JPH0853707A - Production of hic resistant steel - Google Patents

Production of hic resistant steel

Info

Publication number
JPH0853707A
JPH0853707A JP18961594A JP18961594A JPH0853707A JP H0853707 A JPH0853707 A JP H0853707A JP 18961594 A JP18961594 A JP 18961594A JP 18961594 A JP18961594 A JP 18961594A JP H0853707 A JPH0853707 A JP H0853707A
Authority
JP
Japan
Prior art keywords
inclusions
molten steel
steel
cao
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18961594A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Numata
光裕 沼田
Yoshihiko Higuchi
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP18961594A priority Critical patent/JPH0853707A/en
Publication of JPH0853707A publication Critical patent/JPH0853707A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a steel remarkably improved in HIC resistance, at the time of adding Ca-contg. substance to molten steel, by controlling the adding rate of Ca in Ca-contg. substance to be added by a specified inequality. CONSTITUTION:Ca-contg. substance (such as CaSi) is added to molten steel subjected to deoxidizing treatment by using metallic Al to change Al2O3 in the steel into CaO-Al2O3 inclusions. At this time, the adding rate of Ca to be added in the Ca-contg. substance (expressed in terms of Ca pure content) V (g/T/mim) is controlled by the inequality of 15<=V<=- -8.4X[S]-0.3Xa0+355.8 [where [S] denotes the S concn. (ppm) in the molten steel and a0 denotes the activity oxygen value (ppm)]. Thus, the formation of CaS and CaO inclusions and CaO-Al2O3 inclusions having a high m.p. compsn. is suppressed, and the inclusions are effectively changed into CaO-Al2O3 globular inclusions to remarkably improve the HIC resistance (hydrogen induced cracking resistance) of the steel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐HIC 鋼の製造方法、
特に溶鋼へのCa添加により、非金属介在物を効率よく無
害化する耐HIC性に優れた鋼の製造方法に関する。
The present invention relates to a method for producing HIC resistant steel,
In particular, the present invention relates to a method for producing a steel having excellent HIC resistance, which effectively makes nonmetallic inclusions harmless by adding Ca to molten steel.

【0002】[0002]

【従来の技術】一般に、高炉から供給された溶銑を転炉
に装入し、次いで溶銑中に酸素を供給することにより溶
銑中の炭素と反応させCOガスにすることにより脱炭を行
い溶鋼が製造される。
2. Description of the Related Art Generally, molten iron supplied from a blast furnace is charged into a converter, and then oxygen is supplied into the molten iron to react with the carbon in the molten iron to form CO gas, thereby decarburizing the molten steel. Manufactured.

【0003】このように転炉で溶製された溶鋼は、取鍋
に出鋼され、二次精錬装置で処理された後に鋳造される
が、転炉で溶製された溶鋼は出鋼時あるいは二次精錬装
置において脱酸剤が添加され脱酸処理が施される。脱酸
剤として金属Alを用いた場合には、脱酸生成物としてAl
2O3(アルミナ) が生成し、鋳造後にもこのアルミナが残
留してしまう。このアルミナは融点が高く、鋼よりも固
く、クラスター状になるため、種々の欠陥の原因とな
り、鋼板の特性あるいは外観に悪影響を与えることにな
る。
The molten steel thus melted in the converter is tapped in a ladle, processed in a secondary refining device, and then cast. The molten steel melted in the converter is tapped or In the secondary refining device, a deoxidizing agent is added and a deoxidizing treatment is performed. When metallic Al is used as the deoxidizer, Al is used as the deoxidation product.
2 O 3 (alumina) is generated, and this alumina remains even after casting. Since this alumina has a high melting point, is harder than steel, and forms a cluster, it causes various defects and adversely affects the properties or appearance of the steel sheet.

【0004】そこで、金属Ca含有物質などを溶鋼に添加
し、鋼中のAl2O3 をCaと反応させることにより、CaO-Al
2O3 系介在物へ変化させることが従来から実施されてい
る。Caは還元力が強いため、Al2O3 のように比較的安定
な酸化物をも還元することができる。また、その反応に
よってできるCaO-Al2O3 系介在物は融点が低いために、
介在物の形態は球状化し圧延時に破砕せずHIC割れの
起点になりにくくなるのである。
Therefore, by adding a metal Ca-containing substance to molten steel and reacting Al 2 O 3 in the steel with Ca, CaO--Al
It has been conventionally practiced to change to 2 O 3 inclusions. Since Ca has a strong reducing power, it is possible to reduce even relatively stable oxides such as Al 2 O 3 . In addition, since the CaO-Al 2 O 3 -based inclusions formed by the reaction have a low melting point,
The morphology of inclusions becomes spherical and does not crush during rolling, making it less likely to become the starting point for HIC cracking.

【0005】また、耐HIC (耐水素誘起割れ) 性が要
求される鋼種 (例えば、ラインパイプ材) 等では上記の
Al2O3 を低融点のCaO-Al2O3 系介在物へ変化させるだけ
でなく、割れ起点となるMnS の生成をも抑制する必要が
ある。鋼中のSは凝固課程でMnS を生成し、鋳造時の偏
析に起因してMnS の濃化した部位が鋳片に発生する。こ
のMnS は圧延時に圧延方向に長く伸び水素の集積を促進
し耐HIC性を大幅に低下させるため、MnS の生成を抑
制する必要があるのである。そのため、溶鋼を低硫化処
理した後にCa添加を行い、硫化物の形態制御を実施して
水素誘起割れを防止することが従来から行われてきた。
In the case of steel grades (for example, line pipe materials) which are required to have HIC (hydrogen induced cracking) resistance,
Not only is it necessary to change Al 2 O 3 into a low-melting CaO-Al 2 O 3 -based inclusion, but it is also necessary to suppress the formation of MnS, which is the origin of cracking. S in steel forms MnS in the solidification process, and due to segregation during casting, MnS-enriched sites occur in the slab. This MnS is elongated in the rolling direction during rolling and promotes the accumulation of hydrogen and significantly lowers the HIC resistance, so it is necessary to suppress the generation of MnS. Therefore, it has been conventionally performed to prevent hydrogen-induced cracking by adding Ca after low-sulfiding treatment of molten steel and performing morphology control of sulfide.

【0006】しかしながら、これらの従来技術における
Ca添加条件では溶鋼中のCa量が過剰となり、高融点組成
のCaO-Al2O3 系介在物 (介在物中CaO/Al2O3 重量比1.
5)、CaO 介在物、あるいは、CaS 介在物が生成してしま
い、水素誘起割れの起点となってしまうなどの問題点が
生じていたのである。したがって、従来技術にあって
も、これらの問題点を解消するために種々の対策が提案
されている。
However, in these conventional techniques,
Under the Ca addition conditions, the amount of Ca in the molten steel becomes excessive, and CaO-Al 2 O 3 system inclusions with a high melting point composition (CaO / Al 2 O 3 weight ratio in inclusions 1.
5), CaO inclusions or CaS inclusions are generated, which causes problems such as the starting point of hydrogen-induced cracking. Therefore, even in the conventional technique, various measures have been proposed to solve these problems.

【0007】特開昭57−9822号公報では、CaS クラス
ター介在物の少ない清浄度の優れたラインパイプ用鋼材
を製造するために「溶鋼中S含有量を20ppm 以下に低減
すると共に、 (中略) 70ppm 以下のCaを添加する工程を
有する製造方法」を提案している。
JP-A-57-9822 discloses that in order to produce a steel material for a line pipe which has a small amount of CaS cluster inclusions and is excellent in cleanliness, "the content of S in molten steel is reduced to 20 ppm or less (...) A production method including a step of adding Ca of 70 ppm or less ”is proposed.

【0008】この方法では、「Sは溶鋼へのCaの添加に
よりCaS として固定されるが、SはCaS クラスター介在
物の発生に非常に鋭敏な効果を有するため、Ca・Sの濃
度積を低くするため」にS:20ppm、Ca:70ppm以下に制限
することを提案しているのである。
According to this method, "S is fixed as CaS by adding Ca to the molten steel, but S has a very sensitive effect on the generation of CaS cluster inclusions, so that the concentration product of Ca · S is low. In order to do so, it is proposed to limit S: 20 ppm and Ca: 70 ppm or less.

【0009】特開昭63−7322号公報では、Ca添加量が
不足することによりAl2O3 系介在物が十分に低融点CaO-
Al2O3 系介在物へ変化しないこと、および、Ca添加量が
過剰になることよりCaS 系介在物が生成すること、など
の問題点を解決するために、「取鍋に収容された溶鋼中
にCaを添加して溶鋼をCa処理するに当たり、下式を満足
するようにCaを添加して操業を行うことを特徴とする溶
鋼のCa処理方法」を提案している。 0.7−14[S]<[Ca]/[O]<1.1−14[S] ただし、[Ca]:溶鋼中のカルシウム濃度 (ppm)、 [S]:溶鋼中の硫黄濃度 (%) 、 [O]:溶鋼中の酸素濃度 (ppm)。
In Japanese Patent Laid-Open No. 637322, since the amount of Ca added is insufficient, Al 2 O 3 -based inclusions have a sufficiently low melting point CaO-.
In order to solve the problems such as not changing to Al 2 O 3 type inclusions and the formation of CaS type inclusions due to an excessive amount of Ca added, “a molten steel stored in a ladle is used. In the case of adding Ca to the inside of the molten steel to perform the Ca treatment, a method of treating the molten steel by adding Ca so as to satisfy the following formula and performing the operation is proposed. 0.7-14 [S] <[Ca] / [O] <1.1-14 [S] where [Ca]: calcium concentration in molten steel (ppm), [S]: sulfur concentration in molten steel (%), [ O]: Oxygen concentration in molten steel (ppm).

【0010】特開平3−79713 号公報では、Ca添加量
を制御するために上記とは異なる下記式を用いて、Ca添
加量を制御することを特徴とする溶鋼のCa処理方法を提
案している。 0.50≦[Ca]/[O]T ≦1.00、[Ca]≦40、[O]T≦40 ただし、[Ca]:溶鋼中のカルシウム濃度 (ppm) [O]T:溶鋼中の全酸素濃度 (ppm) ここで、[Ca]/[O]T が0.50以上にするのはCaO-Al2O3
介在物を低融点組成にするためであり、1.00以下にする
のはCaS 生成を防止するためである。
Japanese Unexamined Patent Publication (Kokai) No. 3-79713 proposes a method for treating Ca in molten steel, characterized in that the amount of Ca added is controlled by using the following formula different from the above in order to control the amount of added Ca. There is. 0.50 ≤ [Ca] / [O] T ≤ 1.00, [Ca] ≤ 40, [O] T ≤ 40 where [Ca]: calcium concentration in molten steel (ppm) [O] T : total oxygen concentration in molten steel (ppm) Here, [Ca] / [O] T is set to 0.50 or more in order to make the CaO-Al 2 O 3 inclusions have a low melting point composition, and 1.00 or less prevents CaS formation. This is because

【0011】特開昭56−98415 号公報では、「転炉か
ら取鍋へ出鋼中の溶鋼に生石灰を2〜8kg/T添加し、出
鋼後の取鍋表面スラグ層へAlを0.05〜0.40kg/T添加し、
脱ガス処理を施してから、溶鋼内へ浸漬した上吹きラン
スを通じてArガスを0.006 〜0.009 Nm3/min の条件で10
分以上供給して溶鋼を脱硫したのち、さらにその溶鋼に
Ca分として0.125 〜0.500 kg/Tに相当するCa物質を添加
することを特徴とする鋼の製造方法」が提案されてい
る。
In Japanese Patent Laid-Open No. 56-98415, "2 to 8 kg / T of quick lime is added to molten steel in a tapping steel from a converter to a ladle, and Al is added to a ladle surface slag layer after steeling in an amount of 0.05 to 0.05. 0.40kg / T added,
After degassing, Ar gas was passed through the top blowing lance soaked in molten steel under the condition of 0.006 to 0.009 Nm 3 / min.
After supplying more than one minute to desulfurize the molten steel,
A steel manufacturing method characterized by adding a Ca substance corresponding to 0.125 to 0.500 kg / T as the Ca content has been proposed.

【0012】ここで、提案されたCa添加量は、脱硫後の
鋼の[S] 濃度0.002 〜0.009 %に対して耐水素誘起割れ
特性を最良にする[Ca]の濃度 (=0.0010〜0.0040%)
と、Caの歩留から決定されたものである。
[0012] Here, the proposed Ca content is such that the concentration of [Ca] (= 0.0010 to 0.0040%) that gives the best hydrogen-induced cracking resistance to the [S] concentration of 0.002 to 0.009% of the steel after desulfurization. )
And, it was determined from the yield of Ca.

【0013】特開平3−183721号公報では、「溶鋼へ
Caを添加するに際し、溶鋼中のC含有量に応じてCaの添
加速度をコントロールすることを特徴とする溶鋼のCa処
理方法」を提案している。これは、Al2O3 介在物をCaに
より改質し球状のCaO-Al2O3 系介在物にする際に、Al2O
3 改質に対し余剰なCaによるCaS 生成を抑制することを
主眼としたものである。
In Japanese Patent Laid-Open No. 3-183721, "To molten steel
It proposes a method for treating Ca in molten steel, characterized in that when Ca is added, the rate of Ca addition is controlled according to the C content in the molten steel. This allows the Al 2 O 3 inclusions when the CaO-Al 2 O 3 inclusions in reforming spherical by Ca, Al 2 O
3 The main purpose is to suppress CaS generation due to excess Ca with respect to modification.

【0014】[0014]

【発明が解決しようとする課題】このように従来の一般
的技術では、Caの添加量やCa添加後の[Ca]濃度を規定し
たものであるが、Ca添加量を規定してもその添加速度に
ついては充分ではなかった。Ca添加量が適正であって
も、その添加方法、速度が不適当であると溶鋼中Ca濃度
が不均一となり、鋼中介在物の組成形態を無害なものに
充分改質できなかった。そしてこれら改質不充分な介在
物の存在がHIC割れの原因となっていた。
As described above, in the conventional general technique, the addition amount of Ca and the [Ca] concentration after Ca addition are specified, but even if the addition amount of Ca is specified, the addition of Ca The speed wasn't enough. Even if the amount of Ca added was appropriate, if the addition method and rate were inappropriate, the Ca concentration in the molten steel became non-uniform, and the composition morphology of inclusions in the steel could not be sufficiently modified to be harmless. The presence of these inclusions with insufficient modification has caused HIC cracking.

【0015】ここに、本発明の目的は、このような問題
点を解決する方法を提供することであり、具体的には、
必要かつ十分な条件下でCa添加を行うことできる更なる
耐HIC 性の改善をはかることのできる耐HIC 鋼の製造
方法を提供することである。
An object of the present invention is to provide a method for solving such a problem, and more specifically,
It is an object of the present invention to provide a method for producing a HIC resistant steel capable of further improving the HIC resistance by adding Ca under necessary and sufficient conditions.

【0016】[0016]

【課題を解決するための手段】本発明者らは、かかる目
的を達成すべく、Ca添加速度と介在物組成形態変化の相
関について鋭意検討し、特定条件下で、Ca添加速度を制
御することにより耐HIC性を大幅に向上させ得ること
を知り、本発明を完成した。
[Means for Solving the Problems] In order to achieve such an object, the present inventors have diligently studied the correlation between Ca addition rate and inclusion composition morphology change, and controlled the Ca addition rate under specific conditions. It was found that the HIC resistance can be greatly improved by the above, and the present invention was completed.

【0017】本発明の要旨とするところは、溶鋼中にCa
含有物質を添加する際に、Ca含有物質のCa添加速度 (Ca
純分換算) Vを次式に従って制御することを特徴とする
耐HIC 鋼の製造方法である。 15≦V≦−8.4×[S]−0.3×ao+355.8 ・・・ (1) V :Ca添加速度 (g/T/min) [S] :溶鋼中S濃度 (ppm) ao :活量酸素値 (ppm)。
The gist of the present invention is that Ca is contained in molten steel.
When adding a contained substance, the Ca addition rate (Ca
This is a method for producing HIC resistant steel characterized by controlling V according to the following equation. 15 ≦ V ≦ −8.4 × [S] −0.3 × a o +355.8 ・ ・ ・ (1) V: Ca addition rate (g / T / min) [S]: S concentration in molten steel (ppm) a o : Activity oxygen value (ppm).

【0018】このように本発明によれば、Ca含有物質を
添加するにあたり、その添加速度を上述のように適正に
制御することによって、CaS 、CaO 介在物、高融点組成
CaO-Al2O3 系介在物の生成を抑制し、介在物を効果的に
低融点組成のCaO-Al2O3 系球状介在物に変化させること
ができる。かくして、本発明によれば鋼材の耐HIC性
を大幅に改善することができる。
As described above, according to the present invention, when the Ca-containing substance is added, by appropriately controlling the addition rate as described above, CaS, CaO inclusions, high melting point composition
It is possible to suppress the formation of CaO-Al 2 O 3 -based inclusions and effectively change the inclusions into CaO-Al 2 O 3 -based spherical inclusions having a low melting point composition. Thus, according to the present invention, the HIC resistance of the steel material can be greatly improved.

【0019】[0019]

【作用】次に、本発明の作用についてさらに具体的に説
明する。すでに述べたように、従来技術にあっても、溶
鋼中のC含有量に応じてCaの添加速度をコントロールす
る方法が提案されているが、従来法にあっては、Al2O3
介在物をCaにより改質し球状のCaO-Al2O3 系介在物とす
る際に、Al2O3 の改質に対し余剰なCaによるCaS 生成を
抑制することを主眼としたものである。
Next, the operation of the present invention will be described more specifically. As described above, even in the prior art, a method of controlling the Ca addition rate according to the C content in molten steel has been proposed, but in the conventional method, Al 2 O 3 is used.
When the inclusions are modified with Ca to form spherical CaO-Al 2 O 3 -based inclusions, the main aim is to suppress CaS formation due to excess Ca with respect to the modification of Al 2 O 3. .

【0020】しかし、このようにCa添加速度を制御しCa
S 介在物の生成を抑制するだけでは耐HIC性は向上し
ない。高融点組成の酸化物系介在物 (例えば CaO,12CaO
・3Al2O3など) もその形態にかかわらず、圧延時に破砕
し圧延方向に長く伸びた群落状の介在物となりHIC割
れの起点となるからである。
However, by controlling the Ca addition rate in this way,
HIC resistance is not improved simply by suppressing the formation of S inclusions. Oxide inclusions with high melting point composition (e.g. CaO, 12CaO
(3Al 2 O 3 etc.), regardless of its form, becomes a cluster-like inclusion that is crushed during rolling and elongated in the rolling direction, and becomes the starting point of HIC cracking.

【0021】したがって、本発明にあっては、耐HIC
性向上のためにはCaS 系介在物生成抑制のみならず、高
融点組成の酸化物系介在物の生成抑制をも図ろうとする
ものである。そのため、本発明によれば、溶鋼中活量酸
素値および硫黄濃度に応じてCa添加速度を前述の式に従
い制御することにより、CaS 系介在物の生成を抑制し、
さらに酸化物系介在物を効果的に低融点組成 (介在物中
CaO/Al2O3 重量比0.54以上1.5 未満) に改質することに
より、耐HIC性を大幅に向上させるのである。
Therefore, in the present invention, HIC resistance is provided.
In order to improve the properties, not only the suppression of the formation of CaS-based inclusions, but also the suppression of the formation of oxide-based inclusions with a high melting point composition. Therefore, according to the present invention, by controlling the Ca addition rate according to the above equation according to the activity oxygen value in the molten steel and the sulfur concentration, the formation of CaS-based inclusions is suppressed,
Furthermore, the oxide-based inclusions are effectively added to the low melting point composition (in the inclusions
By modifying the CaO / Al 2 O 3 weight ratio from 0.54 to less than 1.5), the HIC resistance is significantly improved.

【0022】ここに、図1は、本発明におけるCa添加態
様の概要を説明する模式図であって、 図中、ランス10
から取鍋12内の溶鋼14内に吹込まれたCaSiは、ランスか
らの吹込み位置近傍の高速吹込み高Ca領域において、Ca
+O→CaO およびCa+S→CaS の各反応によってCaO お
よびCaS を生成させる。なお、溶鋼14は中心部において
上向きの流れが、周辺領域において下向きの流れが見ら
れる。
FIG. 1 is a schematic diagram for explaining the outline of the Ca addition mode in the present invention.
CaSi blown into the molten steel 14 inside the ladle 12 from the lance is in the high-speed injection high Ca region near the injection position from the lance.
CaO and CaS are produced by each reaction of + O → CaO and Ca + S → CaS. It should be noted that the molten steel 14 has an upward flow in the central portion and a downward flow in the peripheral region.

【0023】図1に示すように、Ca含有物質の添加速度
が大きすぎると、浸漬ランスからの吹込み位置近傍での
Ca濃度が局部的に上昇してしまう。このように溶鋼内に
Ca濃度の極端に高い領域と低い領域が生成すると、Ca添
加時に生成あるいは改質された介在物は様々な組成と形
態となり、CaS 介在物や高融点組成の酸化物系介在物な
ど耐HIC性に悪影響を及ぼす介在物も多数生成してし
まう。
As shown in FIG. 1, if the addition rate of the Ca-containing substance is too high, the Ca content in the vicinity of the injection position from the immersion lance is increased.
Ca concentration rises locally. Like this in molten steel
When regions with extremely high and low Ca concentrations are generated, inclusions generated or modified when Ca is added have various compositions and morphologies, and HIC resistance such as CaS inclusions and oxide-based inclusions with high melting point compositions. Many inclusions that adversely affect the power generation are generated.

【0024】従って、Ca添加量を規制することによって
だけでは、これらの介在物の生成を抑制することは極め
て困難であり、さらなる耐HIC性の向上が期待できな
い。耐HIC性に悪影響を及ぼす介在物の生成を抑制す
るには、さらにCaの添加速度を規制しなければならない
ことが分かる。
Therefore, it is extremely difficult to suppress the formation of these inclusions only by controlling the amount of Ca added, and further improvement in HIC resistance cannot be expected. It can be seen that the addition rate of Ca must be further regulated in order to suppress the formation of inclusions that adversely affect the HIC resistance.

【0025】さらに、CaS 介在物の生成条件は、溶鋼中
Ca濃度とS濃度および活量酸素値で規定され、一方、酸
化物系介在物の組成形態は溶鋼中Ca濃度と活量酸素値に
依存する。したがって、CaS 系介在物生成を抑制し、同
時に酸化物系介在物の組成形態を制御するためには溶鋼
中Ca濃度、活量酸素値、S濃度を管理しなければならな
い。Ca添加時のCa濃度は前述した通りその添加量のみで
制御するのは、介在物制御上極めて不利であり、Ca添加
速度で制御する方法が有利である。
Further, the conditions for forming CaS inclusions are as follows:
It is defined by Ca concentration, S concentration and active oxygen value, while the composition form of oxide inclusions depends on Ca concentration in molten steel and active oxygen value. Therefore, in order to suppress the formation of CaS-based inclusions and at the same time control the composition morphology of oxide-based inclusions, it is necessary to control the Ca concentration in molten steel, the active oxygen value, and the S concentration. As described above, controlling the Ca concentration when Ca is added is extremely disadvantageous in controlling inclusions, and the method of controlling the Ca addition rate is advantageous.

【0026】ここに、本発明者らは、溶鋼中活量酸素、
S濃度、Ca添加速度と耐HIC性の関係を調査した結
果、Ca添加速度を次式に従って制御することにより、Ca
S 介在物の生成を抑制するとともに酸化物系介在物を効
果的に低融点組成に変化させ、高い耐HIC性を持った
鋼の製造が可能であることを見い出した。 V≦−8.4×[S]−0.3×ao+355.8 ・・・ (2) V :Ca添加速度 (g/T/min) [S] :溶鋼中S濃度 (ppm) ao :活量酸素値 (ppm)。
Here, the present inventors have found that active oxygen in molten steel,
As a result of investigating the relationship between the S concentration, the Ca addition rate and the HIC resistance, the Ca addition rate was controlled according to the following equation.
It was found that it is possible to manufacture steel with high HIC resistance by suppressing the formation of S inclusions and effectively changing the oxide inclusions to a low melting point composition. V ≦ −8.4 × [S] −0.3 × a o +355.8 (2) V: Ca addition rate (g / T / min) [S]: S concentration in molten steel (ppm) a o : Activity Oxygen value (ppm).

【0027】一方、Ca添加速度を15g/T/min 未満に下げ
ると、Ca添加による溶鋼中Ca上昇速度より溶鋼からのCa
蒸発速度の方が速くなってしまい、溶鋼中Ca濃度を上げ
ることができない。これにより、鋼中Ca濃度が低くなり
凝固時にMnS が生成し耐HIC性を著しく低下させる。
On the other hand, when the Ca addition rate is reduced to less than 15 g / T / min, the Ca content in the molten steel is more
The evaporation rate becomes faster and the Ca concentration in the molten steel cannot be increased. As a result, the Ca concentration in the steel becomes low, and MnS is produced during solidification, which significantly reduces the HIC resistance.

【0028】従って、Ca添加速度を以下のように前述の
式(1) にしたがって制御することによって耐HIC性に
極めて優れた鋼を製造することが可能である。 15≦V≦−8.4×[S]−0.3×ao+355.8 ・・・ (1) V :Ca添加速度 (g/T/min) [S] :溶鋼中S濃度 (ppm) ao :活量酸素値 (ppm)。
Therefore, by controlling the Ca addition rate according to the above-mentioned formula (1), it is possible to manufacture a steel excellent in HIC resistance. 15 ≦ V ≦ −8.4 × [S] −0.3 × a o +355.8 ・ ・ ・ (1) V: Ca addition rate (g / T / min) [S]: S concentration in molten steel (ppm) a o : Activity oxygen value (ppm).

【0029】本発明で用いるCa含有物質としては、Caが
含有されていればいずれであってもよく、Ca−Si、Fe−
Ca、Ca−Al、Ca−Ni、Fe−Ca−Ni等の合金を用いること
ができる。また、Caを含有する金属粉体とその他の金属
粉とを混合したもの、あるいは、混合後圧力成形したも
のを用いてもよい。
The Ca-containing substance used in the present invention may be any as long as Ca is contained, and Ca-Si, Fe-
Alloys such as Ca, Ca-Al, Ca-Ni, and Fe-Ca-Ni can be used. In addition, a mixture of Ca-containing metal powder and another metal powder, or a mixture obtained by pressure molding after mixing may be used.

【0030】また、これらCa含有物質にCaO 、Al2O3
CaF2、CaO-Al2O3 、CaO-CaF2、CaO-Al2O3-CaF2フラック
スを混合して用いてもよい。これらフラックスを混合し
て添加する効果は、特開昭54−37019 号公報、特公昭59
−22765 号公報、特開昭64−75622 号公報、特開平3−
47910 号公報に述べられているとおりである。
Further, these Ca-containing substances include CaO, Al 2 O 3 ,
CaF 2 , CaO-Al 2 O 3 , CaO-CaF 2 , and CaO-Al 2 O 3 -CaF 2 flux may be mixed and used. The effect of mixing and adding these fluxes is described in JP-A-54-37019 and JP-B-59.
-22765, JP 64-75622 A, JP 3-A
As described in Japanese Patent No. 47910.

【0031】本発明の好適態様によれば、Ca添加時に用
いるCa含有物質中のCa純度は50%以下であり、特に40%
以下が望ましい。Caは反応性が高いために、純度が高す
ぎると、添加時の反応が激しくなり、スプラッシュ発生
が問題となるからである。逆に純度が低すぎると、Ca以
外の金属成分が多くなり、必要なCa純分を添加する際に
必要となる、Ca含有物質の原単位が大きくなりすぎてし
まうのである。
According to a preferred embodiment of the present invention, the Ca purity in the Ca-containing substance used when Ca is added is 50% or less, particularly 40%.
The following is desirable. Since Ca is highly reactive, if the purity is too high, the reaction at the time of addition becomes vigorous, causing a problem of splash generation. On the other hand, if the purity is too low, the amount of metal components other than Ca increases, and the basic unit of the Ca-containing substance required when adding the required amount of pure Ca becomes too large.

【0032】また、Ca添加量あるいはCa原単位 (いずれ
も、Ca純分換算) は、1.0 kg/T、特に0.5 kg/T以下が望
ましい。その理由は、Ca添加量が過剰になると、Ca添加
速度を低減しても反応すべきAl2O3 系介在物が減少ある
いは消失し、CaO-Al2O3 系介在物のCaO 濃度が高くなり
すぎてしまうためである。さらに、Ca添加量が多すぎる
とCaS 系介在物の生成も十分には抑制できなくなってし
まうからである。
Further, it is desirable that the amount of added Ca or the basic unit of Ca (calculated as Ca pure content) be 1.0 kg / T, particularly 0.5 kg / T or less. The reason is that if the Ca addition amount becomes excessive, the Al 2 O 3 -based inclusions that should react will decrease or disappear even if the Ca addition rate is reduced, and the CaO concentration of the CaO-Al 2 O 3 -based inclusions will be high. This is because it becomes too much. Furthermore, if the amount of Ca added is too large, the formation of CaS-based inclusions cannot be sufficiently suppressed.

【0033】一方、Ca添加量あるいはCa原単位 (いずれ
も、Ca純分換算) は、0.1 kg/T以上でその効果が十分に
発揮される。その理由は、Ca添加量が低すぎると、Al2O
3 系介在物が十分にCaO-Al2O3 系介在物になりきらず
に、アルミナクラスター系の介在物が残留してしまうか
らである。さらに、Ca添加量が低すぎると、鋳造中の中
心偏析によりMnの濃化した領域で耐HIC性能に悪影響
のあるMnS が生成してしまうからである。
On the other hand, the effect is sufficiently exhibited when the amount of added Ca or the unit amount of Ca (calculated as pure Ca) is 0.1 kg / T or more. The reason is that if the amount of Ca added is too low, Al 2 O
This is because the CaO—Al 2 O 3 -based inclusions are not fully converted into the 3 -based inclusions, and the alumina cluster-based inclusions remain. Furthermore, if the amount of Ca added is too low, MnS which adversely affects the HIC resistance performance is generated in the region where Mn is concentrated due to center segregation during casting.

【0034】次に、Ca添加方法としては、本発明にあっ
ては特に制限はない。例えば、粉体のCa含有物質を不活
性ガスであるArガスをキャリアーガスとして浸漬ランス
を通じて行うのが通例であり、本発明にあっても同様の
方法でCa添加を行えばよい。このとき、粉体ホッパーに
はロードセルを設け、単位時間当たりの粉体供給量を狭
い幅に管理することが望ましい。また、同様に、Ca含有
物質を内包した鉄被膜ワイヤーを溶鋼上面から溶鋼中へ
添加してもよい。ワイヤーの添加は、その駆動装置によ
り単位時間当たりの送り出し長さが正確に決定でき、ワ
イヤーの単位長さ当たりの重量から容易にCa添加速度を
算出することができる。
Next, the method of adding Ca is not particularly limited in the present invention. For example, it is customary to carry out the powdery Ca-containing substance through an immersion lance using Ar gas, which is an inert gas, as a carrier gas. Even in the present invention, Ca may be added by the same method. At this time, it is desirable to provide a load cell in the powder hopper and manage the powder supply amount per unit time within a narrow width. Similarly, an iron-coated wire containing a Ca-containing substance may be added into the molten steel from the upper surface of the molten steel. With regard to the addition of the wire, the delivery length per unit time can be accurately determined by the driving device, and the Ca addition rate can be easily calculated from the weight per unit length of the wire.

【0035】また、可能であれば溶融状態のCa含有物質
を添加してもよい。さらに、合金ホッパーからCa含有物
質を添加してもよいが、通例では添加速度を狭い幅に制
御するのが困難であるため、連続切り出し装置などを備
えて添加速度の狭幅制御をすることが望ましい。
If possible, a Ca-containing substance in a molten state may be added. Furthermore, although a Ca-containing substance may be added from the alloy hopper, it is usually difficult to control the addition speed to a narrow width, so it is possible to provide a continuous cutting device or the like to control the addition speed to a narrow width. desirable.

【0036】ここで、本発明における耐HIC 性に優れた
鋼の溶製法について、その一連の工程を説明すると次の
通りである。なお、本発明は特にそれらに制限されるも
のではなく、その他に多くの変更例が可能であることは
理解されるべきである。すなわち、適宜予備処理された
溶銑に転炉において脱炭処理を行い、得られた溶鋼を取
鍋に出鋼する。
Here, a series of steps of the method for melting steel having excellent HIC resistance in the present invention will be described as follows. It should be understood that the present invention is not particularly limited to these, and many other modifications are possible. That is, the hot metal that has been appropriately pretreated is decarburized in a converter, and the obtained molten steel is tapped in a ladle.

【0037】Ca含有物質添加前に真空脱ガス法 (RH
法、タンク脱ガス法等) により溶鋼脱水素処理を行うこ
とが望ましい。これは、鋼中の水素濃度を低下させるこ
とにより、耐水素誘起割れを防止するためである。鋳造
後にスラブ徐冷、圧延後に成品徐冷などを行うことによ
り鋼の水素濃度を低下させることができるならば、この
溶融脱水素処理を省略あるいは溶融脱水素処理の軽減化
をはかることが可能である。ただし、スラブ徐冷、成品
徐冷の場合には、水素濃度低下に時間がかかるため、成
品納期短期化の面からは不利である。
A vacuum degassing method (RH
Method, tank degassing method, etc.) is preferable. This is to prevent hydrogen-induced cracking by reducing the hydrogen concentration in the steel. If it is possible to reduce the hydrogen concentration of steel by performing slab gradual cooling after casting, and product gradual cooling after rolling, it is possible to omit this melt dehydrogenation process or reduce the melt dehydrogenation process. is there. However, in the case of slab gradual cooling and product gradual cooling, it takes time to reduce the hydrogen concentration, which is disadvantageous in terms of shortening the delivery time of the product.

【0038】また、取鍋において脱硫処理を行った後に
Ca含有物質を添加し、そこで生成したCaO-Al2O3 系介在
物を真空脱ガス法 (RH法、タンク脱ガス法等) で浮上
分離し、その後、さらに取鍋においてCa含有物質を添加
してもよい。真空脱ガス法は介在物の分離に適している
が、真空処理を行うために溶鋼中に溶解するCaが気化し
やすいためである。
After desulfurization treatment in the ladle,
A Ca-containing substance is added, and the CaO-Al 2 O 3 -based inclusions generated there are float-separated by a vacuum degassing method (RH method, tank degassing method, etc.), and then a Ca-containing substance is further added in the ladle. You may. The vacuum degassing method is suitable for separating inclusions, but it is because Ca dissolved in molten steel is easily vaporized due to vacuum treatment.

【0039】また、Ca含有物質添加中の雰囲気は二次酸
化を防止するために密閉雰囲気として大気を遮断するこ
とが望ましい。必要により不活性ガス雰囲気としてもよ
い。さらに、雰囲気圧としては、大気圧とするのが通例
であるが、若干の加圧あるいは減圧下であってもよい。
ただし、減圧下でCa含有物質を添加する場合は、Caの蒸
気圧が高いために気化しやすいことを考慮すると、雰囲
気圧力100 torr以上であることが望ましい。
Further, it is desirable that the atmosphere during addition of the Ca-containing substance is a closed atmosphere to shut off the atmosphere in order to prevent secondary oxidation. If necessary, an inert gas atmosphere may be used. Further, the atmospheric pressure is usually atmospheric pressure, but may be slightly increased or decreased.
However, when the Ca-containing substance is added under reduced pressure, it is desirable that the atmospheric pressure is 100 torr or more, considering that vaporization of Ca is easy due to high vapor pressure of Ca.

【0040】また、転炉出鋼後、取鍋にて脱硫処理する
前あるいは後に、酸素供給による溶鋼昇熱や電気加熱に
よって取鍋内溶鋼温度を補償してもよい。一般に、脱硫
処理においては、処理時間がかかることや処理中の放熱
量が大きいことから出鋼温度の上昇を招くため、このよ
うに出鋼後に昇熱工程を入れることにより出鋼温度低下
を計ってもよい。次に、本発明の作用効果について実施
例によってさらに具体的に説明する。
Further, the temperature of molten steel in the ladle may be compensated by raising the temperature of the molten steel by supplying oxygen or by electric heating after the steel is fed from the converter and before or after desulfurization treatment in the ladle. Generally, in the desulfurization process, it takes a long processing time and the amount of heat released during the process is large, so that the tapping temperature rises.Therefore, the tapping temperature decrease can be measured by including the heating step after tapping in this way. May be. Next, the function and effect of the present invention will be described more specifically by way of examples.

【0041】[0041]

【実施例】250 トン取鍋に収容した、表1に示す基本組
成を有し、かつ後述する表2に示すようにS濃度および
活量酸素値をそれぞれ変更した16種の溶鋼に対して、Ca
含有物質をその添加速度を変えて添加し、得られた鋼に
ついてHIC 割れ発生および介在物組成に及ぼすCa添加速
度の影響を調査した。
[Examples] Sixteen kinds of molten steel, which had the basic composition shown in Table 1 and were changed in S concentration and activity oxygen value respectively, as shown in Table 2 described later, which were housed in a 250-ton ladle, Ca
The contained substances were added at different addition rates, and the effect of Ca addition rate on HIC crack initiation and inclusion composition was investigated for the obtained steel.

【0042】ここで、Ca添加前の溶鋼は、以下のプロセ
スにて処理されたものであった。高炉から供給された溶
銑を溶銑処理 (溶銑脱硫、あるいは、溶銑脱りん、ある
いはその両者) 後、転炉に注銑し吹錬を行った。転炉吹
錬後、溶鋼を取鍋へ出鋼し、各種合金を添加した。取鍋
において溶鋼脱硫処理によって脱硫してからCa含有物質
を添加した。
Here, the molten steel before the addition of Ca was treated by the following process. The hot metal supplied from the blast furnace was subjected to hot metal treatment (hot metal desulfurization, hot metal dephosphorization, or both), and then the hot metal was poured into a converter and blown. After the converter was blown, the molten steel was tapped into a ladle and various alloys were added. The Ca-containing substance was added after desulfurization by molten steel desulfurization treatment in a ladle.

【0043】溶鋼へのCa添加は、常圧下において粉体の
Ca含有物質を不活性ガスであるArガスをキャリアガスと
して浸漬ランスを通じて行った。このとき、粉体ホッパ
ーにはロードセルを設け、単位時間当たりの粉体供給量
を目標値の±10kg/minの範囲で制御した。このときのCa
添加速度は表2に示すように溶鋼成分に応じて16種類変
化させた。
The addition of Ca to the molten steel is carried out under normal pressure
The Ca-containing substance was subjected to immersion lance using Ar gas as an inert gas as a carrier gas. At this time, a load cell was provided in the powder hopper, and the powder supply amount per unit time was controlled within the target value ± 10 kg / min. Ca at this time
As shown in Table 2, 16 kinds of addition rates were changed according to the molten steel composition.

【0044】次いで、このCa添加処理をした溶鋼を連続
鋳造装置により鋳造し、得られたスラブからサンプルを
切り出し、次の要領で介在物組成の調査と、HIC 試験を
行った。
Next, the molten steel to which this Ca addition treatment was applied was cast by a continuous casting apparatus, a sample was cut out from the obtained slab, and the composition of inclusions and the HIC test were conducted in the following manner.

【0045】(1) Ca添加速度とCaO-Al2O3 系介在物組成
の関係 Caを約30%含有する粉体状のCa−Si合金 (1kg/T) を浸
漬ランスから連続的に添加した。得られたスラブ中の介
在物組成を調査した。本発明例の場合は上述のようにロ
ードセルによってCa添加速度を制御した。表2に示す実
施例と比較例における介在物組成の分析結果を図3に示
す。なお、横軸は表2に示すRun No. である。
(1) Relationship between Ca addition rate and CaO-Al 2 O 3 -based inclusion composition Powdered Ca-Si alloy (1 kg / T) containing about 30% Ca was continuously added from the immersion lance. did. The inclusion composition in the obtained slab was investigated. In the case of the example of the present invention, the Ca addition rate was controlled by the load cell as described above. FIG. 3 shows the analysis results of the composition of inclusions in Examples and Comparative Examples shown in Table 2. The horizontal axis is Run No. shown in Table 2.

【0046】Ca添加速度を本発明にしたがって制御した
場合は、介在物は低融点組成のCaO-Al2O3 系介在物 (介
在物中Ca/Al2O3重量比0.54以上1.5 未満) になってい
る。一方、比較例に示すようにCa添加速度を本発明に従
って制御しなかった場合は、CaO 、CaS 介在物が生成し
ているほか、CaO-Al2O3 系介在物も高融点組成となって
いることが判明した。
When the Ca addition rate is controlled according to the present invention, the inclusions become CaO-Al 2 O 3 -based inclusions (Ca / Al 2 O 3 weight ratio in the inclusions of 0.54 or more and less than 1.5) having a low melting point composition. Has become. On the other hand, as shown in Comparative Examples, when the Ca addition rate was not controlled according to the present invention, CaO and CaS inclusions were generated, and CaO-Al 2 O 3 inclusions also had a high melting point composition. It turned out that

【0047】このようにCa添加速度を本発明にしたがっ
て制御すると、介在物は効率よく改質され、耐HIC性
に無害な低融点組成のCaO-Al2O3 系介在物となることが
分かる。
As described above, when the Ca addition rate is controlled according to the present invention, inclusions are efficiently modified to form CaO-Al 2 O 3 type inclusions having a low melting point composition that is harmless to HIC resistance. .

【0048】(2) Ca添加速度とHIC割れ発生率の関係 NACE試験溶液を使ったHIC 試験を各供試鋼 (スラブ) に
ついて行った。このHIC試験の結果を表2にまとめて
示す。
(2) Relationship between Ca Addition Rate and HIC Crack Occurrence Rate A HIC test using a NACE test solution was conducted on each test steel (slab). The results of this HIC test are summarized in Table 2.

【0049】表2から分かるように、本発明に従ってCa
添加速度を制御したケースを示すRun No.1〜8ではHI
C割れ発生率を低位に抑制できたが、それを外れた条件
でCa添加を行い、本発明によるCa添加速度の制御を
行わなかったケースを示すRun No.9〜16では高い確率で
HIC 割れが発生した。Run No.11 、15ではCaS 系介在物
を抑制したにも拘らずHIC割れが発生した。このこと
から、耐HIC性向上には本発明で示したようにCaS 系
介在物の生成抑制のみならず、酸化物系介在物の組成制
御が必須であることが分かる。
As can be seen from Table 2, according to the present invention Ca
In Run No. 1 to 8, which shows the case where the addition rate was controlled, HI was used.
Although the rate of occurrence of C cracking could be suppressed to a low level, Ca addition was performed under conditions other than that, and there was a high probability in Run Nos. 9 to 16 showing the case where the Ca addition rate was not controlled according to the present invention.
HIC crack occurred. In Run Nos. 11 and 15, HIC cracking occurred although CaS-based inclusions were suppressed. From this, it is understood that not only the suppression of the formation of CaS-based inclusions as described in the present invention but also the composition control of the oxide-based inclusions is essential for improving the HIC resistance.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【発明の効果】本発明によれば、水素誘起割れが生せ
ず、鋼材品質の安定化に寄与する。
EFFECTS OF THE INVENTION According to the present invention, hydrogen-induced cracking does not occur, which contributes to stabilization of the quality of steel products.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ca含有物質の添加態様の概念図である。FIG. 1 is a conceptual diagram of a mode of adding a Ca-containing substance.

【図2】Ca添加速度とHIC割れの関係を示すグラフで
ある。
FIG. 2 is a graph showing the relationship between Ca addition rate and HIC cracking.

【図3】Ca添加速度と介在物組成の関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between the Ca addition rate and the composition of inclusions.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶鋼中にCa含有物質を添加する際に、Ca
含有物質のCa添加速度 (Ca純分換算) Vを次式に従って
制御することを特徴とする耐HIC 鋼の製造方法。 15≦V≦−8.4×[S]−0.3×ao+355.8 V :Ca添加速度 (g/T/min) [S] :溶鋼中S濃度 (ppm) ao :活量酸素値 (ppm)
1. When adding a Ca-containing substance to molten steel, Ca
A method for producing a HIC resistant steel, characterized in that the Ca addition rate (calculated as a Ca content) V of the contained substance is controlled according to the following formula. 15 ≦ V ≦ −8.4 × [S] −0.3 × a o +355.8 V: Ca addition rate (g / T / min) [S]: S concentration in molten steel (ppm) a o : Activity oxygen value (ppm) )
JP18961594A 1994-08-11 1994-08-11 Production of hic resistant steel Pending JPH0853707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18961594A JPH0853707A (en) 1994-08-11 1994-08-11 Production of hic resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18961594A JPH0853707A (en) 1994-08-11 1994-08-11 Production of hic resistant steel

Publications (1)

Publication Number Publication Date
JPH0853707A true JPH0853707A (en) 1996-02-27

Family

ID=16244271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18961594A Pending JPH0853707A (en) 1994-08-11 1994-08-11 Production of hic resistant steel

Country Status (1)

Country Link
JP (1) JPH0853707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105378118A (en) * 2013-07-10 2016-03-02 杰富意钢铁株式会社 Method for producing steel material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105378118A (en) * 2013-07-10 2016-03-02 杰富意钢铁株式会社 Method for producing steel material
TWI585209B (en) * 2013-07-10 2017-06-01 杰富意鋼鐵股份有限公司 Manufacturing method for steel material
US10072320B2 (en) 2013-07-10 2018-09-11 Jfe Steel Corporation Method of producing steel material

Similar Documents

Publication Publication Date Title
US7901482B2 (en) Removal method of nitrogen in molten steel
KR101150141B1 (en) Process for manufacturing the steel pipes excellent in sour resistance
JP2014509345A (en) Steel desulfurization method
JP7060113B2 (en) Method of adding Ca to molten steel
KR100802639B1 (en) Method for a direct steel alloying
JP3250459B2 (en) HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same
JP2000119732A (en) Melting method for high cleanliness extra-low carbon steel
JPH0853707A (en) Production of hic resistant steel
JP3230070B2 (en) How to add Mg to molten steel
JPH09209025A (en) Production of hic resistant steel excellent in low temperature toughness in welded part
KR100554739B1 (en) Method for Producing Molten steel with High Calcium Content
JPH0873923A (en) Production of clean steel having excellent hydrogen induced crack resistance
JP5387045B2 (en) Manufacturing method of bearing steel
KR100900650B1 (en) Calcium Cored Wire for Controlling Calcium Content in Molten Steel and Method for Controlling Calcium Content in Molten Steel Using the Wire
JP3594757B2 (en) Melting method for high purity high Ni molten steel
JPH0892629A (en) Production of oxide dispersed steel
JPH05331523A (en) Method for refining molten steel for bearing steel
RU2278169C2 (en) Method for production of chromium-manganese stainless steel
SU926028A1 (en) Method for refining low-carbon steel
JPH08157934A (en) Calcium treatment of molten steel
CN117230277A (en) Deoxidization control method for high alloy steel casting
JPH0931524A (en) Treatment of ca in molten steel
JPH09263824A (en) Vacuum refining method for chromium-containing molten steel
SU1027235A1 (en) Method for smelting steel
BE1003182A4 (en) Method for producing steel for standard use

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020521