JP3697987B2 - Desulfurization agent for molten steel desulfurization - Google Patents

Desulfurization agent for molten steel desulfurization Download PDF

Info

Publication number
JP3697987B2
JP3697987B2 JP37051699A JP37051699A JP3697987B2 JP 3697987 B2 JP3697987 B2 JP 3697987B2 JP 37051699 A JP37051699 A JP 37051699A JP 37051699 A JP37051699 A JP 37051699A JP 3697987 B2 JP3697987 B2 JP 3697987B2
Authority
JP
Japan
Prior art keywords
molten steel
desulfurization
concentration
agent
desulfurizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37051699A
Other languages
Japanese (ja)
Other versions
JP2001181730A (en
Inventor
光裕 沼田
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP37051699A priority Critical patent/JP3697987B2/en
Publication of JP2001181730A publication Critical patent/JP2001181730A/en
Application granted granted Critical
Publication of JP3697987B2 publication Critical patent/JP3697987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶鋼脱硫用の脱硫剤に関し、特に清浄度を維持または改善できる溶鋼脱硫用の脱硫剤に関する。
【0002】
【従来の技術】
鋼中Sや非金属介在物は、各種製品欠陥の原因となるためその低減が求められている。特にS濃度は10ppm 以下、鋼種によっては4ppm 以下といった極低域まで低減することが望まれている。
【0003】
鋼中Sの低減は溶鋼段階で主として行われ、その際の脱硫処理方法としては、CaOなどを含有した脱硫剤を溶鋼に吹き込む方法、脱硫剤を減圧下で溶鋼表面に吹き付ける方法、脱硫能力の高いスラグを形成させ不活性ガスなどを溶鋼に吹き込む方法などがこれまでに知られている。
【0004】
例えば、特開平5−171253号公報に開示されているCaOおよびCaF2 を含有する脱硫剤を溶鋼に吹き込む方法や溶鋼表面に吹き付ける方法は、溶鋼−脱硫剤間の反応界面の面積が大きくなることから極低硫鋼の製造には有利と考えられてきた。
【0005】
【発明が解決しようとする課題】
しかし、同公報の開示技術でS濃度を5ppm 以下とするには大量の脱硫剤と脱酸剤が必要とされ、処理時間も8〜15分と長時間を要する。従って、短時間で極低硫鋼を得ることが望まれていた。
【0006】
短時間で極低硫鋼を得るには、脱硫効率を従来以上に向上させる必要がある。脱硫処理時の脱硫反応は、下記化学反応により進行する。
【0007】
(CaO)+[S]=(CaS)+[O]
ただし、(CaO)、(CaS):脱硫剤およびスラグ成分
[S]、[O] :溶鋼中の成分
反応式から明らかなように、溶鋼中の酸素濃度を予め低減すれば、脱硫反応を促進できる。
【0008】
例えば、特開昭62−7816公報には、脱硫処理に先立ってAl、Caなどの脱酸剤を溶鋼に添加してから脱硫剤を添加するか、脱酸剤と脱硫剤を同時に添加することが有効であることを開示している。
【0009】
しかし、Al濃度を高めても脱硫速度を高める効果は小さく、更なる改善が必要であった。
【0010】
また、特開平10−183227公報には、CaOを主原料にした脱硫剤(以下、CaO系脱硫剤ともいう)にCaSi合金などの金属Caをさらに含有させた脱硫剤を溶鋼に添加する技術が開示されている。
【0011】
しかし、この技術は溶鋼中のS濃度の低減効果が小さく、しかも介在物が多く生成するため溶鋼の清浄度を悪化させるという問題があった。
【0012】
一方、脱窒に関しては、ほとんど脱窒効果がないという問題があった。
本発明の目的は、清浄度を維持または改善できる脱硫脱窒用の溶鋼脱硫剤を提供することにある。
【0013】
【課題を解決するための手段】
前記の通り溶鋼中の酸素濃度を低くするほど脱硫反応が進行し易くなる。
【0014】
そこで、Alで溶鋼を脱酸した後、CaO系脱硫剤を減圧下で溶鋼に吹き付ける小規模実験を実施した。
以下にこの実験で得られた知見を示す。
【0015】
(A)Alで脱酸された溶鋼にCaO系脱硫剤を添加すると、この脱硫剤はCaO主体の組成物からCaOとAl23との混合物が主体の組成物(以下、この組成物をCaO−Al23 で表す)に変化する。
【0016】
(B)CaOとCaO−Al23 とでは、CaO−Al23 の脱硫能力(一般にサルファイドキャパシティと呼ばれる)はCaOに比べ著しく劣る。
【0017】
(C)一方、金属Caを含有したCaO系脱硫剤は金属CaがOおよびSと強い反応性を有するため、溶鋼中の[O]および[S]と反応し易く、CaOとCaSとの混合物が主体の組成物(以下、この組成物をCaO−CaS系介在物で表す)、CaSが主体の組成物(以下、CaS系介在物で表す)が大量に生成し、清浄度を悪化させる。
【0018】
これらの介在物生成により、溶鋼中の[S]濃度が低下するため、脱硫剤と溶鋼中の[S]との反応速度が低下する。
【0019】
鋼中のS濃度とは、溶鋼中の[S]濃度と介在物に含有されるSの合計濃度であるが、介在物が溶鋼中に生成すると、溶鋼中の[S]と脱硫剤との反応速度が前記の通り遅くなるため、結果的に鋼中S濃度はほとんど低下しないことが判明した。
【0020】
(D)以上の知見から、本発明者らは溶鋼中に添加した脱硫剤の組成を変化させずに酸素濃度を低減することが可能となれば、脱硫反応を促進できることに着眼した。
【0021】
すなわち、脱硫剤中のCaOと溶鋼中Alとの反応を抑制するには溶鋼中の金属Ca濃度を適正範囲に制御することによりCaOの組成変化を抑制できると着想し、脱硫剤中の金属Ca濃度を適正範囲に制御する試験を以下の方法で実施した。
【0022】
Alを0.005〜0.7質量%(以下、単に%で質量%を表す)含有した溶鋼表面に、減圧下でCaSi合金(金属Caを30質量%含有;以下単に%で質量%を表す)とCaOとを含有した脱硫剤(以下、単に脱硫剤ともいう)を吹き付けた。
【0023】
ここで、Al濃度を0.005〜0.7%としたのは、0.005%未満では酸素活量低減効果が小さいためであり、また0.7%を超える鋼種が少ないためである。
【0024】
図1は、溶鋼中の[Al]濃度が0.04%一定のときの脱硫剤中の金属Caの配合量と鋼中のS濃度および介在物指数との関係を示すグラフである。
【0025】
なお、介在物指数は処理後の介在物個数を処理前の介在物個数で割った指数を表す。すなわち、指数1は、処理後の介在物個数が処理前の介在物個数と同じ個数であり、1を超えると増加し、1未満で減少していることを示す。
【0026】
同図に示すように、Ca配合量が低すぎると脱硫反応が進行しない。一方、Ca配合量が高すぎると介在物が多くなり清浄度が悪化し、かつ鋼中のS濃度も低下しない。Ca配合量を適正範囲にすると鋼中のS濃度を低下でき、介在物指数も上昇しない。すなわち、溶鋼の清浄度は悪化しない。
【0027】
なお、Ca配合量が高すぎるとCaと溶鋼中Sとの反応が進行し、CaO−CaS、CaS介在物が生成するため、清浄度が悪化し鋼中S濃度もあまり低下しないものと推定できる。
【0028】
図2は、溶鋼中の[Al]濃度が0.04%一定のときの脱硫剤中の金属Caの配合量と鋼中のN濃度との関係を示すグラフである。
同図に示すように、Ca配合量を適正範囲にすると鋼中のN濃度を低下できる。
【0029】
なお、鋼中のN濃度を低下できるのは、脱窒阻害元素である溶鋼中のOおよびS濃度が低減できるからと推定できる。
【0030】
以上のような実験事実に基づいて、さらに溶鋼中のAl濃度を0.005〜0.7%の範囲で変更し、試験を重ねた結果、図3に示すAl濃度とCa配合量との関係を見出した。
【0031】
図3は、脱硫剤の性能を脱硫剤中のCa配合量と溶鋼中のAl濃度との関係で表したグラフである。
【0032】
同図に示すように、脱硫剤のCa配合量と溶鋼中のAl濃度との関係は、3本の直線(i)〜(iii )で4つの領域に分けることができる。
【0033】
すなわち、最上部の直線(i)によって、清浄度が悪化し脱硫が困難な領域と、清浄度を改善でき脱硫・脱窒が可能な領域とに分けることができる。
【0034】
なお、清浄度を改善できるレベルは、前記介在物指数が0.9未満のレベルをいう。
【0035】
この直線は、下記(i)式で表せる。
(Ca)=7×[Al]+5.1 −−−(i)
ただし、[Al]:溶鋼中のAl濃度(質量%)、
(Ca):脱硫剤中の金属Ca濃度(質量%)
また、中間部の直線(ii)によって清浄度を改善でき脱硫・脱窒が可能な領域と、清浄度を維持でき脱硫・脱窒が可能な領域とに分けることができる。
【0036】
この直線は、下記(ii)式で表せる。
(Ca)=5×[Al]+1.4 −−−(ii)
さらに、最下部の直線(iii )によって清浄度を維持でき脱硫・脱窒が可能な領域と、脱硫が困難な領域とに分けることができる。
【0037】
なお、清浄度を維持できるレベルは、前記介在物指数が0.9〜1.0のレベルをいう。
【0038】
この直線は、下記(iii )式で表せる。
(Ca)=0.94×[Al]+0.34 −−−(iii )
これらの(i)〜(iii )式を基に領域を整理すると、清浄度を少なくとも維持でき脱硫・脱窒が可能な領域は下記(1)式の不等式で表せる。
7×[Al]+5.1≧(Ca)≧0.94×[Al]+0.34 (1)
また、清浄度を改善でき脱硫・脱窒が可能な領域は下記(2)式の不等式で表せる。
7×[Al]+5.1>(Ca)>5×[Al]+1.4 (2)
本発明は、以上の知見に基づいてなされたもので、その要旨は、下記のとおりである。
【0039】
(1)溶鋼中Al濃度が0.005質量%以上0.7質量%以下である溶鋼を脱硫する脱硫剤であって、該脱硫剤がCaOおよび金属Caを含有し、該金属Caの含有量が下記(1)式を満足することを特徴とする溶鋼脱硫用の脱硫剤。
7×[Al]+5.1≧(Ca)≧0.94×[Al]+0.34 (1)
ただし、[Al]:溶鋼中のAl濃度(質量%)、
(Ca):脱硫剤中の金属Ca濃度(質量%)。
【0040】
(2)溶鋼中Al濃度が0.005質量%以上0.7質量%以下である溶鋼を脱硫する脱硫剤であって、該脱硫剤がCaOおよび金属Caを含有し、該金属Caの含有量が下記(2)式を満足することを特徴とする溶鋼脱硫用の脱硫剤。
7×[Al]+5.1>(Ca)>5×[Al]+1.4 (2)
ただし、[Al]:溶鋼中のAl濃度(質量%)、
(Ca):脱硫剤中の金属Ca濃度(質量%)。
【0041】
【発明の実施の形態】
本発明を転炉とRH式真空脱ガス装置を用いて実施する場合を例に説明する。
【0042】
転炉処理終了後、溶鋼を取鍋へ出鋼する。取鍋をRH真空脱ガス装置(以下、単にRHともいう)へ移動し、真空処理を開始する。
【0043】
RH真空槽内に設けた上吹きランスから本脱硫剤を真空槽内溶鋼表面に上吹きする。真空度は環流が維持される程度でよいが、高真空で処理を行うことにより溶鋼攪拌が活発化となり溶鋼の脱硫脱窒が促進されるので望ましい。
【0044】
本脱硫剤を用いる処理の前後に成分調整、温度調整を実施してもよい。
本脱硫剤を上記上吹きで添加してもよいし、溶鋼中に吹き込んでもよい。
【0045】
上吹きは、上記の減圧下上吹きの他に不活性ガス雰囲気の大気圧下で上吹きでもよい。またRH処理中に取鍋内への吹き込みを行ってもよい。
溶鋼質量トン当りの脱硫剤量は2kg〜10kgが望ましい。
【0046】
2kg未満では、脱硫剤が少なすぎて十分に脱硫できない。10kgを超えて多くなると効果が飽和し経済的ではない。
【0047】
また、添加速度は溶鋼質量トン当り0.1〜2kg/min が望ましい。
0.1kg/min 未満では処理時間が長くなり効率が悪くなるおそれがあり、2kg/min )を超えて高いと、溶鋼飛散などの操業上の問題が生じるおそれがある。
【0048】
本脱硫剤に配合される金属Ca含有物は金属Caの他に、Ca−Si、Ca−Al、Fe−Caといった合金なども使用できる。
【0049】
本脱硫剤の主成分はCaOであるが、必要に応じてアルミナ、CaF2 、ZrO2 、MgOなどを配合しても良い。
ただし、本脱硫剤中のCaO含有量は25%以上が望ましい。
【0050】
25%未満では脱硫性能が低下するおそれがある。
本脱硫剤の粒径は、0.001〜3mmが望ましい。
【0051】
その理由は、0.001mm未満では質量が小さく溶鋼中に侵入しないおそれがあり、3mmを超えると反応界面の面積が減少し脱硫性能が低下するおそれがあるからである。
【0052】
【実施例】
転炉で脱炭した溶鋼を、取鍋内に出鋼し、取鍋をRH真空脱ガス装置に移動し、真空処理を開始した。
【0053】
真空処理開始後、溶鋼にAlを添加し、溶鋼中のAl濃度を確認した後、脱硫剤中の金属Caの配合量を決定し、真空槽内溶鋼表面に脱硫剤を吹き付けた。
なお、金属Caは金属Caを30質量%含有するFe−Ca合金を用いた。
【0054】
RH真空槽の真空度は、約300Pa、脱硫剤の吹き付け速度は溶鋼質量トン当り1kg/min 、吹き付け時間は8分とした。なお、脱硫剤のキャリヤ−ガスとしてArガスを用いた。
表1に試験結果を示す。
【0055】
【表1】

Figure 0003697987
【0056】
なお、表中の介在物指数は、前記の通り処理後の介在物個数を処理前の介在物個数で割った指数を表す。
【0057】
また、表中のCaの配合量評価は、前記(1)式で示される範囲のCaの配合量:○を、前記(2)式で示される範囲のCaの配合量:◎の評価とした。
【0058】
[S]濃度は、処理後の溶鋼中の[S]濃度が5ppm 以下:○を、5ppm を超える溶鋼中の[S]濃度:×とした。
【0059】
[N]濃度は、処理後の溶鋼中の[N]濃度が20ppm 以下:○を、20ppm を超える溶鋼中の[N]濃度:×とした。
【0060】
介在物指数0.9〜1.0は介在物個数が処理前と変化してないと判断でき、○(介在物個数維持)を、0.9未満は介在物個数を低減できたとして◎を、
1.0超は介在物個数が増加したとして×をそれぞれつけて評価した。
【0061】
総合評価の◎は、[S]濃度が5ppm 以下であり、[N]濃度が20ppm 以下であり、さらに介在物指数が0.9未満であることを示す。
【0062】
総合評価の○は、[S]濃度が5ppm 以下であり、[N]濃度が20ppm 以下であり、さらに介在物指数が0.9〜1.0であることを示す。

【0063】
総合評価の×は、[S]濃度が5ppm 超、または[N]濃度が20ppm 超、または介在物個数が1.0超のいずれかに該当する場合であることを示す。
【0064】
表1に示すように、前記(1)式で示される範囲の金属Ca配合量の脱硫剤で吹き付け処理を行うと、介在物個数を増加させることなく、[S]濃度および[N]濃度を低下できた。
【0065】
また、前記(2)式で示される範囲の金属Ca配合量の脱硫剤で吹き付け処理を行うと、介在物個数を低減でき、さらに[S]濃度および[N]濃度を低下できた。
【0066】
【発明の効果】
本発明の溶鋼脱硫用の脱硫剤により、清浄度を維持または改善しながら溶鋼の脱硫脱窒ができる。
【図面の簡単な説明】
【図1】溶鋼中の[Al]濃度が0.04%一定のときの脱硫剤中の金属Caの配合量と鋼中のS濃度および介在物指数との関係を示すグラフである。
【図2】溶鋼中の[Al]濃度が0.04%一定のときの脱硫剤中の金属Caの配合量と鋼中のN濃度との関係を示すグラフである。
【図3】CaO系脱硫剤の性能を脱硫剤のCa配合量と溶鋼中のAl濃度との関係で表したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a desulfurization agent for molten steel desulfurization, and more particularly to a desulfurization agent for molten steel desulfurization that can maintain or improve cleanliness.
[0002]
[Prior art]
Since S in steel and non-metallic inclusions cause various product defects, their reduction is required. In particular, it is desired to reduce the S concentration to an extremely low range of 10 ppm or less, and depending on the steel type, 4 ppm or less.
[0003]
Reduction of S in steel is mainly performed in the molten steel stage, and as a desulfurization process at that time, a method of blowing a desulfurizing agent containing CaO or the like into the molten steel, a method of blowing a desulfurizing agent on the surface of the molten steel under reduced pressure, A method of forming a high slag and blowing an inert gas into molten steel has been known so far.
[0004]
For example, the method of blowing a desulfurization agent containing CaO and CaF 2 disclosed in JP-A-5-171253 into molten steel or the method of blowing it onto the molten steel increases the area of the reaction interface between the molten steel and the desulfurization agent. It has been considered advantageous for the production of ultra-low sulfur steel.
[0005]
[Problems to be solved by the invention]
However, a large amount of a desulfurizing agent and a deoxidizing agent are required to reduce the S concentration to 5 ppm or less with the disclosed technique of the publication, and the processing time is as long as 8 to 15 minutes. Therefore, it has been desired to obtain ultra-low sulfur steel in a short time.
[0006]
In order to obtain ultra-low sulfur steel in a short time, it is necessary to improve the desulfurization efficiency more than before. The desulfurization reaction during the desulfurization process proceeds by the following chemical reaction.
[0007]
(CaO) + [S] = (CaS) + [O]
However, (CaO), (CaS): desulfurization agent and slag component [S], [O]: As is clear from the component reaction formula in the molten steel, the desulfurization reaction is promoted by reducing the oxygen concentration in the molten steel in advance. it can.
[0008]
For example, in Japanese Patent Laid-Open No. 62-7816, a deoxidizer such as Al or Ca is added to molten steel before desulfurization, or a desulfurizer is added, or a deoxidizer and a desulfurizer are added simultaneously. Is disclosed to be effective.
[0009]
However, even if the Al concentration is increased, the effect of increasing the desulfurization rate is small, and further improvement is necessary.
[0010]
Japanese Patent Laid-Open No. 10-183227 discloses a technique for adding to a molten steel a desulfurization agent containing CaO as a main raw material (hereinafter also referred to as a CaO-based desulfurization agent) and further containing a metal Ca such as a CaSi alloy. It is disclosed.
[0011]
However, this technique has a problem in that the effect of reducing the S concentration in the molten steel is small, and more inclusions are produced, which deteriorates the cleanliness of the molten steel.
[0012]
On the other hand, there has been a problem that denitrification has almost no denitrification effect.
An object of the present invention is to provide a molten steel desulfurization agent for desulfurization and denitrification that can maintain or improve cleanliness.
[0013]
[Means for Solving the Problems]
As described above, the lower the oxygen concentration in the molten steel, the easier the desulfurization reaction proceeds.
[0014]
Then, after deoxidizing the molten steel with Al, a small-scale experiment was conducted in which a CaO-based desulfurizing agent was sprayed onto the molten steel under reduced pressure.
The knowledge obtained in this experiment is shown below.
[0015]
(A) When a CaO-based desulfurizing agent is added to molten steel deoxidized with Al, this desulfurizing agent is a composition mainly composed of CaO and a mixture of CaO and Al 2 O 3 (hereinafter referred to as this composition). (Represented by CaO—Al 2 O 3 ).
[0016]
(B) With CaO and CaO-Al 2 O 3 , the desulfurization capacity of CaO—Al 2 O 3 (generally called sulfide capacity) is significantly inferior to CaO.
[0017]
(C) On the other hand, since the CaO-based desulfurization agent containing metal Ca has a strong reactivity with O and S, the metal Ca easily reacts with [O] and [S] in the molten steel, and is a mixture of CaO and CaS. The composition mainly composed of (hereinafter, this composition is represented by CaO-CaS inclusions) and the composition mainly composed of CaS (hereinafter, represented by CaS inclusions) are produced in large amounts, thereby deteriorating the cleanliness.
[0018]
Since these inclusions are produced, the [S] concentration in the molten steel is lowered, and the reaction rate between the desulfurizing agent and [S] in the molten steel is lowered.
[0019]
The S concentration in the steel is the total concentration of [S] in the molten steel and S contained in the inclusions. If the inclusions are generated in the molten steel, the S concentration in the molten steel and the desulfurizing agent Since the reaction rate was slow as described above, it was found that the S concentration in the steel hardly decreased as a result.
[0020]
(D) From the above knowledge, the present inventors have focused on the fact that the desulfurization reaction can be promoted if the oxygen concentration can be reduced without changing the composition of the desulfurizing agent added to the molten steel.
[0021]
That is, in order to suppress the reaction between CaO in the desulfurizing agent and Al in the molten steel, it was conceived that the change in the composition of CaO can be suppressed by controlling the concentration of metallic Ca in the molten steel within an appropriate range. The test which controls a density | concentration to an appropriate range was implemented with the following method.
[0022]
On a molten steel surface containing Al in an amount of 0.005 to 0.7% by mass (hereinafter simply expressed as%), a CaSi alloy (containing 30% by mass of metal Ca; hereinafter simply expressed as% by mass) under reduced pressure. ) And CaO were sprayed (hereinafter also simply referred to as a desulfurizing agent).
[0023]
Here, the reason why the Al concentration is set to 0.005 to 0.7% is that when the content is less than 0.005%, the effect of reducing the oxygen activity is small, and because there are few steel types exceeding 0.7%.
[0024]
FIG. 1 is a graph showing the relationship between the amount of metallic Ca in the desulfurizing agent, the S concentration in steel and the inclusion index when the [Al] concentration in molten steel is constant 0.04%.
[0025]
The inclusion index represents an index obtained by dividing the number of inclusions after treatment by the number of inclusions before treatment. That is, an index of 1 indicates that the number of inclusions after treatment is the same as the number of inclusions before treatment, and increases when it exceeds 1 and decreases when it is less than 1.
[0026]
As shown in the figure, the desulfurization reaction does not proceed if the Ca content is too low. On the other hand, if the Ca content is too high, inclusions increase, the cleanliness deteriorates, and the S concentration in the steel does not decrease. When the Ca content is within an appropriate range, the S concentration in the steel can be reduced, and the inclusion index does not increase. That is, the cleanliness of the molten steel does not deteriorate.
[0027]
If the Ca content is too high, the reaction between Ca and S in molten steel proceeds and CaO-CaS and CaS inclusions are produced. Therefore, it can be estimated that the cleanliness is deteriorated and the S concentration in the steel does not decrease so much. .
[0028]
FIG. 2 is a graph showing the relationship between the amount of metallic Ca in the desulfurizing agent and the N concentration in the steel when the [Al] concentration in the molten steel is constant 0.04%.
As shown in the figure, the N concentration in the steel can be reduced when the Ca content is within an appropriate range.
[0029]
In addition, it can be estimated that the N concentration in the steel can be reduced because the O and S concentrations in the molten steel, which is a denitrification inhibiting element, can be reduced.
[0030]
Based on the experimental facts as described above, the Al concentration in the molten steel was further changed in the range of 0.005 to 0.7%, and as a result of repeated tests, the relationship between the Al concentration and the Ca content shown in FIG. I found.
[0031]
FIG. 3 is a graph showing the performance of the desulfurizing agent in terms of the relationship between the Ca content in the desulfurizing agent and the Al concentration in the molten steel.
[0032]
As shown in the figure, the relationship between the Ca content of the desulfurizing agent and the Al concentration in the molten steel can be divided into four regions by three straight lines (i) to (iii).
[0033]
That is, the uppermost straight line (i) can be divided into a region where cleanliness is deteriorated and desulfurization is difficult, and a region where cleanliness can be improved and desulfurization / denitrification can be performed.
[0034]
In addition, the level which can improve a cleanliness means the level whose said inclusion index is less than 0.9.
[0035]
This straight line can be expressed by the following equation (i).
(Ca) = 7 × [Al] +5.1 −−− (i)
However, [Al]: Al concentration in molten steel (mass%),
(Ca): Metal Ca concentration (% by mass) in the desulfurization agent
Moreover, the straight line (ii) in the middle part can be divided into a region where the cleanliness can be improved and desulfurization / denitrification can be performed, and a region where the cleanliness can be maintained and desulfurization / denitrification can be performed.
[0036]
This straight line can be expressed by the following equation (ii).
(Ca) = 5 × [Al] +1.4 −−− (ii)
Furthermore, the lowermost straight line (iii) can be divided into a region where cleanliness can be maintained and desulfurization / denitrification can be performed, and a region where desulfurization is difficult.
[0037]
In addition, the level which can maintain cleanliness means the level whose said inclusion index is 0.9-1.0.
[0038]
This straight line can be expressed by the following formula (iii).
(Ca) = 0.94 × [Al] +0.34 −−− (iii)
If the regions are arranged based on these equations (i) to (iii), the region where the cleanliness can be maintained and desulfurization / denitrification can be performed can be expressed by the following inequality (1).
7 × [Al] + 5.1 ≧ (Ca) ≧ 0.94 × [Al] +0.34 (1)
Further, the region where the cleanliness can be improved and desulfurization / denitrification can be performed can be expressed by the following inequality (2).
7 × [Al] +5.1>(Ca)> 5 × [Al] +1.4 (2)
The present invention has been made based on the above findings, and the gist thereof is as follows.
[0039]
(1) A desulfurizing agent for desulfurizing molten steel having an Al concentration in molten steel of 0.005 mass% to 0.7 mass% , wherein the desulfurizing agent contains CaO and metallic Ca, and the content of the metallic Ca Satisfies the following formula (1), a desulfurization agent for molten steel desulfurization.
7 × [Al] + 5.1 ≧ (Ca) ≧ 0.94 × [Al] +0.34 (1)
However, [Al]: Al concentration in molten steel (mass%),
(Ca): Metal Ca concentration (% by mass) in the desulfurization agent.
[0040]
(2) A desulfurization agent for desulfurizing molten steel having an Al concentration in the molten steel of 0.005 mass% or more and 0.7 mass% or less, the desulfurization agent containing CaO and metal Ca, and the content of the metal Ca Satisfies the following formula (2): A desulfurization agent for desulfurization of molten steel.
7 × [Al] +5.1>(Ca)> 5 × [Al] +1.4 (2)
However, [Al]: Al concentration in molten steel (mass%),
(Ca): Metal Ca concentration (% by mass) in the desulfurization agent.
[0041]
DETAILED DESCRIPTION OF THE INVENTION
The case where the present invention is carried out using a converter and an RH vacuum degassing apparatus will be described as an example.
[0042]
After the converter process, the molten steel is taken out into a ladle. The ladle is moved to an RH vacuum degasser (hereinafter also simply referred to as RH), and vacuum processing is started.
[0043]
The desulfurizing agent is sprayed on the surface of the molten steel in the vacuum chamber from an upper spray lance provided in the RH vacuum chamber. The degree of vacuum may be such that the reflux is maintained, but it is desirable because the treatment with high vacuum activates the stirring of molten steel and promotes desulfurization and denitrification of the molten steel.
[0044]
Component adjustment and temperature adjustment may be performed before and after the treatment using the present desulfurizing agent.
The desulfurizing agent may be added by top blowing or may be blown into molten steel.
[0045]
The top blow may be a top blow under an atmospheric pressure of an inert gas atmosphere in addition to the above-described top blow under reduced pressure. Moreover, you may blow in the ladle during RH process.
The amount of the desulfurizing agent per ton of molten steel is desirably 2 kg to 10 kg.
[0046]
If it is less than 2 kg, there are too few desulfurization agents and it cannot fully desulfurize. When the amount exceeds 10 kg, the effect is saturated and it is not economical.
[0047]
The addition rate is desirably 0.1 to 2 kg / min per ton of molten steel.
If it is less than 0.1 kg / min, the treatment time may be long and the efficiency may be deteriorated. If it exceeds 2 kg / min), operational problems such as molten steel scattering may occur.
[0048]
The metal Ca-containing material blended in the present desulfurizing agent may be an alloy such as Ca—Si, Ca—Al, Fe—Ca, etc. in addition to the metal Ca.
[0049]
The main component of the present desulfurizing agent is CaO, but alumina, CaF 2 , ZrO 2 , MgO or the like may be blended as necessary.
However, the CaO content in the present desulfurizing agent is preferably 25% or more.
[0050]
If it is less than 25%, the desulfurization performance may be lowered.
The particle size of the desulfurizing agent is preferably 0.001 to 3 mm.
[0051]
The reason is that if it is less than 0.001 mm, the mass is small and it may not enter the molten steel, and if it exceeds 3 mm, the area of the reaction interface may decrease and the desulfurization performance may deteriorate.
[0052]
【Example】
The molten steel decarburized in the converter was put into the ladle, the ladle was moved to the RH vacuum degassing device, and vacuum treatment was started.
[0053]
After the vacuum treatment was started, Al was added to the molten steel, and after confirming the Al concentration in the molten steel, the amount of metal Ca in the desulfurizing agent was determined, and the desulfurizing agent was sprayed on the surface of the molten steel in the vacuum chamber.
In addition, the metal Ca used the Fe-Ca alloy containing 30 mass% of metal Ca.
[0054]
The degree of vacuum of the RH vacuum tank was about 300 Pa, the spraying speed of the desulfurizing agent was 1 kg / min per ton of molten steel, and the spraying time was 8 minutes. Ar gas was used as a carrier gas for the desulfurization agent.
Table 1 shows the test results.
[0055]
[Table 1]
Figure 0003697987
[0056]
The inclusion index in the table represents an index obtained by dividing the number of inclusions after treatment by the number of inclusions before treatment as described above.
[0057]
In addition, the amount of Ca contained in the table was evaluated in terms of the amount of Ca contained in the range represented by the formula (1): ○ and the amount of Ca contained in the range represented by the formula (2): :. .
[0058]
As for the [S] concentration, the [S] concentration in the molten steel after the treatment was 5 ppm or less: ○, and the [S] concentration in the molten steel exceeding 5 ppm was taken as x.
[0059]
As for the [N] concentration, the [N] concentration in the molten steel after the treatment was 20 ppm or less: ◯, and the [N] concentration in the molten steel exceeding 20 ppm: x.
[0060]
Inclusion index of 0.9 to 1.0 can be judged that the number of inclusions has not changed from that before the treatment, and ○ (maintenance of the number of inclusions) is less than 0.9. ,
When the number of inclusions exceeded 1.0, the number of inclusions was increased, and each was evaluated with a cross.
[0061]
The 総 合 in the overall evaluation indicates that the [S] concentration is 5 ppm or less, the [N] concentration is 20 ppm or less, and the inclusion index is less than 0.9.
[0062]
In the overall evaluation, ◯ indicates that the [S] concentration is 5 ppm or less, the [N] concentration is 20 ppm or less, and the inclusion index is 0.9 to 1.0.
.
[0063]
The x in the comprehensive evaluation indicates that the [S] concentration exceeds 5 ppm, the [N] concentration exceeds 20 ppm, or the number of inclusions exceeds 1.0.
[0064]
As shown in Table 1, when spraying with a desulfurizing agent having a metallic Ca content in the range represented by the above formula (1), the [S] concentration and the [N] concentration are increased without increasing the number of inclusions. I was able to decrease.
[0065]
Moreover, when the spray treatment was performed with a desulfurizing agent having a metallic Ca content within the range represented by the formula (2), the number of inclusions could be reduced, and the [S] concentration and [N] concentration could be further reduced.
[0066]
【The invention's effect】
With the desulfurization agent for molten steel desulfurization of the present invention, desulfurization and denitrification of molten steel can be performed while maintaining or improving the cleanliness.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of metallic Ca in a desulfurizing agent, the S concentration in steel and the inclusion index when the [Al] concentration in molten steel is constant 0.04%.
FIG. 2 is a graph showing the relationship between the amount of metallic Ca in the desulfurizing agent and the N concentration in steel when the [Al] concentration in molten steel is constant 0.04%.
FIG. 3 is a graph showing the performance of a CaO-based desulfurizing agent in relation to the Ca content of the desulfurizing agent and the Al concentration in the molten steel.

Claims (2)

溶鋼中Al濃度が0.005質量%以上0.7質量%以下である溶鋼を脱硫する脱硫剤であって、該脱硫剤がCaOおよび金属Caを含有し、該金属Caの含有量が下記(1)式を満足することを特徴とする溶鋼脱硫用の脱硫剤。
7×[Al]+5.1≧(Ca)≧0.94×[Al]+0.34 (1)
ただし、[Al]:溶鋼中のAl濃度(質量%)、
(Ca):脱硫剤中の金属Ca濃度(質量%)。
A desulfurization agent for desulfurizing molten steel having an Al concentration in a molten steel of 0.005 mass% or more and 0.7 mass% or less, the desulfurization agent containing CaO and metal Ca, and the content of the metal Ca is the following ( 1) A desulfurization agent for molten steel desulfurization characterized by satisfying the formula:
7 × [Al] + 5.1 ≧ (Ca) ≧ 0.94 × [Al] +0.34 (1)
However, [Al]: Al concentration in molten steel (mass%),
(Ca): Metal Ca concentration (% by mass) in the desulfurization agent.
溶鋼中Al濃度が0.005質量%以上0.7質量%以下である溶鋼を脱硫する脱硫剤であって、該脱硫剤がCaOおよび金属Caを含有し、該金属Caの含有量が下記(2)式を満足することを特徴とする溶鋼脱硫用の脱硫剤。
7×[Al]+5.1>(Ca)>5×[Al]+1.4 (2)
ただし、[Al]:溶鋼中のAl濃度(質量%)、
(Ca):脱硫剤中の金属Ca濃度(質量%)。
A desulfurization agent for desulfurizing molten steel having an Al concentration in a molten steel of 0.005 mass% or more and 0.7 mass% or less, the desulfurization agent containing CaO and metal Ca, and the content of the metal Ca is the following ( 2) A desulfurizing agent for molten steel desulfurization characterized by satisfying the formula:
7 × [Al] +5.1>(Ca)> 5 × [Al] +1.4 (2)
However, [Al]: Al concentration in molten steel (mass%),
(Ca): Metal Ca concentration (% by mass) in the desulfurization agent.
JP37051699A 1999-12-27 1999-12-27 Desulfurization agent for molten steel desulfurization Expired - Fee Related JP3697987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37051699A JP3697987B2 (en) 1999-12-27 1999-12-27 Desulfurization agent for molten steel desulfurization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37051699A JP3697987B2 (en) 1999-12-27 1999-12-27 Desulfurization agent for molten steel desulfurization

Publications (2)

Publication Number Publication Date
JP2001181730A JP2001181730A (en) 2001-07-03
JP3697987B2 true JP3697987B2 (en) 2005-09-21

Family

ID=18497120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37051699A Expired - Fee Related JP3697987B2 (en) 1999-12-27 1999-12-27 Desulfurization agent for molten steel desulfurization

Country Status (1)

Country Link
JP (1) JP3697987B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6780695B2 (en) * 2018-01-05 2020-11-04 Jfeスチール株式会社 Melting method of ultra-low sulfur low nitrogen steel

Also Published As

Publication number Publication date
JP2001181730A (en) 2001-07-03

Similar Documents

Publication Publication Date Title
JP5151448B2 (en) Method of melting ultra-low sulfur ultra-low oxygen ultra-low nitrogen steel
JP3896713B2 (en) Melting method of ultra-low carbon steel with excellent cleanability
JP3463573B2 (en) Manufacturing method of ultra clean ultra low sulfur steel
JP5891826B2 (en) Desulfurization method for molten steel
JP5458607B2 (en) Manufacturing method of clean steel with excellent resistance to sulfide corrosion cracking
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP3697987B2 (en) Desulfurization agent for molten steel desulfurization
JP2007270178A (en) Method for manufacturing extra-low sulfur steel
JPH08283826A (en) Production of high purity ultralow sulfur hic resistant steel
JP3250459B2 (en) HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same
JP3297992B2 (en) Melting method of high clean ultra low carbon steel
JPH0873923A (en) Production of clean steel having excellent hydrogen induced crack resistance
JP3097506B2 (en) Method for Ca treatment of molten steel
JPS6187815A (en) Desulfurizing material and desulfurizing method of molten steel
JP3577989B2 (en) High-speed desulfurization of molten steel
JP3417311B2 (en) Method for producing highly clean HIC steel
JPH09227989A (en) Calcium-treated steel and treatment of molten steel with calcium
JPH0953109A (en) Method for temperature-raising and refining molten steel
JPH08157934A (en) Calcium treatment of molten steel
JP3221812B2 (en) Low oxygen steel smelting method
JPH11293329A (en) Production of extra-low carbon silicon-killed steel excellent in cleaning property
JPH1192819A (en) Vacuum refining of high clean extra-low nitrogen steel
JP3277763B2 (en) Refining method of ultra clean low carbon steel
JP5712945B2 (en) Method for melting low-sulfur steel
JP2001107130A (en) Manufacture of low nitrogen steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3697987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees