JPS61143505A - Refining method of high alloy steel - Google Patents

Refining method of high alloy steel

Info

Publication number
JPS61143505A
JPS61143505A JP26302784A JP26302784A JPS61143505A JP S61143505 A JPS61143505 A JP S61143505A JP 26302784 A JP26302784 A JP 26302784A JP 26302784 A JP26302784 A JP 26302784A JP S61143505 A JPS61143505 A JP S61143505A
Authority
JP
Japan
Prior art keywords
steel
reduction
decarburization
alloy steel
reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26302784A
Other languages
Japanese (ja)
Other versions
JPH0477045B2 (en
Inventor
Keizo Taoka
啓造 田岡
Akiteru Tamida
民田 彰輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP26302784A priority Critical patent/JPS61143505A/en
Publication of JPS61143505A publication Critical patent/JPS61143505A/en
Publication of JPH0477045B2 publication Critical patent/JPH0477045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To reduce the consumption of FeSi for reducing alloy component oxides by producing a high alloy steel by using a top and bottom blown converter or bottom blown converter and blowing a reducing gas from a bottom blowing tuyere in the reduction refining period after decarburization. CONSTITUTION:The reducing gas such as H2 or CO is blown through the bottom blowing tuyere and is passed through the inside of the steel bath and slag in the reduction refining period after decarburization in the stage of producing the high alloy steel such as high chromium steel or high manganese steel by using the top and bottom blown converter or bottom blown converter. The above-mentioned reducing gas reduces the alloy component oxides such as Cr2O3 and MnO in the slag to reduce the fuel consumption of the FeSi to be charged for the purpose of reducing said oxides; at the same time, the S in the molten steel is desulfurized in the form of H2S anmd COS, by which the fuel consumption of the CaO to be charged for desulfurization is economized and the cost of refining is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高合金鋼の精錬方法に関する、更に詳しくは上
底吹転炉もしくは底吹転炉を使用して高クローム鋼、高
マンガン鋼などの高合金鋼を製造する精錬方法に関する
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for refining high-alloy steel, and more specifically, to refining high-alloy steel such as high-chromium steel and high-manganese steel using a top-bottom blowing converter or a bottom-blowing converter. This invention relates to a refining method for producing alloy steel.

従前技術とその問題点 上底吹転炉もしくは底吹転炉を使用して高クローム鋼、
高マンガン鋼などの高合金鋼を製造する場合に重要なこ
とは脱炭精課中に如何にしてクローム或いはマンガンの
葭化による損失を低減させるかと言うことである。この
ため、従前からAOD法などが開発せられ、脱炭が進み
溶湯中の炭素含酸素とともに窒素、アルゴン・ガスを混
合したガスを吹込むことが行はれている。
Previous technology and its problems High chromium steel, using top-bottom blowing converter or bottom-blowing converter,
When manufacturing high alloy steel such as high manganese steel, it is important to know how to reduce the loss of chromium or manganese due to oxidation during the decarburization process. For this reason, AOD methods and the like have been developed for some time, in which decarburization progresses and a gas mixture of nitrogen and argon gas is injected into the molten metal along with the oxygenated carbon in the molten metal.

然しなから、優先脱炭を促進させる従前のAOD法にお
いても、脱炭後には例えば高クローム鋼の場合には5〜
15kfA  のクローム酸化物が生成する。このため
、脱炭後に炉内にF e S iなどを投入しスラグ中
のCr I!1!化物をSLで還元し回収する方法が一
般的に行はれている。けれども、従前技術のかかる回収
方法には、SiがCrに比べ廉価とはいえ、やはり高価
であること、また5i02が生成しこれを中和するため
にCα0が必要になる、スラグ量が増加するなどの問題
がある。
However, even in the conventional AOD method that promotes preferential decarburization, after decarburization, for example, in the case of high chromium steel,
15 kfA of chromium oxide is produced. For this reason, after decarburization, FeSi, etc. are introduced into the furnace to remove CrI! in the slag. 1! A commonly used method is to reduce and recover chemical compounds using SL. However, in the conventional recovery method, although Si is cheaper than Cr, it is still expensive, and 5i02 is generated and Cα0 is required to neutralize it, which increases the amount of slag. There are problems such as.

発明の目的 本発明の目的は、脱炭精錬後の還元期にクロームもしく
はマンガン等の酸化物を還元するため(で投入されるF
tSiの原単位を低減させることのできる高合金鋼の精
錬方法を得ることにある。
Purpose of the Invention The purpose of the present invention is to reduce oxides such as chromium or manganese during the reduction period after decarburization.
The object of the present invention is to obtain a method for refining high alloy steel that can reduce the basic unit of tSi.

本発明の以上の目的は、上底吹転炉もしくは底吹転炉を
使用して高合金鋼を溶製するに際し脱炭後の還元精錬期
に底吹き羽口から還元性ガスを吹込むことを特徴とする
本発明の高合金鋼の精錬方法により達成される。
The above object of the present invention is to inject reducing gas from the bottom blowing tuyere during the reduction refining period after decarburization when melting high alloy steel using a top-bottom blowing converter or a bottom-blowing converter. This is achieved by the high alloy steel refining method of the present invention, which is characterized by the following.

発明の構成 本発明においては、上底吹転炉もしくは底吹転炉で行は
れる脱炭工程後の還元精錬期にH2、CQなどの還元性
ガスを底吹き羽口から吹込み、鋼浴中を浮上させ、更に
スラグ中を高温で通過させる。
Structure of the Invention In the present invention, reducing gases such as H2 and CQ are blown into the steel bath through the bottom blowing tuyere during the reductive refining period after the decarburization process carried out in a top-bottom blowing converter or a bottom-blowing converter. The inside of the slag is floated and the slag is passed through the slag at high temperature.

この際、次のような反応がスラグと還元性ガスとの間に
発生する。
At this time, the following reaction occurs between the slag and the reducing gas.

C’y203+3H2→2Cr+3H20Cr2o3+
3CO→2Cr+3CO2M n O+H2−+ M 
rL+H20Mn0+CO−+Mル+C02 Mユの回収と同時罠、脱硫を行うが、鋼浴の攪拌ガスと
して吹込まれたガスを有効に利用することができる。な
お還元性ガスの使用によりCO3やH2Sの形態で気化
脱硫を行うこともできる。
C'y203+3H2→2Cr+3H20Cr2o3+
3CO→2Cr+3CO2M n O+H2−+ M
rL+H20Mn0+CO-+M+C02 Trapping and desulfurization are performed simultaneously with the recovery of M, but the gas blown in as stirring gas for the steel bath can be effectively used. Note that by using a reducing gas, vaporization desulfurization can also be performed in the form of CO3 or H2S.

以下、実施例について説明する。Examples will be described below.

実施例 1 5を上底吹実験炉を使用し第1図に示す如く炉口から焼
石灰、kまたる石、フェロシリコンを投入し、炉底羽口
からH2ガスを注入して効果を調査した還元期の操業条
件は第1表の如くであった。
Example 1 Using a top-bottom blowing experimental furnace, as shown in Figure 1, burnt lime, kamata stone, and ferrosilicon were introduced from the furnace mouth, and H2 gas was injected from the bottom tuyere to investigate the effect. The operating conditions during the reduction period were as shown in Table 1.

第1表 底吹きガス流量   H2ガス 2・5 N値餉還元時
間 6分 焼  石  灰    30ky/l ド   ロ マ イ  ト       25kjll
/ノF、5i(75チ)   15kp/、<はたる石
      5・Oki/を 即ち、脱炭精錬後の還元精錬前後で溶鋼成分を分析し脱
硫を兼ねた還元精錬前後の物質バランスからH2による
還元状況を調査した。結果の一例を第2図に示す。炉内
に吹込まれたH2ガスのうち約10%がクロームの還元
に寄与したものと考えられる。平均でも12・5%(r
L=22)の利用効率であった。また、このときの脱硫
状況を第3図に示す。従前の如く7エロシリコンの全量
をクロームの還元に使用する場合に比べ、還元後の%S
は平均で0・001%低いことがわかる。
Table 1 Bottom-blown gas flow rate H2 gas 2.5 N value reduction time 6 minutes Burnt lime 30ky/l Dolomite 25kjll
/noF, 5i (75chi) 15kp/, <Hataruishi 5.Oki/, that is, the molten steel components are analyzed before and after reduction smelting after decarburization, and the material balance before and after reduction smelting that also serves as desulfurization is determined by H2. We investigated the refund situation. An example of the results is shown in FIG. It is thought that about 10% of the H2 gas blown into the furnace contributed to the reduction of chromium. The average is 12.5% (r
The utilization efficiency was L=22). Moreover, the desulfurization situation at this time is shown in FIG. Compared to the previous case where the entire amount of 7erosilicon was used to reduce chromium, the %S after reduction was
is 0.001% lower on average.

このことから溶鋼中のSの一部がH2ガスにより還元さ
れて脱硫したと考えられる。
From this, it is considered that a part of S in the molten steel was reduced by H2 gas and desulfurized.

本性を操業に利用した場合の諸態単位の変動を第2表に
示す 第2表 従来法   本 法 FgSLkg74  ベース  −〇・45焼石灰 k
g/ t   ベース   −1・3kr  Nm’/
13 ・O H2N、m’/l−3・O Cr歩留懺   ベース   ±0 コスト指数    100    98・O・第2表か
らFtSi の節減、塩基度調整用焼石灰の節減などの
効果が認められ、コストを2%削減できることが判明し
た。
Table 2 shows the changes in units of various conditions when the natural properties are used in operation.
g/t Base -1・3kr Nm'/
13 ・O H2N, m'/l-3・O Cr yield base ±0 Cost index 100 98・O・From Table 2, effects such as reduction in FtSi and reduction in burnt lime for basicity adjustment are recognized. It was found that costs could be reduced by 2%.

実施例 2 次に5を上底吹実験炉を使用して高マンガン溶鋼をCO
ガスで還元した。操業条件を第3表に示し、還元前後の
成分変化を第4表に示す。
Example 2 Next, in 5, high manganese molten steel was heated using a top-bottom blowing experimental furnace.
Restored with gas. The operating conditions are shown in Table 3, and the changes in components before and after reduction are shown in Table 4.

第3表 還元時間       6分 COガス流量       2・5N靜/M温  度 
        165 (PC還元用FeSi   
     13・2 Q/ を焼石灰    25・Q
 kg/l ドロマイト         10ky/lはたる石 
      5・Okt/<第4表 COガスによる還元効率をH2ガスの場合と同様に算出
すると利用効率は約10%で、H2ガスによるCrの還
元効率とほぼ同一の値であった。。
Table 3 Reduction time 6 minutes CO gas flow rate 2.5N/M temperature
165 (FeSi for PC reduction
13.2 Q/ Burnt lime 25.Q
kg/l Dolomite 10ky/l Barrel
5.Okt/<Table 4 When the reduction efficiency by CO gas was calculated in the same way as in the case of H2 gas, the utilization efficiency was about 10%, which was almost the same value as the reduction efficiency of Cr by H2 gas. .

ル=10の平均でも9・5%となった。The average for Le = 10 was also 9.5%.

COガスによるMn還元の際の原単位は0・25ky/
N−となり、3・ONm’/lのCOガス筺用による還
元用フェロシリコンの原単位の削除は0・3kt/lと
なる。
The basic unit for Mn reduction with CO gas is 0.25ky/
N-, and the reduction in the basic unit of ferrosilicon for reduction due to the CO gas chamber of 3.ONm'/l is 0.3 kt/l.

発明の詳細 な説明した如く、上底吹き、もしくは底吹き転炉を使用
し高合金鋼を精錬するとき脱炭精錬後の還元期に底吹き
羽口から還元ガスを吹込むことによりスラグ中の酸化金
属を還元回収することができ、これにより還元用のSL
ならびに生石灰の添加量を節減し製造コストの低減を図
ることができる。
As described in detail of the invention, when refining high-alloy steel using a top-bottom blowing or bottom-blowing converter, reducing gas is blown into the slag through the bottom blowing tuyere during the reduction period after decarburization and refining. The oxidized metal can be reduced and recovered, thereby reducing the SL for reduction.
In addition, the amount of quicklime added can be reduced, and manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の還元操業フロー図、 第2図は還元後の還元物質のバランスを示す線図、 第3図は還元後の%Sについて本発明の方法と従前の方
法とを比較する線図である。 つ 町
Figure 1 is a reduction operation flow diagram of the present invention, Figure 2 is a diagram showing the balance of reducing substances after reduction, and Figure 3 is a comparison of the method of the present invention and the conventional method regarding %S after reduction. It is a line diagram. town

Claims (1)

【特許請求の範囲】[Claims] 上底吹転炉もしくは底吹転炉を使用して高合金鋼を溶製
するに際し、脱炭後の還元精錬期に底吹き羽口から還元
性ガスを吹込むことを特徴とする高合金鋼の精錬方法。
A high alloy steel characterized in that when high alloy steel is melted using a top-bottom blowing converter or a bottom-blowing converter, a reducing gas is blown from the bottom blowing tuyere during the reduction refining period after decarburization. Refining method.
JP26302784A 1984-12-14 1984-12-14 Refining method of high alloy steel Granted JPS61143505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26302784A JPS61143505A (en) 1984-12-14 1984-12-14 Refining method of high alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26302784A JPS61143505A (en) 1984-12-14 1984-12-14 Refining method of high alloy steel

Publications (2)

Publication Number Publication Date
JPS61143505A true JPS61143505A (en) 1986-07-01
JPH0477045B2 JPH0477045B2 (en) 1992-12-07

Family

ID=17383862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26302784A Granted JPS61143505A (en) 1984-12-14 1984-12-14 Refining method of high alloy steel

Country Status (1)

Country Link
JP (1) JPS61143505A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578726A (en) * 1991-09-26 1993-03-30 Sumitomo Metal Ind Ltd Refining method in converter
JP2009263705A (en) * 2008-04-23 2009-11-12 Nippon Steel Corp Desulfurization refining method for molten iron
CN113355477A (en) * 2021-05-18 2021-09-07 北京科技大学 Method for realizing high scrap ratio smelting of converter by bottom blowing hydrogen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145718A (en) * 1983-02-10 1984-08-21 Nippon Kokan Kk <Nkk> Blowing method of gas in nozzle for refining molten metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145718A (en) * 1983-02-10 1984-08-21 Nippon Kokan Kk <Nkk> Blowing method of gas in nozzle for refining molten metal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578726A (en) * 1991-09-26 1993-03-30 Sumitomo Metal Ind Ltd Refining method in converter
JP2009263705A (en) * 2008-04-23 2009-11-12 Nippon Steel Corp Desulfurization refining method for molten iron
CN113355477A (en) * 2021-05-18 2021-09-07 北京科技大学 Method for realizing high scrap ratio smelting of converter by bottom blowing hydrogen

Also Published As

Publication number Publication date
JPH0477045B2 (en) 1992-12-07

Similar Documents

Publication Publication Date Title
CN101215619A (en) Method for extracting vanadium and removing phosphorus from vanadium-containing molten iron and steel-smelting technique using the same method
JP3428628B2 (en) Stainless steel desulfurization refining method
JPS61143505A (en) Refining method of high alloy steel
JP4765374B2 (en) Desulfurization treatment method for chromium-containing hot metal
JP2002020816A (en) Method for producing low nitrogen-containing chromium steel
JP2912963B2 (en) Slag reforming method as desulfurization pretreatment
JP3896992B2 (en) Low sulfur low nitrogen steel manufacturing method
JP2002047508A (en) Blowing method in converter
JP3301683B2 (en) Desulfurization method of chromium-containing molten steel in decarburization refining
JPH0297611A (en) Method for melting cold iron source
JPH08134528A (en) Production of extra low carbon steel
JPH0617498B2 (en) High blowout Mn operating method in upper and lower blow converter
SU1421777A1 (en) Method of producing steel
JPH111714A (en) Steelmaking method
ZA200202602B (en) Method and use of calcium nitrate for foaming of steelmaking slags.
JP3414811B2 (en) Recovery method of residual alloy components in slag after refining when smelting low alloy steel
JPH08260015A (en) Pretreatment of molten iron
JPH07109507A (en) Method for pretreating molten iron
JPS6212301B2 (en)
JPH04131312A (en) Production of molten iron
JPH04254510A (en) Method for decarbon-refining molten chromium-containing steel
JPH0762413A (en) Production of stainless steel
SU726182A1 (en) Method of steel desulfurizing
JPH08260025A (en) Production of extra low-sulfur and extra low oxygen steel
JPH0841519A (en) Steelmaking method