a high desulfurization ability into molten steel together with a gas (injection method). According to this method, the desulfurization flux blown into the molten steel floats in the molten steel and causes
And S after the reaction is absorbed by the slag on the surface of the molten steel, whereby desulfurization proceeds. In either method, desulfurization proceeds by a chemical reaction represented by the following formula (1). (CaO) + S = (CaS) + O (1) where (CaO) is CaO in slag or desulfurization flux, (CaS) is CaS in slag or desulfurization flux, S and O are S and M in molten steel. O. As is clear from equation (1), desulfurization can be further promoted by (a) increasing the amount of CaO, (a) decreasing the O concentration in molten steel, and (c) removing C in slag or flux.
It is effective to increase the aS saturation solubility. Specifically, for (a), the amount of slag or desulfurization flux is increased; for (a), deoxidation with Al, Ca, etc. is strengthened,
For (c), there is a prescribed amount of CaF 2 or alumina mixed with slag or desulfurization flux. Further, since the addition of CaF 2 and alumina also has the effect of lowering the melting point of slag and desulfurization flux, it also has the effect of increasing the reaction rate with S in molten steel. Based on the above, various desulfurization methods have been proposed so far. In recent years, techniques for improving cleanliness in addition to desulfurization have been proposed. For example, Japanese Patent Application Laid-Open No. 4-99811 discloses a method for refining inclusions by blowing CaO into deoxidized molten steel and then adding a Ca alloy. JP-A-56-98415 discloses that Ar gas is blown from a lance immersed in molten steel, desulfurized,
Thereafter, a method of adding a Ca alloy has been proposed. As described above, in the prior art, both desulfurization and addition of Ca are often performed in order to ensure product performance. As a Ca addition method in recent years, there is a technique using a vacuum degassing device such as an RH type from the viewpoint of improving cleanliness and omitting steps. For example, Japanese Patent Application Laid-Open No. 5-239538 discloses a method of adding a Ca additive to the vicinity of a molten steel downcomer in a vacuum chamber. I have. Japanese Patent Application Laid-Open No. 6-2028 discloses a method in which a deoxidizing agent such as Al and a flux such as CaO-Al 2 O 3 are simultaneously added to the same location in a molten steel descending flow in an RH vacuum degassing apparatus. According to this, the cleanliness can be extremely increased. [0015] However, the above-mentioned prior art has the following problems, and it is often difficult to apply it in actual operation. First, there is a problem of deterioration in cleanliness. As in the technique disclosed in JP-A-56-98415, when desulfurization is performed by bubbling molten steel with Ar gas to accelerate the reaction with slag, the slag is entrained in the molten steel due to the effect of gas bubbling. The slag droplets remain in the molten steel and become inclusions. Even when the desulfurization flux is blown into the molten steel as in the technique disclosed in Japanese Patent Application Laid-Open No. 4-99811, slag is entrained by the blown gas, and a part of the desulfurization flux remains in the molten steel. Even when the desulfurization flux is sprayed on the surface of the molten steel in the vacuum chamber of the RH vacuum degassing apparatus as in the technique disclosed in Japanese Patent Application Laid-Open No. Hei 5-239538, the amount of the desulfurization flux remaining in the molten steel increases. There was a problem that would. Second, there is a problem of processing time. In order to accelerate the desulfurization reaction, it is necessary to completely melt the slag. However, in the method of bubbling with Ar gas, the stirring power is insufficient, so that even if bubbling is started, it takes time to melt the slag, and the desulfurization reaction does not proceed quickly. On the other hand, when the desulfurized flux is blown into the molten steel, the desulfurized flux reacts quickly with S in the molten steel, and the contact area between the flux and the molten steel is large. The desulfurization efficiency is extremely high. After the desulfurization reaction, the flux is absorbed by the slag on the surface of the molten steel, but if the slag composition is not suitable for desulfurization, a reaction occurs in which S absorbed by the slag with the flux returns to the molten steel again. . This phenomenon is that the reaction shown in the above formula (1) proceeds to the left, but because the molten steel is stirred by the carrier gas injected with the desulfurization flux,
The reaction to the left side of equation (1) is accelerated. In order to suppress the reaction of returning S to the molten steel, the slag composition also needs to be controlled to a composition suitable for desulfurization. Therefore, the processing time is greatly extended with the execution of the slag composition control processing. The desulfurization speed at the time of blowing the desulfurization flux into the vacuum chamber of the RH vacuum degassing apparatus depends on the blowing speed of the desulfurization flux. However, because there is a limit to the spray speed due to reduced pressure and restrictions on equipment,
The desulfurization rate cannot always be sufficiently increased. That is, the conventional techniques have two major problems: (a) a sufficient improvement in cleanliness cannot be obtained, and (b) it takes too much time to desulfurize to an extremely low S concentration. An object of the present invention is to desulfurize molten steel in a shorter time to reduce the S concentration to an extremely low concentration,
An object of the present invention is to provide a method for producing a steel having a high cleanliness without inclusions. Means for Solving the Problems The present inventors have made the following studies in order to solve the above-mentioned problems. In order to efficiently advance desulfurization, it is appropriate to use a desulfurization flux as described above. However, the normal blowing results in a resulfurization reaction in which S returns from the slag to the molten steel. Therefore, a method of adding a desulfurization flux while suppressing the resulfurization reaction between slag and molten steel is required. In view of the above, the most suitable method is to use a RH vacuum degassing apparatus in which the reaction between slag and molten steel is extremely slow, and to blow desulfurization flux onto the surface of the molten steel. However, simply spraying a desulfurization flux onto the surface of molten steel in a vacuum chamber does not solve the above-mentioned problems, that is, problems such as a long desulfurization time and deterioration in cleanliness. Next, a method for improving the desulfurization rate when a desulfurization flux was sprayed on the surface of the molten steel in the vacuum chamber was studied. Desulfurization can be advanced by enhancing the deoxidation as described in the above equation (1). When the amount of Al added for deoxidation is increased, (a) a large number of alumina inclusions are formed, and (b) the Al concentration must be considerably increased in order to strengthen the deoxidation.
Since Al exceeds the upper limit allowed for the product component, deoxidation with Al is inappropriate. Then, the idea was reached that the deoxidation should be enhanced using Ca, which can sufficiently enhance the deoxidation even in a small amount. When Ca is used for deoxidation, the form of alumina inclusions in molten steel can be changed to liquid CaO-Al 2 O 3 inclusions having a low melting point and a low specific gravity. The liquid inclusions are easier to float and separate from the molten steel than the alumina inclusions, and thus are advantageous in improving cleanliness. In addition, the inclusion is CaO
Controlling to -Al 2 O 3 -based liquid inclusions makes the desulfurization flux added by spraying more integrated and larger in the molten steel, and is effective in both promoting removal of inclusions and preventing residual desulfurization flux. Therefore, it is considered that desulfurization flux should be sprayed on the surface of the molten steel in the vacuum chamber of the RH vacuum degassing apparatus for the desulfurization with high efficiency and at the same time to improve the cleanliness at the same time. Was. As the desulfurization flux, a CaO-containing flux having a high desulfurization ability is suitable. However, this method has a problem that Ca is easily evaporated. If vacuum degassing is performed after performing Ca deoxidation, the Ca concentration rapidly decreases due to evaporation, so that the effect of adding Ca during the desulfurization flux spraying decreases. When a desulfurization flux and a Ca-containing substance are sprayed on molten steel in a vacuum chamber or added from the molten steel, Ca evaporates quickly in the vacuum chamber.
a The concentration cannot be sufficiently increased, and neither the desulfurization efficiency nor the cleanliness is improved. The desulfurization flux is blown into the molten steel in the ladle,
The same problem occurs when a Ca-containing substance is added to molten steel in a vacuum chamber. The present inventors have studied a method for maintaining the Ca concentration even during the treatment in the RH vacuum degassing apparatus. As a result, the desulfurization flux was sprayed on the surface of the molten steel in the vacuum chamber, and the molten steel in the ladle was continuously cooled. It has been found that the method of adding a Ca-containing substance to the mixture is most effective. According to this method, since Ca is added under atmospheric pressure, Ca sufficiently dissolves in the molten steel in the ladle and contributes to deoxidation, and at the same time, alumina inclusions are reduced to CaO-Al 2 O.
Changes the form to three- system liquid inclusions. Next, the molten steel in the ladle moves into the vacuum chamber. Here, even if a portion of Ca evaporates, the desulfurization effect of the desulfurization flux becomes extremely large because the molten steel is sufficiently deoxidized. Furthermore, the desulfurization flux spray-added in the vacuum chamber rides on the molten steel flow and moves back to the ladle, but since Ca is added in the ladle, desulfurization further proceeds due to the effect. Based on the above findings, the gist of the completed present invention is as follows: "The surface of molten steel in the vacuum chamber of the RH vacuum degassing apparatus has C
A method for producing a highly clean ultra-low sulfur steel characterized by adding Ca and / or a Ca alloy to molten steel in a ladle while spraying a flux containing aO. Embodiments of the present invention will be described with reference to a converter and an RH.
The case of using a vacuum degassing apparatus will be described as an example.
After the completion of the converter process, the molten steel is tapped into a ladle. The ladle is moved to the RH vacuum degassing device to start the vacuum degassing process. Since the present invention does not utilize slag, it is not particularly necessary to control the composition thereof. However, in order to further increase the desulfurization efficiency, slag reforming at the time of tapping or slag reforming by bubbling is performed. May be. The slag composition is C
aO-Al 2 O 3 based slag is desirable, more preferably, CaO / Al 2 O 3 = 0.9~2.5 weight ratio, F
It is desirable that the concentration of eO + MnO be 2% by weight or less. After the start of the vacuum degassing process, the process of the present invention is started. However, before the treatment of the present invention, a temperature raising treatment using Al and oxygen gas may be performed in an RH vacuum degassing apparatus. Further, in order to further enhance Ca deoxidation, the Al concentration may be increased within a range permitted by product specifications. FIG. 1 is a longitudinal sectional view showing an outline of the processing of the present invention in the RH vacuum degassing apparatus. In FIG.
Is a vacuum tank, 2 is a ladle, 3 is molten steel, 4 is an ascending pipe, 5 is a descending pipe, 6 is an exhaust pipe of the vacuum tank, 7 is an upper blowing lance for blowing a flux containing CaO, 8 is a flux, and 9 is Ca
And / or a wire 10 containing a Ca alloy is a wire supply device. As shown in the figure, a flux 8 is sprayed from the top blowing lance 7 onto the surface of the molten steel 3 in the vacuum chamber 1, and simultaneously, Ca and / or a Ca alloy is added to the molten steel 3 in the ladle 2. FIG. 1 shows an example in which Ca and / or a Ca alloy is supplied from the wire supply device 10 as a wire containing the same. The flux 8 may contain CaO having a high desulfurization ability, and the CaO concentration is desirably 40% by weight or more. If the concentration is less than this, the processing time is prolonged due to a decrease in desulfurization efficiency and an increase in the amount of flux. Further, in order to further increase the efficiency, the flux 8 may contain CaF 2 or MgO. The flux blowing speed V F (kg /
(Molten steel ton-min)) is desirably 0.5 ≦ V F ≦ 1.3. If V F is less than 0.5, the time required for the desulfurization becomes longer, becomes higher than 1.3, splash generation amount from the molten steel during blowing the flux is increased. The Ca and / or Ca alloy added to the ladle may be metallic Ca, a Ca alloy such as CaSi, CaAl, or a mixture thereof. Further, in order to further promote desulfurization, CaO and / or Ca alloy is added to CaO.
May be mixed. In the following, C
a and / or a Ca alloy is also simply referred to as Ca. Ca addition rate V c (kg / (ton of molten steel
Min)) is desirably 0.01 ≦ V c ≦ 0.1 in terms of Ca pure content. If Vc is less than 0.01, it takes too much time to raise the Ca concentration to a concentration sufficient to exert an effect on desulfurization. When V c rises above 0.1, C
The stirring effect of the Ca vapor partially vaporized during the addition of a becomes too strong, causing problems such as slag entrainment and progress of reaction between slag and molten steel. Further, when V c is increased beyond 0.1, Ca concentration becomes too high CaS inclusions newly generated, are deteriorated cleanliness. FIG. 2 is a horizontal sectional view showing the positional relationship between the molten steel surface of the ladle and the RH vacuum degassing apparatus. In the figure, the same parts as those in FIG. 1 are represented by the same reference numerals. The Ca can be added at any position as long as it can be added stably in the ladle, and the range shown as a preferable addition region in FIG. 2 is good. That is, it is a position avoiding immediately below and around the riser and the downcomer of the RH vacuum degassing device.
If Ca is added in the immediate vicinity of the riser, Ca moves into the vacuum chamber before Ca sufficiently reacts with the molten steel.
Ca evaporates actively, and the Ca concentration in the molten steel cannot be increased. On the other hand, when Ca is added in the immediate vicinity of the downcomer, Ca vapor collides with the downflow, the molten steel flow is attenuated,
Since the stirring of the molten steel is also lost, all the reactions such as desulfurization, deoxidation, and inclusion morphology control may be unstable. Further, the outside of the riser pipe and the lower pipe (between the ladle wall) is not a preferable position in terms of workability, reaction uniformity, and the like. As a method of adding Ca, any method can be used as long as it can be added continuously, but a wire feeding method of feeding a metal wire containing Ca and / or a Ca alloy into molten steel is preferable. . Since this method does not use Ar gas unlike the blowing method,
This is because slag entrainment due to unnecessary gas stirring can be avoided. The addition of Ca may be started at the same time as the start of the desulfurization flux spraying. However, in order to further enhance the effect of Ca, it is more preferable to start the Ca addition about two minutes before the spraying of the desulfurization flux. The degree of vacuum at the time of processing is desirably 150 Torr or less. When the degree of vacuum rises above 150 Torr,
This is because the reflux of the molten steel becomes slow, and the processing time becomes long. According to the present invention, a flux containing CaO is sprayed onto the molten steel in the vacuum chamber, and simultaneously, Ca (in the example shown in the figure, a CaSi alloy by the wire-feeding method) is continuously applied to the molten steel in the ladle. S in molten steel when added
Changes in concentration and cleanliness were investigated. In addition, the S concentration and cleanliness in the molten steel in the desulfurization treatment by the conventional method were investigated. FIG. 3 is a graph showing the relationship between the treatment time of desulfurization treatment according to the present invention and the conventional method and the concentration of S in molten steel. FIG. 4 is a graph showing the relationship between the treatment time of desulfurization treatment according to the present invention and the conventional method and the number of inclusions in molten steel. In the figure, the number of inclusions before the treatment is set to 1, and the number of inclusions of the sample collected after each treatment time is shown as an index. FIG. 3 and FIG. 4 show that, according to the method of the present invention, when only the flux is sprayed on the molten steel in the vacuum chamber and Ca is added to the molten steel in the ladle (●), the desulfurization flux is applied to the molten steel in the vacuum chamber. And Ca are sprayed and nothing is added to the ladle (▼), desulfurization flux and Ca are blown into the molten steel in the ladle under atmospheric pressure (■), and flux and Ca alloy are The case where the mixture was added by wire feeding is shown (示 す). As is clear from FIGS. 3 and 4, the method of the present invention for simultaneously adding the flux and Ca from completely different positions allows desulfurization to proceed at a higher speed than the other methods, The entity is rapidly removed. [Example] After decarburization in a converter, A was added to 250 tons of molten steel in a ladle.
l, calcium carbonate containing Al was added to the slag, and the total concentration of FeO and MnO in the slag was 1.4% by weight. Thereafter, the ladle was moved to an RH vacuum degassing device, and a vacuum degassing process was started. After the start of the treatment, Al was added to the molten steel, and oxygen gas was blown onto the surface of the molten steel in the vacuum chamber to raise the temperature of the molten steel. After this temperature raising treatment, the degree of vacuum was set to 1 Torr. Al concentration in molten steel before the start of the present invention is 0.045% by weight, Mn
The concentration is 1.3% by weight and the C concentration is 0.05% by weight. After the above treatment, tests of the present invention example and the comparative example were performed. In the example of the present invention, the following processing was performed. The desulfurization flux sprayed on the molten steel in the vacuum chamber is 80% by weight Ca
O, 10% by weight CaF 2 , and 10% by weight MgO, and the spraying rate was 0.5 to 1.3 kg / ton / min. As Ca added to the molten steel in the ladle, 30% by weight Ca-
A CaSi alloy having a composition of 70% by weight Si was added by a wire feeding method. The addition rate was 0.05 to 0.1 kg / (ton-minute) in terms of Ca pure content. The processing time was 10 minutes. After the desulfurization treatment, the final alloy was adjusted, the vacuum degassing treatment was terminated, and casting was performed by a continuous casting machine.
The cast slab is rolled, processed into line pipe,
The performance was confirmed by a sour gas resistance performance evaluation test under ACE conditions. The product is API standard X70. Table 1 shows S before and after treatment.
The results of the concentration, cleanliness index, N concentration, and NACE test are shown. In the NACE test results, ○ indicates pass and X indicates rejection (Example of the present invention: Test Nos. 1 to 4). As a comparative example, when Ca was not added to the molten steel and a desulfurization flux was sprayed on the surface of the molten steel in the vacuum tank for 10 minutes (Comparative Example (1) Test Nos. 5 to 8), CaO / Al 2 O 3 = in slag of ladle during treatment
A slag having a composition of 1.5 was added from above, and the same desulfurization flux was blown into molten steel in a ladle for 10 minutes (Comparative Example (2), Test Nos. 9 to 12). . As shown in Table 1, the examples of the present invention (No.
In 4), the S concentration was reduced to 1 to 2 ppm, whereas in Comparative Examples (1) and (2), the same treatment was performed for 10 minutes.
The S concentration remained at 6 ppm or more. Regarding inclusions, the examples of the present invention show that
While the inclusion index was 0.2, the comparative examples (1) and (2)
In both cases, the inclusion index was 0.5 or more, and the cleanliness was insufficient. That is, in Comparative Example (1), Ca was not added, and there was no effect of sufficiently improving the cleanliness. Therefore, it is considered that the inclusion index increased. In Comparative Example (2), the upper layer slag and the molten steel were stirred by the carrier gas for introducing the flux into the ladle, and inclusions were involved from the ladle slag,
The inclusion index was higher than that of Comparative Example (1).
(1) It is considered higher. On the other hand, in the method of the present invention, S
It was found that since the concentration and the oxygen concentration could be significantly reduced, the denitrification reaction proceeded during the treatment and the nitrogen concentration could also be reduced. In addition, the method of the present invention also has the advantage that it is not necessary to perform Ca treatment after desulfurization because the form control of inclusions is also performed at the same time. As described above, it was found that the use of the steel according to the method of the present invention can ensure sour gas resistance even when processed into a line pipe or the like. [Table 1] According to the present invention, desulfurization and reduction of inclusions can be performed with high efficiency, and morphological control of inclusions is performed at the same time. It is possible to manufacture high-purity extremely low-sulfur resistant sour gas steel.

【図面の簡単な説明】 【図1】本発明の処理概要を示す縦断面図である。 【図2】取鍋の溶鋼面位置でのRH真空脱ガス装置との
位置関係を示す水平断面図である。 【図3】本発明および従来方法による脱硫処理の処理時
間と溶鋼中Sの濃度の関係を示すグラフである。 【図4】本発明および従来方法による脱硫処理の処理時
間と溶鋼中の介在物個数の関係を示すグラフである。 【符号の説明】 1 真空槽 2 取鍋 3 溶鋼 4 上昇管 5 下降管 6 排気管 7 上吹きランス 8 フラックス 9 ワイヤ 10 ワイヤ供給装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view showing an outline of processing of the present invention. FIG. 2 is a horizontal sectional view showing a positional relationship between a ladle and a RH vacuum degassing apparatus at a molten steel surface position. FIG. 3 is a graph showing the relationship between the treatment time of desulfurization treatment according to the present invention and the conventional method and the concentration of S in molten steel. FIG. 4 is a graph showing the relationship between the treatment time of desulfurization treatment according to the present invention and the conventional method and the number of inclusions in molten steel. [Description of Signs] 1 Vacuum tank 2 Ladle 3 Molten steel 4 Up pipe 5 Down pipe 6 Exhaust pipe 7 Top blowing lance 8 Flux 9 Wire 10 Wire supply device

Claims (1)

(57)【特許請求の範囲】 【請求項1】 RH真空脱ガス装置の真空槽内の溶鋼表
面にCaO を含有するフラックスを吹き付けつつ、取鍋内
の溶鋼にCaおよび/またはCa合金を内包した金属ワイヤ
送り込むことを特徴とする高清浄極低硫鋼の製造方
法。
(57) [Claim 1] Ca and / or Ca alloy is included in molten steel in a ladle while blowing a flux containing CaO on the surface of molten steel in a vacuum chamber of an RH vacuum degassing apparatus. A method for producing a highly clean ultra-low sulfur steel, comprising feeding a metal wire .
JP24516698A 1998-08-31 1998-08-31 Manufacturing method of ultra clean ultra low sulfur steel Expired - Fee Related JP3463573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24516698A JP3463573B2 (en) 1998-08-31 1998-08-31 Manufacturing method of ultra clean ultra low sulfur steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24516698A JP3463573B2 (en) 1998-08-31 1998-08-31 Manufacturing method of ultra clean ultra low sulfur steel

Publications (2)

Publication Number Publication Date
JP2000073116A JP2000073116A (en) 2000-03-07
JP3463573B2 true JP3463573B2 (en) 2003-11-05

Family

ID=17129599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24516698A Expired - Fee Related JP3463573B2 (en) 1998-08-31 1998-08-31 Manufacturing method of ultra clean ultra low sulfur steel

Country Status (1)

Country Link
JP (1) JP3463573B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3417311B2 (en) * 1998-09-04 2003-06-16 住友金属工業株式会社 Method for producing highly clean HIC steel
JP3885387B2 (en) * 1998-10-20 2007-02-21 Jfeスチール株式会社 Method for producing ultra-low sulfur steel with excellent cleanability
JP3577988B2 (en) * 1999-04-09 2004-10-20 住友金属工業株式会社 Manufacturing method of low Al ultra low sulfur steel
JP3577989B2 (en) * 1999-04-09 2004-10-20 住友金属工業株式会社 High-speed desulfurization of molten steel
JP3646633B2 (en) * 2000-08-10 2005-05-11 住友金属工業株式会社 High cleanability ultra-low sulfur steel and its manufacturing method
CN103305659B (en) 2012-03-08 2016-03-30 宝山钢铁股份有限公司 The non-oriented electromagnetic steel sheet of excellent magnetic and calcium treating method thereof
JP6273947B2 (en) * 2014-03-20 2018-02-07 新日鐵住金株式会社 Desulfurization treatment method for molten steel
CN104232848B (en) * 2014-10-15 2016-08-17 中冶南方工程技术有限公司 Add heat preserving agent for RH operation and feed the system of silk
JP6780695B2 (en) * 2018-01-05 2020-11-04 Jfeスチール株式会社 Melting method of ultra-low sulfur low nitrogen steel

Also Published As

Publication number Publication date
JP2000073116A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
KR960009168B1 (en) Method of refining of high purity steel
JP5082417B2 (en) Method of melting ultra low sulfur low nitrogen high cleanliness steel
JP5151448B2 (en) Method of melting ultra-low sulfur ultra-low oxygen ultra-low nitrogen steel
JP3463573B2 (en) Manufacturing method of ultra clean ultra low sulfur steel
JP3896713B2 (en) Melting method of ultra-low carbon steel with excellent cleanability
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP2007270178A (en) Method for manufacturing extra-low sulfur steel
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JP3319244B2 (en) Heated refining method for molten steel
JP3777630B2 (en) Method for heat refining of molten steel
KR100270109B1 (en) The denitriding method of molten metal
JP2005344129A (en) Method for refining molten steel
KR900002710B1 (en) Rapid decarburiztion steel making process
JPH08283826A (en) Production of high purity ultralow sulfur hic resistant steel
JP3697987B2 (en) Desulfurization agent for molten steel desulfurization
JP3577988B2 (en) Manufacturing method of low Al ultra low sulfur steel
JP3577989B2 (en) High-speed desulfurization of molten steel
KR100925596B1 (en) Method for refining molten steel for ultra low carbon steel
JP3277763B2 (en) Refining method of ultra clean low carbon steel
JPH1192818A (en) Melting of high clean extra-low carbon steel
JP2000239729A (en) Production of extra-low carbon steel excellent in cleanliness
JPH1192819A (en) Vacuum refining of high clean extra-low nitrogen steel
JP2023003384A (en) Denitrification treatment method of molten steel
JPH08157934A (en) Calcium treatment of molten steel
JPH11217623A (en) Method for refining molten steel in refluxing type vacuum degassing apparatus

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070822

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100822

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees