JP3250459B2 - HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same - Google Patents

HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same

Info

Publication number
JP3250459B2
JP3250459B2 JP16440996A JP16440996A JP3250459B2 JP 3250459 B2 JP3250459 B2 JP 3250459B2 JP 16440996 A JP16440996 A JP 16440996A JP 16440996 A JP16440996 A JP 16440996A JP 3250459 B2 JP3250459 B2 JP 3250459B2
Authority
JP
Japan
Prior art keywords
inclusions
concentration
molten steel
hic
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16440996A
Other languages
Japanese (ja)
Other versions
JPH108196A (en
Inventor
光裕 沼田
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16440996A priority Critical patent/JP3250459B2/en
Publication of JPH108196A publication Critical patent/JPH108196A/en
Application granted granted Critical
Publication of JP3250459B2 publication Critical patent/JP3250459B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐HIC性および
溶接部の低温靱性に優れた鋼およびその製造方法に関す
る。
The present invention relates to a steel excellent in HIC resistance and low-temperature toughness of a weld and a method for producing the same.

【0002】[0002]

【従来の技術】低温かつ腐食性環境で用いられるライン
パイプ材では、母材および溶接部の両方での高い耐サワ
ー性と溶接部での優れた低温靱性とが要求される。
2. Description of the Related Art A line pipe material used in a low-temperature and corrosive environment is required to have high sour resistance in both a base material and a welded portion and excellent low-temperature toughness in a welded portion.

【0003】ラインパイプなどで発生する水素誘起割れ
(以下、HICと記す)は、圧延時に線状に破砕された
Al2O3 クラスターや線状に延伸されたMnS を起点に発生
することが知られている。したがって従来、溶鋼にCa
含有物質を添加することにより、Al2O3 クラスターをH
ICの起点とならない球状介在物に形態制御するととも
に、Caと溶鋼中〔S〕とを反応させ、CaO-Al2O3-CaS
系介在物として脱硫することにより、MnS の生成を抑止
する技術がある。
[0003] Hydrogen-induced cracking (hereinafter referred to as HIC) generated in a line pipe or the like is crushed linearly during rolling.
It is known that it is generated from Al 2 O 3 clusters or linearly elongated MnS. Therefore, conventionally, Ca
By adding the contained material, the Al 2 O 3 cluster
In addition to controlling the morphology of the spherical inclusions that do not become the starting point of IC, CaO-Al 2 O 3 -CaS
There is a technology to suppress the production of MnS by desulfurization as a system inclusion.

【0004】一方、ラインパイプなどの電縫溶接管で
は、溶接部およびその近傍に存在する介在物が電縫溶接
するときに変形し、溶接部の低温靱性が低下することが
知られている。
On the other hand, in an ERW pipe such as a line pipe, it is known that a weld portion and an inclusion existing in the vicinity thereof are deformed during ERW welding, and the low-temperature toughness of the weld portion is reduced.

【0005】一般に、ラインパイプ材などの耐HIC鋼
は以下の方法によって製造される。
[0005] Generally, HIC resistant steel such as a line pipe material is manufactured by the following method.

【0006】転炉から出鋼した後の溶鋼をAlなどで脱
酸した後、RH真空脱ガス装置などを用いて溶鋼中の窒
素および水素を除去する。この後、脱硫処理を施す場合
もある。その後、溶鋼にCa含有物質を添加する。
[0006] After the molten steel after the tapping from the converter is deoxidized with Al or the like, nitrogen and hydrogen in the molten steel are removed using an RH vacuum degassing apparatus or the like. Thereafter, a desulfurization treatment may be performed. Thereafter, a Ca-containing substance is added to the molten steel.

【0007】Ca含有物質としては、Caを約30重量
%含んだCa−Si、Ca−AlなどのCa合金が一般
に用いられる。これらの添加方法としては、溶鋼に浸漬
したランスから不活性ガスとともに溶鋼中に吹き込むイ
ンジェクション方法、およびCa含有物質粉を鉄で被覆
し線状となしたものを溶鋼中に送り込むワイヤーフィー
ダー法が知られている。
As the Ca-containing substance, a Ca alloy containing about 30% by weight of Ca, such as Ca-Si or Ca-Al, is generally used. Known methods of these additions include an injection method in which an inert gas is blown into the molten steel from a lance immersed in the molten steel, and a wire feeder method in which a Ca-containing substance powder coated with iron and made linear is fed into the molten steel. Have been.

【0008】しかし、Ca処理方法が不適切であると、
Al2O3 クラスターの球状化が不十分となったり、添加C
aと溶鋼中[S]との反応でCaS クラスターや凝固時に
MnSが生成したりすることにより、耐HIC性が著しく
悪化する。さらに、電縫溶接するときに変形しやすい介
在物が多量に生成し、溶接部の低温靱性が悪化する。
[0008] However, if the Ca treatment method is inappropriate,
The spheroidization of the Al 2 O 3 cluster becomes insufficient,
The reaction between a and the [S] in molten steel causes CaS clusters and solidification.
Due to the formation of MnS, the HIC resistance is significantly deteriorated. Further, a large amount of inclusions that are easily deformed during the electric resistance welding is generated, and the low-temperature toughness of the welded portion is deteriorated.

【0009】このような問題を解決するため、従来、母
材の耐HIC性あるいは溶接部の低温靱性の向上を図る
いくつかの方法が提案されてきた。
In order to solve such a problem, several methods for improving the HIC resistance of a base material or the low-temperature toughness of a weld have been proposed.

【0010】母材の耐HIC性の向上を図る方法として
は以下が知られている。
The following are known methods for improving the HIC resistance of a base material.

【0011】特開昭63-7322 号公報では、Ca添加量の
不足によりAl2O3 系介在物が十分にCaO-Al2O3 系介在物
へ変化しないこと、およびCa添加量の過剰によりCaS
系介在物が生成することなどの問題点を解決するため
に、溶鋼をCa処理する際に下式を満足するようにCa
を添加する方法が提案されている。
Japanese Patent Application Laid-Open No. 63-7322 discloses that Al 2 O 3 -based inclusions are not sufficiently changed into CaO-Al 2 O 3 -based inclusions due to an insufficient amount of Ca added, and CaS
In order to solve problems such as formation of system inclusions, when treating molten steel with Ca,
Has been proposed.

【0012】 0.7−14〔S〕<〔Ca〕/〔O〕< 1.1−14〔S〕 ただし、 〔Ca〕:溶鋼中のCa濃度(ppm) 〔S〕:溶鋼中のS濃度(%) 〔O〕:溶鋼中のO濃度(ppm) 特開平3-79713 号公報では、Ca添加量を制御するため
に、上記とは異なる下式を用いる方法が提案されてい
る。
0.7-14 [S] <[Ca] / [O] <1.1-14 [S] [Ca]: Ca concentration in molten steel (ppm) [S]: S concentration in molten steel (%) [O]: O concentration in molten steel (ppm) JP-A-3-79713 proposes a method using the following equation different from the above in order to control the amount of Ca added.

【0013】0.50≦〔Ca〕/〔O〕T ≦1.00、 〔Ca〕≦40、〔O〕T ≦40 ただし、〔O〕T : 溶鋼中の全O濃度(ppm) ここで、〔Ca〕/〔O〕T を0.5 以上にするのはCa0-
Al2O3 系介在物を組融点の低い組成にし、一方1.00以下
にするのはCaS の生成を防止するためである。
0.50 ≦ [Ca] / [O] T ≦ 1.00, [Ca] ≦ 40, [O] T ≦ 40, where [O] T is the total O concentration (ppm) in the molten steel, where [Ca] / [O] T is 0.5 or more when Ca0-
The reason why the Al 2 O 3 type inclusion is made to have a composition having a low melting point and to be 1.00 or less is to prevent generation of CaS.

【0014】特開平3-183721号公報では、Ca添加速度
Vを次式のように制御し、Al2O3 介在物を十分にCaO-Al
2O3 系介在物に改質するとともに、CaS の生成を抑止す
るCa処理方法が提案されている。
In Japanese Patent Application Laid-Open No. 3-183721, the rate of Ca addition V is controlled as shown in the following equation, and Al 2 O 3 inclusions are sufficiently removed from CaO-Al.
A Ca treatment method has been proposed which reforms to 2 O 3 -based inclusions and suppresses the generation of CaS.

【0015】V≦−25×〔%C〕+35 ただし、V:Ca添加速度(g/(min・ton ・steel)) 〔%C〕:溶鋼中C含有量(重量%) 一方、母材の耐HIC性および溶接部の低温靱性の向上
を図る方法としては、以下のようなものがある。
V ≦ −25 × [% C] +35 where V: Ca addition rate (g / (min · ton · steel)) [% C]: C content in molten steel (% by weight) Methods for improving the HIC resistance and the low-temperature toughness of the welded portion include the following.

【0016】特開昭63-137144 号公報では、鋼中にZr
を添加し、介在物をZrO2・Al2O3 に改質することにより
介在物の融点を上げ、介在物を電縫溶接時に変形・延伸
させないようにした高靱性電縫鋼管が提案されている。
JP-A-63-137144 discloses that Zr is contained in steel.
Was added, inclusions increase the melting point of inclusions by reforming the ZrO 2 · Al 2 O 3, inclusions been proposed high tenacity ERW steel tube so as not to deform and stretching during electric resistance welding I have.

【0017】特開平6-41684 号公報では、S、Oおよび
Caの含有量を特定式を満足するように制御した上で、
介在物を(CaO) m ・(Al2O3) n 系とし、その分子構成比
(m/n)を1未満とする電縫鋼管が提案されている。
In Japanese Patent Application Laid-Open No. 6-41684, the contents of S, O and Ca are controlled so as to satisfy a specific expression.
An electric resistance welded steel pipe has been proposed in which the inclusion is (CaO) m · (Al 2 O 3 ) n system and the molecular composition ratio (m / n) is less than 1.

【0018】[0018]

【発明が解決しようとする課題】従来、Ca添加により
HICの起点となるMnS あるいはAl2O3 クラスターを耐
HIC性に無害とされるCaO-Al2O3-CaS 系球状介在物に
改質し、かつCa添加時に生成するCaS を抑止すれば、
実用上十分な耐HIC性が得られると考えられてきた。
Conventionally, MnS or Al 2 O 3 clusters, which are the starting points of HIC by adding Ca, are modified into CaO-Al 2 O 3 -CaS-based spherical inclusions which are harmless to HIC resistance. And suppress CaS generated when Ca is added,
It has been considered that practically sufficient HIC resistance can be obtained.

【0019】しかし、Ca添加によりHICの起点とな
る有害介在物を球状CaO-Al2O3-CaS介在物に無害化改質
し、かつCaS 介在物を抑止しても、HICの発生を十分
に抑えることはできない。
However, even if the harmful inclusions that become the starting point of HIC by adding Ca are detoxified and modified into spherical CaO—Al 2 O 3 —CaS inclusions, and the CaS inclusions are suppressed, the generation of HIC is sufficient. Can not be suppressed.

【0020】前記の特開昭63-7322 、特開平3-79713 お
よび特開平3-183721の各号公報では、介在物をCaO-Al2O
3 系介在物または低融点のCaO-Al2O3 系介在物に制御
し、CaS 単体介在物の生成を抑止する方法を提案してい
るにすぎず、CaO-Al2O3 系球状介在物の破砕抑止による
耐HIC性の向上および電縫溶接時の介在物変形防止に
よる溶接部の低温靱性向上を十分に達成することができ
ない。
In the above-mentioned JP-A-63-7322, JP-A-3-79713 and JP-A-3-183721, the inclusions are CaO-Al 2 O
Controls 3 inclusions or low melting CaO-Al 2 O 3 inclusions, merely proposes a method of suppressing the generation of CaS single inclusions, CaO-Al 2 O 3 -based spherical inclusions Therefore, it is not possible to sufficiently achieve the improvement of HIC resistance by suppressing crushing of steel and the improvement of low-temperature toughness of a welded portion by preventing deformation of inclusions during electric resistance welding.

【0021】前記の特開昭63-137144 号公報では、介在
物をZrO2・Al2O3 に改質することで介在物の融点を上昇
させ、溶接部の低温靱性を向上させることはできるが、
介在物の球状化ならびにCaS およびMnS などの硫化物系
介在物の形態制御が不十分であり、実用上十分な耐HI
C性を得ることが困難である。
In the above-mentioned Japanese Patent Application Laid-Open No. 63-137144, it is possible to improve the low-temperature toughness of the weld by increasing the melting point of the inclusion by modifying the inclusion into ZrO 2 .Al 2 O 3. But,
The spheroidization of inclusions and the morphological control of sulfide-based inclusions such as CaS and MnS are insufficient, and the HI resistance is practically sufficient.
It is difficult to obtain C properties.

【0022】一方、特開平6-41684 号公報では、CaO-Al
2O3 系介在物中のAl2O3 濃度の上昇、つまりCa0 濃度の
低下により、介在物の融点を上昇させて溶接部の低温靱
性を確保し、かつこの高融点のCaO-Al2O3 系介在物によ
り耐HIC性が得られるとしている。しかし、高Al2O3
濃度のCaO-Al2O3 系介在物ではMnS の生成抑止が不十分
であり、また球状介在物の破砕抑止が困難であり、実用
上十分な耐HIC性が得られない。さらに、高Al2O3
度のCaO-Al2O3 系介在物に制御する具体的手段が示され
ていない。すなわち、Ca添加量の低減のみにより介在
物中のAl2O3 濃度を上昇させようとすると、介在物を融
点1600℃(通常の製鋼処理温度)以下とすることが
できず、結果として介在物が球状化されず、耐HIC性
に致命的なクラスター介在物となってしまう。
On the other hand, JP-A-6-41684 discloses that CaO-Al
By increasing the Al 2 O 3 concentration in the 2 O 3 -based inclusions, that is, decreasing the Ca 0 concentration, the melting point of the inclusions is increased to ensure the low-temperature toughness of the weld, and this high melting point CaO-Al 2 O It is stated that HIC resistance can be obtained with the 3 series inclusion. However, high Al 2 O 3
With the CaO-Al 2 O 3 type inclusions at a high concentration, the suppression of MnS formation is insufficient, and the suppression of crushing of spherical inclusions is difficult, so that practically sufficient HIC resistance cannot be obtained. Furthermore, there is no specific means for controlling CaO-Al 2 O 3 -based inclusions with a high Al 2 O 3 concentration. That is, if the concentration of Al 2 O 3 in inclusions is to be increased only by reducing the amount of Ca added, the inclusions cannot be reduced to a melting point of 1600 ° C. (normal steelmaking processing temperature) or less, and as a result Is not spheroidized, and becomes a cluster inclusion fatal to HIC resistance.

【0023】以上のように従来の技術は、耐HIC性と
溶接部の低温靱性とを十分に向上させることができなか
った。
As described above, the conventional techniques cannot sufficiently improve the HIC resistance and the low-temperature toughness of the welded portion.

【0024】[0024]

【課題を解決するための手段】本発明の要旨は、次の
(1) の溶接部の低温靱性に優れた耐HIC鋼および(2)
のその製造方法にある。
The gist of the present invention is as follows.
(1) HIC resistant steel with excellent low-temperature toughness of welds and (2)
In its manufacturing method.

【0025】(1)鋼中に含まれるCaO-Al2O3-CaS 系介在
物が、重量%でCa0:60〜90%、CaS:10%以下およ
び残部はAl2O3 主体の組成を有するものであることを特
徴とする溶接部の低温靱性に優れた耐HIC鋼。
(1) The CaO—Al 2 O 3 —CaS-based inclusions contained in the steel are 60 to 90% by weight of Ca0, 10% or less by weight of CaS, and the balance is mainly composed of Al 2 O 3. An HIC-resistant steel excellent in low-temperature toughness of a weld, characterized in that it has

【0026】上記CaS の下限は、低いほど望ましい。The lower limit of the above CaS is more desirable.

【0027】上記でいう介在物の残部における「Al2O3
主体」とは、MgO および/またはSiO2などの不可避的な
成分を含むことを意味する。ただし、不可避的な成分の
合計濃度は10重量%以下とすることが望ましい。
The “Al 2 O 3
The principal "is meant to include inevitable components such as MgO and / or SiO 2. However, the total concentration of the unavoidable components is desirably 10% by weight or less.

【0028】(2)予め脱酸および脱硫処理された溶鋼を
Ca処理する際にCaとともに、重量%でCa0:60〜9
5%を含み、残部はAl2O3 主体のCaO-Al2O3 系プリメル
トフラックスを同時に添加することを特徴とする溶接部
の低温靱性に優れた耐HIC鋼の製造方法。
(2) When the molten steel that has been previously deoxidized and desulfurized is subjected to Ca treatment, it is added together with Ca and Ca0: 60 to 9 by weight%.
Containing 5% balance Al 2 O 3 principal CaO-Al 2 O 3 system manufacturing method of HIC resistant steel excellent in low temperature toughness of the weld, characterized in that the addition of pre-melt flux simultaneously.

【0029】上記でいうフラックスにおける「Al2O3
体」とは、CaF2、ZrO2、Fe2O3 およびSiO2などの成分を
含むことを意味する。ただし、これらの合計濃度は10
重量%以下とするのが望ましい。
The term “mainly composed of Al 2 O 3 ” in the above-mentioned flux means that it contains components such as CaF 2 , ZrO 2 , Fe 2 O 3 and SiO 2 . However, their total concentration is 10
% By weight or less.

【0030】本発明者らは、種々の実験を行った結果、
CaとともにCaO-Al2O3 系プリメルトフラックスを同時
に複合添加することにより、鋼中介在物中のCaS 濃度を
上昇させることなく介在物中のCa0 濃度を上昇させ、な
おかつ介在物組成のばらつきを小さくすることが可能で
あるという知見を得た。
The present inventors have conducted various experiments, and as a result,
Simultaneous addition of CaO-Al 2 O 3 system pre-melt flux together with Ca raises the Ca0 concentration in inclusions without increasing the CaS concentration in inclusions in steel and reduces the variation in inclusion composition. We have found that it is possible to reduce the size.

【0031】CaをCaまたはCa−Siなどの形態で
添加するだけでは、Ca添加中の溶鋼中の〔Ca〕濃度
は添加開始後の経過時間、溶鋼中の介在物量および
〔S〕濃度によって変化し、介在物組成を目標とする狭
い範囲に安定的に制御することができない。
When only Ca is added in the form of Ca or Ca-Si, the [Ca] concentration in the molten steel during the addition of Ca changes depending on the elapsed time after the start of the addition, the amount of inclusions in the molten steel, and the [S] concentration. However, it is not possible to stably control the inclusion composition to a target narrow range.

【0032】通常、溶鋼中の介在物量はT.〔O〕換算
で10〜30ppm であるが、Caとともに添加されるプ
リメルトフラックスをT.〔O〕に換算すると150〜
400ppm となる。したがって、Caとともにプリメル
トフラックスを添加すると、Ca添加中の溶鋼中の〔C
a〕濃度は、介在物量、添加開始後の経過時間および
〔S〕濃度の影響よりも、プリメルトフラックスの影響
を大きく受ける。
Normally, the amount of inclusions in molten steel is [O] conversion is 10 to 30 ppm, but the premelt flux added together with Ca is When converted to [O], 150 ~
It becomes 400 ppm. Therefore, when the pre-melt flux is added together with Ca, the [C]
a) The concentration is more affected by the premelt flux than by the amount of inclusions, the elapsed time after the start of addition, and the [S] concentration.

【0033】プリメルトフラックス中のCa0 濃度が高け
れば、プリメルトフラックスから溶鋼へのCa供給反応
が促進され、Ca添加中の溶鋼中の〔Ca〕濃度は高位
に維持される。一方、プリメルトフラックス中のCa0 濃
度が低ければ、プリメルトフラックス中のAl2O3 と溶鋼
中〔Ca〕との反応が促進され、Ca添加中の溶鋼中の
〔Ca〕濃度は低位に維持される。
When the Ca0 concentration in the premelt flux is high, the reaction of supplying Ca from the premelt flux to the molten steel is promoted, and the [Ca] concentration in the molten steel during the addition of Ca is maintained at a high level. On the other hand, maintain the lower the Ca0 concentration in the pre-melt flux is promoted reaction of Al 2 O 3 and the molten steel in the pre-melt flux [Ca] is, [Ca] concentration in the molten steel in the Ca addition to low Is done.

【0034】したがって、Caと同時に添加するプリメ
ルトフラックスの組成を適正に制御することにより、溶
鋼中の〔Ca〕濃度を狭い範囲に安定的に制御すること
ができ、その結果、介在物量および添加開始後の経過時
間にかかわらず、介在物組成を目標とする狭い範囲に制
御することができる。
Therefore, by appropriately controlling the composition of the premelt flux added simultaneously with Ca, the [Ca] concentration in the molten steel can be stably controlled within a narrow range. Regardless of the elapsed time after the start, the composition of the inclusion can be controlled to a target narrow range.

【0035】[0035]

【発明の実施の形態】本発明の溶接部の低温靱性に優れ
た耐HIC鋼は、鋼中に含まれるCaO-Al2O3-CaS 系介在
物が重量%で、Ca0 :60〜90%およびCaS :10%
以下を含み、残部はAl2O3 主体の組成のものである。
HIC resistant steel excellent in low temperature toughness of the weld of the embodiment of the present invention is a CaO-Al 2 O 3 -CaS based inclusions wt% contained in the steel, Ca0: 60 to 90% And CaS: 10%
Including the following, the balance is of a composition mainly composed of Al 2 O 3 .

【0036】本発明者が、Ca添加を施した鋼材(スラ
ブ)を耐HIC評価試験で評価するとともに、電子線マ
イクロアナライザー(以下、EPMAと記す)を用い、
HICが発生した鋼材中の介在物形態の観察および組成
分析を行った結果、以下のような事実が明らかになっ
た。
The present inventor evaluated the steel material (slab) to which Ca was added by an HIC resistance evaluation test and used an electron beam microanalyzer (hereinafter referred to as EPMA).
As a result of observing the inclusion morphology and analyzing the composition of the steel material in which HIC was generated, the following facts became clear.

【0037】スラブ中に存在した介在物の形態は全て球
状であり、その組成はCa−Al−O−Sからなってい
た。このスラブを圧延し、この圧延後の鋼中介在物を調
査したところ、介在物の一部の形態は球状であるもの
の、多くは線状に破砕されていた。さらに、この圧延材
をHIC評価試験で評価したところ、この線状に破砕さ
れた介在物を起点としてHICが発生していた。
The morphology of the inclusions present in the slab was all spherical, and the composition consisted of Ca-Al-OS. The slab was rolled, and the inclusions in the steel after the rolling were examined. As a result, although some of the inclusions were spherical, many of them were crushed linearly. Further, when this rolled material was evaluated by an HIC evaluation test, HIC was generated starting from the linearly crushed inclusion.

【0038】そこで、圧延した後、線状に破砕された介
在物と球状のままだった介在物との組成を詳細に調査し
たところ、以下が明かとなった。線状に破砕された介在
物の組成は CaS>10重量%なるCaO-Al2O3-CaS 系介在
物、あるいはCa0 <35重量%なるCaO-Al2O3 系介在
物、あるいはCa0 >90重量%なるCaO-Al2O3 系介在物
であった。一方、圧延した後も球状であった介在物は、
35重量%≦Ca0 ≦90重量%、CaS ≦10重量%およ
び残部はAl2O3 主体の組成のものであった。したがっ
て、介在物組成が不適当であると、溶鋼中およびスラブ
中で球状であっても圧延時に破砕し、HICの起点とな
る。
Then, after rolling, the compositions of the inclusions crushed in a linear shape and the inclusions which remained spherical were examined in detail, and the following became clear. CaO-Al 2 O 3 -CaS inclusions composition of crushed inclusions linear CaS> comprising 10 wt%, or Ca0 <35 wt% comprising CaO-Al 2 O 3 inclusions, or Ca0> 90 It was CaO-Al 2 O 3 type inclusions by weight%. On the other hand, inclusions that were spherical after rolling were
35% by weight ≦ Ca0 ≦ 90% by weight, CaS ≦ 10% by weight, and the balance was composed mainly of Al 2 O 3 . Therefore, if the inclusion composition is inappropriate, even if it is spherical in molten steel and slab, it will be crushed during rolling and will be the starting point of HIC.

【0039】また、CaO-Al2O3 系介在物中のCa0 濃度が
35重量%未満、つまり介在物中の分子構成比 Ca0/Al
2O3 が0.98未満では、溶鋼中の〔S〕に対する介在
物の吸収能力が低く、十分に溶鋼中の〔S〕を低下させ
ることができないため、凝固時の中心偏析によりMnS 介
在物が生成する。
The CaO concentration in the CaO-Al 2 O 3 inclusions is less than 35% by weight, that is, the molecular composition ratio Ca0 / Al
When 2 O 3 is less than 0.98, the absorption capacity of inclusions for [S] in the molten steel is low, and [S] in the molten steel cannot be sufficiently reduced, so that MnS inclusions due to central segregation during solidification. Is generated.

【0040】したがって、鋼材の耐HIC性を十分に向
上させるには、MnS およびCaS の単体介在物の生成抑止
および介在物の完全球状化に加えて、介在物の組成にお
いて35重量%≦Ca0 濃度≦90重量%、CaS 濃度≦1
0重量%および残部Al2O3 主体の条件を達成しなければ
ならない。
Therefore, in order to sufficiently improve the HIC resistance of the steel material, in addition to suppressing the formation of simple inclusions of MnS and CaS and completely spheroidizing the inclusions, in addition to the inclusion composition, 35% by weight ≦ Ca0 concentration ≦ 90% by weight, CaS concentration ≦ 1
The condition of 0% by weight with the balance being Al 2 O 3 must be achieved.

【0041】さらに、溶接部の低温靱性を悪化させる介
在物の形態および組成を特定するために、Ca添加鋼の
低温靱性不良材および良好材の電縫溶接部をEPMAを
用いて詳細に調査した結果、以下の事実が判明した。
Further, in order to specify the form and composition of the inclusions that deteriorate the low-temperature toughness of the weld, the low-temperature toughness poor material of Ca-added steel and the ERW welded material of the good material were investigated in detail using EPMA. As a result, the following facts became clear.

【0042】低温靱性不良材の溶接部で観察された介在
物形態は球状ではなく、板状に変形したものであった。
また、その成分はCaO-Al2O3 系、その組成は35重量%
≦Ca0 <60重量%および残部Al2O3 であった。
The inclusion morphology observed at the welded portion of the low-temperature toughness poor material was not spherical but deformed into a plate shape.
Its component is CaO-Al 2 O 3 system, its composition is 35% by weight.
≦ Ca0 <60% by weight and the balance was Al 2 O 3 .

【0043】一方、低温靱性良好材の溶接部で観察され
た介在物形態は球状であり、変形していなかった。ま
た、その成分はCaO-Al2O3 系、その組成はCa0 ≧60重
量%、CaS ≦10重量%および残部Al2O3 主体であっ
た。この介在物組成における融点は1600℃以上であ
り、介在物の融点が高いために電縫溶接するときに変形
しなかったと考えられる。
On the other hand, the form of the inclusions observed in the welded portion of the low-temperature toughness good material was spherical and was not deformed. The composition was CaO-Al 2 O 3 system, and the composition was Ca0 ≧ 60% by weight, CaS ≦ 10% by weight, and the balance was mainly Al 2 O 3 . The melting point of this inclusion composition was 1600 ° C. or higher, and it is considered that the inclusion did not deform during electric resistance welding due to its high melting point.

【0044】このことから、Ca添加鋼において電縫溶
接するときの介在物変形を阻止し、溶接部の低温靱性を
向上させるには、介在物組成をCa0 濃度が60重量%以
上となるように制御すればよいという新たな知見を得
た。
Accordingly, in order to prevent deformation of inclusions during ERW welding of Ca-added steel and to improve the low-temperature toughness of the weld, the inclusion composition must be adjusted so that the Ca0 concentration is 60% by weight or more. New knowledge that control is required.

【0045】すなわち、母材の耐HIC性と溶接部の低
温靱性とを同時に確保するには、CaO-Al2O3-CaS 系介在
物の組成が下記〜の条件を同時に満足するように制
御しなければならない。
That is, in order to simultaneously secure the HIC resistance of the base material and the low-temperature toughness of the welded portion, the composition of the CaO—Al 2 O 3 —CaS inclusion is controlled so as to simultaneously satisfy the following conditions. Must.

【0046】Ca0 濃度が60重量%以上90重量%以
下。
The Ca0 concentration is 60% by weight or more and 90% by weight or less.

【0047】CaS 濃度が10重量%以下。このとき、
CaS 濃度は低いほど望ましい。
The CaS concentration is 10% by weight or less. At this time,
The lower the CaS concentration, the better.

【0048】残部がAl2O3 主体。この残部には、MgO
および/またはSiO2などの不可避的な成分を含んでいて
もよい。ただし、不可避的な成分の合計濃度は10重量
%以下とすることが望ましい。
The balance is mainly composed of Al 2 O 3 . This balance contains MgO
And / or may contain unavoidable components such as SiO 2 . However, the total concentration of the unavoidable components is desirably 10% by weight or less.

【0049】上記のような溶接部の低温靱性に優れた本
発明の耐HIC鋼を製造する本発明方法は、予め脱酸お
よび脱硫処理された溶鋼をCa処理する際にCaととも
に、重量%でCa0:60〜95%を含み、残部はAl2O3
体のCaO-Al2O3 系プリメルトフラックスを同時に複合添
加するものである。
The method of the present invention for producing the HIC-resistant steel of the present invention having the excellent low-temperature toughness of the welded portion as described above is carried out in the following manner. Ca0: comprises 60% to 95%, the balance being intended simultaneously combined addition of Al 2 O 3 principal CaO-Al 2 O 3 based premelt flux.

【0050】本発明方法を実施するには、転炉または電
気炉などの脱炭精錬炉または取鍋もしくはその他の炉な
ど、脱硫およびCa処理の容器を用いる。以下、本発明
方法を脱炭精錬炉および取鍋を用いる場合を例にとって
説明する。
To carry out the method of the present invention, a desulfurization and Ca treatment vessel such as a decarburization refining furnace such as a converter or an electric furnace or a ladle or other furnace is used. Hereinafter, the method of the present invention will be described with reference to a case where a decarburizing refining furnace and a ladle are used.

【0051】まず、脱炭処理された溶鋼を、通常の方法
を用いて予め脱酸および脱硫処理する。このとき、溶鋼
中の〔S〕濃度7ppm 以下が達成できるように処理する
のが望ましい。Ca添加前に溶鋼中の〔S〕濃度を7pp
m 以下とすると介在物中のCaS 濃度がさらに低下し、介
在物組成のばらつきを小さくすることが可能となる。
First, the decarbonized molten steel is previously subjected to deoxidation and desulfurization using a conventional method. At this time, it is desirable to carry out the treatment so that the [S] concentration in the molten steel can be reduced to 7 ppm or less. Before adding Ca, increase the concentration of [S] in molten steel to 7 pp.
When it is less than m, the CaS concentration in the inclusions is further reduced, and it is possible to reduce the variation in the composition of the inclusions.

【0052】次いで、溶鋼にCaを添加するに当たり、
Caとともに、Ca0:60〜95重量%を含み、残部はAl
2O3 主体のCaO-Al2O3 系プリメルトトフラックスを同時
に溶鋼に複合添加する。
Next, in adding Ca to molten steel,
With Ca, Ca0: contains 60 to 95% by weight, and the balance is Al
2 O 3 mainly CaO-Al 2 O 3 based premelt preparative flux simultaneously added in combination to the molten steel.

【0053】プリメルトフラックスと同時に複合添加す
るCaの形態は、金属CaあるいはCa−Si、Ca−
Al、Fe−Ca−AlなどのCa含有物質など、いか
なるものでもかまわない。ただし、Caは溶鋼温度で反
応性が高いため、金属CaよりもCa含有物質を用いる
のが望ましい。さらに、Ca含有物質中の望ましいCa
純度の範囲は5〜50重量%である。Ca純度が5重量
%よりも低いとCa含有物質の添加量が増大し、溶鋼温
度降下などの操業上の問題が生じる。一方、Ca純度が
50重量%を超えるとCa添加時のスプラッシュが激し
くなり、操業上の支障となる。
The form of Ca to be added simultaneously with the pre-melt flux is metallic Ca or Ca-Si, Ca-
Any substance such as a Ca-containing substance such as Al and Fe-Ca-Al may be used. However, since Ca has high reactivity at the temperature of molten steel, it is desirable to use a Ca-containing substance rather than metallic Ca. In addition, desirable Ca in Ca-containing material
The purity ranges from 5 to 50% by weight. If the Ca purity is lower than 5% by weight, the amount of the Ca-containing substance added increases, causing operational problems such as a drop in molten steel temperature. On the other hand, if the Ca purity exceeds 50% by weight, the splash at the time of adding Ca becomes severe, which hinders the operation.

【0054】図1および図2により、前記の複合添加の
作用効果を説明する。図1は、重量%でCaを30%含
有するCa−Si合金粉のみを単独で、またはCa−S
i合金粉とともにCaO-Al2O3 系プリメルトフラックス
を、それぞれ〔S〕濃度を5ppm とした溶鋼に添加した
場合の製品鋼材の介在物中のCaS 濃度を示す図である。
Referring to FIGS. 1 and 2, the function and effect of the composite addition will be described. FIG. 1 shows that Ca-Si alloy powder containing 30% by weight of Ca alone or Ca-S
with i alloy powder CaO-Al 2 O 3 based premelt flux is a diagram showing the CaS concentration of inclusions in product steel material when adding each [S] concentration molten steel was 5 ppm.

【0055】図2は、同じく製品鋼材の介在物中のCaO
濃度を示す図である。ただし、プリメルトフラックス中
のCa0 濃度は重量%で20%、50%、55%、60
%、80%、95%および100%で、またCa−Si
合金添加量も0.5kg/tおよび1.5kg/tで、それぞれ
変化させた。なお、Ca−Si合金とプリメルトフラッ
クスとの配合は、重量比で85:15とした。
FIG. 2 also shows CaO in the inclusions of the product steel.
It is a figure which shows a density. However, the Ca0 concentration in the premelt flux was 20%, 50%, 55%, 60% by weight.
%, 80%, 95% and 100%, and Ca-Si
The alloy addition amounts were also varied at 0.5 kg / t and 1.5 kg / t, respectively. The mixing ratio of the Ca-Si alloy and the pre-melt flux was 85:15 by weight.

【0056】図1および図2から明らかなように、Ca
−Si合金を単独で添加した場合には、Ca−Si合金
の添加量を変化させても介在物を目標組成に制御するこ
とは不可能であり、組成のばらつきも大きく、耐HIC
性と溶接部の低温靱性とを同時に向上させることができ
ない。このように、Ca−Si合金すなわちCaを単独
で添加すると、Ca添加中の溶鋼中の〔Ca〕濃度を適
正な範囲に安定的に制御できないため、介在物組成を所
期の狭い範囲で制御することが困難である。
As is clear from FIGS. 1 and 2, Ca
When the -Si alloy is added alone, it is impossible to control the inclusions to the target composition even if the addition amount of the Ca-Si alloy is changed.
And the low-temperature toughness of the weld cannot be simultaneously improved. As described above, when the Ca—Si alloy, that is, Ca is added alone, the [Ca] concentration in the molten steel during the addition of Ca cannot be stably controlled to an appropriate range. Is difficult to do.

【0057】また、プリメルトフラックス中のCa0 濃度
が60重量%より低い場合、Ca−Si合金すなわちC
aとともに添加しても介在物組成のばらつきが大きく、
全ての介在物を目標組成に制御することは不可能であ
る。これは、プリメルトフラックス中のCa0 濃度が60
重量%より低いと、プリメルトフラックス中のAl2O3
度が高くなるので、プリメルトフラックス中のCa0 から
溶鋼へのCa供給反応が抑制されるためである。かつ、
プリメルトフラックス中のAl2O3 と溶鋼中の〔Ca〕と
の反応量が増加し、Ca添加中の溶鋼中の〔Ca〕濃度
が不安定となり、この結果、介在物組成のばらつきが大
きくなるためである。
When the Ca0 concentration in the premelt flux is lower than 60% by weight, the Ca--Si alloy,
Even when added together with a, the composition of inclusions varies greatly,
It is not possible to control all inclusions to the target composition. This is because the Ca0 concentration in the pre-melt flux is 60%.
If the content is lower than 10 wt%, the concentration of Al 2 O 3 in the pre-melt flux increases, so that the Ca supply reaction from Ca 0 in the pre-melt flux to the molten steel is suppressed. And,
The amount of reaction between Al 2 O 3 in the pre-melt flux and [Ca] in the molten steel increases, and the [Ca] concentration in the molten steel during the addition of Ca becomes unstable. It is because it becomes.

【0058】したがって、プリメルトフラックス中のCa
0 濃度が60重量%より低いと、安定的に耐HIC性と
溶接部の低温靱性とを満足する鋼材を製造するのが困難
である。
Therefore, Ca in the pre-melt flux
If the 0 concentration is lower than 60% by weight, it is difficult to stably produce a steel material that satisfies the HIC resistance and the low-temperature toughness of the welded portion.

【0059】一方、プリメルトフラックス中のCaO 濃度
が95重量%を超えると介在物組成のばらつきは小さく
なるものの、図1に示すとおり介在物中のCaS 濃度が高
位となる。これは、プリメルトフラックス中のCaO 濃度
が95重量%を超えて過剰であると、プリメルトフラッ
クスから溶鋼へのCa供給反応が促進され、溶鋼中の
〔Ca〕濃度が増大し、この結果、介在物中のCaS 濃度
が増大するためである。
On the other hand, when the CaO concentration in the premelt flux exceeds 95% by weight, the variation in the composition of the inclusions is reduced, but the CaS concentration in the inclusions becomes higher as shown in FIG. This is because if the CaO 2 concentration in the pre-melt flux exceeds 95% by weight, the Ca supply reaction from the pre-melt flux to the molten steel is promoted, and the [Ca] concentration in the molten steel increases, and as a result, This is because the CaS concentration in inclusions increases.

【0060】したがって、プリメルトフラックス中のCa
0 濃度が95重量%を超えると、耐HIC性と溶接部の
低温靱性とを同時に向上させることができない。
Therefore, Ca in the pre-melt flux
If the 0 concentration exceeds 95% by weight, the HIC resistance and the low-temperature toughness of the weld cannot be simultaneously improved.

【0061】フラックスをプリメルトに限定したのは、
次の理由による。
The reason for limiting the flux to premelt is as follows.
For the following reasons.

【0062】CaO とAl2O3 とを単に混合しただけのフラ
ックスをCaとともに添加した場合、CaO とCaとの反応、
Al2O3 とCaとの反応、CaO とAl2O3 との反応および生成
した種々の組成のCaO-Al2O3 系介在物とCaとの反応など
の複雑な反応が同時並列的に進行するため、処理中の
〔Ca〕濃度が不安定となり、その結果、介在物組成を所
期の狭い範囲に制御することができない。一方、プリメ
ルトフラックスの場合は予め溶融処理が施され、組成が
単一のCaO-Al2O3 に変化している。したがって、単一組
成のCaO-Al2O3 とCaとの反応の一種類のみに限定される
ため、処理中の〔Ca〕濃度が安定し、その結果、介在物
組成を所期の狭い範囲に制御することができる。
When a flux simply mixing CaO and Al 2 O 3 is added together with Ca, the reaction between CaO and Ca,
Complex reactions such as the reaction between Al 2 O 3 and Ca, the reaction between CaO and Al 2 O 3, and the reaction between Ca and Al 2 O 3 system inclusions of various compositions and Ca, occur simultaneously and in parallel. As the process proceeds, the [Ca] concentration during the treatment becomes unstable, and as a result, the inclusion composition cannot be controlled within a desired narrow range. On the other hand, in the case of the pre-melt flux, a melting treatment has been performed in advance, and the composition has changed to a single CaO—Al 2 O 3 . Therefore, since it is limited to only one type of reaction between CaO-Al 2 O 3 and Ca having a single composition, the concentration of [Ca] during the treatment is stable, and as a result, the inclusion composition can be reduced within a desired narrow range. Can be controlled.

【0063】このようなプリメルトフラックス中のCa0
濃度の範囲が60〜95重量%の場合、介在物の組成を
制御し、かつそのばらつきも目標組成の範囲内とするこ
とが可能である。これは、プリメルトフラックス中のCa
0 濃度が適正な場合、プリメルトフラックス中のCa0 か
らの溶鋼へのCa供給反応が適正に進行するので、Ca
添加中の溶鋼中の〔Ca〕濃度を高位にかつ安定的に制
御できるため、介在物中のCaS 濃度を上昇させることな
く介在物中のCa0 濃度を高め、そのばらつきも小さくす
ることが可能となるからである。
The Ca0 in such a pre-melt flux
When the range of the concentration is 60 to 95% by weight, it is possible to control the composition of the inclusions and to make the variation within the range of the target composition. This is because Ca in the pre-melt flux
0 If the concentration is appropriate, the Ca supply reaction from molten Ca to the molten steel in the pre-melt flux proceeds properly,
Since the [Ca] concentration in the molten steel during the addition can be controlled to a high level and stably, it is possible to increase the Ca0 concentration in the inclusions without increasing the CaS concentration in the inclusions, and to reduce the variation. Because it becomes.

【0064】プリメルトフラックス中に含有が許容され
るその他の成分は、CaF2、ZrO2、Fe2O3 およびSiO2など
である。ただし、これらの合計濃度は10重量%以下と
するのが望ましい。
Other components that can be contained in the premelt flux include CaF 2 , ZrO 2 , Fe 2 O 3 and SiO 2 . However, the total concentration thereof is desirably 10% by weight or less.

【0065】プリメルトフラックスとCa純分との添加
比の望ましい範囲は、重量比(プリメルトフラックス重
量/Ca純分重量)で0.15〜2である。これは以下
の理由による。上記の添加比が0.15より小さくなる
と、プリメルトフラックスの組成にかかわらず、プリメ
ルトフラックスの同時複合添加の効果が低下し、Ca−
Si合金などの単独添加時と同様の介在物組成となる。
一方、添加比が2を超えると、添加Ca量に対するプリ
メルトフラックス中のAl2O3 濃度が増加するため、低Ca
0 濃度のプリメルトフラックス使用時と同様の理由で介
在物組成のばらつきが大きくなる。
A desirable range of the addition ratio of the premelt flux to the Ca pure component is 0.15 to 2 in weight ratio (weight of the premelt flux / weight of the Ca pure component). This is for the following reason. When the above-mentioned addition ratio is smaller than 0.15, the effect of simultaneous composite addition of the premelt flux decreases regardless of the composition of the premelt flux, and Ca-
The inclusion composition becomes the same as that when solely adding a Si alloy or the like.
On the other hand, when the addition ratio exceeds 2, the Al 2 O 3 concentration in the premelt flux with respect to the added Ca amount increases, so that the low Ca
Variations in the composition of the inclusions increase for the same reason as when using a pre-melt flux of 0 concentration.

【0066】プリメルトフラックスおよびCaの添加に
おいては、別々の添加装置からそれぞれを同時に添加す
る方法、あるいは添加直前に混合装置を用いて混合し、
混合物として添加する方法など、いかなる方法でもよい
が、プリメルトフラックスの効果を十分に発揮させるた
めに、事前に混合して同時に複合添加する方法が望まし
い。また、別々に添加する場合は、インジェクション法
またはワイヤーフィーダー法など、同時に添加できるも
のであればいかなる方法でもかまわない。
In the addition of the premelt flux and Ca, a method of simultaneously adding each from a separate addition device, or mixing using a mixing device immediately before the addition,
Any method such as a method of adding as a mixture may be used. However, in order to sufficiently exert the effect of the pre-melt flux, a method of mixing in advance and simultaneously adding a composite is desirable. When they are added separately, any method can be used as long as they can be added simultaneously, such as an injection method or a wire feeder method.

【0067】Caおよびプリメルトフラックスの溶鋼へ
の添加速度の望ましい範囲は、Ca純分換算で0.03
〜0.17 kg/(t・min)である。この速度が0.03 k
g/(t・min)より小さくなると、溶鋼への単位時間当たり
のCa供給量に対してCa蒸発量が大きくなるため、溶
鋼中の〔Ca〕濃度を高位とすることができず、介在物
組成を目標範囲に制御することが不可能となる。一方、
0.17kg/(t ・min)を超えると、プリメルトフラック
スによる溶鋼中の〔Ca〕濃度の制御能力を超えて溶鋼
中の〔Ca〕濃度が一時的に急激に高くなり、CaS 単体
介在物の生成抑止および介在物中のCaS 濃度抑制が不可
能となる。
The desirable range of the rate of addition of Ca and premelt flux to molten steel is 0.03 in terms of Ca pure content.
0.10.17 kg / (t · min). This speed is 0.03 k
If it is smaller than g / (t · min), the amount of Ca evaporation relative to the amount of Ca supplied to the molten steel per unit time increases, so that the [Ca] concentration in the molten steel cannot be increased, and It becomes impossible to control the composition to the target range. on the other hand,
When the concentration exceeds 0.17 kg / (t · min), the [Ca] concentration in the molten steel temporarily exceeds the ability to control the [Ca] concentration in the molten steel by the pre-melt flux, and the CaS single inclusion It is impossible to suppress the formation of CaS and the CaS concentration in inclusions.

【0068】Caの溶鋼への最大添加量は、Ca純分で
0.5 kg/(t・min)とするのが望ましい。これは、Ca
添加量が0.5 kg/(t・min)を超えて過剰になると、反
応すべきAl2O3 介在物が消失し、CaS 単体介在物が生成
してしまうからである。
It is desirable that the maximum amount of Ca added to molten steel is 0.5 kg / (t · min) in terms of pure Ca. This is Ca
If the addition amount exceeds 0.5 kg / (t · min) and becomes excessive, Al 2 O 3 inclusions to be reacted disappear, and CaS simple inclusions are generated.

【0069】また、上記のように添加する前に、RH式
真空脱ガス装置などの脱ガス装置を用いて脱水素処理を
施すことが望ましい。これは、鋼中の水素濃度を低下さ
せ、より高い耐HIC性を確保するためである。さら
に、脱酸および脱硫処理で増加した介在物を低減するこ
とにより、大型介在物の低減および介在物量の安定化を
図り、介在物組成のばらつきをさらに小さくすることが
可能となるからである。
Further, before the addition as described above, it is desirable to carry out a dehydrogenation treatment using a degassing device such as an RH type vacuum degassing device. This is to reduce the hydrogen concentration in the steel and ensure higher HIC resistance. Furthermore, by reducing the inclusions increased by the deoxidation and desulfurization treatment, it is possible to reduce large inclusions and stabilize the amount of inclusions, and to further reduce the variation in the inclusion composition.

【0070】[0070]

【実施例】転炉から取鍋に出鋼した溶鋼250tに脱酸
および脱硫を施し、表1に示す化学組成に調整した。
EXAMPLE 250 t of molten steel discharged from a converter into a ladle was subjected to deoxidation and desulfurization to adjust the chemical composition as shown in Table 1.

【0071】[0071]

【表1】 [Table 1]

【0072】取鍋内の溶鋼に浸漬したランスを用い、A
rガスで溶鋼を9分間攪拌して脱硫した後、RH真空脱
ガス装置を用い、5Torr以下で10〜20分間の還流処
理を施し、その後、粒径の範囲を0.5〜2m 程度に調
整したCa−Si合金粉のみ、またはこのCa−Si合
金粉とプリメルトフラックスとを表2に示す条件で同時
にインジェクション法で添加した。さらに、Arガスに
より3分間のバブリングを行った。
Using a lance immersed in molten steel in a ladle,
The molten steel is stirred for 9 minutes with r gas to desulfurize, and then subjected to a reflux treatment at 5 Torr or less for 10 to 20 minutes using an RH vacuum degassing apparatus, and then the particle size is adjusted to about 0.5 to 2 m. The Ca-Si alloy powder alone or the Ca-Si alloy powder and the pre-melt flux were added simultaneously by the injection method under the conditions shown in Table 2. Further, bubbling was performed for 3 minutes with Ar gas.

【0073】Caには重量%で30%Ca−70%Si
の上記Ca−Si合金粉を用い、表2に示すCaO 濃度の
プリメルトフラックスと事前に混合した。
In the case of Ca, 30% Ca-70% Si by weight%
Was mixed in advance with a pre-melt flux having a CaO concentration shown in Table 2.

【0074】[0074]

【表2】 [Table 2]

【0075】処理した溶鋼を、連続鋳造機により厚さ2
35mmのスラブとし、これを圧延して26.5mmの厚板
とした。得られた厚板からサンプルを切り出し、検鏡法
により介在物の形態および組成を走査型EPMAおよび
エネルギー分散型X線分析装置により調査するととも
に、耐HIC評価試験に供した。耐HIC評価試験は以
下に示すNACE条件で行った。
The molten steel thus treated was subjected to continuous casting to a thickness of 2 mm.
A 35 mm slab was rolled into a 26.5 mm thick slab. A sample was cut out from the obtained thick plate, and the form and composition of inclusions were examined by a microscopic method using a scanning EPMA and an energy dispersive X-ray analyzer, and were subjected to an HIC resistance evaluation test. The HIC resistance evaluation test was performed under the following NACE conditions.

【0076】NACE条件 温度:24.8±2.8℃ pH: max4.5 溶液:5%NaCl+0.8%CH3COOH 時間:96時間 H2S 濃度:H2S 飽和 H2S 流量:100〜200 cc/min 次に、電縫鋼管とした後、各電縫鋼管のC方向からJI
SZ2202に規定の4号試験片あるいはサブサイズ4
号試験片を採取した。これらの試験片の電縫溶接部にV
ノッチを入れたものを用い、溶接部靱性をJISZ22
42に規定のシャルピー衝撃試験に準じて測定した溶接
部における破面遷移温度 vTrsで評価した。
NACE conditions Temperature: 24.8 ± 2.8 ° C. pH: max 4.5 Solution: 5% NaCl + 0.8% CH 3 COOH Time: 96 hours H 2 S concentration: H 2 S saturated H 2 S flow rate: 100 ~ 200 cc / min Next, after making ERW pipes, JI
No. 4 test piece or sub size 4 specified in SZ2202
No. test pieces were collected. A V
The notch is used and the weld toughness is JISZ22
The fracture surface transition temperature vTrs in the welded part measured according to the Charpy impact test specified in 42 was evaluated.

【0077】表2に、介在物中のCaO およびCaS の濃度
ならびに耐HIC評価試験およびシャルピー試験の結果
を併せて示す。
Table 2 also shows the concentrations of CaO and CaS in the inclusions and the results of the HIC resistance test and the Charpy test.

【0078】表2に示すとおり、本発明方法に従って溶
鋼を処理して得られた本発明例鋼の場合、HICは全く
発生せず、溶接部靱性も良好であった。しかし、処理中
に本発明方法に従わない条件があるとHICが発生し、
耐HIC性および低温靱性が不良となった。
As shown in Table 2, in the case of the steel of the present invention obtained by treating molten steel in accordance with the method of the present invention, no HIC was generated and the toughness of the weld was good. However, HIC occurs when there are conditions that do not follow the method of the present invention during processing,
The HIC resistance and low-temperature toughness were poor.

【0079】[0079]

【発明の効果】本発明によれば、溶接部の低温靱性に優
れた耐HIC鋼を得ることができる。
According to the present invention, it is possible to obtain a HIC-resistant steel excellent in the low-temperature toughness of a weld.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Caを30%含有するCa−Si合金粉のみを
単独で、またはCa−Si合金粉とともにCaO-Al2O3
プリメルトフラックスを、それぞれ溶鋼に添加した場合
の製品鋼材の介在物中のCaS 濃度を示す図である。
FIG. 1 shows the inclusion of product steel when only Ca-Si alloy powder containing 30% of Ca alone or CaO-Al 2 O 3 -based premelt flux is added to molten steel together with Ca-Si alloy powder. FIG. 3 is a view showing a CaS concentration in an object.

【図2】同じく製品鋼材の介在物中のCaO 濃度を示す図
である。
FIG. 2 is a view showing the CaO concentration in inclusions of a product steel material.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鋼中に含まれるCaO-Al2O3-CaS 系介在物
が、重量%でCa0:60〜90%、CaS:10%以下および
残部はAl2O3 主体の組成を有するものであることを特徴
とする溶接部の低温靱性に優れた耐HIC鋼。
1. A CaO-Al 2 O 3 -CaS type inclusions contained in the steel, Ca0 in weight%: 60~90%, CaS: 10 % or less and remainder has a composition of Al 2 O 3 principal A HIC-resistant steel having excellent low-temperature toughness in a welded part, characterized in that:
【請求項2】予め脱酸および脱硫処理された溶鋼をCa
処理する際にCaとともに、重量%でCa0:60〜95%
を含み、残部はAl2O3 主体のCaO-Al2O3 系プリメルトフ
ラックスを同時に添加することを特徴とする溶接部の低
温靱性に優れた耐HIC鋼の製造方法。
2. The molten steel previously deoxidized and desulfurized is treated with Ca
Ca0: 60-95% by weight together with Ca when processing
Hints, balance Al 2 O 3 principal CaO-Al 2 O 3 system manufacturing method of HIC resistant steel excellent in low temperature toughness of the weld, characterized in that the addition of pre-melt flux simultaneously.
JP16440996A 1996-06-25 1996-06-25 HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same Expired - Fee Related JP3250459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16440996A JP3250459B2 (en) 1996-06-25 1996-06-25 HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16440996A JP3250459B2 (en) 1996-06-25 1996-06-25 HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same

Publications (2)

Publication Number Publication Date
JPH108196A JPH108196A (en) 1998-01-13
JP3250459B2 true JP3250459B2 (en) 2002-01-28

Family

ID=15792601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16440996A Expired - Fee Related JP3250459B2 (en) 1996-06-25 1996-06-25 HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same

Country Status (1)

Country Link
JP (1) JP3250459B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208799A1 (en) * 2007-11-14 2010-07-21 Sumitomo Metal Industries, Ltd. Steel for steel pipes excellent in sour resistance and process for manufacturing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2862954A4 (en) 2012-06-18 2016-01-20 Jfe Steel Corp Thick, high-strength, sour-resistant line pipe and method for producing same
CN104428437B (en) 2012-07-09 2017-03-08 杰富意钢铁株式会社 Thick section and high strength acid resistance line pipe and its manufacture method
WO2019182056A1 (en) * 2018-03-23 2019-09-26 Jfeスチール株式会社 Method for manufacturing high-purity steel
CN113502435B (en) * 2021-06-30 2022-09-02 本钢板材股份有限公司 Oil casing pipe steel for improving low-temperature impact toughness and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2208799A1 (en) * 2007-11-14 2010-07-21 Sumitomo Metal Industries, Ltd. Steel for steel pipes excellent in sour resistance and process for manufacturing the same
EP2208799A4 (en) * 2007-11-14 2016-05-11 Nippon Steel & Sumitomo Metal Corp Steel for steel pipes excellent in sour resistance and process for manufacturing the same

Also Published As

Publication number Publication date
JPH108196A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
EP2208799B1 (en) Method of melting and refining steel for a steel pipe excellent in sour-resistance performance
CN102199684A (en) Production method of ultralow-oxygen titanium-containing ferrite stainless steel
JP3250459B2 (en) HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same
EP3971306A1 (en) Method for adding ca to molten steel
US9023126B2 (en) Additive for treating resulphurized steel
JP2004169147A (en) Refining process for clean steel containing extremely low amount of non-metallic inclusion
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JPH10237533A (en) Production of hic resistant steel
JP3510989B2 (en) Refining method of Si alloy iron and stainless steel used for refining stainless steel
JP2010132982A (en) Method of denitrizing molten steel
US5037609A (en) Material for refining steel of multi-purpose application
JP3036362B2 (en) Manufacturing method of oxide dispersion steel
JP3097506B2 (en) Method for Ca treatment of molten steel
JPH09227989A (en) Calcium-treated steel and treatment of molten steel with calcium
JP3036373B2 (en) Manufacturing method of oxide dispersion steel
JP3230070B2 (en) How to add Mg to molten steel
JPH09209025A (en) Production of hic resistant steel excellent in low temperature toughness in welded part
JP3417311B2 (en) Method for producing highly clean HIC steel
JP3036361B2 (en) Manufacturing method of Al-Mn oxide dispersed steel
JPH0873923A (en) Production of clean steel having excellent hydrogen induced crack resistance
JP3577989B2 (en) High-speed desulfurization of molten steel
JP3577988B2 (en) Manufacturing method of low Al ultra low sulfur steel
JPH1068011A (en) Production of oxide-dispersed steel
JP3326917B2 (en) Desulfurization method of molten steel
JPH0853707A (en) Production of hic resistant steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071116

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081116

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091116

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees