JP5402259B2 - Method for producing ultra-low carbon steel - Google Patents

Method for producing ultra-low carbon steel Download PDF

Info

Publication number
JP5402259B2
JP5402259B2 JP2009133977A JP2009133977A JP5402259B2 JP 5402259 B2 JP5402259 B2 JP 5402259B2 JP 2009133977 A JP2009133977 A JP 2009133977A JP 2009133977 A JP2009133977 A JP 2009133977A JP 5402259 B2 JP5402259 B2 JP 5402259B2
Authority
JP
Japan
Prior art keywords
sample
less
molten steel
steel
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009133977A
Other languages
Japanese (ja)
Other versions
JP2010280934A (en
Inventor
剛徳 宮沢
広明 山副
正浩 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009133977A priority Critical patent/JP5402259B2/en
Publication of JP2010280934A publication Critical patent/JP2010280934A/en
Application granted granted Critical
Publication of JP5402259B2 publication Critical patent/JP5402259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は清浄性に優れた極低炭素鋼の高効率製造方法に関する。   The present invention relates to a high-efficiency manufacturing method of ultra-low carbon steel excellent in cleanliness.

表面欠陥が少なくかつ成形性に優れていることが要求される自動車の外装用鋼板には、極低炭素鋼が用いられており、その素材の溶製の際には、鋼の極低炭素化および高清浄化対策が採られている。   Extremely low carbon steel is used for automotive exterior steel sheets that require few surface defects and excellent formability. And high cleaning measures are taken.

極低炭素鋼を溶製する場合には、真空処理装置を用いて未脱酸溶鋼の脱炭反応をおこさせる方法が一般的である。すなわち、転炉等の製鋼炉より炭素含有率が0.02質量%以上0.10質量%以下の未脱酸溶鋼を取鍋に出鋼し、その後に真空処理装置を用いて溶鋼中酸素と炭素との反応により炭素含有率0.001質量%以上0.005質量%以下まで脱炭する。上記の反応の際に、十分な脱炭速度を得るために必要な酸素含有率は、0.04質量%以上であることが知られている。このような酸素含有率の高い溶鋼を転炉等の製鋼炉で得る場合、スラグ中の低級酸化物であるFeOとMnOの含有率の合計が、15質量%以上20質量%以下程度と高くなる。   In the case of melting ultra-low carbon steel, a method of causing a decarburization reaction of undeoxidized molten steel using a vacuum processing apparatus is common. That is, undeoxidized molten steel having a carbon content of 0.02% by mass or more and 0.10% by mass or less from a steelmaking furnace such as a converter is put into a ladle, and then oxygen in the molten steel and The carbon content is decarburized to 0.001 mass% or more and 0.005 mass% or less by reaction with carbon. It is known that the oxygen content necessary for obtaining a sufficient decarburization rate during the above reaction is 0.04% by mass or more. When such molten steel with a high oxygen content is obtained in a steelmaking furnace such as a converter, the total content of FeO and MnO, which are lower oxides in the slag, is as high as 15% by mass or more and 20% by mass or less. .

真空脱炭処理後にAlにより脱酸処理を行った極低炭素鋼の溶鋼では、真空処理後から連続鋳造中の間に、取鍋内溶鋼中のAlとスラグ中の低級酸化物とが反応する。この反応によりAlの酸化物(Al)が生成する。この酸化物は、連続鋳造中にタンデイッシュ内や鋳型内の溶鋼から除去されずに鋳片に残存して非金属介在物となり、最終製品の品質を悪化させる。 In the molten steel of ultra-low carbon steel that has been deoxidized with Al after the vacuum decarburization treatment, Al in the ladle molten steel reacts with the lower oxide in the slag during the continuous casting after the vacuum treatment. By this reaction, an oxide of Al (Al 2 O 3 ) is generated. This oxide is not removed from the molten steel in the tundish or mold during continuous casting, but remains in the slab and becomes non-metallic inclusions, deteriorating the quality of the final product.

このAl系介在物は、鋳片の表面付近に集積しやすく、そのため自動車の外装用鋼板の表面欠陥となったり、また、連続鋳造中の浸漬ノズルが閉塞する原因となったりする場合がある。浸漬ノズルが閉塞すると連々鋳ができなくなり生産性が阻害されるばかりでなく、ノズル内を通過する溶鋼に偏流が生じて鋳型内の流動状態が変化し表面欠陥が生じる。さらにこのノズル閉塞を防ぐために、ノズルの上部より吹き込まれるAr等の不活性ガスの流量を増加する必要が生じる。この吹き込まれた不活性ガスも、鋳片の表面近傍に残留し捕捉された場合には、表面欠陥の一因となる。このような表面欠陥を防止するために、鋳片や熱間圧延した鋼板用素材の表面を手入れする場合は、経済性や生産性の面から問題がある。 The Al 2 O 3 inclusions are likely to accumulate near the surface of the slab, which may cause surface defects in automotive exterior steel sheets, or may cause clogging of the immersion nozzle during continuous casting. There is. When the immersion nozzle is closed, casting cannot be performed continuously and productivity is hindered, and drift occurs in the molten steel passing through the nozzle to change the flow state in the mold and cause surface defects. Furthermore, in order to prevent this nozzle clogging, it is necessary to increase the flow rate of an inert gas such as Ar blown from the upper part of the nozzle. This blown inert gas also contributes to surface defects if it remains near the surface of the slab and is captured. In order to prevent such surface defects, when the surface of a slab or hot-rolled steel sheet material is cared for, there is a problem from the viewpoint of economy and productivity.

したがって、極低炭素鋼の製造においては、連続鋳造に供する溶鋼中のAl系介在物を減少させるための対策が必要となってくる。一般的に、Al系介在物を減少させるための方法としては、介在物の浮上分離を利用したRH処理におけるAl添加後の最終環流時間の確保が挙げられる。例えば、特許文献1,2では、脱酸剤添加後に10分間の環流処理を実施している。
特開平9-49011号公報 特開2000-129338号公報 特開2002−328125号公報 特開平10−311782号公報
Therefore, in the production of ultra-low carbon steel, measures for reducing Al 2 O 3 inclusions in the molten steel subjected to continuous casting are required. Generally, as a method for reducing Al 2 O 3 inclusions, securing of the final reflux time after the addition of Al in the RH treatment using the floating separation of inclusions can be mentioned. For example, in Patent Documents 1 and 2, a reflux treatment for 10 minutes is performed after the addition of the deoxidizer.
JP-A-9-49011 JP 2000-129338 A JP 2002-328125 A JP-A-10-311782

しかしながら、図1に示すように、極低炭素鋼の溶製を目的とするRH処理においてAl添加直後の溶鋼のサンプルを採取し、オフラインでT.[O]を調査したところ10〜100ppm程度のばらつきがあった。したがって、環流時間一定とした場合、脱酸後のT.[O]のばらつきに対処するため、過剰な環流による操業ロスを発生させていた。   However, as shown in FIG. 1, a sample of molten steel immediately after the addition of Al in the RH treatment for melting ultra-low carbon steel was taken and T. When [O] was investigated, there was a variation of about 10 to 100 ppm. Therefore, when the reflux time is constant, the T.O. In order to deal with the variation in [O], an operation loss due to excessive reflux was generated.

本発明の目的は、RH処理において、RH脱酸完了後の溶鋼中トータル酸素濃度およびAl濃度をRH最終環流終了前までに分析し、その値をもとに最適なRH最終環流時間を決定することを特徴とする、自動車外装用の極低炭素鋼の製造方法の提供である。   The object of the present invention is to analyze the total oxygen concentration and Al concentration in molten steel after completion of RH deoxidation before the end of RH final reflux in RH treatment, and determine the optimum RH final reflux time based on the values. It is providing the manufacturing method of the ultra-low carbon steel for motor vehicle exteriors characterized by the above-mentioned.

本発明を実施することによって、自動車外装用鋼板を始めとする極低炭素鋼板の製品品質を良好に維持しつつ、RH操業の合理化を達成することができる。   By implementing the present invention, it is possible to achieve rationalization of RH operation while maintaining good product quality of ultra-low carbon steel sheets including automobile exterior steel sheets.

極低炭素鋼の製造においては、溶鋼の清浄度を上げるために、真空脱ガス槽でのAl系介在物を減少させるための対策が必要となってくる。一般的に、Al系介在物を減少させるための方法としては、介在物の浮上分離を利用した脱酸用Alを添加した後の最終環流時間の確保が挙げられる。 In the production of ultra-low carbon steel, in order to increase the cleanliness of the molten steel, it is necessary to take measures for reducing Al 2 O 3 inclusions in the vacuum degassing tank. Generally, as a method for reducing Al 2 O 3 inclusions, securing the final reflux time after adding deoxidation Al using the floating separation of inclusions can be mentioned.

従来から、十分な浮上分離効果が得られる環流時間は、溶鋼中のAl系介在物の量に依存していることは知られていた。しかし、環流時間を適切に決めるためのベースとなるRHでのAl添加後の溶鋼中T.[O]濃度を正確に知る方法が無かった。 Conventionally, it has been known that the reflux time at which a sufficient floating separation effect is obtained depends on the amount of Al 2 O 3 inclusions in the molten steel. However, in the molten steel after addition of Al in RH, which is a base for appropriately determining the reflux time, the T.V. There was no way to know the [O] concentration accurately.

そこでまず、本発明者らはそのT.[O]濃度を正確に知るための溶鋼分析方法の確立に着手した。それと並行して、極低炭素鋼の溶製を目的とするRH処理中に脱酸用Al添加後の溶鋼をサンプリングし、オフラインで分析してそのサンプルのトータル酸素濃度とAl濃度と必要環流時間に関する関係の調査と解析を行った。その結果、自動車外装用の鋼板を製造するためには、以下に示す(1’)、(2’)式を用いて、必要環流時間を決定することが効果的であると見出した。ここで、「必要環流時間」とは、そのT.[O]濃度を、30ppm以下にするために必要な時間をいう。   Therefore, first, the present inventors have described that We started to establish a molten steel analysis method to know the [O] concentration accurately. At the same time, the molten steel after the addition of Al for deoxidation is sampled during RH treatment for the purpose of melting ultra-low carbon steel and analyzed off-line, and the total oxygen concentration, Al concentration and required recirculation time of the sample are analyzed. Investigation and analysis of the relationship was conducted. As a result, it has been found that it is effective to determine the necessary reflux time using the following formulas (1 ') and (2') in order to produce a steel sheet for an automobile exterior. Here, “required reflux time” means the T.D. [O] Refers to the time required to bring the concentration to 30 ppm or less.

また、「定数(1≦α≦2)」について、実際の操業においては、「脱酸後のサンプルのT.[O]濃度とAl濃度と必要環流時間に関する関係」には様々な要因が影響を及ぼすので、T.[O]濃度とAl%とを正確に知った上でも、或る程度のバラツキがあることを想定して環流操作を止めるタイミングを決めなければならない。このバラツキを生成する要因は完全には解明されていないが、RH処理中にも溶鋼上に存在しているスラグの影響が考えられる。また、溶鋼成分や溶鋼環流条件の影響も考えられる。しかし、そのバラツキ範囲は、後で図5、6に示すように1分間程度である。したがって、実際の操業においては、転炉での終点[C]%や転炉からの出鋼時に添加することがあるスラグ改質剤の量、及びRHでの処理条件などを考慮して、前記した(1’)式、(2’)式の範囲内で必要環流処理時間を決め、環流処理を終了すれば良い。   In addition, regarding the “constant (1 ≦ α ≦ 2)”, various factors affect the “relationship between the T. [O] concentration, Al concentration and required reflux time of the sample after deoxidation” in actual operation. T. Even when the [O] concentration and Al% are accurately known, it is necessary to determine the timing for stopping the reflux operation assuming that there is some variation. The cause of this variation has not been completely clarified, but the influence of slag existing on the molten steel during the RH treatment can be considered. Moreover, the influence of a molten steel component and molten steel reflux conditions is also considered. However, the variation range is about 1 minute as shown in FIGS. Therefore, in actual operation, considering the end point [C]% in the converter, the amount of slag modifier that may be added when steel is output from the converter, and the treatment conditions in RH, etc. The necessary recirculation treatment time is determined within the range of the expressions (1 ′) and (2 ′), and the recirculation process is terminated.

0.065≧[%Al]>0.030%の場合:
t=0.043×T.[O](ppm)+α ・・・(1')
0.005≦[%Al]≦0.030%の場合:
t’=0.043×T.[O](ppm)+α ・・・(2')
ここで、[%Al]:溶鋼中Al濃度(質量%)
T.[O]:トータル酸素濃度(ppm)
t:T.[O]分析用サンプルの採取後、溶鋼環流を止めるまでの時間(分)
t’:補正必要環流時間(分)=t−100×(0.03−[%Al])
α:定数(1.0≦α≦2.0)
さらに、本発明者らは上述した知見をベースとして、並行して技術開発を進めていた溶鋼中T.[O]の迅速分析方法をRHオンライン操業に適用する方法の開発に取り組み、自動車の外装用鋼板を始めとする清浄な極低炭素鋼を高能率で製造する方法として確立した。本発明を実施するためにはT.[O]を短時間でかつ精度よく分析する方法が必須であり、その具体的方法として、以下に示すような分析方法を使用した。
When 0.065 ≧ [% Al]> 0.030%:
t = 0.043 × T. [O] (ppm) + α (1 ')
When 0.005 ≦ [% Al] ≦ 0.030%:
t ′ = 0.043 × T. [O] (ppm) + α (2 ')
Here, [% Al]: Al concentration in molten steel (mass%)
T. T. et al. [O]: Total oxygen concentration (ppm)
t: T. [O] Time (minutes) from when the sample for analysis is collected until the molten steel reflux is stopped
t ′: Correction required recirculation time (minutes) = t−100 × (0.03-[% Al])
α: Constant (1.0 ≦ α ≦ 2.0)
Furthermore, the present inventors based on the above-mentioned knowledge, the T. Efforts were made to develop a method for applying the rapid analysis method of [O] to RH online operation, and it was established as a highly efficient method for producing clean ultra-low carbon steel including automobile exterior steel plates. In order to implement the present invention, T.W. A method for analyzing [O] in a short time and with high accuracy is indispensable. As a specific method thereof, the following analysis method was used.

(i)鉄鋼試料を黒鉛るつぼに入れて不活性ガス中で加熱融解し、発生した一酸化炭素または二酸化炭素のいずれかひとつあるいは両方の赤外線吸収度から該試料中の酸素濃度を測定する方法を用いる。   (I) A method in which a steel sample is put in a graphite crucible, heated and melted in an inert gas, and the oxygen concentration in the sample is measured from the infrared absorption of either one or both of generated carbon monoxide and carbon dioxide. Use.

(ii)該試料表面の酸化皮膜を除去、清浄化する前処理として真空アークプラズマ処理を、アークプラズマ放電開始時の真空度を5Pa以上35Pa以下かつ、アークプラズマ出力電流を15A以上55A以下とする条件下において施す。   (Ii) Vacuum arc plasma treatment as a pretreatment for removing and cleaning the oxide film on the surface of the sample, the degree of vacuum at the start of arc plasma discharge being 5 Pa to 35 Pa, and the arc plasma output current being 15 A to 55 A Apply under conditions.

(iii)溶鋼から採取した鋼塊に対して、高さ1.5mm以上7mm以下、表面積Sと体積Vの比(S/V)が1.05以上1.30以下となるように機械加工して得た小片を試料として用いる。   (Iii) Machined so that the steel ingot collected from the molten steel has a height of 1.5 mm to 7 mm and a ratio of surface area S to volume V (S / V) of 1.05 to 1.30. A small piece obtained in this way is used as a sample.

(iv)前記アークプラズマ放電を前記試料に、合計4回以下であって、かつ合計処理時間として0.2秒以上1.2秒以下施した後、
該試料を大気と接触させることなく、直接、分析時の温度よりも高い温度で加熱、清浄化した後、分析する温度に下げて待機させた黒鉛るつぼへ投入する。
この分析方法をオンラインで適用することにより、脱酸後のT.[O]濃度をRH最終環流完了前までに把握し,最適なRH最終環流時間を決定することが可能になった。
(Iv) After the arc plasma discharge is applied to the sample for a total of 4 times or less and a total treatment time of 0.2 seconds or more and 1.2 seconds or less,
The sample is directly heated and cleaned at a temperature higher than the temperature at the time of analysis without being brought into contact with the atmosphere, and then put into a graphite crucible that has been lowered to the temperature to be analyzed and placed on standby.
By applying this analytical method online, the T.O. It became possible to determine the [O] concentration before the completion of the final RH reflux and to determine the optimal RH final reflux time.

本発明は、以上の知見に基づいてなされたもので、その要旨は下記の通りである。
(1)質量%で、C:0.0030%以下、Si:0.5%以下、Mn:0.5%以下、P:0.05%以下、S:0.03%以下、N:0.0040%以下、Sol.Al:0.005%以上0.065%以下、Ti:0.01%以上0.06%以下を含有する極低炭素鋼のRHを用いた製造方法であって、RH真空処理装置を用いて、200〜300tの溶鋼を対象として0.24〜0.45Nm /(hr・t)の環流用Ar流量の範囲で真空脱炭を行った後に、該溶鋼中のAl含有率を0.005質量%以上0.065質量%以下に調整し、その脱酸調整後の溶鋼サンプル中のT.[O]とAl濃度を溶鋼環流中に分析するに際して該溶鋼サンプル中のT.[O]の分析方法として、鉄鋼試料を黒鉛るつぼに入れて不活性ガス中で加熱融解し、発生した一酸化炭素または二酸化炭素のいずれかひとつあるいは両方の赤外線吸収度から該試料中の酸素濃度を測定する方法であって、該試料表面の酸化皮膜を除去、清浄化する前処理として真空アークプラズマ処理をアークプラズマ放電開始時の真空度を5Pa以上35Pa以下かつ、アークプラズマ出力電流を15A以上55A以下とする条件下において、溶鋼から採取した鋼塊に対して、高さ1.5mm以上7mm以下、表面積Sと体積Vの比(S/V)が1.05以上1.30以下となるように機械加工して得た小片を試料とし、前記アークプラズマ放電を前記試料に、合計4回以下であって、かつ合計処理時間として0.2秒以上1.2秒以下施した後、該試料を大気と接触させることなく、直接、分析時の温度よりも高い温度で加熱、清浄化した後、分析する温度に下げて待機させた黒鉛るつぼへ投入する鉄鋼中酸素分析方法を用い、前記T.[O]と前記Al濃度値をもとに以下に示す(1)、(2)式の範囲内で溶鋼環流を終了するよう調整することを特徴とする極低炭素鋼製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
(1) By mass%, C: 0.0030% or less, Si: 0.5% or less, Mn: 0.5% or less, P: 0.05% or less, S: 0.03% or less, N: 0 .0040% or less, Sol. A manufacturing method using RH of an ultra-low carbon steel containing Al: 0.005% or more and 0.065% or less, Ti: 0.01% or more and 0.06% or less, using an RH vacuum processing apparatus After performing vacuum decarburization in the range of the Ar flow rate for recirculation of 0.24 to 0.45 Nm 3 / (hr · t) for 200 to 300 t of molten steel, the Al content in the molten steel is set to 0.005. The T. content in the molten steel sample after the deoxidation adjustment was adjusted to not less than 0.06 mass% and not more than 0.065 mass%. In analyzing the [O] and Al concentrations in the molten steel reflux, the T.O. As an analysis method of [O], a steel sample is put in a graphite crucible and heated and melted in an inert gas, and the oxygen concentration in the sample is determined from the infrared absorbance of one or both of the generated carbon monoxide and carbon dioxide. As a pretreatment for removing and cleaning the oxide film on the sample surface, the vacuum arc plasma treatment is performed at a vacuum degree of 5 Pa or more and 35 Pa or less at the start of arc plasma discharge, and the arc plasma output current is 15 A or more. Under the condition of 55A or less, the height of 1.5 mm to 7 mm and the ratio of surface area S to volume V (S / V) is 1.05 to 1.30 with respect to the steel ingot collected from the molten steel A small piece obtained by machining in this manner was used as a sample, and the arc plasma discharge was applied to the sample a total of 4 times or less, and the total processing time was 0.2 seconds or more and 1.2 seconds or less. Then, without contacting the sample with the atmosphere, after directly heating and cleaning at a temperature higher than the temperature at the time of analysis, the method for analyzing oxygen in steel is put into a graphite crucible that is lowered to the temperature to be analyzed and placed on standby And T. An ultra-low carbon steel manufacturing method characterized by adjusting the molten steel recirculation within the range of the following formulas (1) and (2) based on [O] and the Al concentration value.

0.065≧[%Al]>0.030質量%の場合:
0.043×T.[O]+1.0 ≦ t ≦ 0.043×T.[O]+2.0 ・・・(1)
0.005≦[%Al]≦0.030質量%の場合:
0.043×T.[O]+100×(0.03−[%Al])+1.0 ≦ t
≦ 0.043×T.[O]+100×(0.03−[%Al])+2.0 ・・・(2)
ここで、[%Al]:脱酸調整後の溶鋼中Al濃度(質量%)
T.[O]:脱酸調整後の溶鋼中T.[O](ppm)
t:脱酸調整後のT.[O]分析用サンプルの採取後、溶鋼環流を止めるまで の時間(分)
When 0.065 ≧ [% Al]> 0.030 mass%:
0.043 × T. [O] + 1.0 ≦ t ≦ 0.043 × T. [O] +2.0 (1)
When 0.005 ≦ [% Al] ≦ 0.030 mass%:
0.043 × T. [O] + 100 × (0.03-[% Al]) + 1.0 ≦ t
≦ 0.043 × T. [O] + 100 × (0.03-[% Al]) + 2.0 (2)
Here, [% Al]: Al concentration in molten steel after deoxidation adjustment (mass%)
T. T. et al. [O]: T. in molten steel after deoxidation adjustment [O] (ppm)
t: T. after deoxidation adjustment [O] Time (minutes) from when the sample for analysis is collected until the molten steel reflux is stopped

本発明により、RH処理において、RH脱酸完了後の溶鋼中トータル酸素濃度およびAl濃度をRH最終環流終了前までに分析し、その値をもとに最適なRH最終環流時間を決定することで、過剰RH環流時間を削減可能となり高効率で自動車外装用の極低炭素鋼の製造が可能となる。   According to the present invention, in the RH treatment, the total oxygen concentration and Al concentration in the molten steel after completion of RH deoxidation are analyzed before the end of the RH final reflux, and the optimum RH final reflux time is determined based on these values. Further, it is possible to reduce the excess RH reflux time, and it is possible to manufacture an ultra-low carbon steel for automobile exterior with high efficiency.

極低炭素鋼の溶製を目的とするRH処理においてAl添加直後の溶鋼のサンプルを採取し、オフラインでT.[O]を分析調査した結果を示すグラフである。A sample of molten steel immediately after the addition of Al in the RH treatment for melting ultra-low carbon steel was taken and T. It is a graph which shows the result of having analyzed and investigated [O]. RH処理後T.[O]と製品格落ち率との関係を示すグラフである。It is a graph which shows the relationship between T. [O] after RH process, and a product disqualification rate. 環流時間と溶鋼中T.[O]との関係を示すグラフである。It is a graph which shows the relationship between recirculation | reflux time and T. [O] in molten steel. 脱酸処理後T.[O]と過剰環流時間との関係を示すグラフである。It is a graph which shows the relationship between T. [O] after a deoxidation process, and excess reflux time. 脱酸後T.[O]と必要環流時間との関係を示すグラフである。It is a graph which shows the relationship between T. [O] after deoxidation, and required reflux time. 脱酸後T.[O]と補正必要環流時間との関係を示すグラフである。It is a graph which shows the relationship between T. [O] after deoxidation, and correction | amendment required reflux time. 本発明に係る鉄鋼中酸素分析設備を模式的に示す図である。It is a figure which shows typically the oxygen analysis equipment in the steel which concerns on this invention.

以下、本発明に係る極低炭素鋼の製造方法の最良の形態について図面を参照しつつ説明する。なお、本明細書において、鋼またはスラグの化学組成を示す「%」は、特にことわりが無い限り「質量%」である。   Hereinafter, the best mode of a method for producing an ultra-low carbon steel according to the present invention will be described with reference to the drawings. In the present specification, “%” indicating the chemical composition of steel or slag is “% by mass” unless otherwise specified.

転炉などで溶製したC濃度:0.02%以上0.1%以下の未脱酸または弱脱酸の溶鋼を取鍋へ出鋼する。このとき、炉内スラグは不可避的に取鍋内に流出する。この流出スラグは低級酸化物(FeO、MnO)を含有しており、脱酸後に脱酸元素と反応して介在物を生成し、溶鋼の清浄性を悪化させる可能性がある。そこで、この流出スラグ中の低級酸化物の濃度が著しく高い場合には、事前にスラグ中低級酸化物を還元しその濃度を低減する目的で、出鋼時の出鋼流または取鍋内スラグに金属AlあるいはAl合金を含有するスラグ改質剤を添加してもよい。スラグ中のFeO+MnO%の管理目標は、合計で2%以上10%以下であることが望ましい。   C concentration melted in a converter or the like: 0.02% to 0.1% of undeoxidized or weakly deoxidized molten steel is taken out into a ladle. At this time, the furnace slag inevitably flows out into the ladle. This outflow slag contains lower oxides (FeO, MnO) and reacts with the deoxidizing element after deoxidation to generate inclusions, which may deteriorate the cleanliness of the molten steel. Therefore, when the concentration of the lower oxide in the slag is extremely high, the lower oxide in the slag is reduced in advance and the concentration is reduced in order to reduce the concentration of the lower oxide in the slag. A slag modifier containing metal Al or an Al alloy may be added. The management target of FeO + MnO% in the slag is desirably 2% or more and 10% or less in total.

スラグ改質剤は、Al:40%+CaCO:60%またはAl:50%+Al:40%+CaO:10%のような組成のものを用いればよく、スラグ改質在中のAlは金属AlまたはAl合金を用いればよい。スラグ改質剤中の金属AlまたはAl合金は、スラグ中低級酸化物の還元剤として含有させるものである。金属AlまたはAl合金は還元力が強く、スラグ中低級酸化物の低減に有効である。 A slag modifier having a composition such as Al: 40% + CaCO 3 : 60% or Al: 50% + Al 2 O 3 : 40% + CaO: 10% may be used. Al may be metal Al or Al alloy. The metal Al or Al alloy in the slag modifier is contained as a reducing agent for lower oxides in the slag. Metal Al or Al alloy has a strong reducing power and is effective in reducing lower oxides in the slag.

本発明方法は、取鍋全体を真空容器内に入れ、取鍋底部のポーラスプラグから不活性ガスを吹き込むタンク脱ガス装置、または取鍋内溶鋼に2本足浸漬管を浸漬して真空槽内を真空排気し、片方の浸漬管から環流用不活性ガスを吹き込むRH脱ガス装置など、溶鋼の真空脱炭ができる装置を用いて真空脱炭処理を実施した後、鋼の清浄性を向上させるために、この溶鋼に所定の脱酸剤を添加し、脱酸処理を行い、脱酸後の溶鋼のサンプルのトータル酸素濃度とAl濃度から、最適なRH最終環流時間を決定し、処理を実施するものである。   In the method of the present invention, the entire ladle is placed in a vacuum vessel, and a two-leg dip tube is dipped in a tank degassing device that blows inert gas from a porous plug at the bottom of the ladle or molten steel in the ladle. The vacuum decarburization process is performed using an apparatus capable of vacuum decarburization of molten steel, such as an RH degasser that blows inert gas for reflux from one dip tube, and then improves the cleanliness of the steel. Therefore, a predetermined deoxidizer is added to this molten steel, deoxidation treatment is performed, and the optimum RH final reflux time is determined from the total oxygen concentration and Al concentration of the molten steel sample after deoxidation, and the treatment is performed To do.

図2に示すように、自動車の外装用鋼板を対象としてRH処理後T.[O]と製品の格落ち率との関係を調査した結果、環流終了後の溶鋼中のT.[O]が30ppmを超えると、格落ち率が増加してしまうことが分かっている。この調査において対象とした自動車の外装用鋼板の成分範囲を、表1に示す。なお、表1に示される鋼の化学組成の単位は質量%であり、残部はFeおよび不純物である。   As shown in FIG. 2, as a result of investigating the relationship between T. [O] after RH treatment and the rate of product deterioration for an automotive exterior steel plate, the T.O. It has been found that when [O] exceeds 30 ppm, the rate of downgrade increases. Table 1 shows the component ranges of the automobile exterior steel plates targeted in this investigation. In addition, the unit of the chemical composition of steel shown in Table 1 is mass%, and the balance is Fe and impurities.

Figure 0005402259
Figure 0005402259

従来から、極低炭素鋼のRH処理においては図3に示すように、脱酸用Alを添加した後の溶鋼中T.[O]濃度は、溶鋼環流時間に応じて単調に減少すると知られていた。したがって、初期のT.[O]濃度のバラツキが大きい場合には、T.[O]濃度を一定値以下に低減させるために必要な溶鋼環流時間も大きく異なっていると容易に考えられる。   Conventionally, in the RH treatment of ultra-low carbon steel, as shown in FIG. It has been known that the [O] concentration decreases monotonously according to the molten steel reflux time. Therefore, the initial T.I. [O] When the variation in concentration is large, T.I. It is easily considered that the molten steel reflux time required for reducing the [O] concentration below a certain value is also greatly different.

しかし、従来は、RHで脱酸用Alを添加した後の溶鋼中T.[O]濃度の値を、溶鋼環流処理中に正確に知る具体的な方法が知られていなかった。そのため、経験と勘に頼ってAl添加後の環流時間を決めるしかなく、このバラツキの存在を考慮して長目に環流時間をとらざるを得なかった。   Conventionally, however, the T.V. in the molten steel after adding deoxidizing Al with RH. A specific method for accurately knowing the value of [O] concentration during the molten steel reflux treatment has not been known. Therefore, the circulation time after the addition of Al must be determined by relying on experience and intuition, and the circulation time has to be taken for a long time in consideration of the existence of this variation.

その結果、図4に示すように、T.[O]≦30ppmでの環流時間が過剰な場合が多くなっていた。
しかし、脱酸用Alを添加した後の溶鋼中T.[O]濃度の値を、溶鋼環流処理中に正確に知ることが出来れば、T.[O]≦30ppmにするために必要な環流時間を適確に求めて、溶鋼環流を止めることができる。
As a result, as shown in FIG. In many cases, the reflux time at [O] ≦ 30 ppm was excessive.
However, in the molten steel after addition of Al for deoxidation, T.I. If the value of the [O] concentration can be accurately known during the molten steel recirculation treatment, T.W. It is possible to stop the molten steel recirculation by accurately obtaining the recirculation time necessary for setting [O] ≦ 30 ppm.

そこで先ず、本願発明に係る発明者らは前記した溶鋼中酸素濃度の迅速分析方法の確立に注力した。そして、その分析方法が確立されるのに合わせて、その分析方法を極低炭素鋼を溶製するためのRH環流時間の適正化に用いられるよう、本願発明技術の開発を進めた。   First, the inventors of the present invention focused on establishing a rapid analysis method for the oxygen concentration in molten steel. As the analysis method was established, the technology of the present invention was developed so that the analysis method could be used for optimizing the RH reflux time for melting ultra-low carbon steel.

その調査条件を表2に示し、その調査結果を図5、図6に示す。なお、表2に示される鋼の化学組成の単位は質量%であり、残部はFeおよび不可避的不純物である。また、スラグの化学組成の単位も質量%である。   The investigation conditions are shown in Table 2, and the investigation results are shown in FIGS. In addition, the unit of the chemical composition of steel shown in Table 2 is mass%, and the balance is Fe and inevitable impurities. Moreover, the unit of the chemical composition of slag is also mass%.

Figure 0005402259
Figure 0005402259

表中の環流用Ar流量の範囲は、200〜300tの溶鋼対象として共通である。また、環流量は以下に示す計算式(3)を用いて算出することができ、その式に操業条件を当て嵌めて算出すると、環流量は90〜100t/minの範囲に相当する。   The range of the Ar flow rate for reflux in the table is common for 200 to 300 t of molten steel. Further, the ring flow rate can be calculated using the following calculation formula (3). If the calculation condition is applied to the formula, the ring flow rate corresponds to a range of 90 to 100 t / min.

Figure 0005402259
Figure 0005402259

図5は、脱酸後T.[O]と必要環流時間との関係を示すグラフである。
図6は、脱酸後T.[O]と補正必要環流時間との関係を示すグラフである。
RH最終環流時間は、図5、6に示すように(1'),(2')式で決定される時間よりも短くすると、環流終了後の溶鋼中のトータル酸素が30ppmを超えてしまうため、製品の格落ち率が増加してしまうことになると分かった。
FIG. 5 is a graph showing the relationship between T. [O] after deoxidation and the required reflux time.
FIG. 6 is a graph showing the relationship between T. [O] after deoxidation and the required reflux time.
As shown in FIGS. 5 and 6, if the RH final reflux time is shorter than the time determined by the equations (1 ′) and (2 ′), the total oxygen in the molten steel after the circulation will exceed 30 ppm. , It turns out that the rate of disqualification of the product will increase.

このように、RH処理におけるAl添加後の最終環流時間は、当該Alの添加後からT.[O]分析用の溶鋼サンプルを採取するまでの時間と(1'),(2')式で決定される当該サンプリング後の必要環流時間とを加算した時間とすることが適切である。この時間よりも長くなると、T.[O]≦30ppmとするには過剰な環流処理となり、無意味にRH処理時間を延長していることとなるため、生産性を大きく阻害してしまうことになる。   As described above, the final reflux time after the addition of Al in the RH treatment is TD after the addition of the Al. [O] It is appropriate to add the time required to collect the molten steel sample for analysis and the necessary recirculation time after sampling determined by the equations (1 ′) and (2 ′). If it becomes longer than this time, T.P. In order to set [O] ≦ 30 ppm, excessive reflux treatment is performed, and the RH treatment time is meaninglessly extended, which greatly impedes productivity.

以上のことから、RH処理におけるAl添加後の最終環流時間は、当該Alの添加後からT.[O]分析用の溶鋼サンプルを採取するまでの時間に(1),(2)式で決定される当該サンプリング後の必要環流時間を加算した時間の範囲内であることが必要である。   In view of the above, the final reflux time after the addition of Al in the RH treatment is TD after the addition of the Al. [O] It is necessary to be within the time range obtained by adding the necessary recirculation time after sampling determined by the equations (1) and (2) to the time until the molten steel sample for analysis is taken.

0.065≧[%Al]>0.030%の場合:
0.043×T.[O]+1.0 ≦ t ≦ 0.043×T.[O]+2.0 ・・・(1)
0.005≦[%Al]≦0.030%の場合:
0.043×T.[O]+100×(0.03−[%Al])+1.0 ≦ t
≦ 0.043×T.[O]+100×(0.03−[%Al])+2.0 ・・・(2)
ここで、[%Al]:溶鋼中Al濃度(%)
T.[O]:溶鋼中トータル酸素濃度(ppm)
t:T.[O]分析用サンプルの採取後、溶鋼環流を止めるまでの時間(分)
When 0.065 ≧ [% Al]> 0.030%:
0.043 × T. [O] + 1.0 ≦ t ≦ 0.043 × T. [O] +2.0 (1)
When 0.005 ≦ [% Al] ≦ 0.030%:
0.043 × T. [O] + 100 × (0.03-[% Al]) + 1.0 ≦ t
≦ 0.043 × T. [O] + 100 × (0.03-[% Al]) + 2.0 (2)
Here, [% Al]: Al concentration in molten steel (%)
T. T. et al. [O]: Total oxygen concentration in molten steel (ppm)
t: T. [O] Time (minutes) from when the sample for analysis is collected until the molten steel reflux is stopped

本発明者らは、上述した知見をオンライン操業に反映させるために、T.[O]を短時間でかつ精度よく分析する方法として、以下に示すような分析方法を使用した。   In order to reflect the above-described knowledge in online operation, the present inventors have described T.C. As a method for analyzing [O] in a short time and with high accuracy, the following analysis method was used.

以下にその分析方法について図面を参照しつつ詳しく説明する。
図7はこの本発明に係る分析方法を実施するための鉄鋼中酸素分析装置を模式的に示したものである。
The analysis method will be described in detail below with reference to the drawings.
FIG. 7 schematically shows an oxygen analyzer in steel for carrying out the analysis method according to the present invention.

本発明に係る分析方法に求められる短時間かつ高精度分析を実現するために、本発明で組み合わせる要素技術の内、迅速かつ再現性の高い試料前処理方法として、真空アークプラズマ処理を選択した。例えば、特許文献3に開示された金属中成分分析用試料の調整方法及び装置を適用すればよい。予め真空に保った試料前処理装置1内に、隔離バルブ4を介して、真空度をほとんど変化させることなく、処理前試料投入口3から試料を挿入することができる。その後、真空アークプラズマ処理により、試料表面の酸化皮膜を数秒で除去する。該装置では、試料を自動搬送するため、試料形状を円柱またはブロック(直方体)に限定する。試料は、試料台に載置して処理するため、試料台と接する面は処理されない。そこで、試料を反転させて処理する必要がある。つまり、ひとつの試料に対して、少なくとも2回は放電する必要がある。放電回数が増えると、試料が長時間加熱されることになり、一旦、酸化皮膜除去された試料表面は再び酸化されてしまう。したがって、試料表面の酸化皮膜を確実、正確かつ再現性良く除去し、精錬操業上必要とされる分析精度を確保するため、下記の条件でアークプラズマ処理する必要がある。   In order to achieve a short time and high accuracy analysis required for the analysis method according to the present invention, vacuum arc plasma treatment was selected as a rapid and reproducible sample pretreatment method among the elemental technologies combined in the present invention. For example, the preparation method and apparatus for a sample for analyzing an in-metal component disclosed in Patent Document 3 may be applied. A sample can be inserted into the sample pretreatment apparatus 1 that has been previously kept in vacuum through the isolation valve 4 through the isolation valve 4 with almost no change in the degree of vacuum. Thereafter, the oxide film on the sample surface is removed in a few seconds by vacuum arc plasma treatment. In this apparatus, since the sample is automatically conveyed, the sample shape is limited to a cylinder or a block (a rectangular parallelepiped). Since the sample is placed on the sample stage and processed, the surface in contact with the sample stage is not processed. Therefore, it is necessary to invert the sample for processing. That is, it is necessary to discharge at least twice for one sample. When the number of discharges increases, the sample is heated for a long time, and once the oxide film is removed, the sample surface is oxidized again. Therefore, in order to remove the oxide film on the sample surface reliably, accurately and with good reproducibility, and to ensure the analysis accuracy required for the refining operation, it is necessary to perform an arc plasma treatment under the following conditions.

(a)真空度:5Pa以上35Pa以下。真空アークプラズマによる試料表面酸化皮膜除去反応は真空度が高いほど促進されるが、35Paを超えると、試料温度上昇に伴う再酸化反応が顕著になるため好ましくない。一方、5Paより低いと、酸化皮膜除去反応自体が進行しなくなるため、好ましくない。したがって、最適な真空度が存在する。
なお、処理時に真空度が一定値に保持されるよう、真空排気バルブとガス導入バルブの開閉を制御する圧力制御機構を有することがなお好ましい。
(b)アークプラズマ出力電流:15A以上55A以下とする。
(c)処理時間:ひとつの試料に対して、合計の処理時間は0.2秒以上1.2秒以下とする。
(d)処理回数:ひとつの試料に対して、合計の処理回数は4回以下とする。
(a) Degree of vacuum: 5 Pa or more and 35 Pa or less. The sample surface oxide film removal reaction by vacuum arc plasma is promoted as the degree of vacuum increases, but if it exceeds 35 Pa, the reoxidation reaction accompanying the increase in the sample temperature becomes remarkable, which is not preferable. On the other hand, if it is lower than 5 Pa, the oxide film removal reaction itself does not proceed, which is not preferable. There is therefore an optimum degree of vacuum.
It is more preferable to have a pressure control mechanism for controlling the opening and closing of the vacuum exhaust valve and the gas introduction valve so that the degree of vacuum is maintained at a constant value during processing.
(b) Arc plasma output current: 15A or more and 55A or less.
(c) Processing time: The total processing time is 0.2 second or more and 1.2 seconds or less for one sample.
(d) Number of treatments: The total number of treatments per sample is 4 or less.

処理後の試料は、大気と接触させることなく、分析装置2に配置した前処理済試料投入口5を通じて、最終的に黒鉛るつぼに投入する。試料前処理チャンバーと分析装置の試料投入口は真空または不活性ガスで内部を置換した連結管8で連結する。不活性ガス種としては、空気との比重差を考慮して、連結管内を確実にガス置換して、処理後の試料の再酸化を防止する観点、さらには経済的な観点から、Arが好ましい。特許文献3に開示された装置構成では、前処理済試料は払い出された後、別置きの酸素分析装置に移送される。しかし、本発明の目的では迅速性が要求されることから、試料前処理装置1と酸素分析装置2を、それぞれ鉛直上下に配置し、連結管8内を自由落下させて、試料を移送する方法、すなわち図7のような装置構成を採用した。   The treated sample is finally put into the graphite crucible through the pretreated sample inlet 5 arranged in the analyzer 2 without being brought into contact with the atmosphere. The sample pretreatment chamber and the sample inlet of the analyzer are connected by a connecting tube 8 whose inside is replaced with vacuum or an inert gas. As the inert gas species, Ar is preferable from the viewpoint of reliably replacing the gas in the connecting pipe in consideration of the specific gravity difference with air and preventing reoxidation of the sample after processing, and from an economical viewpoint. . In the apparatus configuration disclosed in Patent Document 3, the pretreated sample is dispensed and then transferred to a separate oxygen analyzer. However, since the object of the present invention requires quickness, the sample pretreatment device 1 and the oxygen analyzer 2 are arranged vertically above and below, and freely fall in the connecting tube 8 to transfer the sample. That is, an apparatus configuration as shown in FIG. 7 was adopted.

この本発明の装置構成では、酸素分析装置2が床面に近い位置に配置され、分析装置2内部の清掃がガス中の不純物吸着剤の交換等、装置の維持管理作業に支障をきたす。そこで、架台6に組み込まれた装置全体をリフター7に載せて昇降可能とし、当該作業の際には装置全体を上げて、作業性を確保した。このリフター7の駆動方式は特に問わないが、装置全体では相当な重量であることから、操作性の観点で、自動油圧式が好ましい。また、リフター7の可動部は伸縮可能な材料で覆い、作業者が挟まれることのないよう、安全性に配慮した構造を有することが望ましい。   In the apparatus configuration of the present invention, the oxygen analyzer 2 is disposed at a position close to the floor surface, and cleaning inside the analyzer 2 hinders maintenance work of the apparatus such as replacement of the impurity adsorbent in the gas. Therefore, the entire apparatus incorporated in the gantry 6 is placed on the lifter 7 so that it can be raised and lowered, and during the operation, the entire apparatus is raised to ensure workability. The driving method of the lifter 7 is not particularly limited. However, since the weight of the entire apparatus is considerable, an automatic hydraulic type is preferable from the viewpoint of operability. Moreover, it is desirable to cover the movable part of the lifter 7 with a stretchable material and to have a structure in consideration of safety so that an operator is not caught.

さらに、連結した酸素分析装置2が故障して使えない場合や、分析待ちの前処理済試料を別の酸素分析装置で分析する場合に備えて、試料前処理装置1と酸素分析装置2の連結管8途中に、前処理済試料の取出口9を設ける。   Further, the sample pretreatment device 1 and the oxygen analyzer 2 are connected in preparation for the case where the connected oxygen analyzer 2 cannot be used due to a failure or when a preprocessed sample waiting for analysis is analyzed by another oxygen analyzer. An outlet 9 for a pretreated sample is provided in the middle of the tube 8.

本発明で組み合わせる要素技術の内、溶鋼から採取した鋼塊より簡便かつ迅速に分析試料を得る方法として、溶鋼から採取した鋼塊を切断して作製した高さ(厚さ)が1.5mm以上7mm以下のスライスに対して、打ち抜いた円柱状小片を試料として用いる。具体的には、例えば、特許文献4に開示された分析試料の調整方法及び装置を適用すればよい。試料表面の酸化皮膜を確実、正確かつ再現性良く除去するためには、試料底面の直径と高さから計算される表面積Sと体積Vの比S/Vが、「1.05≦S/V≦1.30」を満たすような形状を確保する必要がある。   Among the elemental technologies combined in the present invention, as a method for obtaining an analysis sample more easily and quickly than a steel ingot collected from molten steel, the height (thickness) produced by cutting the steel ingot collected from molten steel is 1.5 mm or more. A punched cylindrical piece is used as a sample for a slice of 7 mm or less. Specifically, for example, an analysis sample adjustment method and apparatus disclosed in Patent Document 4 may be applied. In order to remove the oxide film on the sample surface reliably, accurately and with good reproducibility, the ratio S / V of the surface area S to the volume V calculated from the diameter and height of the sample bottom is “1.05 ≦ S / V It is necessary to ensure a shape that satisfies “≦ 1.30”.

この理由は現時点で十分解明できていないが、電極形状などアーク処理部の形状に依存して、アークプラズマの空間分布において効率的な処理に好適な位置が限定されることに対応しているものと推察される。   The reason for this is not fully understood at this time, but it corresponds to the fact that the position suitable for efficient processing is limited in the spatial distribution of the arc plasma depending on the shape of the arc processing part such as the electrode shape. It is guessed.

本発明で組み合わせる要素技術の内、高精度な鋼中酸素分析方法として、不活性ガス中加熱融解−赤外線吸収法を動作原理とする酸素分析装置を選択した。この分析法では、試料ホルダと試料の脱酸反応剤(炭素)供給源を兼ねる黒鉛るつぼを使用する。   Among the elemental technologies combined in the present invention, an oxygen analyzer based on the operating principle of heating and melting in an inert gas-infrared absorption method was selected as a highly accurate method for analyzing oxygen in steel. In this analysis method, a graphite crucible serving as a sample holder and a sample deoxidation reagent (carbon) supply source is used.

分析に先立って、るつぼ表面に吸着した酸素や汚染を除去するため、分析時よりもやや高い温度でるつぼだけを予め加熱する、いわゆる「空焼き」処理を実施する。「空焼き」処理により、黒鉛るつぼから発生する酸素、一酸化炭素あるいは二酸化炭素が分析値を変動させる影響を低減できる。市販の酸素分析装置で鋼中の酸素を分析する際には、通常、るつぼ、すなわち試料を1800℃〜2200℃程度の温度に加熱する。本発明で要求される高い分析精度を実現するためには、例えば、分析時の温度よりも100℃以上高い温度で、かつ、15秒以上加熱すればよい。   Prior to analysis, in order to remove oxygen and contamination adsorbed on the surface of the crucible, a so-called “empty baking” process is performed in which only the crucible is preheated at a temperature slightly higher than at the time of analysis. The “blank” treatment can reduce the influence of oxygen, carbon monoxide or carbon dioxide generated from the graphite crucible changing the analytical value. When analyzing oxygen in steel with a commercially available oxygen analyzer, a crucible, that is, a sample is usually heated to a temperature of about 1800 ° C. to 2200 ° C. In order to realize the high analysis accuracy required in the present invention, for example, the heating may be performed at a temperature that is 100 ° C. or more higher than the temperature at the time of analysis and for 15 seconds or more.

また、市販の酸素分析装置では、まず、分析装置内に試料を取り込み、試料周辺の雰囲気をキャリアガスであるヘリウムガスで置換する間に、るつぼの交換、電極の清掃および「空焼き」処理を実施する。したがって、試料を投入してから分析値が判明するまで、比較的長い時間を要する。るつぼの交換および電極の清掃、さらに「空焼き」処理を先行して実施させ、分析装置が分析可能な状態で清浄化前処理した試料を投入することで、要求される分析所要時間に応じた迅速化を実現させることができる。   In addition, in a commercially available oxygen analyzer, first, a sample is taken into the analyzer, and the atmosphere around the sample is replaced with helium gas as a carrier gas. carry out. Therefore, it takes a relatively long time until the analytical value is determined after the sample is introduced. Replacing the crucible, cleaning the electrodes, and performing the “blank” process in advance, and loading the sample that has been pre-cleaned in a state where the analyzer can analyze, according to the required analysis time. Speeding up can be realized.

通常、酸素分析に際して、検出したガス量を試料中の酸素濃度に変換するため、試料重量を精密に秤量する必要がある。真空アークプラズマ処理前後での試料重量変化を評価した結果、試料の形状や表面酸化度合いによって多少ばらつきはあるものの、高々1mg程度の減量であったことから、試料重量0.5〜1.0gに対しては実用上無視できる程度の誤差しか与えないことが判明した。そこで、本発明を実施する際には、機械加工して得た後に予め秤量した分析試料を、真空アークプラズマ処理し、大気と接触させることなく、そのまま酸素分析装置に挿入することとした。   Usually, in the oxygen analysis, in order to convert the detected gas amount into the oxygen concentration in the sample, it is necessary to accurately weigh the sample weight. As a result of evaluating the change in the sample weight before and after the vacuum arc plasma treatment, although there was some variation depending on the shape of the sample and the degree of surface oxidation, the weight loss was about 1 mg at most, so the sample weight was reduced to 0.5 to 1.0 g. On the other hand, it has been found that the error is negligible for practical use. Therefore, when carrying out the present invention, the analysis sample obtained by machining and previously weighed was subjected to vacuum arc plasma treatment and inserted into the oxygen analyzer as it was without being brought into contact with the atmosphere.

(基本条件)
転炉およびRH真空処理装置を用いて、270tの自動車外装用極低炭素鋼(成分範囲は表1のとおりである。)を溶製した。転炉では、C濃度を0.02質量%以上0.10質量%以下に精錬し、1640℃以上1690℃以下の溶鋼を取鍋に出鋼した。出鋼に際し、転炉からのスラグ流出を極力抑制するようにした。出鋼直後の取鍋内の溶融スラグに、造滓剤として生石灰、Al系フラックス、CaO系フラックスを、スラグ改質剤として、Al灰、Al―CaO系フラックスを適宜添加して、スラグ中のFeO+MnO濃度が2質量%以上10質量%以下になるように調整した。
(Basic conditions)
Using a converter and an RH vacuum processing apparatus, 270 t of ultra-low carbon steel for automobile exterior (component range is as shown in Table 1) was melted. In the converter, the C concentration was refined to 0.02% by mass or more and 0.10% by mass or less, and molten steel having a temperature of 1640 ° C. or more and 1690 ° C. or less was taken out into a ladle. When steeling out, slag outflow from the converter was suppressed as much as possible. To the molten slag in the ladle immediately after steeling, quick lime, Al 2 O 3 flux, CaO flux as a slagging agent, and Al ash, Al-CaO flux as slag modifiers are added as appropriate, It adjusted so that the FeO + MnO density | concentration in slag might be 2 mass% or more and 10 mass% or less.

次に、RH真空処理装置を用いて、溶鋼中の炭素含有率が0.0050質量%以下となるまで真空脱炭を行った。その後に、真空槽内にAlを添加して脱酸を行い、溶鋼中のAl含有率を0.005質量%以上0.065質量%以下に調整した。本発明例としてその脱酸調整後の溶鋼サンプル中のT.[O]とAl濃度を前記の方法で迅速に分析し、その値を用いて最終環流時間を決定した。また、比較例として環流時間10分で処理を実施した。RHの浸漬管径は660mm、環流用Arガス流量は1.2Nm/min、処理中真空度は1〜3Torrとした。脱酸剤は、金属Alを用いた。
次いで、連続鋳造によりスラブ、圧延により成品コイルとし、超音波探傷法で製品疵を調査した。
Next, vacuum decarburization was performed using a RH vacuum processing apparatus until the carbon content in the molten steel was 0.0050 mass% or less. Thereafter, Al was added to the vacuum chamber for deoxidation, and the Al content in the molten steel was adjusted to 0.005 mass% or more and 0.065 mass% or less. As an example of the present invention, the T. [O] and Al concentrations in the molten steel sample after the deoxidation adjustment were rapidly analyzed by the above method, and the final reflux time was determined using the values. Further, as a comparative example, the treatment was performed with a reflux time of 10 minutes. The RH dip tube diameter was 660 mm, the reflux Ar gas flow rate was 1.2 Nm 3 / min, and the degree of vacuum during processing was 1 to 3 Torr. As the deoxidizer, metal Al was used.
Next, slabs were formed by continuous casting and product coils were formed by rolling, and product defects were investigated by ultrasonic flaw detection.

結果を表3に示す。本発明例1と2は、それぞれ脱酸後[%Al]=0.038質量%と0.058質量%であるため(1)式を用いて最終環流時間を決定した。最終環流時間は、脱酸後[%Al]が同じレベルの比較例1と比べると5〜6分短縮されていて、しかも格落ち率は、ほぼ同じ値であった。このことから、本発明例では、必要にして十分な適正環流時間が確保されていることがわかる。
また、本発明例3と4は、それぞれ脱酸後[%Al]=0.025質量%と0.008質量%であるため(2)式を用いて最終環流時間を決定した。最終環流時間は、脱酸後[%Al]が同じレベルの比較例2と比べると3〜6短縮されていて、しかも格落ち率は、ほぼ同じ値であった。このことから、本発明例では、[%Al]が比較的低い場合にあっても、必要にして十分な適正環流時間が確保されていることがわかる。
The results are shown in Table 3. In Invention Examples 1 and 2, after deoxidation, [% Al] = 0.038 mass% and 0.058 mass%, respectively, the final reflux time was determined using equation (1). The final reflux time was 5 to 6 minutes shorter than that of Comparative Example 1 having the same level of [% Al] after deoxidation, and the failure rate was almost the same value. From this, it can be seen that, in the example of the present invention, necessary and sufficient adequate reflux time is secured.
In addition, since Inventive Examples 3 and 4 have [% Al] = 0.025 mass% and 0.008 mass% after deoxidation, respectively, the final reflux time was determined using the formula (2). The final reflux time was 3 to 6 shorter than that of Comparative Example 2 having the same level of [% Al] after deoxidation, and the rate of disqualification was almost the same value. From this, it can be seen that, in the example of the present invention, even when [% Al] is relatively low, a sufficient adequate reflux time is ensured.

Figure 0005402259
Figure 0005402259

1 前処理装置
2 酸素分析装置
3 処理前試料投入口
4 隔離バルブ
5 前処理済試料投入口
6 架台
7 リフター
8 連結管
9 前処理済試料途中取出口
DESCRIPTION OF SYMBOLS 1 Pretreatment apparatus 2 Oxygen analyzer 3 Pretreatment sample inlet 4 Isolation valve 5 Pretreatment specimen inlet 6 Base 7 Lifter 8 Connection pipe 9 Pretreatment specimen intermediate outlet

Claims (1)

質量%で、C:0.0030%以下、Si:0.5%以下、Mn:0.5%以下、P:0.05%以下、S:0.03%以下、N:0.0040%以下、Sol.Al:0.005%以上0.065%以下、Ti:0.01%以上0.06%以下を含有する極低炭素鋼のRHを用いた製造方法であって、
RH真空処理装置を用いて、200〜300tの溶鋼を対象として0.24〜0.45Nm /(hr・t)の環流用Ar流量の範囲で真空脱炭を行った後に、該溶鋼中のAl含有率を0.005質量%以上0.065質量%以下に調整し、
その脱酸調整後の溶鋼サンプル中のT.[O]とAl濃度を溶鋼環流中に分析するに際して
該溶鋼サンプル中のT.[O]の分析方法として、
鉄鋼試料を黒鉛るつぼに入れて不活性ガス中で加熱融解し、発生した一酸化炭素または二酸化炭素のいずれかひとつあるいは両方の赤外線吸収度から該試料中の酸素濃度を測定する方法であって、
該試料表面の酸化皮膜を除去、清浄化する前処理として真空アークプラズマ処理をアークプラズマ放電開始時の真空度を5Pa以上35Pa以下かつ、アークプラズマ出力電流を15A以上55A以下とする条件下において、
溶鋼から採取した鋼塊に対して、高さ1.5mm以上7mm以下、表面積Sと体積Vの比(S/V)が1.05以上1.30以下となるように機械加工して得た小片を試料とし、
前記アークプラズマ放電を前記試料に、合計4回以下であって、かつ合計処理時間として0.2秒以上1.2秒以下施した後、
該試料を大気と接触させることなく、直接、分析時の温度よりも高い温度で加熱、清浄化した後、分析する温度に下げて待機させた黒鉛るつぼへ投入する鉄鋼中酸素分析方法を用い、
前記T.[O]と前記Al濃度値をもとに以下に示す(1)、(2)式の範囲内で溶鋼環流を終了するよう調整することを特徴とする極低炭素鋼製造方法。
0.065≧[%Al]>0.030質量%の場合:
0.043×T.[O]+1.0 ≦ t ≦ 0.043×T.[O]+2.0・・・(1)
0.005≦[%Al]≦0.030質量%の場合:
0.043×T.[O]+100×(0.03−[%Al])+1.0 ≦ t
≦ 0.043×T.[O]+100×(0.03−[%Al])+2.0・・・(2)
ここで、[%Al]:脱酸調整後の溶鋼中Al濃度(質量%)
T.[O]:脱酸調整後の溶鋼中T.[O](ppm)
t:脱酸調整後のT.分析用サンプルの採取後、溶鋼環流を止めるまで の時間(分)
In mass%, C: 0.0030% or less, Si: 0.5% or less, Mn: 0.5% or less, P: 0.05% or less, S: 0.03% or less, N: 0.0040% Hereinafter, Sol. A production method using RH of an ultra-low carbon steel containing Al: 0.005% or more and 0.065% or less, Ti: 0.01% or more and 0.06% or less,
After performing vacuum decarburization in the range of Ar flow rate for recirculation of 0.24 to 0.45 Nm 3 / (hr · t) for 200 to 300 t of molten steel using an RH vacuum processing apparatus , The Al content is adjusted to 0.005 mass% or more and 0.065 mass% or less,
T. in the molten steel sample after the deoxidation adjustment. [O] and when analyzing the Al concentration in the molten steel reflux,
T. in the molten steel sample. As an analysis method of [O],
A method of measuring an oxygen concentration in a sample from an infrared absorption of one or both of carbon monoxide and carbon dioxide generated by placing a steel sample in a graphite crucible and heating and melting in an inert gas,
As a pretreatment for removing and cleaning the oxide film on the surface of the sample, vacuum arc plasma treatment is performed under the conditions of a vacuum degree at the start of arc plasma discharge of 5 Pa to 35 Pa and an arc plasma output current of 15 A to 55 A.
It was obtained by machining a steel ingot collected from molten steel so that the height was 1.5 mm or more and 7 mm or less, and the ratio of surface area S to volume V (S / V) was 1.05 or more and 1.30 or less. Using a small piece as a sample,
After the arc plasma discharge is applied to the sample a total of 4 times or less and a total treatment time of 0.2 seconds or more and 1.2 seconds or less,
Without using the sample in contact with the atmosphere, directly after heating and cleaning at a temperature higher than the temperature at the time of analysis, using a method for oxygen analysis in steel that is put into a graphite crucible that is lowered to the temperature to be analyzed and placed on standby,
The T.A. Based on [O] and the Al concentration value, an ultra-low carbon steel production method is characterized in that the molten steel reflux is adjusted within the range of the following formulas (1) and (2).
When 0.065 ≧ [% Al]> 0.030 mass%:
0.043 × T. [O] + 1.0 ≦ t ≦ 0.043 × T. [O] +2.0 (1)
When 0.005 ≦ [% Al] ≦ 0.030 mass%:
0.043 × T. [O] + 100 × (0.03-[% Al]) + 1.0 ≦ t
≦ 0.043 × T. [O] + 100 × (0.03-[% Al]) + 2.0 (2)
Here, [% Al]: Al concentration in molten steel after deoxidation adjustment (mass%)
T. T. et al. [O]: T. in molten steel after deoxidation adjustment [O] (ppm)
t: T. after deoxidation adjustment [ O ] Time (minutes) from when the sample for analysis is collected until the molten steel reflux is stopped
JP2009133977A 2009-06-03 2009-06-03 Method for producing ultra-low carbon steel Active JP5402259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133977A JP5402259B2 (en) 2009-06-03 2009-06-03 Method for producing ultra-low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133977A JP5402259B2 (en) 2009-06-03 2009-06-03 Method for producing ultra-low carbon steel

Publications (2)

Publication Number Publication Date
JP2010280934A JP2010280934A (en) 2010-12-16
JP5402259B2 true JP5402259B2 (en) 2014-01-29

Family

ID=43537924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133977A Active JP5402259B2 (en) 2009-06-03 2009-06-03 Method for producing ultra-low carbon steel

Country Status (1)

Country Link
JP (1) JP5402259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107841676B (en) * 2017-10-19 2019-07-26 芜湖新兴铸管有限责任公司 The production technology of inexpensive low-carbon automobile steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949011A (en) * 1995-08-09 1997-02-18 Sumitomo Metal Ind Ltd Method for deoxidizing molten steel
JP2000129338A (en) * 1998-10-22 2000-05-09 Sumitomo Metal Ind Ltd Melting method for extra-low carbon steel excellent in cleanliness
JP4312068B2 (en) * 2004-02-04 2009-08-12 株式会社神戸製鋼所 Method of melting ultra-low carbon steel

Also Published As

Publication number Publication date
JP2010280934A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5397154B2 (en) Melting method of steel material for oil pipes with high strength and high corrosion resistance
Kaushik et al. Inclusion characterisation–tool for measurement of steel cleanliness and process control: Part 1
JP5402259B2 (en) Method for producing ultra-low carbon steel
JP5402342B2 (en) How to prevent clogging of ladle nozzle
JP5375419B2 (en) Method of melting clean steel
JP5836187B2 (en) Vacuum degassing method
JP4463701B2 (en) Decarburization method for molten stainless steel and method for producing ultra-low carbon stainless steel
JP5087840B2 (en) Decarburization end point judgment method in vacuum degassing equipment
JP3893770B2 (en) Melting method of high clean ultra low carbon steel
JP4888516B2 (en) Method for analyzing oxygen in steel
JP3915386B2 (en) Manufacturing method of clean steel
JP5347729B2 (en) Method for producing Ca-treated steel
JP5464242B2 (en) Manufacturing method of clean steel
JP5590056B2 (en) Manufacturing method of highly clean steel
JP5369909B2 (en) Method for suppressing nozzle clogging of Zr-added steel and method for producing fine oxide-dispersed steel
JP4582826B2 (en) Manufacturing method of clean steel with RH degassing equipment
JPH07268440A (en) Deoxidizing method of molten steel
JP2011056578A (en) Method for continuously casting molten steel
EP2743683A1 (en) Molten iron desulfurization method
JP2003247047A (en) Electric resistance welded tube and production method thereof
CN115702252B (en) Method for manufacturing high-cleanliness steel
JP7256381B2 (en) Manufacturing method of killed steel
JP4806869B2 (en) Manufacturing method of high clean steel
JP7311785B2 (en) Melting method of Al-deoxidized steel
JP3421941B2 (en) Cold rolled steel sheet for cans

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R151 Written notification of patent or utility model registration

Ref document number: 5402259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350