JP2010280933A - Method for manufacturing calcium-treated steel - Google Patents

Method for manufacturing calcium-treated steel Download PDF

Info

Publication number
JP2010280933A
JP2010280933A JP2009133976A JP2009133976A JP2010280933A JP 2010280933 A JP2010280933 A JP 2010280933A JP 2009133976 A JP2009133976 A JP 2009133976A JP 2009133976 A JP2009133976 A JP 2009133976A JP 2010280933 A JP2010280933 A JP 2010280933A
Authority
JP
Japan
Prior art keywords
molten steel
steel
sample
treatment
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009133976A
Other languages
Japanese (ja)
Other versions
JP5347729B2 (en
Inventor
Atsushi Matsumoto
篤 松本
Masahiro Arai
正浩 荒井
Takenori Miyazawa
剛徳 宮沢
Takatomo Endo
隆智 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2009133976A priority Critical patent/JP5347729B2/en
Publication of JP2010280933A publication Critical patent/JP2010280933A/en
Application granted granted Critical
Publication of JP5347729B2 publication Critical patent/JP5347729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a HIC (hydrogen induced cracking) resistant steel, having inclusion composition controlled at high grade. <P>SOLUTION: Before completing an RH-treatment of the refined molten steel, mass-concentration of S contained in this molten steel is set to ≤10 ppm and mass-concentration of T.[O] is set to ≤40 ppm, and based on the T.[O] analyzed value in the molten steel after completing this RH-treatment, Ca mass-quantity added into this molten steel, is adjusted so as to satisfy an expression: A(kg/t)=B×T.[O]+0.02 and an expression: 0.003≤B≤0.006. Wherein, A: Ca additional mass-quality (kg/t), B: coefficient and T.[O]: oxygen analyzed value (ppm) in the molten steel before adding Ca after completing the RH-treatment. Before completing the RH-treatment by refining the molten steel, the components contained in this molten steel, may have mass-concentration of 0.03-0.07% C and 1.1-1.5% Mn. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は耐HIC性を有するCa処理鋼の製造方法に関する。   The present invention relates to a method for producing Ca-treated steel having HIC resistance.

近年鋼材の品質要求が厳しいものになっているが、特にラインパイプに代表される耐HIC鋼において、使用環境が苛酷になり高強度化が進むにつれ、HIC割れ感受性が高い鋼材のニーズが増加している。HICは圧延時に伸延されたMnS系介在物や線状の破砕された介在物を起点として発生する。MnS系の介在物は凝固時に偏析した鋼中MnとSの反応により生じる。このMnS生成抑制には溶鋼段階で鋼中Sを下げること、さらにCaを添加することで溶鋼中介在物をCaO−Al−CaS系としてSを固定することが重要である。また線状の破砕された介在物は溶鋼の脱酸時に生成するAlクラスター介在物である。このAlクラスター介在物抑制にはCaを添加することで溶鋼中AlクラスターをCaO−Al系とし、その形態をクラスターから球状に変化させることが重要である。CaO−Al系介在物はその形状が球状であること、また融点が低いために、圧延時に破砕されない。これらのことから溶鋼へのCaの添加は溶鋼中Alの改質、MnS生成抑制に有効であり、耐HIC性能に優れた鋼材を製造する上で重要なプロセスである。 In recent years, the quality requirements of steel materials have become stricter, but the demand for steel materials with high HIC cracking susceptibility has increased as the use environment has become severe and the strength has increased, particularly in HIC-resistant steels represented by line pipes. ing. HIC is generated starting from MnS-based inclusions and linear crushed inclusions that are elongated during rolling. MnS inclusions are produced by the reaction of Mn and S in the steel segregated during solidification. In order to suppress the formation of MnS, it is important to lower S in steel in the molten steel stage, and to fix S by using Ca as a CaO—Al 2 O 3 —CaS system by adding Ca. The linearly crushed inclusions are Al 2 O 3 cluster inclusions generated during deoxidation of the molten steel. The Al 2 O 3 is the cluster inclusions suppressing the molten steel in the Al 2 O 3 clusters with CaO-Al 2 O 3 system by the addition of Ca, it is important to change the spherical its form from the cluster. CaO—Al 2 O 3 inclusions are not crushed during rolling due to their spherical shape and low melting point. From these facts, the addition of Ca to molten steel is effective in reforming Al 2 O 3 in molten steel and suppressing the formation of MnS, and is an important process for producing a steel material having excellent HIC resistance.

しかし介在物がCaO−Al−CaS系で球状であっても、その組成が高CaS、高CaO濃度の場合、圧延時に破砕され、割れが発生するため、介在物は適正な組成に制御する必要がある。 However, even if the inclusions are CaO-Al 2 O 3 -CaS system and spherical, if the composition is high CaS and high CaO concentration, the inclusions are crushed and cracked during rolling. Need to control.

これまでに多くのCa添加方法が提案されてきた。
特許文献1では(ア)式、(イ)式に従う具体的なCa添加量の決定方法として、以下の二つの方法が示されている。
Many Ca addition methods have been proposed so far.
In Patent Document 1, the following two methods are shown as specific methods for determining the Ca addition amount according to the formulas (a) and (b).

SCI=([Ca]+0.0095×[C])÷([O]+0.6[S]×[Mn])・・・・(ア)
0.8 ≦SCI≦ 2.3・・・・(イ)
第一の方法は、操業および製造後の鋼材組成を分析してあらかじめデータを蓄積しておき、得られた実績からCaの添加量を決定する方法である。この方法には、特殊な分析設備を必要としない利点がある。第二の方法は、製鋼処理中の途中段階で溶鋼組成を迅速分析し、(ア),(イ)式および分析結果から各処理毎にCaの添加量を決定する方法である。この方法には、製造過程で生じる外来要因を回避し、正確にCa処理を行えるという利点がある。
SCI = ([Ca] + 0.0095 × [C]) / ([O] +0.6 [S] × [Mn]) (...)
0.8 ≦ SCI ≦ 2.3 (...)
The first method is a method of analyzing the steel composition after operation and manufacturing, accumulating data in advance, and determining the addition amount of Ca from the obtained results. This method has the advantage of not requiring special analysis equipment. The second method is a method in which the molten steel composition is quickly analyzed in the middle of the steelmaking process, and the amount of Ca added is determined for each process from the formulas (a) and (b) and the analysis results. This method has the advantage that Ca treatment can be performed accurately while avoiding external factors that occur during the manufacturing process.

しかし、この方法で得られる鋼材の介在物組成は鋼中に含まれるCaO−Al−CaS系介在物の組成が、質量%でCaO:30〜60%,CaS:10%未満および残部:Al主体であって、比較的に組成範囲が広い。また、第二の方法であっても、「製鋼処理中の途中段階で溶鋼組成を迅速分析」するとの説明しかないため、その(ア)式の計算に用いた[O]濃度の精度には、なお改善の余地があるものと考えられる。 However, the inclusion composition of the steel material obtained by this method is such that the composition of CaO—Al 2 O 3 —CaS inclusions contained in the steel is CaO: 30 to 60% by mass%, CaS: less than 10%, and the balance : a Al 2 O 3 principal composition relatively Flexible. In addition, even in the second method, there is only an explanation that “the rapid analysis of the molten steel composition is performed during the steelmaking process”, so the accuracy of the [O] concentration used in the calculation of the formula (a) is However, there is still room for improvement.

特許文献2では(ウ)式(エ)式を満足するようにCa濃度を制御する方法が示されている。
[%Ca]×[%S]0.28≦ 3.5×10-4 ・・・・(ウ)
1≦{[%Ca]−(0.18+130[%Ca])×[%O]}/1.25/[%S]・・・・(エ)
Ca−Siワイヤー添加に際しては、鋼中のCa,S,O成分を目標範囲におさめるため、脱硫処理後のS成分濃度を迅速分析により調査し、脱ガス処理後のO成分濃度を例えば15ppmとして前記の(ウ)式および(エ)式から目標カルシウム組成範囲を決定して投入量を決定するとしている。
Patent Document 2 discloses a method for controlling the Ca concentration so as to satisfy the formulas (c) and (d).
[% Ca] x [% S] 0.28 ≤ 3.5 x 10 -4 (...)
1 ≦ {[% Ca] − (0.18 + 130 [% Ca]) × [% O]} / 1.25 / [% S] (D)
When adding Ca-Si wire, in order to keep the Ca, S, and O components in the steel within the target range, the S component concentration after the desulfurization treatment is investigated by rapid analysis, and the O component concentration after the degassing treatment is set to 15 ppm, for example. It is assumed that the input amount is determined by determining the target calcium composition range from the above formulas (c) and (d).

しかし、この発明が目指す鋼中の介在物は、CaO濃度を40〜80%とするものであって、比較的に組成範囲が広い。その背景には、(エ)式に代入すべきO濃度を正確に得る手段に欠けていて上述のように「平均値として15ppm」を使わざるを得なかったことがあると推測できる。
特開平9−227989号公報 特開2001−11528号公報 特開2002−328125号公報 特開平10−311782号公報
However, inclusions in steel aimed by the present invention have a CaO concentration of 40 to 80% and a relatively wide composition range. In the background, it can be inferred that there is no means for accurately obtaining the O concentration to be substituted in the equation (d), and that “15 ppm as an average value” had to be used as described above.
JP-A-9-227989 JP 2001-11528 A JP 2002-328125 A JP-A-10-311782

このように、溶鋼中の成分濃度に応じて適量のCaを添加し、生成する介在物の組成を制御しようとした発明は多数存在している。しかし、いずれの発明においてもCa添加前のO濃度を知る必要があるところ、いずれの発明においてもそのO濃度を正確に得る方法が具体的に示されていない。このことは、Ca処理のために知る必要があるO濃度を正確に得るための方法が、現在に至るまで確立されていなかったということに起因している。   As described above, there are many inventions in which an appropriate amount of Ca is added in accordance with the component concentration in molten steel to control the composition of inclusions to be generated. However, in any of the inventions, it is necessary to know the O concentration before addition of Ca. However, in any of the inventions, a method for accurately obtaining the O concentration is not shown. This is due to the fact that a method for accurately obtaining the O concentration that needs to be known for the Ca treatment has not been established until now.

その結果、各発明における介在物組成は、30〜60%、40〜80%のように比較的に広い範囲にしかコントロールすることができず、耐HIC鋼の溶製にそのまま適用してみても、所期の効果を挙げることができなかった。   As a result, the inclusion composition in each invention can be controlled only in a relatively wide range such as 30 to 60% and 40 to 80%, and it can be applied as it is to melting HIC steel. The expected effect could not be achieved.

そこで、本発明は、介在物組成が高度に制御され優れた耐HIC性を有するCa処理鋼の製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing a Ca-treated steel having a highly controlled inclusion composition and excellent HIC resistance.

これらの問題を解決するためには、Ca添加前の溶鋼からサンプルを採取し、Ca添加までにT.[O]を分析し、適切なCa添加量を決定する必要がある。
T.[O]を短時間でかつ精度よく分析する方法として、以下に示すような分析方法を使用した。
In order to solve these problems, it is necessary to take a sample from the molten steel before Ca addition, analyze T. [O] before Ca addition, and determine an appropriate Ca addition amount.
As a method for analyzing T. [O] in a short time and with high accuracy, the following analysis method was used.

(i)鉄鋼試料を黒鉛るつぼに入れて不活性ガス中で加熱融解し、発生した一酸化炭素または二酸化炭素のいずれかひとつあるいは両方の赤外線吸収度から該試料中の酸素濃度を測定する方法を用いる。   (i) A method in which a steel sample is placed in a graphite crucible and heated and melted in an inert gas, and the oxygen concentration in the sample is measured from the infrared absorption of one or both of the generated carbon monoxide and carbon dioxide. Use.

(ii)該試料表面の酸化皮膜を除去、清浄化する前処理として真空アークプラズマ処理を、アークプラズマ放電開始時の真空度を5Pa以上35Pa以下かつ、アークプラズマ出力電流を15A以上55A以下とする条件下において施す。   (ii) Vacuum arc plasma treatment as a pretreatment to remove and clean the oxide film on the sample surface, the degree of vacuum at the start of arc plasma discharge is 5 Pa to 35 Pa, and the arc plasma output current is 15 A to 55 A Apply under conditions.

(iii)溶鋼から採取した鋼塊に対して、高さ1.5mm以上7mm以下、表面積Sと体積Vの比(S/V)が1.05以上1.30以下となるように機械加工して得た小片を試料として用いる。   (iii) A steel ingot taken from molten steel is machined so that the height is 1.5 mm or more and 7 mm or less and the ratio of surface area S to volume V (S / V) is 1.05 or more and 1.30 or less. A small piece obtained in this way is used as a sample.

(iv)前記アークプラズマ放電を前記試料に、合計4回以下であって、かつ合計処理時間として0.2秒以上1.2秒以下施した後、
該試料を大気と接触させることなく、直接、分析時の温度よりも高い温度で加熱、清浄化した後、分析する温度に下げて待機させた黒鉛るつぼへ投入する。
(iv) After applying the arc plasma discharge to the sample a total of 4 times or less and a total treatment time of 0.2 seconds or more and 1.2 seconds or less,
The sample is directly heated and cleaned at a temperature higher than the temperature at the time of analysis without being brought into contact with the atmosphere, and then put into a graphite crucible that has been lowered to the temperature to be analyzed and placed on standby.

この分析方法をオンラインで適用することにより、Ca処理前のT.[O]濃度をCa添加前までに把握し、適切なCa添加量を決定することが可能になった。
具体的には、次のような分析値の精度および分析に要する時間でT.[O]濃度を分析することが可能となった。
By applying this analysis method online, the T. [O] concentration before Ca treatment can be ascertained before Ca addition, and an appropriate amount of Ca added can be determined.
Specifically, it has become possible to analyze the T. [O] concentration with the accuracy of the following analysis value and the time required for the analysis.

(1)分析値の精度
酸素含有量50ppm以下の鋼に対して、誤差が±2ppm以内に収まること。好ましくは誤差が±1ppmに収まること。
(1) Accuracy of analysis value The error must be within ± 2 ppm for steel with an oxygen content of 50 ppm or less. The error is preferably within ± 1 ppm.

(2)分析に要する時間
鋼塊試料を受け取ってから、試料加工、清浄化前処理を経て、分析により酸素濃度が判明するまでの時間(以下、「分析所要時間」と称する。)は、5分以下。好ましくは4分以下。
(2) Time required for analysis The time (hereinafter referred to as “required analysis time”) from when the steel ingot sample is received, through sample processing and pretreatment for cleaning, until the oxygen concentration is determined by analysis is 5 Less than a minute. Preferably it is 4 minutes or less.

以下に図面を用いてこの分析方法を詳しく説明する。
図1はこの本発明に係る分析方法を実施するための鉄鋼中酸素分析装置を模式的に示したものである。
Hereinafter, this analysis method will be described in detail with reference to the drawings.
FIG. 1 schematically shows a steel oxygen analyzer for carrying out the analysis method according to the present invention.

本発明に係る分析方法に求められる短時間かつ高精度分析を実現するために、本発明で組み合わせる要素技術の内、迅速かつ再現性の高い試料前処理方法として、真空アークプラズマ処理を選択した。例えば、特許文献3に開示された金属中成分分析用試料の調整方法及び装置を適用すればよい。予め真空に保った試料前処理装置1内に、隔離バルブ4を介して、真空度をほとんど変化させることなく、処理前試料投入口3から試料を挿入することができる。その後、真空アークプラズマ処理により、試料表面の酸化皮膜を数秒で除去する。該装置では、試料を自動搬送するため、試料形状を円柱またはブロック(直方体)に限定する。試料は、試料台に載置して処理するため、試料台と接する面は処理されない。そこで、試料を反転させて処理する必要がある。つまり、ひとつの試料に対して、少なくとも2回は放電する必要がある。放電回数が増えると、試料が長時間加熱されることになり、一旦、酸化皮膜除去された試料表面は再び酸化されてしまう。したがって、試料表面の酸化皮膜を確実、正確かつ再現性良く除去し、精錬操業上必要とされる分析精度を確保するため、下記の条件でアークプラズマ処理する必要がある。   In order to achieve a short time and high accuracy analysis required for the analysis method according to the present invention, vacuum arc plasma treatment was selected as a rapid and reproducible sample pretreatment method among the elemental technologies combined in the present invention. For example, the preparation method and apparatus for a sample for analyzing an in-metal component disclosed in Patent Document 3 may be applied. A sample can be inserted into the sample pretreatment apparatus 1 that has been previously kept in vacuum through the isolation valve 4 through the isolation valve 4 with almost no change in the degree of vacuum. Thereafter, the oxide film on the sample surface is removed in a few seconds by vacuum arc plasma treatment. In this apparatus, since the sample is automatically conveyed, the sample shape is limited to a cylinder or a block (a rectangular parallelepiped). Since the sample is placed on the sample stage and processed, the surface in contact with the sample stage is not processed. Therefore, it is necessary to invert the sample for processing. That is, it is necessary to discharge at least twice for one sample. When the number of discharges increases, the sample is heated for a long time, and once the oxide film is removed, the sample surface is oxidized again. Therefore, in order to remove the oxide film on the sample surface reliably, accurately and with good reproducibility, and to ensure the analytical accuracy required for the refining operation, it is necessary to perform an arc plasma treatment under the following conditions.

(a)真空度:5Pa以上35Pa以下。真空アークプラズマによる試料表面酸化皮膜除去反応は真空度が高いほど促進されるが、35Paを超えると、試料温度上昇に伴う再酸化反応が顕著になるため好ましくない。一方、5Paより低いと、酸化皮膜除去反応自体が進行しなくなるため、好ましくない。したがって、最適な真空度が存在する。
なお、処理時に真空度が一定値に保持されるよう、真空排気バルブとガス導入バルブの開閉を制御する圧力制御機構を有することがなお好ましい。
(a) Degree of vacuum: 5 Pa or more and 35 Pa or less. The sample surface oxide film removal reaction by vacuum arc plasma is promoted as the degree of vacuum increases, but if it exceeds 35 Pa, the reoxidation reaction accompanying the increase in the sample temperature becomes remarkable, which is not preferable. On the other hand, if it is lower than 5 Pa, the oxide film removal reaction itself does not proceed, which is not preferable. There is therefore an optimum degree of vacuum.
It is more preferable to have a pressure control mechanism for controlling the opening and closing of the vacuum exhaust valve and the gas introduction valve so that the degree of vacuum is maintained at a constant value during processing.

(b)アークプラズマ出力電流:15A以上55A以下とする。
(c)処理時間:ひとつの試料に対して、合計の処理時間は0.2秒以上1.2秒以下とする。
(b) Arc plasma output current: 15A or more and 55A or less.
(c) Processing time: The total processing time is 0.2 second or more and 1.2 seconds or less for one sample.

(d)処理回数:ひとつの試料に対して、合計の処理回数は4回以下とする。
処理後の試料は、大気と接触させることなく、分析装置2に配置した前処理済試料投入口5を通じて、最終的に黒鉛るつぼに投入する。試料前処理チャンバーと分析装置の試料投入口は真空または不活性ガスで内部を置換した連結管8で連結する。不活性ガス種としては、空気との比重差を考慮して、連結管内を確実にガス置換して、処理後の試料の再酸化を防止する観点、さらには経済的な観点から、Arが好ましい。特許文献3に開示された装置構成では、前処理済試料は払い出された後、別置きの酸素分析装置に移送される。しかし、本発明の目的では迅速性が要求されることから、試料前処理装置1と酸素分析装置2を、それぞれ鉛直上下に配置し、連結管8内を自由落下させて、試料を移送する方法、すなわち図1のような装置構成を採用した。
(d) Number of treatments: The total number of treatments per sample is 4 or less.
The treated sample is finally put into the graphite crucible through the pretreated sample inlet 5 arranged in the analyzer 2 without being brought into contact with the atmosphere. The sample pretreatment chamber and the sample inlet of the analyzer are connected by a connecting tube 8 whose inside is replaced with vacuum or an inert gas. As the inert gas species, Ar is preferable from the viewpoint of reliably replacing the gas in the connecting pipe in consideration of the specific gravity difference with air and preventing reoxidation of the sample after processing, and from an economical viewpoint. . In the apparatus configuration disclosed in Patent Document 3, the pretreated sample is dispensed and then transferred to a separate oxygen analyzer. However, since the object of the present invention requires quickness, the sample pretreatment device 1 and the oxygen analyzer 2 are arranged vertically above and below, and freely fall in the connecting tube 8 to transfer the sample. That is, an apparatus configuration as shown in FIG. 1 was adopted.

この本発明の装置構成では、酸素分析装置2が床面に近い位置に配置され、分析装置2内部の清掃がガス中の不純物吸着剤の交換等、装置の維持管理作業に支障をきたす。そこで、架台6に組み込まれた装置全体をリフター7に載せて昇降可能とし、当該作業の際には装置全体を上げて、作業性を確保した。このリフター7の駆動方式は特に問わないが、装置全体では相当な重量であることから、操作性の観点で、自動油圧式が好ましい。また、リフター7の可動部は伸縮可能な材料で覆い、作業者が挟まれることのないよう、安全性に配慮した構造を有することが望ましい。   In the apparatus configuration of the present invention, the oxygen analyzer 2 is disposed at a position close to the floor surface, and cleaning inside the analyzer 2 hinders maintenance work of the apparatus such as replacement of the impurity adsorbent in the gas. Therefore, the entire apparatus incorporated in the gantry 6 is placed on the lifter 7 so that it can be raised and lowered, and during the operation, the entire apparatus is raised to ensure workability. The driving method of the lifter 7 is not particularly limited. However, since the weight of the entire apparatus is considerable, an automatic hydraulic type is preferable from the viewpoint of operability. Moreover, it is desirable to cover the movable part of the lifter 7 with a stretchable material and to have a structure in consideration of safety so that an operator is not caught.

さらに、連結した酸素分析装置2が故障して使えない場合や、分析待ちの前処理済試料を別の酸素分析装置で分析する場合に備えて、試料前処理装置1と酸素分析装置2の連結管8途中に、前処理済試料の取出口9を設ける。   Further, the sample pretreatment device 1 and the oxygen analyzer 2 are connected in preparation for the case where the connected oxygen analyzer 2 cannot be used due to a failure or when a preprocessed sample waiting for analysis is analyzed by another oxygen analyzer. An outlet 9 for a pretreated sample is provided in the middle of the tube 8.

本発明で組み合わせる要素技術の内、溶鋼から採取した鋼塊より簡便かつ迅速に分析試料を得る方法として、溶鋼から採取した鋼塊を切断して作製した高さ(厚さ)が1.5mm以上7mm以下のスライスに対して、打ち抜いた円柱状小片を試料として用いる。具体的には、例えば、特許文献4に開示された分析試料の調整方法及び装置を適用すればよい。試料表面の酸化皮膜を確実、正確かつ再現性良く除去するためには、試料底面の直径と高さから計算される表面積Sと体積Vの比S/Vが「1.05≦S/V≦1.30」を満たすような形状を確保する必要がある。   Among the elemental technologies combined in the present invention, as a method for obtaining an analysis sample more easily and quickly than a steel ingot collected from molten steel, the height (thickness) produced by cutting the steel ingot collected from molten steel is 1.5 mm or more. A punched cylindrical piece is used as a sample for a slice of 7 mm or less. Specifically, for example, an analysis sample adjustment method and apparatus disclosed in Patent Document 4 may be applied. In order to remove the oxide film on the sample surface reliably, accurately and with good reproducibility, the ratio S / V of the surface area S to the volume V calculated from the diameter and height of the sample bottom is “1.05 ≦ S / V ≦ It is necessary to ensure a shape satisfying 1.30 ".

この理由は現時点で十分解明できていないが、電極形状などアーク処理部の形状に依存して、アークプラズマの空間分布において効率的な処理に好適な位置が限定されることに対応しているものと推察される。   The reason for this is not fully understood at this time, but it corresponds to the fact that the position suitable for efficient processing is limited in the spatial distribution of the arc plasma depending on the shape of the arc processing part such as the electrode shape. It is guessed.

本発明で組み合わせる要素技術の内、高精度な鋼中酸素分析方法として、不活性ガス中加熱融解−赤外線吸収法を動作原理とする酸素分析装置を選択した。この分析法では、試料ホルダと試料の脱酸反応剤(炭素)供給源を兼ねる黒鉛るつぼを使用する。   Among the elemental technologies combined in the present invention, an oxygen analyzer based on the operating principle of heating and melting in an inert gas-infrared absorption method was selected as a highly accurate method for analyzing oxygen in steel. In this analysis method, a graphite crucible serving as a sample holder and a sample deoxidation reagent (carbon) supply source is used.

分析に先立って、るつぼ表面に吸着した酸素や汚染を除去するため、分析時よりもやや高い温度でるつぼだけを予め加熱する、いわゆる「空焼き」処理を実施する。「空焼き」処理により、黒鉛るつぼから発生する酸素、一酸化炭素あるいは二酸化炭素が分析値を変動させる影響を低減できる。市販の酸素分析装置で鋼中の酸素を分析する際には、通常、るつぼ、すなわち試料を1800℃〜2200℃程度の温度に加熱する。本発明で要求される高い分析精度を実現するためには、例えば、分析時の温度よりも100℃以上高い温度で、かつ、15秒以上加熱すればよい。   Prior to analysis, in order to remove oxygen and contamination adsorbed on the surface of the crucible, a so-called “empty baking” process is performed in which only the crucible is preheated at a temperature slightly higher than at the time of analysis. The “blank” treatment can reduce the influence of oxygen, carbon monoxide or carbon dioxide generated from the graphite crucible changing the analytical value. When analyzing oxygen in steel with a commercially available oxygen analyzer, a crucible, that is, a sample is usually heated to a temperature of about 1800 ° C. to 2200 ° C. In order to realize the high analysis accuracy required in the present invention, for example, the heating may be performed at a temperature that is 100 ° C. or more higher than the temperature at the time of analysis and for 15 seconds or more.

また、市販の酸素分析装置では、まず、分析装置内に試料を取り込み、試料周辺の雰囲気をキャリアガスであるヘリウムガスで置換する間に、るつぼの交換、電極の清掃および「空焼き」処理を実施する。したがって、試料を投入してから分析値が判明するまで、比較的長い時間を要する。るつぼの交換および電極の清掃、さらに「空焼き」処理を先行して実施させ、分析装置が分析可能な状態で清浄化前処理した試料を投入することで、要求される分析所要時間に応じた迅速化を実現させることができる。   In addition, in a commercially available oxygen analyzer, first, a sample is taken into the analyzer, and the atmosphere around the sample is replaced with helium gas as a carrier gas. carry out. Therefore, it takes a relatively long time until the analytical value is determined after the sample is introduced. Replacing the crucible, cleaning the electrodes, and performing the “blank” process in advance, and loading the sample that has been pre-cleaned in a state where the analyzer can analyze, according to the required analysis time. Speeding up can be realized.

通常、酸素分析に際して、検出したガス量を試料中の酸素濃度に変換するため、試料重量を精密に秤量する必要がある。真空アークプラズマ処理前後での試料重量変化を評価した結果、試料の形状や表面酸化度合いによって多少ばらつきはあるものの、高々1mg程度の減量であったことから、試料重量0.5〜1.0gに対しては実用上無視できる程度の誤差しか与えないことが判明した。そこで、本発明を実施する際には、機械加工して得た後に予め秤量した分析試料を、真空アークプラズマ処理し、大気と接触させることなく、そのまま酸素分析装置に挿入することとした。   Usually, in the oxygen analysis, in order to convert the detected gas amount into the oxygen concentration in the sample, it is necessary to accurately weigh the sample weight. As a result of evaluating the change in the sample weight before and after the vacuum arc plasma treatment, although there was some variation depending on the shape of the sample and the degree of surface oxidation, the weight loss was about 1 mg at most, so the sample weight was reduced to 0.5 to 1.0 g. On the other hand, it has been found that the error is negligible for practical use. Therefore, when carrying out the present invention, the analysis sample obtained by machining and previously weighed was subjected to vacuum arc plasma treatment and inserted into the oxygen analyzer as it was without being brought into contact with the atmosphere.

以上の知見に基づき、以下の本発明を完成させるに至った。
(1)溶鋼を精錬して該溶鋼のRH処理を終了する以前に、該溶鋼に含まれるSの質量濃度を10ppm以下,T.[O]の質量濃度を40ppm以下とし、かつ、該RH処理を終了した後の溶鋼のT.[O]分析値に基づいて、該溶鋼へ添加するCa質量を(1)式および(2)式を満たすように調整することを特徴とする、Ca処理鋼の製造方法。
A(kg/t)=B×T.[O]+0.02・・・・(1)
0.003≦B≦0.006 ・・・・・(2)
A:Ca添加質量(kg/t)
B:係数
T.[O]:RH処理終了後のCa添加前の溶鋼の酸素濃度分析値(ppm)
Based on the above knowledge, the following present invention was completed.
(1) Before refining the molten steel and finishing the RH treatment of the molten steel, the mass concentration of S contained in the molten steel is 10 ppm or less, the mass concentration of T. [O] is 40 ppm or less, and the RH treatment Based on the T. [O] analysis value of the molten steel after completion of the process, the Ca mass added to the molten steel is adjusted so as to satisfy the expressions (1) and (2), Manufacturing method.
A (kg / t) = B × T. [O] +0.02 ... (1)
0.003 ≦ B ≦ 0.006 (2)
A: Ca addition mass (kg / t)
B: Coefficient T. [O]: Analytical value of oxygen concentration in molten steel (ppm) before Ca addition after completion of RH treatment

(2)溶鋼を精錬してRH処理を終了する以前に、該溶鋼に含まれる成分を質量濃度でC:0.03%以上0.07%以下、Mn:1.1%以上1.5%以下とすることを特徴とする、上記(1)に記載のCa処理鋼の製造方法。   (2) Before refining the molten steel and finishing the RH treatment, the components contained in the molten steel are C: 0.03% or more and 0.07% or less in terms of mass concentration, and Mn: 1.1% or more and 1.5%. The method for producing Ca-treated steel according to (1) above, characterized in that:

(3)上記(1)または(2)に記載したCa処理鋼の製造方法であって、前記したRH処理終了後の溶鋼のT.[O]分析を、該溶鋼から採取して凝固させた試料を用い、かつ、その分析方法として
鉄鋼試料を黒鉛るつぼに入れて不活性ガス中で加熱融解し、発生した一酸化炭素または二酸化炭素のいずれかひとつあるいは両方の赤外線吸収度から該試料中の酸素濃度を測定する方法であって、
該試料表面の酸化皮膜を除去、清浄化する前処理として真空アークプラズマ処理をアークプラズマ放電開始時の真空度を5Pa以上35Pa以下かつ、アークプラズマ出力電流を15A以上55A以下とする条件下において、
溶鋼から採取した鋼塊に対して、高さ1.5mm以上7mm以下、表面積Sと体積Vの比(S/V)が1.05以上1.30以下となるように機械加工して得た小片を試料とし、
前記アークプラズマ放電を前記試料に、合計4回以下であって、かつ合計処理時間として0.2秒以上1.2秒以下施した後、
該試料を大気と接触させることなく、直接、分析時の温度よりも高い温度で加熱、清浄化した後、分析する温度に下げて待機させた黒鉛るつぼへ投入する鉄鋼中酸素分析方法を用いること
を特徴とする、Ca処理鋼の製造方法。
(3) In the method for producing a Ca-treated steel described in (1) or (2) above, the T. [O] analysis of the molten steel after the completion of the RH treatment is collected from the molten steel and solidified. As a method of analysis using a sample, a steel sample is put in a graphite crucible and heated and melted in an inert gas, and the generated infrared absorption of carbon monoxide and / or carbon dioxide is used to determine whether the sample contains A method for measuring oxygen concentration,
As a pretreatment for removing and cleaning the oxide film on the surface of the sample, vacuum arc plasma treatment is performed under the conditions of a vacuum degree at the start of arc plasma discharge of 5 Pa to 35 Pa and an arc plasma output current of 15 A to 55 A.
It was obtained by machining a steel ingot taken from molten steel so that the height was 1.5 mm or more and 7 mm or less and the ratio of surface area S to volume V (S / V) was 1.05 or more and 1.30 or less. Using a small piece as a sample,
After the arc plasma discharge is applied to the sample a total of 4 times or less and a total treatment time of 0.2 seconds or more and 1.2 seconds or less,
Use the method for oxygen analysis in steel, which is heated and cleaned directly at a temperature higher than the temperature at the time of analysis without bringing it into contact with the atmosphere, and then put into a graphite crucible that has been lowered to the temperature to be analyzed and placed on standby. A method for producing Ca-treated steel.

本発明によれば、鋼中介在物の組成を制御することができ、耐HIC性に優れた鋼材の製造が可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the composition of the inclusion in steel can be controlled, and manufacture of the steel material excellent in HIC resistance is attained.

本発明に係る鉄鋼中酸素分析設備を模式的に示す図である。It is a figure which shows typically the oxygen analysis equipment in the steel which concerns on this invention. HIC発生におよぼす、T.[O]質量濃度とCa添加量の関係を示すグラフである。It is a graph which shows the relationship between T. [O] mass concentration and Ca addition amount affecting HIC generation. 溶鋼中T.[O]質量濃度と介在物中CaO濃度の関係を示すグラフである。It is a graph which shows the relationship between T. [O] mass concentration in molten steel, and CaO concentration in inclusions. 比較例と本発明実施例での、Ca添加量によるHIC発生の影響を示すグラフである。It is a graph which shows the influence of HIC generation | occurrence | production by Ca addition amount in a comparative example and this invention Example. 比較例と本発明実施例での、介在物中CaO濃度によるHIC発生の影響を示すグラフである。It is a graph which shows the influence of HIC generation | occurrence | production by the CaO density | concentration in an inclusion in a comparative example and this invention Example.

以下、本発明に係る酸素迅速分析技術を使用した耐HIC鋼の製造方法の最良の形態について図面を参照しつつ説明する。
圧延時に破砕せずに球状を維持する介在物は、介在物中のCaS濃度10質量%未満かつ介在物中のCaO濃度が50質量%以上60質量%以下となる低融点組成のCaO−Al系介在物である。介在物をこのような範囲に制御することで、鋼材の耐HIC性はきわめて高くなる。
Hereinafter, the best mode of a method for producing a HIC-resistant steel using the oxygen rapid analysis technique according to the present invention will be described with reference to the drawings.
Maintaining the spherical without fracturing during rolling inclusions inclusions low-melting composition CaO concentration of CaS concentration of 10 wt% less and inclusions is 60 mass% or less than 50 mass% in CaO-Al 2 O 3 inclusions. By controlling the inclusions in such a range, the HIC resistance of the steel material becomes extremely high.

本発明の要旨は(1)および(2)のCa処理鋼の製造方法、ならびに(3)のT.[O]分析方法を用いる前記(1)および(2)のCa処理鋼の製造方法にある。
(1)鋼中に含まれる介在物の組成がCaS:10質量%未満、かつCaO:50質量%以上60質量%以下とするために、溶鋼を精錬して該溶鋼のRH処理を終了する以前に、該溶鋼に含まれるSの質量濃度を10ppm以下,T.[O]の質量濃度を40ppm以下とし、かつ、該RH処理を終了した後の溶鋼のT.[O]分析値に基づいて、該溶鋼へ添加するCa質量を(1)式および(2)式を満たすように調整することを特徴とする、Ca処理鋼の製造方法。
A(kg/t)=B×T.[O]+0.02・・・・(1)
0.003≦B≦0.006 ・・・・・(2)
A:Ca添加質量(kg/t)
B:係数
T.[O]:RH処理終了後のCa添加前の溶鋼の酸素濃度分析値(ppm)
(2)溶鋼を精錬してRH処理を終了する以前に、該溶鋼に含まれる成分を質量濃度でC:0.03%以上0.07%以下、Mn:1.1%以上1.5%以下とすることを特徴とする、上記(1)に記載のCa処理鋼の製造方法。
(3)Ca添加前の溶鋼からサンプルを採取し、Ca添加までにT.[O]を分析して適切なCa添加量を決定するために、そのT.[O]を短時間でかつ精度よく分析する方法として、前記した(i)〜(iv)という特徴を有する酸素分析方法を用いることを特徴とする、上記(1)または(2)に記載のCa処理鋼の製造方法。
The gist of the present invention is (1) and (2) a method for producing Ca-treated steel, and (3) the method for producing Ca-treated steel according to (1) and (2) above using the T. [O] analysis method. is there.
(1) Before the composition of inclusions contained in the steel is CaS: less than 10 mass% and CaO: 50 mass% or more and 60 mass% or less, the molten steel is refined and the RH treatment of the molten steel is finished. The mass concentration of S contained in the molten steel is 10 ppm or less, the mass concentration of T. [O] is 40 ppm or less, and based on the T. [O] analysis value of the molten steel after the completion of the RH treatment. A method for producing a Ca-treated steel, wherein the mass of Ca added to the molten steel is adjusted so as to satisfy the expressions (1) and (2).
A (kg / t) = B × T. [O] +0.02 ... (1)
0.003 ≦ B ≦ 0.006 (2)
A: Ca addition mass (kg / t)
B: Coefficient T. [O]: Analytical value of oxygen concentration in molten steel (ppm) before Ca addition after completion of RH treatment
(2) Before refining the molten steel and finishing the RH treatment, the components contained in the molten steel are C: 0.03% or more and 0.07% or less in terms of mass concentration, and Mn: 1.1% or more and 1.5%. The method for producing Ca-treated steel according to (1) above, characterized in that:
(3) A sample is taken from the molten steel before Ca addition, and T. [O] is determined in a short time and with accuracy in order to determine an appropriate amount of Ca addition by analyzing T. [O] before Ca addition. The method for producing Ca-treated steel according to (1) or (2) above, wherein the oxygen analysis method having the characteristics (i) to (iv) described above is used as a method for well analyzing.

ここで、RH処理を終了する以前に、該溶鋼に含まれる成分を質量濃度でC:0.03%以上0.07%以下,Mn:1.1%以上1.5%以下とすることを特徴とする理由は以下による。   Here, before finishing the RH treatment, the components contained in the molten steel should be C: 0.03% to 0.07% and Mn: 1.1% to 1.5% by mass concentration. The reason for the feature is as follows.

C濃度は鋼材の強度確保のため0.03%以上とし、また、中心偏析の悪化抑制のため0.07%以下とする。Mn濃度は鋼材の強度確保のため1.1%以上とするが、Mnが1.5%を超えるとMnSの生成が活発となるため、1.5%以下とする。   The C concentration is 0.03% or more for securing the strength of the steel material, and 0.07% or less for suppressing deterioration of the center segregation. The Mn concentration is 1.1% or more in order to ensure the strength of the steel material. However, if Mn exceeds 1.5%, MnS generation becomes active, so it is 1.5% or less.

鋼中酸素濃度は、酸化物系介在物中の酸素および、鋼中に溶解している酸素の合計である。あらかじめAlにより脱酸された溶鋼中の溶解酸素は微量であるため、分析される鋼中酸素濃度は酸化物系介在物であると考えて問題ない。   The oxygen concentration in steel is the sum of oxygen in oxide inclusions and oxygen dissolved in steel. Since the dissolved oxygen in the molten steel deoxidized with Al in advance is very small, the oxygen concentration in the analyzed steel is considered to be an oxide inclusion, and there is no problem.

介在物中のCaO濃度は鋼中酸素濃度、鋼中S濃度,Ca添加量に依存する。鋼中S濃度>10ppmとなると、MnS生成を抑制するためには、大量のCaを添加しなければならない。しかし、S濃度の高い溶鋼にCaを大量添加すると、CaS生成抑制が困難となるため、鋼中S濃度>10ppmとなるとCa添加による介在物組成の制御が不能となる。したがって、Ca添加前の溶鋼中S濃度は10ppm以下とする必要がある。   The CaO concentration in inclusions depends on the oxygen concentration in steel, the S concentration in steel, and the amount of Ca added. If the S concentration in steel is> 10 ppm, a large amount of Ca must be added to suppress MnS formation. However, when a large amount of Ca is added to molten steel having a high S concentration, it is difficult to suppress the formation of CaS. Therefore, when the S concentration in the steel is> 10 ppm, the inclusion composition cannot be controlled by adding Ca. Therefore, the S concentration in the molten steel before Ca addition needs to be 10 ppm or less.

表1には、RH処理後の溶鋼サンプルをオフラインで別途分析し、溶鋼中の成分質量濃度及びCa添加量と介在物中のCaO質量濃度、CaS質量濃度並びに耐HIC試験結果との関係を整理して示す。耐HIC試験は、後述するNACE条件で行ったものである。   Table 1 separately analyzes the RH-treated molten steel sample offline, and organizes the relationship between the component mass concentration and Ca addition amount in the molten steel and the CaO mass concentration, CaS mass concentration, and HIC resistance test results in inclusions. Show. The HIC resistance test was performed under the NACE conditions described later.

Figure 2010280933
Figure 2010280933

表1に示す条件で図2に示すようにT.[O]濃度とCa添加量がHIC発生におよぼす影響を調査したところ、T.[O]濃度に対するCa添加量により、HIC発生あり、なしの領域が明確に整理できた。したがって分析されたT.[O]濃度から適正なCa添加量の範囲を(1)式(2)式のように決定した。また図3に示すように、(1)式で決定されるCa添加量の範囲内にすることで、介在物中のCaO濃度を50質量%以上60質量%以下に制御することが可能であり、極めて耐HIC性が向上することが分かった。   As shown in FIG. 2 under the conditions shown in Table 1, the influence of T. [O] concentration and Ca addition amount on the generation of HIC was investigated. The area was clearly organized. Therefore, the range of the appropriate Ca addition amount was determined from the analyzed T. [O] concentration as shown in Equation (1) and Equation (2). Moreover, as shown in FIG. 3, by making it within the range of the Ca addition amount determined by the equation (1), it is possible to control the CaO concentration in the inclusions to 50 mass% or more and 60 mass% or less. It was found that the HIC resistance is extremely improved.

溶鋼に添加するCaもしくはCa含有物質は、単体金属CaもしくはCaSi、FeCaなどのCa合金またはCaを含む3種類以上の元素からなる合金など、いかなるものでもよい。Caの添加方法はCaもしくはCa含有物質をキャリアガスとともに溶鋼内に吹き込むインジェクション法やCaもしくはCa含有物質を鉄製ワイヤーに充填し、ワイヤーとともに溶鋼に添加するワイヤーフィーダー法などがあるが、いかなる方法でもよい。   The Ca or Ca-containing substance added to the molten steel may be any material such as elemental metal Ca or Ca alloy such as CaSi and FeCa or an alloy composed of three or more kinds of elements including Ca. Methods for adding Ca include an injection method in which Ca or a Ca-containing material is blown into molten steel together with a carrier gas, and a wire feeder method in which Ca or Ca-containing material is filled in an iron wire and added to the molten steel together with the wire. Good.

本発明例では、転炉から出鋼した後、脱酸、脱硫した溶鋼をRH処理し、RH処理後にサンプルを採取し、前述した迅速分析方法を用いてトータル酸素を迅速に分析し、上記(1)式および(2)式で決定されるCa量を添加した。Ca添加には、30質量%Ca−70質量%SiのCaSi合金を充填したワイヤーフィーダー法を使用した。   In the present invention example, after the steel is removed from the converter, the deoxidized and desulfurized molten steel is RH-treated, a sample is taken after the RH treatment, and the total oxygen is rapidly analyzed using the rapid analysis method described above. The amount of Ca determined by the formulas (1) and (2) was added. For Ca addition, a wire feeder method filled with a CaSi alloy of 30 mass% Ca-70 mass% Si was used.

結果を表2および図4,5に示す。得られた厚板からサンプルを切り出し、検鏡法により介在物の形態および組成を走査型EPMA,エネルギー分散型X線分析装置により調査するとともに、耐HIC評価試験を実施した。耐HIC評価試験は以下に示すNACE条件で行った。   The results are shown in Table 2 and FIGS. A sample was cut out from the obtained thick plate, and the form and composition of inclusions were examined by a scanning method using a scanning EPMA and energy dispersive X-ray analyzer, and an HIC resistance evaluation test was performed. The HIC resistance evaluation test was performed under the NACE conditions shown below.

NACE条件
温度:24.8±2.8℃
pH:Max4.5
溶液:5%NaCl+0.8%CHCOOH
時間:96時間
S濃度:HS飽和
S流量:100〜200cc/min
表2に示すように、本発明では介在物中CaO質量濃度:50〜60%,CaS質量濃度:10%未満に確実に制御されており、HICの発生が抑制された。
NACE conditions Temperature: 24.8 ± 2.8 ° C
pH: Max4.5
Solution: 5% NaCl + 0.8% CH 3 COOH
Time: 96 hours the concentration of H 2 S: H 2 S saturated H 2 S flow rate: 100~200cc / min
As shown in Table 2, in the present invention, CaO mass concentration in inclusions: 50 to 60% and CaS mass concentration: less than 10% were reliably controlled, and generation of HIC was suppressed.

Figure 2010280933
Figure 2010280933

1 前処理装置
2 酸素分析装置
3 処理前試料投入口
4 隔離バルブ
5 前処理済試料投入口
6 架台
7 リフター
8 連結管
9 前処理済試料途中取出口
DESCRIPTION OF SYMBOLS 1 Pretreatment apparatus 2 Oxygen analyzer 3 Pretreatment sample inlet 4 Isolation valve 5 Pretreatment specimen inlet 6 Base 7 Lifter 8 Connection pipe 9 Pretreatment specimen intermediate outlet

Claims (3)

溶鋼を精錬して該溶鋼のRH処理を終了する以前に、該溶鋼に含まれるSの質量濃度を10ppm以下、T.[O]の質量濃度を40ppm以下とし、
かつ、該RH処理を終了した後の溶鋼のT.[O]分析値に基づいて、
該溶鋼へ添加するCa質量を(1)式および(2)式を満たすように調整すること
を特徴とする、Ca処理鋼の製造方法。
A(kg/t)=B×T.[O]+0.02・・・・(1)
0.003≦B≦0.006・・・・・・(2)
A:Ca添加質量(kg/t)
B:係数
T.[O]:RH処理終了後のCa添加前の溶鋼の酸素濃度分析値(ppm)
Before refining the molten steel and finishing the RH treatment of the molten steel, the mass concentration of S contained in the molten steel is set to 10 ppm or less, and the mass concentration of T. [O] is set to 40 ppm or less.
And based on the T. [O] analysis value of the molten steel after finishing the RH treatment,
A method for producing a Ca-treated steel, comprising adjusting the mass of Ca added to the molten steel so as to satisfy the expressions (1) and (2).
A (kg / t) = B × T. [O] +0.02 ... (1)
0.003 ≦ B ≦ 0.006 (2)
A: Ca addition mass (kg / t)
B: Coefficient T. [O]: Analytical value of oxygen concentration in molten steel (ppm) before Ca addition after completion of RH treatment
溶鋼を精錬してRH処理を終了する以前に、該溶鋼に含まれる成分を質量濃度でC:0.03%以上0.07%以下,Mn:1.1%以上1.5%以下とすることを特徴とする、請求項1に記載のCa処理鋼の製造方法。   Before refining the molten steel and finishing the RH treatment, the components contained in the molten steel are C: 0.03% to 0.07% and Mn: 1.1% to 1.5% by mass concentration. The manufacturing method of Ca processing steel of Claim 1 characterized by the above-mentioned. 請求項1または2に記載したCa処理鋼の製造方法であって、
前記したRH処理終了後の溶鋼のT.[O]分析を、該溶鋼から採取して凝固させた試料を用い、
かつ、その分析方法として
鉄鋼試料を黒鉛るつぼに入れて不活性ガス中で加熱融解し、発生した一酸化炭素または二酸化炭素のいずれかひとつあるいは両方の赤外線吸収度から該試料中の酸素濃度を測定する方法であって、
該試料表面の酸化皮膜を除去、清浄化する前処理として真空アークプラズマ処理をアークプラズマ放電開始時の真空度を5Pa以上35Pa以下かつ、アークプラズマ出力電流を15A以上55A以下とする条件下において、
溶鋼から採取した鋼塊に対して、高さ1.5mm以上7mm以下、表面積Sと体積Vの比(S/V)が1.05以上1.30以下となるように機械加工して得た小片を試料とし、
前記アークプラズマ放電を前記試料に、合計4回以下であって、かつ合計処理時間として0.2秒以上1.2秒以下施した後、
該試料を大気と接触させることなく、直接、分析時の温度よりも高い温度で加熱、清浄化した後、分析する温度に下げて待機させた黒鉛るつぼへ投入する鉄鋼中酸素分析方法を用いること
を特徴とする、Ca処理鋼の製造方法。
A method for producing a Ca-treated steel according to claim 1 or 2,
The T. [O] analysis of the molten steel after completion of the RH treatment described above was performed using a sample collected from the molten steel and solidified.
In addition, as an analysis method, a steel sample is placed in a graphite crucible and heated and melted in an inert gas, and the oxygen concentration in the sample is measured from the infrared absorption of one or both of the generated carbon monoxide and carbon dioxide. A way to
As a pretreatment for removing and cleaning the oxide film on the surface of the sample, vacuum arc plasma treatment is performed under the conditions of a vacuum degree at the start of arc plasma discharge of 5 Pa to 35 Pa and an arc plasma output current of 15 A to 55 A.
It was obtained by machining a steel ingot taken from molten steel so that the height was 1.5 mm or more and 7 mm or less and the ratio of surface area S to volume V (S / V) was 1.05 or more and 1.30 or less. Using a small piece as a sample,
After the arc plasma discharge is applied to the sample a total of 4 times or less and a total treatment time of 0.2 seconds or more and 1.2 seconds or less,
Use the method for oxygen analysis in steel, which is heated and cleaned directly at a temperature higher than the temperature at the time of analysis without bringing it into contact with the atmosphere, and then put into a graphite crucible that has been lowered to the temperature to be analyzed and placed on standby. A method for producing Ca-treated steel.
JP2009133976A 2009-06-03 2009-06-03 Method for producing Ca-treated steel Active JP5347729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133976A JP5347729B2 (en) 2009-06-03 2009-06-03 Method for producing Ca-treated steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133976A JP5347729B2 (en) 2009-06-03 2009-06-03 Method for producing Ca-treated steel

Publications (2)

Publication Number Publication Date
JP2010280933A true JP2010280933A (en) 2010-12-16
JP5347729B2 JP5347729B2 (en) 2013-11-20

Family

ID=43537923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133976A Active JP5347729B2 (en) 2009-06-03 2009-06-03 Method for producing Ca-treated steel

Country Status (1)

Country Link
JP (1) JP5347729B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333331A (en) * 2019-06-24 2019-10-15 江阴兴澄特种钢铁有限公司 The evaluation method of metal material resistance to HIC test validity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139613A (en) * 1980-04-03 1981-10-31 Nippon Kokan Kk <Nkk> Production of clean steel
JPH07223058A (en) * 1994-02-16 1995-08-22 Nippon Steel Corp Erosion prevention method of stopper for continuous casting
JPH0873923A (en) * 1994-06-29 1996-03-19 Sumitomo Metal Ind Ltd Production of clean steel having excellent hydrogen induced crack resistance
JPH0931524A (en) * 1995-07-13 1997-02-04 Sumitomo Metal Ind Ltd Treatment of ca in molten steel
JPH09227989A (en) * 1996-02-22 1997-09-02 Sumitomo Metal Ind Ltd Calcium-treated steel and treatment of molten steel with calcium
JP2000087127A (en) * 1998-09-04 2000-03-28 Sumitomo Metal Ind Ltd Production of high clean hic-resistant steel
JP2001011528A (en) * 1999-06-24 2001-01-16 Kawasaki Steel Corp Method for melting steel excellent in hydrogen induced cracking resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139613A (en) * 1980-04-03 1981-10-31 Nippon Kokan Kk <Nkk> Production of clean steel
JPH07223058A (en) * 1994-02-16 1995-08-22 Nippon Steel Corp Erosion prevention method of stopper for continuous casting
JPH0873923A (en) * 1994-06-29 1996-03-19 Sumitomo Metal Ind Ltd Production of clean steel having excellent hydrogen induced crack resistance
JPH0931524A (en) * 1995-07-13 1997-02-04 Sumitomo Metal Ind Ltd Treatment of ca in molten steel
JPH09227989A (en) * 1996-02-22 1997-09-02 Sumitomo Metal Ind Ltd Calcium-treated steel and treatment of molten steel with calcium
JP2000087127A (en) * 1998-09-04 2000-03-28 Sumitomo Metal Ind Ltd Production of high clean hic-resistant steel
JP2001011528A (en) * 1999-06-24 2001-01-16 Kawasaki Steel Corp Method for melting steel excellent in hydrogen induced cracking resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333331A (en) * 2019-06-24 2019-10-15 江阴兴澄特种钢铁有限公司 The evaluation method of metal material resistance to HIC test validity

Also Published As

Publication number Publication date
JP5347729B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5397154B2 (en) Melting method of steel material for oil pipes with high strength and high corrosion resistance
EA022968B1 (en) Steel for steel pipe having excellent sulfide stress cracking resistance
JP2008240126A (en) Method for refining molten stainless steel
JP5299447B2 (en) Melting method of low Al steel
JP5347729B2 (en) Method for producing Ca-treated steel
KR101361867B1 (en) Method for producing high-cleanness steel
JP4888516B2 (en) Method for analyzing oxygen in steel
JP5375419B2 (en) Method of melting clean steel
JP3915386B2 (en) Manufacturing method of clean steel
JP5590056B2 (en) Manufacturing method of highly clean steel
JP5402342B2 (en) How to prevent clogging of ladle nozzle
JP5369909B2 (en) Method for suppressing nozzle clogging of Zr-added steel and method for producing fine oxide-dispersed steel
JP5402259B2 (en) Method for producing ultra-low carbon steel
JP2018127680A (en) Method for smelting clean steel
JP5733377B2 (en) Continuous casting method for molten steel
EP2743683B1 (en) Molten iron desulfurization method
JP5464242B2 (en) Manufacturing method of clean steel
JP2002327239A (en) Slab for thin steel sheet with few defect caused by inclusion, and manufacturing method therefor
CN115702252B (en) Method for manufacturing high-cleanliness steel
JP2011056578A (en) Method for continuously casting molten steel
JP4806869B2 (en) Manufacturing method of high clean steel
JP7438437B1 (en) Ni alloy with excellent surface texture and mechanical properties
JP2006283089A (en) Aluminum addition method for production of electromagnetic steel
JP3806990B2 (en) Manufacturing method of highly clean stainless steel
CN117512270A (en) External refining purity of molten steel evaluation of Process method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R151 Written notification of patent or utility model registration

Ref document number: 5347729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350