JPH0931524A - Treatment of ca in molten steel - Google Patents

Treatment of ca in molten steel

Info

Publication number
JPH0931524A
JPH0931524A JP17742895A JP17742895A JPH0931524A JP H0931524 A JPH0931524 A JP H0931524A JP 17742895 A JP17742895 A JP 17742895A JP 17742895 A JP17742895 A JP 17742895A JP H0931524 A JPH0931524 A JP H0931524A
Authority
JP
Japan
Prior art keywords
molten steel
added
inclusions
steel
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17742895A
Other languages
Japanese (ja)
Other versions
JP3097506B2 (en
Inventor
Mitsuhiro Numata
光裕 沼田
Yoshihiko Higuchi
善彦 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP07177428A priority Critical patent/JP3097506B2/en
Publication of JPH0931524A publication Critical patent/JPH0931524A/en
Application granted granted Critical
Publication of JP3097506B2 publication Critical patent/JP3097506B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a steel which never cause hydrogen induced cracking by simultaneously adding Ca alloy and Al2 O3 in specific ratio into molten steel in a ladle. SOLUTION: The Ca alloy and the Al2 O3 are simultaneously added into the molten steel in the ladle after deoxidation and degassing treatment. In the above Ca treating method of the molten steel, the addition is executed in the condition satisfying the inequality of the ratio of pure Ca adding quantity and Al2 O3 adding quantity [wherein, [O] is total oxygen concn. in the molten steel (ppm), (Ca) is pure Ca adding quantity per ton of the molten steel (kg/T) and (Al2 O3 ) is adding quantity of Al2 O3 simultaneously added with Ca alloy per ton of the molten steel (kg/T)]. By this method, the steel quality securing the ductility and preventing the hydrogen induced cracking, etc., can be improved by producing an extremely low sulfur steel and controlling the composition and the shape of inclusion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、鋼の極低硫化、介
在物の組成および形態の制御により、靭性の確保、水素
誘起割れ防止等、鋼の品質向上を可能ならしめるCa処
理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Ca treatment method capable of improving the quality of steel such as ensuring toughness and preventing hydrogen-induced cracking by controlling extremely low sulfurization of steel, composition and morphology of inclusions.

【0002】[0002]

【従来の技術】ラインパイプ等で発生する水素誘起割れ
(以下HICと記す)は、圧延時に線状に破砕されたAl
2O3 クラスターや線状に伸延されたMnS を起点に発生す
ることが周知となっている。従って、従来から溶鋼にC
a含有物質を添加することにより、Al2O3 クラスターを
HICの起点とならない球状介在物に形態制御するとと
もにCaと溶鋼中〔S〕とを反応させ、CaO-Al2O3-CaS
系介在物として脱硫することにより、MnS の生成を抑止
する技術が知られている。
2. Description of the Related Art Hydrogen-induced cracking (hereinafter referred to as HIC) that occurs in a line pipe or the like is an Al that is linearly crushed during rolling.
It is well known that it originates from 2 O 3 clusters and linearly elongated MnS. Therefore, C has been conventionally used for molten steel.
By adding an a-containing substance, the morphology of Al 2 O 3 clusters is controlled into spherical inclusions that do not act as the origin of HIC, and Ca reacts with molten steel [S] to produce CaO-Al 2 O 3 -CaS.
There is known a technique for suppressing the production of MnS by desulfurizing as a system inclusion.

【0003】一般に、ラインパイプ等の耐HIC鋼は以
下の方法によって製造される。
Generally, HIC resistant steel such as line pipe is manufactured by the following method.

【0004】転炉出鋼後の溶鋼をAl等で脱酸した後、
RH真空脱ガス装置等を用いて溶鋼中の窒素、水素を除
去する。この後、溶鋼脱硫処理を施す場合もある。この
ように、脱酸、脱ガス処理の後、溶鋼にCa含有物質を
添加する。
After deoxidizing the molten steel after the steel is discharged from the converter with Al or the like,
Nitrogen and hydrogen in molten steel are removed using an RH vacuum degassing device. After this, molten steel desulfurization treatment may be performed. Thus, the Ca-containing substance is added to the molten steel after the deoxidizing and degassing treatments.

【0005】一般に、添加するCa含有物質としてはC
a−Si、Ca−Al等のCaを約30%含んだCa合
金が用いられる。また、Ca含有物質の添加方法として
は、溶鋼に浸漬したランスから不活性ガスとともにCa
含有物質を溶鋼中に吹き込むインジェクション法や、C
a含有物質粉を鉄で被覆し線状となしたものを溶鋼に送
り込むワイヤーフィーダー法が知られている。
Generally, the added Ca-containing substance is C
A Ca alloy containing about 30% of Ca such as a-Si and Ca-Al is used. In addition, as a method of adding the Ca-containing substance, the lance immersed in the molten steel and the Ca
Injection method of blowing the contained substance into molten steel, C
A wire feeder method is known in which a wire containing a-containing substance powder is coated with iron to form a wire, which is fed into molten steel.

【0006】しかし、そのCa処理方法が不適切である
と、Al2O3 クラスターの球状化が不十分となり、または
添加Caと溶鋼中〔S〕との反応により生成したCaS ク
ラスターによる連続鋳造時の浸漬ノズル閉塞が生じる。
However, if the Ca treatment method is inappropriate, the spheroidization of Al 2 O 3 clusters becomes insufficient, or during continuous casting by CaS clusters produced by the reaction between added Ca and molten steel [S]. The immersion nozzle is clogged.

【0007】このような問題解決のため、従来からいく
つかの方法が提案されてきた。
In order to solve such a problem, several methods have been conventionally proposed.

【0008】特開昭60−9816号公報には、Ca合
金とAl2O3 、CaO を主成分とするフラックスが緊密結合
した金属精錬剤により、Caの溶鋼への作用を適度に制
御でき、これにより介在物をCaO-Al2O3 系に制御すると
ともに脱硫も図れることが示されている。
JP-A-60-9816 discloses that the action of Ca on molten steel can be appropriately controlled by a metal refining agent in which a Ca alloy and a flux containing Al 2 O 3 and CaO as main components are closely bonded. It has been shown that this makes it possible to control the inclusions to the CaO-Al 2 O 3 system and to achieve desulfurization.

【0009】本発明者等は特開昭64−75622号公
報において、Al2O3 とCa合金を同時に添加あるいはAl
2O3 添加後にCa合金を添加することにより、介在物を
CaO-Al2O3-CaS に改質し100%球状化すると同時に、
効果的に脱硫する方法を提案した。
The inventors of the present invention have disclosed in Japanese Unexamined Patent Publication (Kokai) No. 64-75622 that Al 2 O 3 and a Ca alloy are simultaneously added or Al is added.
By adding Ca alloy after adding 2 O 3 , inclusions
Modifying to CaO-Al 2 O 3 -CaS and making it 100% spherical,
A method to effectively desulfurize was proposed.

【0010】[0010]

【発明が解決しようとする課題】従来、Ca添加により
HICの起点となるMnS あるいはAl2O3 クラスターを耐
HIC性に無害とされるCaO-Al2O3-CaS 系球状介在物に
改質し、かつCa添加時に生成するCaS を抑止すれば、
実用上十分な鋼材の耐HIC性が得られると考えられて
きた。
Conventionally, MnS or Al 2 O 3 clusters, which are the starting points of HIC by adding Ca, are modified into CaO-Al 2 O 3 -CaS-based spherical inclusions which are harmless to HIC resistance. And suppress CaS generated when Ca is added,
It has been considered that practically sufficient HIC resistance of steel can be obtained.

【0011】しかし実際には、Ca添加によりHICの
起点となる有害介在物を球状CaO-Al2O3-CaS 介在物に無
害化改質し、かつCaS 介在物を抑止してもHIC発生を
十分に抑えることはできない。そこで、本発明者は、C
a添加を施した鋼材を耐HIC評価試験にて評価し、H
ICが発生した鋼材中の介在物形態の観察、組成分析を
行った結果、以下の知見を得た。
However, in reality, even if Ca is added, the harmful inclusions that are the starting point of HIC are detoxified and modified into spherical CaO-Al 2 O 3 -CaS inclusions, and even if CaS inclusions are suppressed, HIC generation is prevented. It cannot be suppressed enough. Therefore, the inventor
The steel material added with a was evaluated by the HIC resistance evaluation test, and H
As a result of observing the morphology of inclusions in the steel material in which IC occurred and analyzing the composition, the following findings were obtained.

【0012】スラブ中に存在する介在物は全て球状であ
り、その組成はCa−Al−O−Sからなっている。こ
のスラブを圧延し、この圧延後の鋼中介在物を調査した
ところ、介在物の一部は球状であるものの、介在物の多
くは線状に破砕されていた。
All the inclusions present in the slab are spherical and have a composition of Ca-Al-OS. When this slab was rolled and the inclusions in the steel after this rolling were investigated, some of the inclusions were spherical, but most of the inclusions were crushed into linear shapes.

【0013】さらに、この圧延材をHIC評価試験にて
評価したところ、この線状に破砕された介在物を起点と
してHICが発生していることが判明した。
Further, when this rolled material was evaluated by the HIC evaluation test, it was found that HIC was generated from the linearly crushed inclusions as the starting point.

【0014】そこで、圧延後、線状に破砕された介在物
と球状のままであった介在物の組成を詳細に調査したと
ころ、以下が明かとなった。
Therefore, after the rolling, the compositions of the linearly crushed inclusions and the inclusions that remained spherical were examined in detail, and the following was revealed.

【0015】線状に破砕された介在物の組成は、CaO >
60%、CaS >8%、Al2O3 <27%か、またはCaO <
35%、Al2O3 >65%であった。一方、圧延後も球状
であった介在物は、35%≦CaO ≦60%、CaS ≦8%
であり、残部はAl2O3 からなる組成のものであった。し
たがって、介在物組成が不適当であると溶鋼中およびス
ラブ中で球状であっても圧延時に破砕され、HICの起
点となるのである。
The composition of the inclusions crushed linearly is CaO>
60%, CaS> 8%, Al 2 O 3 <27%, or CaO <
35% and Al 2 O 3 > 65%. On the other hand, inclusions that were spherical even after rolling were 35% ≤ CaO ≤ 60%, CaS ≤ 8%
And the balance had a composition of Al 2 O 3 . Therefore, if the composition of the inclusions is inappropriate, even if the inclusions are spherical in the molten steel and the slab, they are crushed during rolling and become the starting point of HIC.

【0016】さらに、溶鋼中〔S〕濃度と介在物中CaS
濃度との相関関係について調査したところ、溶鋼中
〔S〕濃度が7ppm 以上となると、凝固過程で介在物中
のCaS 濃度が上昇し、最終的に介在物中のCaS 濃度が1
0%以上となることが判明した。
Furthermore, [S] concentration in molten steel and CaS in inclusions
When the correlation with the concentration was investigated, when the [S] concentration in the molten steel was 7 ppm or more, the CaS concentration in the inclusions increased during the solidification process, and the CaS concentration in the inclusions eventually became 1
It was found to be 0% or more.

【0017】したがって、鋼材の耐HIC性を十分に向
上させるには、CaS 単体介在物生成の抑止、介在物の完
全球状化に加えて、以下の、の条件を達成しなけれ
ばならないのである。
Therefore, in order to sufficiently improve the HIC resistance of the steel material, in addition to suppressing the formation of CaS simple substance inclusions and completely spheroidizing the inclusions, the following conditions must be achieved.

【0018】介在物組成を35%≦CaO ≦60%、Ca
S ≦8%、残部Al2O3 とする。
The composition of inclusions is 35% ≤CaO≤60%, Ca
S ≦ 8% and the balance Al 2 O 3 .

【0019】溶鋼中〔S〕濃度を7ppm 以下とする。The [S] concentration in the molten steel is set to 7 ppm or less.

【0020】しかし、前記特開昭60−9816号公報
の精錬剤、特開昭64−75622号公報の脱硫方法
は、いずれも主に溶鋼を或る程度脱硫するとともに介在
物の球状化を図るものであり、CaS 生成抑止と介在物球
状化の達成度が低いため上記、の条件を満足させる
ことができず、鋼材の耐HIC性を十分に向上させ得る
ものではなかった。
However, both the refining agent of JP-A-60-9816 and the desulfurization method of JP-A-64-75622 aim to desulfurize molten steel to some extent and to spheroidize inclusions. However, since the degree of achievement of suppression of CaS formation and spheroidization of inclusions is low, the above conditions cannot be satisfied, and the HIC resistance of steel cannot be sufficiently improved.

【0021】[0021]

【課題を解決するための手段】本発明の要旨は次の溶鋼
のCa処理方法にある。
The gist of the present invention resides in the following Ca treatment method for molten steel.

【0022】取鍋内溶鋼中にCa合金とともにAl2O3
同時に添加するCa処理方法であって、Ca純分添加量
とAl2O3 添加量との比が下記(1)式の関係を満たす条
件で同時に添加することを特徴とする溶鋼のCa処理方
法。
A Ca treatment method in which Al 2 O 3 is simultaneously added to a molten steel in a ladle together with a Ca alloy, and the ratio of the pure Ca content and the Al 2 O 3 content is expressed by the following equation (1). A method for treating Ca in molten steel, characterized in that they are added simultaneously under the conditions that satisfy the above conditions.

【0023】[0023]

【数2】 [Equation 2]

【0024】ただし、 〔O〕:溶鋼中の全酸素濃度(p
pm) (Ca):溶鋼トン当たりのCa純分添加量(kg/T) (Al2O3):Ca合金と同時に添加するAl2O3 の溶鋼トン
当たりの添加量(kg/T)
However, [O]: total oxygen concentration in molten steel (p
pm) (Ca): Amount of pure Ca added per ton of molten steel (kg / T) (Al 2 O 3 ): Amount of added Al 2 O 3 added together with Ca alloy per ton of molten steel (kg / T)

【0025】[0025]

【発明の実施の形態】CaはAl2O3 介在物および溶鋼中
〔S〕と高い反応性をもっているため、Ca合金を添加
すると、添加位置近傍で急激に反応が進行してしまい、
介在物はCaO、CaS に非常に富んだ組成となってしま
う。この急激な反応は添加位置近傍付近で起こる局部的
な反応であるため、Ca合金の添加量、添加速度などの
一般的な操業因子により緩和することは困難であり、結
果として介在物の組成および形態を精密に制御すること
は不可能である。
BEST MODE FOR CARRYING OUT THE INVENTION Since Ca has a high reactivity with Al 2 O 3 inclusions and [S] in molten steel, when a Ca alloy is added, the reaction rapidly proceeds near the addition position,
The inclusions are very rich in CaO and CaS. Since this rapid reaction is a local reaction that occurs near the addition position, it is difficult to mitigate it due to general operating factors such as the amount of Ca alloy added and the addition rate, and as a result, the composition of inclusions and It is impossible to precisely control the morphology.

【0026】したがって、介在物の組成および形態を精
密に制御し耐HIC性を向上させるには、このようなC
a合金添加位置近傍での急激な反応を緩和し、添加Ca
をより効果的に溶鋼全体に作用させる技術の確立が必須
である。
Therefore, in order to precisely control the composition and morphology of the inclusions and improve the HIC resistance, such C
a) Addition of Ca
It is essential to establish a technology for more effectively acting on molten steel.

【0027】Ca合金とAl2O3 を同時添加すると、Ca
添加位置近傍で下記(2)式の反応が起こる。
When a Ca alloy and Al 2 O 3 are simultaneously added, Ca
The reaction of the following formula (2) occurs near the addition position.

【0028】 Ca+Al2O3 =mCaO ・nAl2O3 ・・・・(2) これにより、添加されたCaは溶鋼中Al2O3 介在物、
〔S〕との反応と同時に、添加Al2O3 との反応に消費さ
れるため、Caの急激な反応が抑制される。このため、
介在物組成を精密に制御することが可能となるのであ
る。ただし、前記反応(2)式で生成したmCaO ・nAl
2O3 は速やかに溶鋼から浮上分離し、除去される。
Ca + Al 2 O 3 = mCaO · nAl 2 O 3 (2) As a result, the added Ca is Al 2 O 3 inclusions in the molten steel,
Simultaneously with the reaction with [S], it is consumed by the reaction with the added Al 2 O 3 , so that the rapid reaction of Ca is suppressed. For this reason,
It is possible to precisely control the composition of inclusions. However, mCaO.nAl generated by the above reaction (2) equation
2 O 3 is quickly floated and separated from the molten steel and removed.

【0029】このとき、下記(1)式を満足させる条件
でCa合金とAl2O3 を同時添加することにより、介在物
組成を制御すると同時に、更に効果的に脱硫することが
可能となる。
At this time, by simultaneously adding the Ca alloy and Al 2 O 3 under the condition that the following formula (1) is satisfied, the composition of the inclusions can be controlled and, at the same time, the desulfurization can be performed more effectively.

【0030】[0030]

【数3】 (Equation 3)

【0031】ただし、 〔O〕:溶鋼中の全酸素濃度(p
pm) (Ca):溶鋼トン当たりのCa純分添加量(kg/T) (Al2O3):Ca合金と同時に添加するAl2O3 の溶鋼トン
当たりの添加量(kg/T) 上記(1)式を得た根拠を図1および図2により説明す
る。
However, [O]: total oxygen concentration in molten steel (p
pm) (Ca): Addition amount of pure Ca per ton of molten steel (kg / T) (Al 2 O 3 ): Addition amount of Al 2 O 3 added together with Ca alloy per ton of molten steel (kg / T) Above The basis for obtaining the equation (1) will be described with reference to FIGS. 1 and 2.

【0032】図1は、溶鋼中〔O〕濃度と上記(1)式
中の(Ca)/(Al2O3)(以下配合比という)との関係
を示す図である。図中の白抜き丸印は介在物組成が35
%≦CaO ≦60%、CaS ≦8%、残部Al2O3 となってお
り、HICが発生しなかったもの、黒塗り四角印はCaO
<35%、Al2O3 >65%なる組成の介在物を起点とし
てHICが発生したもの、黒塗り三角印はCaO >60
%、CaS >8%、Al2O3<27%なる組成の介在物を起
点としてHICが発生したものを示す。また、曲線Aは
下記(3)式、曲線Bは下記(4)式を示す。
FIG. 1 is a diagram showing the relationship between the [O] concentration in molten steel and (Ca) / (Al 2 O 3 ) (hereinafter referred to as the compounding ratio) in the above formula (1). The white circles in the figure indicate that the inclusion composition is 35.
% ≤ CaO ≤ 60%, CaS ≤ 8%, balance Al 2 O 3 , HIC did not occur, black squares are CaO
HIC that originated from inclusions with a composition of <35%, Al 2 O 3 > 65%, black coating triangles are CaO> 60
%, CaS> 8%, Al 2 O 3 <27% as the starting point of the occurrence of HIC. Further, the curve A shows the following formula (3), and the curve B shows the following formula (4).

【0033】[0033]

【数4】 (Equation 4)

【0034】[0034]

【数5】 (Equation 5)

【0035】図1中曲線Aより下側の領域、つまりCa
添加量に対してAl2O3 添加量が過剰の場合は、添加Ca
の大部分が添加Al2O3 と反応してCaO-Al2O3 となり、溶
鋼から浮上、除去されてしまう。この結果、溶鋼への見
かけCa供給量は低下し、溶鋼中Al2O3 介在物を十分に
CaO-Al2O3 に改質することができず、介在物はCaO <3
5%、Al2O3 >65%となり、圧延時に破砕され、HI
Cの起点となる。
The area below the curve A in FIG. 1, that is, Ca
If the added amount of Al 2 O 3 is excessive with respect to the added amount, the added Ca
Most of the Al reacts with the added Al 2 O 3 to form CaO-Al 2 O 3 , which floats and is removed from the molten steel. As a result, the apparent amount of Ca supplied to the molten steel is reduced, and Al 2 O 3 inclusions in the molten steel are sufficiently removed.
It could not be reformed to CaO-Al 2 O 3 and the inclusions were CaO <3
5%, Al 2 O 3 > 65%, crushed during rolling, HI
It is the starting point of C.

【0036】一方、図1中曲線Bより上側の領域、つま
りCa添加量に対してAl2O3 添加量が不足の場合は、C
aの急激な反応が十分抑制できず、添加Caの大部分が
Al2O3 介在物の改質に機能してしまうため介在物中Ca
濃度が高くなり、その結果、介在物組成はCaO >60
%、CaS >8%、Al2O3 <27%となり、圧延時に破砕
され、HICの起点となってしまう。
On the other hand, in the region above the curve B in FIG. 1, that is, when the amount of Al 2 O 3 added is insufficient with respect to the amount of Ca added, C
The sudden reaction of a cannot be suppressed sufficiently, and most of the added Ca
Since Al 2 O 3 functions to modify inclusions, Ca in inclusions
Higher concentration, resulting in inclusion composition of CaO> 60
%, CaS> 8%, Al 2 O 3 <27%, and they are crushed during rolling and become the starting point of HIC.

【0037】以上のように、介在物組成を精密に制御し
耐HIC性を向上させるには(1)式で示される配合比
でCaとAl2O3 を添加することが不可欠である。
As described above, in order to precisely control the composition of inclusions and improve the HIC resistance, it is indispensable to add Ca and Al 2 O 3 in the compounding ratio represented by the formula (1).

【0038】図2は、Ca純分換算添加量と到達〔S〕
濃度との関係を示す図である。図2中白抜き丸印は、
(1)式に従いCa合金とAl2O3 を同時添加した場合の
到達〔S〕濃度である。図2中破線で挟まれた領域は、
Ca−Siのみを添加した場合とCaO 添加後Ca−Si
を添加した場合の到達〔S〕濃度である。なお、添加前
の〔S〕濃度は30ppm である。
FIG. 2 shows the amount of Ca added and the amount reached [S].
It is a figure which shows the relationship with density. The white circles in Figure 2
It is the ultimate [S] concentration when Ca alloy and Al 2 O 3 are simultaneously added according to the equation (1). The area sandwiched between the broken lines in FIG.
When only Ca-Si is added and after CaO is added Ca-Si
Is the ultimate [S] concentration in the case of adding. The [S] concentration before addition is 30 ppm.

【0039】図2に示すように、(1)式に従い配合比
を制御した場合、脱硫が進行し、到達〔S〕濃度が低下
する。この脱硫反応は下記(5)式に示すように、添加
Caと添加Al2O3 との反応で生成したmCaO ・nAl2O3
系酸化物と溶鋼中〔S〕が反応してCaO-Al2O3-CaS とな
り、溶鋼から浮上分離することによるものである。
As shown in FIG. 2, when the compounding ratio is controlled according to the equation (1), desulfurization proceeds and the reached [S] concentration decreases. As the desulfurization reaction are shown in the following equation (5), adding Ca and the addition Al 2 O 3 mCaO · produced by a reaction of nAl 2 O 3
This is because the system oxide and [S] in the molten steel react to form CaO-Al 2 O 3 -CaS, which floats and separates from the molten steel.

【0040】 mCaO ・nAl2O3 +S=(m−1)CaO ・CaS ・Al2O3 ・・・・(5) 配合比が(1)式で定める上限値を超えると、脱硫に寄
与するmCaO ・nAl2O3 中のCaO 濃度が極端に低下する
ため、十分に脱硫することができない。一方、配合比が
(1)式で定める下限値未満になると、生成するmCaO
・nAl2O3 の絶対量が少なくなるため、十分に脱硫する
ことができない。
[0040] mCaO · nAl 2 O 3 + S = (m-1) when CaO · CaS · Al 2 O 3 ···· (5) blending ratio (1) exceeds the upper limit value specified by expression contributes to desulfurization Since the CaO concentration in mCaO.nAl 2 O 3 is extremely lowered, it cannot be desulfurized sufficiently. On the other hand, when the compounding ratio becomes less than the lower limit value defined by the equation (1), mCaO generated
・ Since the absolute amount of nAl 2 O 3 is small, it cannot be desulfurized sufficiently.

【0041】添加するCa量は、(1)式を満足してい
れば特に限定するものではないが、0.05kg/T以上
0.4kg/T以下が望ましい。0.4kg/Tを超えるとと、
Caと添加Al2O3 により生成したmCaO ・nAl2O3 の溶
鋼への残留量が多くなり、結果として溶鋼の清浄度が悪
化する。一方、Ca添加量が0,05kg/T未満となると
Al2O3 クラスター改質が不十分となると同時に十分に脱
硫することができず、MnS が生成してしまう。
The amount of Ca to be added is not particularly limited as long as it satisfies the expression (1), but is preferably 0.05 kg / T or more and 0.4 kg / T or less. When it exceeds 0.4 kg / T,
The residual amount of mCaO.nAl 2 O 3 generated by Ca and added Al 2 O 3 in the molten steel increases, and as a result, the cleanliness of the molten steel deteriorates. On the other hand, when the amount of Ca added is less than 0.05 kg / T
Al 2 O 3 cluster reforming becomes insufficient and, at the same time, sufficient desulfurization cannot be performed and MnS is produced.

【0042】添加するCa合金はどのようなものでも構
わないが、Ca−Si、Ca−Al、Ca−Al−Si
などが望ましい。また、同時添加するAl2O3 は粒径0.
2〜2mm程度のものが望ましい。粒径が0.2mm未
満となると溶鋼からの浮上が遅くなるため、溶鋼の清浄
性を悪化させる。一方、粒径が2mmを超えるとAl2O3
の添加が困難になるばかりでなく、添加後Al2O3 粒の温
度が速やかに上昇しないため反応効率が低下し、十分に
機能を果たすことができない。
Any Ca alloy may be added, but Ca--Si, Ca--Al, Ca--Al--Si
Is desirable. Al 2 O 3 added at the same time has a grain size of 0.
It is preferably about 2 to 2 mm. If the particle size is less than 0.2 mm, the floatation from the molten steel becomes slower, which deteriorates the cleanliness of the molten steel. On the other hand, if the particle size exceeds 2 mm, Al 2 O 3
Not only is it difficult to add, but the temperature of the Al 2 O 3 grains does not rise rapidly after addition, so the reaction efficiency decreases and the function cannot be fully achieved.

【0043】Ca合金とAl2O3 の添加は、事前に混合し
たものをインジェクションを用いて不活性ガスとともに
吹き込んでも、同じくワイヤーに充填して溶鋼に送り込
んでも良い。また、Ca合金とAl2O3 を別々のホッパー
から切出し、ロードセルを用いて所定量に混合しつつ、
インジェクションランスを用いて不活性ガスとともに吹
き込んでも良い。
The Ca alloy and Al 2 O 3 may be added by premixing and blowing them together with an inert gas by injection, or by filling them in a wire and feeding it into molten steel. Further, while cutting out Ca alloy and Al 2 O 3 from separate hoppers and mixing them in a predetermined amount using a load cell,
It may be blown together with an inert gas using an injection lance.

【0044】Ca添加前に溶鋼中〔S〕濃度は30ppm
以下、水素濃度は2ppm 以下としておくことが望まし
い。Ca添加前に予め脱硫する方法としては、脱硫能に
優れたスラグの存在下で溶鋼をガス撹拌する方法やCaO
などを主成分とする脱硫剤を溶鋼に吹き込む方法などい
かなる方法でもよい。あるいは、RH式真空脱ガス装置
などにおいて、真空槽内で脱硫剤をホッパーから添加す
る方法、真空槽内に設けたランスから脱硫剤を吹き込む
方法、真空槽内の浸漬あるいは上吹き羽口から脱硫剤を
吹き込む方法などいかなる方法でもよい。脱水素は真空
脱ガス装置を用いて行う方法を適用するのが望ましい。
さらに、上記脱硫、脱水素を組み合わせて用いることが
望ましい。組み合わせ方法としては、脱硫処理後脱水素
処理を行っても良いし、脱水素後脱硫処理を行ってもよ
い。
Before adding Ca, the [S] concentration in the molten steel is 30 ppm.
Hereinafter, it is desirable to keep the hydrogen concentration at 2 ppm or less. As a method of desulfurizing before adding Ca, a method of gas stirring molten steel in the presence of slag having excellent desulfurization ability or CaO
Any method such as a method of blowing a desulfurizing agent containing as a main component into molten steel may be used. Alternatively, in an RH-type vacuum degassing device, etc., a method of adding a desulfurizing agent from a hopper in a vacuum tank, a method of blowing a desulfurizing agent from a lance provided in the vacuum tank, a method of soaking in a vacuum tank or desulfurization from an upper blowing tuyere Any method such as a method of blowing an agent may be used. It is desirable to apply a method of performing dehydrogenation using a vacuum degassing device.
Furthermore, it is desirable to use a combination of the above desulfurization and dehydrogenation. As a combination method, desulfurization treatment may be followed by dehydrogenation treatment, or dehydrogenation treatment may be followed by desulfurization treatment.

【0045】[0045]

【実施例】転炉から出鋼して取鍋に収容した溶鋼250
T に脱酸を施し、表1に示す組成に調整した。
[Example] Molten steel 250 that was tapped from a converter and stored in a ladle
The composition of T 1 was adjusted by deoxidizing T 2.

【0046】[0046]

【表1】 [Table 1]

【0047】取鍋内溶鋼に浸漬したランスを用いてAr
ガスで溶鋼を撹拌した後、RH真空脱ガス装置にて環流
処理を施し、その後、所定量に配合したCa合金とAl2O
3 をArガスを用いるインジェクション法により同時添
加した。Ca添加前の溶鋼中〔S〕濃度は25ppm であ
った。表2に各処理条件を示す。
Ar using a lance immersed in molten steel in a ladle
After stirring the molten steel with gas, the RH vacuum degasser was used to perform reflux treatment, and then Ca alloy and Al 2 O mixed in a predetermined amount.
3 was simultaneously added by the injection method using Ar gas. The [S] concentration in the molten steel before the addition of Ca was 25 ppm. Table 2 shows each processing condition.

【0048】[0048]

【表2】 [Table 2]

【0049】Ca合金は30Wt%Ca−70Wt%Siの
Ca−Si合金を、Al2O3 は平均粒径0.5mmの粉体
を用いた。添加速度はCa純分換算で、0.13 kg/(T
・min)、Ca添加量はCa純分換算で0.16kg/T
とした。
As the Ca alloy, a Ca-Si alloy of 30 Wt% Ca-70 Wt% Si was used, and as Al 2 O 3 , powder having an average particle size of 0.5 mm was used. The addition rate is 0.13 kg / (T
・ Min), Ca addition amount is 0.16 kg / T in terms of pure Ca
And

【0050】処理溶鋼を、連続鋳造機により厚さ235
mmのスラブとし、これを圧延して26.5mmの厚板
とした。次いでサンプルを切り出し、検鏡法により介在
物の形態を観察し、組成を分析するとともに耐HIC評
価試験に供した。
The treated molten steel was made to a thickness of 235 by a continuous casting machine.
mm slab, which was rolled into a 26.5 mm thick plate. Then, the sample was cut out, the morphology of inclusions was observed by a microscopic method, and the composition was analyzed and subjected to a HIC resistance evaluation test.

【0051】耐HIC評価試験条件はNACE条件とし
た。表2にHIC評価試験結果を併せて示す。表中○印
はHICが全く発生しなかったこと、×印はHICが発
生したことを示す。
The HIC resistance test conditions were NACE conditions. Table 2 also shows the HIC evaluation test results. In the table, ◯ indicates that HIC did not occur at all, and X indicates that HIC occurred.

【0052】表2に示すように、本発明方法で定める条
件に従い配合比を制御した場合、HICは全く発生しな
いが、配合比が本発明方法で定める条件から外れる場合
にはHICが発生した。
As shown in Table 2, when the compounding ratio was controlled according to the conditions defined by the method of the present invention, HIC did not occur at all, but when the compounding ratio deviated from the conditions specified by the method of the present invention, HIC occurred.

【0053】[0053]

【発明の効果】本発明方法によれば、HICが全く発生
しない鋼を得ることができる。
According to the method of the present invention, it is possible to obtain steel in which HIC does not occur at all.

【図面の簡単な説明】[Brief description of drawings]

【図1】溶鋼中〔O〕濃度とCa/Al2O3(配合比)との
関係を示す図である。
FIG. 1 is a diagram showing a relationship between [O] concentration in molten steel and Ca / Al 2 O 3 (mixing ratio).

【図2】Ca純分換算添加量と到達〔S〕濃度との関係
を示す図である。
FIG. 2 is a diagram showing the relationship between the amount of added pure Ca and the reached [S] concentration.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】取鍋内溶鋼中にCa合金とともにAl2O3
同時に添加するCa処理方法であって、Ca純分添加量
とAl2O3 添加量との比が下記(1)式の関係を満たす条
件で同時に添加することを特徴とする溶鋼のCa処理方
法。 【数1】 ただし、 〔O〕:溶鋼中の全酸素濃度(ppm) (Ca):溶鋼トン当たりのCa純分添加量(kg/T) (Al2O3):Ca合金と同時に添加するAl2O3 の溶鋼トン
当たりの添加量(kg/T)
1. A Ca treatment method of simultaneously adding Al 2 O 3 together with a Ca alloy into molten steel in a ladle, wherein the ratio of the amount of pure Ca added and the amount of Al 2 O 3 added is represented by the following formula (1). The method for treating Ca in molten steel is characterized in that they are added at the same time under the conditions that satisfy the relation [Equation 1] However, [O]: total oxygen concentration in molten steel (ppm) (Ca): amount of pure Ca added per ton of molten steel (kg / T) (Al 2 O 3 ): Al 2 O 3 added at the same time as Ca alloy Addition amount per ton of molten steel (kg / T)
JP07177428A 1995-07-13 1995-07-13 Method for Ca treatment of molten steel Expired - Fee Related JP3097506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07177428A JP3097506B2 (en) 1995-07-13 1995-07-13 Method for Ca treatment of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07177428A JP3097506B2 (en) 1995-07-13 1995-07-13 Method for Ca treatment of molten steel

Publications (2)

Publication Number Publication Date
JPH0931524A true JPH0931524A (en) 1997-02-04
JP3097506B2 JP3097506B2 (en) 2000-10-10

Family

ID=16030771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07177428A Expired - Fee Related JP3097506B2 (en) 1995-07-13 1995-07-13 Method for Ca treatment of molten steel

Country Status (1)

Country Link
JP (1) JP3097506B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063660A1 (en) 2007-11-14 2009-05-22 Sumitomo Metal Industries, Ltd. Steel for steel pipes excellent in sour resistance and process for manufacturing the same
JP2010280933A (en) * 2009-06-03 2010-12-16 Sumitomo Metal Ind Ltd Method for manufacturing calcium-treated steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100425417C (en) * 2005-11-24 2008-10-15 张忠烈 Preparation method of small diameter thin wall cement sewage discharge pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063660A1 (en) 2007-11-14 2009-05-22 Sumitomo Metal Industries, Ltd. Steel for steel pipes excellent in sour resistance and process for manufacturing the same
JP2009120899A (en) * 2007-11-14 2009-06-04 Sumitomo Metal Ind Ltd Steel for steel pipe excellent in sour resistance and production method therefor
US7959709B2 (en) 2007-11-14 2011-06-14 Sumitomo Metal Industries, Ltd. Method of producing steel for steel pipe excellent in sour-resistance performance
US8262767B2 (en) 2007-11-14 2012-09-11 Sumitomo Metal Industries, Ltd. Method of producing steel for steel pipe excellent in sour-resistance performance
JP2010280933A (en) * 2009-06-03 2010-12-16 Sumitomo Metal Ind Ltd Method for manufacturing calcium-treated steel

Also Published As

Publication number Publication date
JP3097506B2 (en) 2000-10-10

Similar Documents

Publication Publication Date Title
EP2208799B1 (en) Method of melting and refining steel for a steel pipe excellent in sour-resistance performance
EP2772554B1 (en) Method for smelting high-aluminum-low-silicon ultrapure ferritic stainless steel
CN102199684B (en) Production method of ultralow-oxygen titanium-containing ferrite stainless steel
KR102565782B1 (en) Ca addition method to molten steel
JP3097506B2 (en) Method for Ca treatment of molten steel
KR102294309B1 (en) Smelting method of ultra-low carbon 13Cr stainless steel
JPH10212514A (en) Production of high clean extra-low sulfur steel excellent in hydrogen induced cracking resistance
JP3250459B2 (en) HIC-resistant steel excellent in low-temperature toughness of welds and method for producing the same
US20110017018A1 (en) Novel additive for treating resulphurized steel
JPH09227989A (en) Calcium-treated steel and treatment of molten steel with calcium
JPH0873923A (en) Production of clean steel having excellent hydrogen induced crack resistance
JPH08283826A (en) Production of high purity ultralow sulfur hic resistant steel
JP2004346402A (en) Method of refining steel material for spring
JP3697987B2 (en) Desulfurization agent for molten steel desulfurization
KR100554739B1 (en) Method for Producing Molten steel with High Calcium Content
JP3577988B2 (en) Manufacturing method of low Al ultra low sulfur steel
JPH09209025A (en) Production of hic resistant steel excellent in low temperature toughness in welded part
JPH08157934A (en) Calcium treatment of molten steel
RU2278169C2 (en) Method for production of chromium-manganese stainless steel
JP2976849B2 (en) Method for producing HIC-resistant steel
JP3326917B2 (en) Desulfurization method of molten steel
EP3540082A1 (en) Sulfur additive for molten steel, and method for manufacturing sulfur-added steel
JPH0853707A (en) Production of hic resistant steel
CN117305535A (en) Method for regulating and controlling impurities in hydrogen induced cracking resistant pipeline steel
JPH03291323A (en) Production of clean steel excellent in hydrogen induced cracking resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070811

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080811

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees