JP2004014559A - Circuit board, multilayered circuit board, and method of manufacturing the same - Google Patents

Circuit board, multilayered circuit board, and method of manufacturing the same Download PDF

Info

Publication number
JP2004014559A
JP2004014559A JP2002161659A JP2002161659A JP2004014559A JP 2004014559 A JP2004014559 A JP 2004014559A JP 2002161659 A JP2002161659 A JP 2002161659A JP 2002161659 A JP2002161659 A JP 2002161659A JP 2004014559 A JP2004014559 A JP 2004014559A
Authority
JP
Japan
Prior art keywords
conductive
circuit
circuit board
hole
conductive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002161659A
Other languages
Japanese (ja)
Inventor
Masahiro Okamoto
岡本 誠裕
Satoru Nakao
中尾 知
Shoji Ito
伊藤 彰二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2002161659A priority Critical patent/JP2004014559A/en
Publication of JP2004014559A publication Critical patent/JP2004014559A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make an electrical connection between a conductive circuit and a conductive resin low resistive and stable in a circuit board where a conductive circuit is provided on both front and rear surface of an insulative substrate and a conductive circuit is connected by a conductive resin via through holes provided in the insulative substrate. <P>SOLUTION: Openings are provided in the conductive circuit provided on the insulative substrate, the conductive resin is filled in the openings and the through holes, a contact area between the conductive circuit and the conductive resin is increased to ensure the electrical connection between the both, and a lower resistance is achieved. A gear shape, a saw tooth shape, a flower petal shape, a circular shape, or an S-letter shape can be used for the shape of the openings. To provide the openings in the conductive circuit, they can be simultaneously formed with the through holes by etching by using a resist pattern. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品を実装する回路基板またはパッケージ基板に関し、特に基板に形成した回路の電気特性を向上させるための基板構造及びその製造方法に関するものである。
【0002】
【従来の技術】
従来より、電子機器の軽薄短小化、半導体チップや部品の小型化および端子の狭ピッチ化に連動して、プリント回路基板にも実装面積の縮小や配線の精細化が進んでいる。同時に情報関連機器では信号周波数の広帯域化に対応して、部品間を連結する配線の短距離化が求められており、高密度、高性能を達成するための回路基板の多層化は必要不可欠の技術となっている。この多層回路基板では、従来の平面回路にはなかった層間を電気的に接続する回路形成がキーテクノロジーとなってきている。多層回路基板の第一ステップである両面配線基板は、絶縁基材に貫通孔をあけ、孔の壁面に沿って導体をメッキして表裏の配線を接続している。例えば、ビルドアップ多層基板においても回路層間の絶縁層の一部をレーザ等で除去し、メッキで接続する方法を用いている(福田著:「はじめてのエレクトロニクス実装技術」工業調査会 p.71参照)。メッキを用いた回路配線の接続は、微細な回路を低く安定した接続抵抗で連結できる利点を持つが、工程が複雑で工数も多いためコストが高くなり、多層基板の用途を制限する要因となっていた。
【0003】
近年、メッキに変わる安価な層間接続方法として導電性樹脂(導電ペースト)を用いた多層基板が実用化され、多層基板の用途も急速に拡大し始めた(例えば、白石ら:松下テクニカルジャーナル、Vol.45,No.4、p.401(1999)あるいは福岡ら:電子材料、Vol.34,No.16、p.95(1995)参照)。この技術では、絶縁樹脂板を出発材料としてレーザを用いて貫通孔(ビアホール)を開口した後、印刷法によって導電性樹脂を貫通孔内に充填し、表裏接続回路としている。所望の箇所に導電性樹脂による接続部が設けられた絶縁基材を、銅箔で挟んで圧着することをくり返し、多層接続導電回路を構成している。
【0004】
図16は従来の多層回路基板の構造を示す図であり、図16(a)は平面図を、図16(b)は線G−G’に沿った断面図を示している。
図に示すように樹脂フィルムからなる絶縁性基板101上に銅箔などからなる導電回路102が形成されており、導電回路102をとおして絶縁性基板101に貫通孔104が設けられている。貫通孔104内には導電性樹脂105が充填されている。図16(b)に示すようにこのような基板が貫通孔104を一致させて複数枚重ね合わされて多層回路基板100が構成されている。この結果、導電性樹脂中に含まれる銅や銀などの導電性粒子を介して導電回路102と導電性樹脂105が電気的に接続されている。
【0005】
図17に上記のような従来の多層回路基板の製造工程の一例を示す。
絶縁性基板101を出発材料とし(工程(a)参照)、所定位置に貫通孔104を窄孔する(工程(b)参照 )。次に貫通孔104内に導電性樹脂105を充填する(工程(c)参照 )。
次に基板の両面にたとえば銅箔2aを貼り付ける(工程(d)参照 )。次いで銅箔2aの表面にフォトレジスト膜を形成し、所定の回路パターンを露光・現像した後フォトレジスト膜をマスクとしてケミカルエッチングを行って、所定の導電回路102を形成する
次いでこのようにして得た所定の導電回路を有する回路基板110,114を必要枚数と銅箔102aを上下に重ね合わせて熱圧着する(工程(f)参照 )。このようにして図17(g)に示す多層回路基板100を得ていた。
【0006】
図18には従来の多層回路基板200を得るための別の一例を示す。
この方法では工程(a)から工程(d)では片面に銅箔を貼った片面銅貼り基板を出発材料として使用して、図7と同様な手順で回路基板111を製作し、一方工程(e)から工程(h)では両面に銅箔2a,2aを貼った両面銅貼り基板を出発材料として使用し、やはり図17と同様の手順で回路基板114を作成し、工程(i)で熱圧着し図18(j)に示すような回路基板200を得ていた。
【0007】
また、これ以外にも絶縁層として感光性樹脂を用いて露光・現像を行うことにより貫通孔を形成したり、ケミカルエッチング(町田:表面実装技術 Vol.17 No.1 p.31(1997))あるいはドライエッチングによって樹脂を除去する方法も提案されている。導電性樹脂を用いた多層回路基板の製造方法は、安価である反面、導電性樹脂部分の電気抵抗が高く、銅箔を使用した導電回路との接触抵抗が安定しない等のいくつかの欠点もあるが、それらも徐々に克服されつつある。
【0008】
【発明が解決しようとする課題】
しかしながら、マルチチップモジュールなどベアチップを実装する基板では配線の高密度化に伴って1層の回路基板の厚さも減少する傾向にある。層厚の減少によって基板として使用する絶縁フィルム単体では基板の撓みや皺が発生し易くなり、寸法安定性が確保しにくくなっている。
層間接続に導電性樹脂を用いる多層基板の製造方法においては、素材として銅箔貼りフィルムを出発材料とすることにより、フィルムの剛性が高まり高い寸法精度を容易に維持できるが、なお次のような欠点が残っている。
【0009】
図19(貫通孔型)は従来の貫通孔型回路基板110の平面配置図(a)と線H−H’に沿った断面図(b)である。図に示すように樹脂フィルムからなる絶縁性基板101上に銅箔などからなる導電回路102が形成されており、導電回路102をとおして絶縁性基板101に貫通孔104が設けられている。貫通孔104内には導電性樹脂105が充填されており、導電性樹脂105中に含まれる銅や銀などの導電性粒子を介して導電回路102と導電性樹脂105が電気的に接続されている。
図19(b)に示すように、導電回路102と導電性樹脂105との接続は、厚さ(h)とする導電回路102の内面で行われているので点接触に近く、貫通孔が小さくしかも導電回路が薄くなるに従って導電回路102と導電性樹脂105との接触面積が小さくなり、両者の接触抵抗は急激に増加する。また、冷熱サイクルなどによって繰返し応力が発生すると上記接触部や導電性樹脂内の接触抵抗が上昇するため、多層回路を形成した時に良好な電気伝導特性が得られなくなる問題があった。特に回路の微細化に伴って導電回路の厚さが薄くなるほど、導電回路と導電性樹脂との接触面積は減少し、接触抵抗の増大は顕著になる。
【0010】
上記の欠点を補い、導電回路と導電性樹脂との接触抵抗を安定して低く維持するために、図20(蓋メッキ型)に示すように、貫通孔104内に導電性樹脂105を充填した後、導電回路102及び貫通孔104内の導電性樹脂105の表面にメッキ層114を形成して、導電回路102と導電性樹脂105との接触面積を確保した回路基板111とする方法が提案されている。この手段によれば導電回路と導電性樹脂との接触面積を広げることができるため、接触抵抗は充分低く抑えることができるが、メッキ処理によるコストアップは避けられず、導電性樹脂による層間接続法の利点は失われてしまう。
【0011】
メッキを用いずに同様の構造を達成するために、導電回路を有する基板に表裏接続回路用の貫通孔をあける際に、導電回路を残して基板のみを貫通させ、形成された有蓋貫通孔に導電性樹脂を充填する方法が考えられている。図21(有蓋貫通孔型)はこの方法によって得られた回路基板112の断面図を示している。この方法では導電性樹脂105と導電回路102との電気的接続は良好であるものの、有蓋貫通孔への導電性樹脂の充填に難点がある。貫通孔の場合の導電性樹脂の充填は、孔の片方から導電性樹脂を印刷、注入することにより容易に充填が達成されるが、有蓋貫通孔の場合には導電性樹脂の注入の過程で孔底に残った空気が排出されず、気泡として残留して導電性樹脂の充填が不完全となり易い。真空中で印刷することにより気泡を残留させることなく孔に充填することのできる装置も開発されているが、装置コスト、加工工数とも極端に増大してしまい、本工程を適用した製品は限定された分野にしか用いることができない。
【0012】
一方、導電回路の表面を含み、貫通孔の開口部よりも一回り大きな範囲に導電性樹脂を印刷することによっても、導電性樹脂と導電回路との接触面積を拡大して接触抵抗を低く安定化させることができる。図22(ランド積層型)はこの方法によって作られた回路基板113の断面を示している。図に示すようにこの回路基板113では、貫通孔104を含む導電回路102上に導電性樹脂からなるランド116が形成されており、導電回路102の表面でも導電回路102と導電性樹脂105とが接触しているので、接触面積は図19(b)の貫通孔型に比較して接触面積は増加している。この方法によれば絶縁性基板101に形成した貫通孔104に印刷法を用いて導電性樹脂105を充填する際、同時に貫通孔周りに導電性樹脂からなるランド116をパターン形成できるため、低コストで回路基板を得ることができる。
【0013】
しかしながら、上記構造においては一層の回路基板の小型化・高密度化を目的とした回路ピッチの微細化や導体間の薄層化に対して障害が起こる恐れがある。すなわち、貫通孔周辺のランド部において導電回路102上に重ねて導電性樹脂を印刷するため、ランド厚さが極端に増大し基板の薄型化を妨げたり、多層積層後の基板全体の平坦性を損ない易くなる。また、導電性樹脂の印刷時にランドの中心と貫通孔の位置を整合させる必要があるため、印刷装置のアライメント精度よりランドの寸法を小さくできず、回路の微細化が制約されることとなる。したがって多層積層基板の層間の接続に導電性樹脂を使用し、低コストで優れた電気特性を維持しつつ高密度化に対応するためには層間接続方法のさらなる改良が望まれている。
【0014】
【課題を解決するための手段】
上記の問題を解決するため本発明の回路基板は、絶縁性基板に貫通孔を有し、該貫通孔内に導電性樹脂が充填されており、該導電性樹脂と前記絶縁性基板の表面に形成された導電回路とを電気的に接続してなる回路基板であって、該導電回路の導体に平面形状が歯車型の開口を設けて該開口内に導電性樹脂を充填し、かつ該開口と前記絶縁性基板に設けた貫通孔とを重ね合わせて導電性樹脂を一体化することにより、該導電回路と導電性樹脂を電気的に接合してなる回路基板とした。
本発明の回路基板では、前記歯車型の開口に代えて環状、鋸歯型、花びら型、渦巻き型あるいはS字型の開口とすることも可能である。
回路基板をこのように構成することにより、特殊な装置を用いず工数の増大を最小限に留めた方法で、導電回路と導電性樹脂との接触面積を増大させて、接触抵抗を低位安定させ、良好な電気特性を有する回路基板とすることができる。
【0015】
本発明の多層回路基板は、上記の本発明の回路基板を、少なくとも1枚以上の積層してなる多層回路基板である。
各回路基板の導電回路と導電性樹脂との接触抵抗が低いので、多層に積層しても全体として接触抵抗が低く、良好な電気特性を有する多層回路基板とすることができる。
【0016】
また、本発明の回路基板の製造方法は、少なくとも一方の面に導電体膜を具備した絶縁性基板の導電体膜上にフォトレジスト膜を形成した後、環状、歯車型、鋸歯型、花びら型、渦巻き型もしくはS字型から選ばれた1種の開口パターンを有する所定の回路パターンを露光して現像処理し、得られたフォトレジスト膜パターンをマスクとして前記導電体膜をエッチングし、次いで、得られた導電体パターンをマスクとして基板の所定位置に貫通孔を設けた後、導電体パターン表面の開口と前記貫通孔内に導電性樹脂を充填して、導電性樹脂と導電体膜とを電気的に接続する製造方法を採用した。
【0017】
さらに、本発明の多層回路基板の製造方法は、上記の本発明の製造方法により得られた回路基板を、少なくとも1枚以上積層して接合する方法を採用した。
この方法によれば、特殊な装置を用いずに工数の増大を最小限に抑えて安価に得られた回路基板を使用し、通常の方法で積層するので多層回路基板も安価に得ることができる。
【0018】
【発明の実施の形態】
以下図面を使用して本発明をさらに詳細に説明する。
なお、以下の図においては構造を分かり易く説明するため、縮尺は必ずしも正確ではない。
(第1の実施形態)
図1は、本発明の回路基板の貫通孔部分を示す部分平面図である。また図2は図1に示す回路基板の線A−A’に沿った断面図である。
図1および図2に示すように、本発明の回路基板10では、樹脂等からなる絶縁性基板1に貫通孔4が設けてあり、絶縁性基板1の表面には銅箔等からなる所定のパターンの導電回路2が設けてある。導電回路2の表面には開口3が形成されており、本実施形態においては開口3の中心は貫通孔4の中心と同じに形成されている。また、開口3は貫通孔4と同心の円周に沿って形成されている。貫通孔4の内部と開口3の内部には、銅ペースト等の導電性樹脂5が充填されており、導電性樹脂5と導電回路2とは電気的に接続されている。
このため導電回路2と導電性樹脂5との接触面積は、図19に示した従来の貫通孔型の回路基板の場合と比較して大幅に増加しており、導電回路2と導電性樹脂5との接触抵抗は低く、安定した電気特性を示す回路基板となる。
【0019】
次に、図1及び図2に示すような本発明の回路基板の製造方法の一例について説明する。図3から図5は本発明の回路基板の製造方法の一例を示す工程断面図である。この例ではポリイミドフィルムからなる絶縁性基板1の片面に導電回路2となる銅箔2aを貼り付けた片面銅貼り基板( Copper Clad Laminate:CCL)6に接着剤7を貼り合わせた積層フィルム8を出発材料としている(図3(a)参照)。CCLにはポリイミド等の絶縁性樹脂と金属導体箔とを接着剤を用いて接合したタイプ、銅箔上にポリイミドの前駆体を塗布した後加熱焼成したタイプや、ポリイミドフィルム上に金属膜を蒸着したタイプ、または蒸着膜をシード層としてメッキにより銅を成長させるタイプ等があり、本発明ではこれらのCCLの銅と反対側に接着剤層が存在する張り合わせフィルムの他、全層が熱可塑性ポリイミドからなるCCLも出発材料として適用できる。また、熱可塑性挙動を示す液晶ポリマーを絶縁層として用いたCCLも出発材料として適用可能である。
【0020】
次に、積層フィルム8の導電回路側の表面に、ロールラミネーターを用いてフォトレジストフィルム35を熱圧着する(図3(b)参照)。次いでフォトレジストフィルム35に所定形状の回路パターンを露光し、現像処理してレジストマスクを形成する(図3(c)参照)。この際フォトレジストフィルムには貫通孔部41と貫通孔部41に接続する開口3となるパターンも同時に形成しておく。
【0021】
次いで、レジストマスクを形成した基板を塩化第二鉄を主成分とするアルカリエッチャント中に浸漬させケミカルエッチングし、銅箔の不要部分をエッチング除去する(図3(d)参照)。
【0022】
塩化第二鉄を主成分とする酸性エッチャントを用いたケミカルエッチングにより、開口3と貫通孔4の位置の銅箔をエッチング除去して絶縁性基板1が露出した時点で残留したフォトレジスト膜を溶解除去した後、たとえばレーザ照射を利用して絶縁性基板1及び接着剤7を貫通する貫通孔4を形成する。レーザ照射は貫通孔4の位置のみ照射するようにビーム走査を制御する(図3(e)参照)。ここで図3(e−2)は平面図を、図3(e−1)は(e−2)の線B−B’に沿った断面図を示す。
樹脂製の絶縁性基板の穿孔には、レーザ照射を利用する以外にもプラズマエッチングや適当な薬剤を用いた化学エッチングを利用することもできる。エッチング終了後、必要に応じて貫通孔内を化学処理によってクリーニングする。
【0023】
最後に、開口3と貫通孔4とを形成した積層フィルム8の導体回路2側に導電性樹脂5を印刷機を利用して塗布し、導体回路2の表面に直接スキージを接触させて、導電性樹脂5を開口3と貫通孔4に充填する(図4(f)参照)。刷版を用いずに金属箔上に直接導電性樹脂を塗布し、スキージを用いて充填することにより凹部である開口3と貫通孔4ににのみ導電性樹脂5が残留する。この時、開口3と貫通孔4との導電性樹脂5は連続しており、後の焼成によって一体化する。
【0024】
導電性樹脂はエポキシ系樹脂を主成分とするバインダーと平均粒径5μm程度の金属粒をフィラーとする、粘度50〜150Pa・sの加熱硬化型導電ペーストを使用する。金属粒としては銀粒子や銅粒子あるいは銅粒子をフィラーとし、銅粒子の表面を銀で被覆した粒子が利用できる。また、溶媒成分が少なく乾燥及び硬化時に体積減少が僅かであれば樹脂の種類は問わない。
【0025】
導電性樹脂を乾燥させた後、再び回路パターン用のフォトレジスト膜を形成し、導電回路用のパターンを露光・現像して銅箔をエッチングして所定パターンの導電回路2を形成すれば、図4(g)に示すような回路基板20が得られる。ここで図4(g−2)は平面配置図を示し、図4(g−1)は図4(g−2)の線C−C’に沿った断面図である。
なお、回路基板20は図1及び図2に示した回路基板10において、導体回路表面に貫通孔に接続しない導電回路2’を設けたものである。
勿論この場合に図4(h)に示すように、2個の導電回路2,2共に貫通孔4,4に接続するものであっても良い。ここで、図4(h−2)は平面図を、図4(h−1)は(h−2)の線D−D’に沿った断面図を示す。
【0026】
(第2の実施形態)
多層回路基板を製造する場合には、上記のようにして得られた本発明の回路基板を少なくとも1枚使用して、所望の電気回路を有する複数の回路基板を重ね合わせ、加熱圧着することにより層間を接続すると同時に、導電性樹脂を硬化させて層間の電気的接続を完全なものとすることにより得られる。
たとえば、図5(i)は上記第1の実施形態で得られた回路基板20を1枚と、貫通孔を2個有する別の回路基板21を1枚と、さらに銅箔2aを1枚とを貫通孔の一つを位置合わせして重ね合わせ、加熱圧着することにより図5(j−1)に示すような3層の導電回路を有する多層回路基板50とすることができる。図5(j−2)はこのようにして得られた多層回路基板の平面図であって、2個の貫通孔4、4の周囲には、歯車型の開口3,3が設けられており、これらの開口3,3と貫通孔4,4内の導電性樹脂5,5とは、それぞれ電気的に一体接合されている。
【0027】
(第3の実施形態)
図6は貫通孔4の周囲に設けられた開口3の別の実施形態を示す部分平面図である。この回路基板31では、開口3は貫通孔4を中心にして星型に設けられている。この実施形態では星型の開口3を第1の実施形態と同様にして形成することにより、導電回路2と導電性樹脂5との接触面積が増加しているので、両者の接触抵抗を十分低くすることが可能である。
【0028】
(第4の実施形態)
図7は貫通孔4の周囲に設けられた開口3のさらに他の実施形態を示す部分平面図である。この回路基板32では、開口3は貫通孔4を中心にして花びら型に設けられている。この形状によっても導電回路2と導電性樹脂5との接触面積が増加しているので、両者の接触抵抗を十分低くすることが可能である。
【0029】
(第5の実施形態)
次に、3枚の回路基板を積層した多層回路基板の製造方法を説明する。
図8は両面銅貼り基板に貫通孔と開口を形成した回路基板31を1枚と、片面銅貼り基板に貫通孔と開口を形成した回路基板30を2枚使用して図8(a)のように重ね合わせて熱圧着し、図8(b)に示すような4面の導電回路2を有する3層の多層回路基板51としたものである。この多層回路基板51の少なくとも1面の導電回路には、開口3が形成されており、貫通孔4内の導電性樹脂5との接触面積が大きくなっているので、接触抵抗の低い多層回路基板とすることができる。
【0030】
(第6の実施形態)
次に、図9は両面銅貼り基板に貫通孔と開口を形成した回路基板31を1枚と、片面銅貼り基板に貫通孔と開口を形成した回路基板30,32を各1枚使用して図9(a)のように重ね合わせて熱圧着し、図9(b)に示すような4面の導電回路2を有する3層の多層回路基板52としたものである。このように重ね合わせる回路基板は必要に応じて任意の構造のものを使用することができ、使用する回路基板の少なくとも1面の導電回路に開口3を形成して導電性樹脂を充填しておけば、貫通孔4内の導電性樹脂5との接触面積が大きくなっているので、接触抵抗の低い多層回路基板とすることができる。
【0031】
(第7の実施形態)
また、図5(i)に示す第2の実施形態で、銅貼り回路基板20に下側に銅箔2aを重ね合わせる際に、銅箔の替わりに図10(a)に示すように離型フィルム36の表面にあらかじ銅箔からなる導電回路2を形成しておき、これを回路基板30,32と重ね合わせて熱圧着した後、離型フィルム36を剥離して図10(b)に示すような多層回路基板53を得る方法も利用できる。
【0032】
(第8の実施形態)
図11は、導電回路2の導体に一部が前記貫通孔と同じ位置にあり、かつ平面形状が環状の開口3を設け、該開口3の内に導電性樹脂5を充填し、かつ該開口3と前記貫通孔4とを重ね合わせて導電性樹脂5を一体化することにより、該導電回路2と導電性樹脂5を電気的に接合した回路基板33を示す。ここで図11(a)は平面図を、図11(b)は図11(a)の線F−F’に沿った断面図を示す。図に示すように開口3は半裁された環状をなしており、その中心部で貫通孔4に通じている。
回路基板をこのように構成しておけば、導電回路2と導電性樹脂5との接触面積が大きくなっているので、接触抵抗の低い回路基板とすることができる。
【0033】
図12は第8の実施形態における回路基板の製造方法の一例を示す断面工程図である。
出発材料は第1の実施形態の場合と同様にポリイミド等の絶縁性樹脂1の片面に銅箔2aを貼り付け、裏面には接着剤7を貼り付けた片面銅貼り基板を使用した積層フィルム8である(図12(a)参照)。
次に、積層フィルム8の導電回路側の表面に、ロールラミネーターを用いてフォトレジストフィルムを熱圧着し、フォトレジストフィルムに所定形状の回路パターンを露光し、現像処理してレジストマスクを形成する。この際フォトレジストフィルムには貫通孔4と貫通孔4に接続する開口3となるパターンも形成しておく。
次いで、レジストマスクを形成した基板を第二塩化鉄を主成分とするアルカリエッチャント中に浸漬させケミカルエッチングし、銅箔の不要部分をエッチング除去して導電回路2を形成する(図12(b)参照)。
【0034】
開口3と貫通孔4の位置の銅箔をエッチング除去して絶縁性基板1を露出させた後、貫通孔4の位置にたとえばレーザ照射を利用して絶縁性基板1及び接着剤7を貫通する貫通孔4を形成する。レーザ照射は貫通孔4の位置のみ照射するようにビーム走査を制御する(図12(c)参照)。
最後に、開口3と貫通孔4とに導電性樹脂5を印刷機を利用して塗布し、導体回路2の表面に直接スキージを接触させて導電性樹脂5を開口3と貫通孔4に充填して回路基板33を得る(図12(d)参照)。刷版を用いずに金属箔上に直接導電性樹脂を塗布し、スキージを用いて充填することにより凹部である開口3と貫通孔4にのみ導電性樹脂5が残留する。この時、開口3と貫通孔4との導電性樹脂5は連続しており、後の焼成によって一体化する。
【0035】
(第9の実施形態)
図13は上記第8に実施形態によって得られた回路基板を使用した、多層回路基板54の断面構造を示している。第8に実施形態によって得られた3枚の回路基板を、各回路基板の表面または内部に設けたアライメントマーク、基準穴もしくは回路パターン等利用して位置決めした後、重ね合わせて真空キュアプレス機またはキュアプレス機を用いて熱圧着することにより、多層回路基板54を得る。
多層回路基板をこのように構成しておけば、各導電回路2と導電性樹脂5との接触面積が大きくなっているので、接触抵抗の低い多層回路基板とすることができる。
【0036】
(第10の実施形態)
図14は導電回路2に設ける開口3の別の形態を示す平面図である。この第10の実施形態における回路基板34では、開口3は中心が貫通孔4と同一の渦巻き型となっている。したがって開口3中の導電性樹脂5は渦巻きの中心部で貫通孔4内の導電性樹脂5と一体結合することとなる。
回路基板をこのように構成しておけば、導電回路2と導電性樹脂5との接触面積が大きくなっているので、接触抵抗の低い回路基板とすることができる。
【0037】
(第11の実施形態)
図15は導電回路2に設ける開口3の他の形態を示す平面図である。この第11の実施形態における回路基板35では、開口3は中心が貫通孔4を通る逆S字型となっている。したがって開口3中の導電性樹脂5は逆S字型の中心部で貫通孔4内の導電性樹脂5と一体結合することとなる。
回路基板をこのように構成しておけば、導電回路2と導電性樹脂5との接触面積が大きくなっているので、接触抵抗の低い回路基板とすることができる。
【0038】
【実施例】
(実施例1)
図3から図5に示す第1及び第2の実施形態の製造工程に従って、図5(j)に示すような3層の導電回路を有する多層回路基板50を製造した。本実施例では絶縁性基板としてポリイミドフィルムを使用し、導電回路2には厚さ18μmの銅箔を使用した。ロールラミネータを使用して銅箔上に厚さ15μmのフォトレジストフィルムを熱圧着した。
次いで、パターンを露光・現像して貫通孔と開口のレジストマスクパターンを形成した。貫通孔の直径は100μm、開口の幅は10μm、長さは10μmとした。
【0039】
次に、塩化第二鉄を主成分とするエッチャントを用いて銅箔のケミカルエッチングを行った。エッチングにより銅箔に開口パターンをあけ、貫通孔部分にCOレーザを照射し、ポリイミド基板と接着剤を貫通させた。なお、本実施例では貫通孔の形成にCOレーザを用いたが、他のレーザ光源として例えばエキシマレーザやNd・YAGレーザを用いることもできる。
次に、貫通孔と開口を形成した基板の表面に銀ペーストを塗布し、銅箔表面に直接スキージを接触させて銀ペーストを貫通孔及び開口内に充填した。
【0040】
充填した銀ペーストを100℃のオーブン中で乾燥した後、レジストフィルムを圧着し、回路パターンを露光・現像した。再度塩化第二鉄溶液を主成分とするエッチャントを使用して銅箔をエッチングして導電回路を形成した後、レジストを剥離して図4(g)に示す構造の回路基板20を完成させた。
【0041】
次いで、同様の方法により図4(h)に示すような構造の回路基板21を作成し、1枚の回路基板21と99枚の回路基板20と銅箔2aを図5(i)に示すよう重ね合わせ、10〜50Kg/cmの加圧力を印荷しながら150〜250℃に加熱して熱圧着し、100個の貫通孔を直列に接続した構造を有する多層回路基板50’を作成して特性を評価した。
【0042】
(比較例)
層間接続部の特性を比較評価するために、同様に100個の貫通孔を直列に接続し、図16に示す従来の貫通孔型の構造を有する多層回路基板を作成した。
【0043】
本実施例及び比較例の多層基板の表面の導電回路と底面の導電回路間に直流電流を流した時の電気抵抗を比較したところ、本発明の多層基板では電気抵抗の変動値は±20%以内の範囲で一定値を示した。これに対して従来型構造の層基板では、電気抵抗の変動値は±200%にも達して不安定であり、電気抵抗の絶対値も本発明の場合に比較して1.5〜3倍も高かった。
さらに両基板を−20℃〜+60℃の温度サイクル試験に1000サイクル通した後、再び回路抵抗を測定した。
その結果、本発明の多層回路基板では5〜10%抵抗値が増加していたのに対して、従来構造の多層回路基板では10〜100%も抵抗値が増加していた。
以上の評価結果より、導電樹脂と導電回路との接触抵抗が回路全体の電気抵抗に大きく影響していることが確認された。
【0044】
【作用】
本発明の回路基板は、導電回路表面に開口を設け、この開口内に導電性樹脂を充填して導電回路と貫通孔内の導電性樹脂との接触面積を増大させることにより、接触抵抗を低くしたものである。
【0045】
【発明の効果】
本発明の回路基板によれば、薄い絶縁層厚を要求される回路基板においても導体厚さを増加させる必要はなく、導電性樹脂で構成される層間接続回路と絶縁性基板上の導電回路とを広い面積で接触させ、低抵抗で安定した層間接続を達成できるので、多層回路基板を構成した場合でも基板厚さを薄くすることができ、電子部品の軽薄短小化に寄与することができるようになる。
また、本発明の回路基板の製造方法によれば、従来の製造工程に比較して大幅な工程付加をする必要もなく、従来の材料や従来の装置を使用して容易に回路基板の薄型化が達成できる。また、導体ランド上に導電性樹脂を印刷するランド積層型に比較しても、導体厚さの増加がなく、絶縁層を薄くできると同時に印刷時のアライメント作業も不要となるので、製造工程が簡略化できる利点を有する。
【図面の簡単な説明】
【図1】本発明の回路基板の貫通孔部の一例を示す部分平面図である。
【図2】図1に示した本発明の回路基板の線A−A’に沿った断面図である。
【図3】本発明の回路基板の製造方法の一例を示す断面工程図である。
【図4】図3に続く断面工程図である。
【図5】図4に続く本発明の多層回路基板の製造方法の断面工程図である。
【図6】本発明の他の回路基板の貫通孔部の例を示す平面図である。
【図7】本発明のさらに別の回路基板の貫通孔部の例を示す平面図である。
【図8】本発明の多層回路基板の製造方法の一例を示す断面行程図である。
【図9】本発明の多層回路基板の他の製造方法の例を示す断面行程図である。
【図10】本発明の多層回路基板のさらに別の製造方法の例を示す断面行程図である。
【図11】本発明の回路基板の開口の他の例を示す図である。
【図12】図10に示す回路基板の製造方法の一例を示す断面工程図である。
【図13】図12の方法によって得られた回路基板を使用した多層回路基板の断面図である。
【図14】本発明の回路基板の開口の他の例を示す図である。
【図15】本発明の回路基板の開口のさらに別の例を示す図である。
【図16】従来の多層回路基板の構造を示す図である。
【図17】図16に示す従来の多層回路基板の製造方法を示す断面工程図である。
【図18】従来の多層回路基板の別の製造方法を示す断面工程図である。
【図19】従来の回路基板の貫通孔部分の構造を説明する図である。
【図20】従来の回路基板の別の構造を説明する図である。
【図21】従来の回路基板の他の構造を説明する図である。
【図22】従来の回路基板のさらに別の構造を説明する図である。
【符号の説明】
1,101・・・・・・絶縁性基板、2,102・・・・・・導電回路、3・・・・・・開口、4,104・・・・・・貫通孔、5,105・・・・・・導電性樹脂、6・・・・・・片面銅貼り基板、7・・・・・・接着剤、8・・・・・・積層フィルム、10,20,21,30,31,32,33,34,35,110,111,112,113・・・・・・回路基板、36・・・・・・離型フィルム、50,51,52,53,54,100,200・・・・・・多層回路基板、116・・・・・・ランド
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a circuit board or a package board on which electronic components are mounted, and more particularly to a board structure for improving electrical characteristics of a circuit formed on the board and a method for manufacturing the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in conjunction with the miniaturization of electronic devices, the miniaturization of semiconductor chips and components, and the narrowing of the pitch of terminals, the mounting area and wiring of printed circuit boards have been reduced. At the same time, information-related equipment is required to reduce the length of wiring connecting components in response to the broadening of signal frequencies, and multilayered circuit boards to achieve high density and high performance are indispensable. Technology. In this multilayer circuit board, formation of a circuit for electrically connecting layers, which has not been available in a conventional planar circuit, has become a key technology. In the double-sided wiring board, which is the first step of the multilayer circuit board, a through hole is made in the insulating base material, and a conductor is plated along the wall surface of the hole to connect the wiring on the front and back. For example, even in a build-up multilayer substrate, a method is used in which a part of an insulating layer between circuit layers is removed with a laser or the like and connected by plating (Fukuda: "Introduction to Electronics Packaging Technology", Industrial Research Committee, p. 71). ). The connection of circuit wiring using plating has the advantage that fine circuits can be connected with low and stable connection resistance, but the cost is high because the process is complicated and the number of steps is large, and it is a factor that limits the use of multi-layer boards I was
[0003]
In recent years, a multilayer substrate using a conductive resin (conductive paste) has been put to practical use as an inexpensive interlayer connection method instead of plating, and the use of the multilayer substrate has begun to expand rapidly (for example, Shiraishi et al .: Matsushita Technical Journal, Vol. 45, No. 4, p. 401 (1999) or Fukuoka et al .: Electronic Materials, Vol. 34, No. 16, p. 95 (1995)). In this technique, a through hole (via hole) is opened by using a laser with an insulating resin plate as a starting material, and then the conductive resin is filled in the through hole by a printing method to form a front / back connection circuit. A multilayer connection conductive circuit is formed by repeatedly pressing an insulating base material provided with a connection portion made of a conductive resin at a desired location by sandwiching the same between copper foils.
[0004]
16A and 16B are views showing the structure of a conventional multilayer circuit board. FIG. 16A is a plan view, and FIG. 16B is a cross-sectional view along line GG ′.
As shown in the figure, a conductive circuit 102 made of copper foil or the like is formed on an insulating substrate 101 made of a resin film, and a through hole 104 is provided in the insulating substrate 101 through the conductive circuit 102. The conductive resin 105 is filled in the through hole 104. As shown in FIG. 16B, a plurality of such substrates are overlapped with the through-holes 104 aligned to form a multilayer circuit board 100. As a result, the conductive circuit 102 and the conductive resin 105 are electrically connected via conductive particles such as copper and silver contained in the conductive resin.
[0005]
FIG. 17 shows an example of a manufacturing process of a conventional multilayer circuit board as described above.
Using the insulating substrate 101 as a starting material (see step (a)), a through-hole 104 is formed in a predetermined position (see step (b)). Next, the conductive resin 105 is filled in the through hole 104 (see step (c)).
Next, for example, a copper foil 2a is attached to both surfaces of the substrate (see step (d)). Next, a photoresist film is formed on the surface of the copper foil 2a, and a predetermined circuit pattern is exposed and developed, and then a chemical etching is performed using the photoresist film as a mask to form a predetermined conductive circuit 102.
Next, the required number of the circuit boards 110 and 114 having the predetermined conductive circuits thus obtained and the copper foil 102a are vertically stacked and thermocompression-bonded (see step (f)). Thus, the multilayer circuit board 100 shown in FIG. 17G was obtained.
[0006]
FIG. 18 shows another example for obtaining a conventional multilayer circuit board 200.
In this method, in steps (a) to (d), a circuit board 111 is manufactured in the same procedure as in FIG. ) To step (h), using a double-sided copper-clad substrate having copper foils 2a, 2a bonded on both sides as a starting material, again forming a circuit board 114 in the same procedure as in FIG. 17, and performing thermocompression bonding in step (i). Then, a circuit board 200 as shown in FIG.
[0007]
In addition, a through hole is formed by performing exposure and development using a photosensitive resin as an insulating layer, and chemical etching (Machida: Surface Mount Technology Vol. 17 No. 1 p. 31 (1997)) Alternatively, a method of removing the resin by dry etching has been proposed. The method of manufacturing a multilayer circuit board using a conductive resin is inexpensive, but also has some disadvantages such as a high electric resistance of a conductive resin portion and an unstable contact resistance with a conductive circuit using a copper foil. Yes, but they are gradually being overcome.
[0008]
[Problems to be solved by the invention]
However, on a substrate on which a bare chip is mounted, such as a multi-chip module, the thickness of a single-layer circuit board tends to decrease as the wiring density increases. Due to the decrease in the layer thickness, bending or wrinkling of the substrate is likely to occur in the insulating film used alone as the substrate, and it is difficult to secure dimensional stability.
In a method for manufacturing a multilayer substrate using a conductive resin for interlayer connection, by using a copper foil-laminated film as a starting material, the rigidity of the film is increased, and high dimensional accuracy can be easily maintained. The disadvantages remain.
[0009]
FIG. 19 (through-hole type) is a plan view (a) of a conventional through-hole type circuit board 110 and a cross-sectional view (b) along line HH ′. As shown in the figure, a conductive circuit 102 made of copper foil or the like is formed on an insulating substrate 101 made of a resin film, and a through hole 104 is provided in the insulating substrate 101 through the conductive circuit 102. The through-hole 104 is filled with a conductive resin 105, and the conductive circuit 102 and the conductive resin 105 are electrically connected to each other through conductive particles such as copper and silver contained in the conductive resin 105. I have.
As shown in FIG. 19B, the connection between the conductive circuit 102 and the conductive resin 105 is performed on the inner surface of the conductive circuit 102 having a thickness (h), so that the connection is close to a point contact and the through hole is small. In addition, as the conductive circuit becomes thinner, the contact area between the conductive circuit 102 and the conductive resin 105 becomes smaller, and the contact resistance between the two increases rapidly. Further, when repeated stress is generated due to a cooling / heating cycle or the like, the contact resistance in the above-mentioned contact portion or the conductive resin increases, so that there is a problem that good electric conduction characteristics cannot be obtained when a multilayer circuit is formed. In particular, as the thickness of the conductive circuit decreases with the miniaturization of the circuit, the contact area between the conductive circuit and the conductive resin decreases, and the contact resistance increases significantly.
[0010]
In order to compensate for the above drawbacks and stably maintain the contact resistance between the conductive circuit and the conductive resin low, as shown in FIG. 20 (lid plating type), the conductive resin 105 was filled in the through hole 104. Thereafter, a method has been proposed in which a plating layer 114 is formed on the surfaces of the conductive circuit 105 and the conductive resin 105 in the through holes 104 to form a circuit board 111 in which a contact area between the conductive circuit 102 and the conductive resin 105 is ensured. ing. According to this means, the contact area between the conductive circuit and the conductive resin can be increased, so that the contact resistance can be suppressed sufficiently. However, an increase in cost due to the plating process is unavoidable, and the interlayer connection method using the conductive resin is required. The advantage of is lost.
[0011]
In order to achieve a similar structure without using plating, when drilling a through hole for a front and back connection circuit in a substrate having a conductive circuit, let only the substrate penetrate leaving the conductive circuit, and form a covered through hole A method of filling a conductive resin has been considered. FIG. 21 (covered through-hole type) shows a cross-sectional view of the circuit board 112 obtained by this method. In this method, although the electrical connection between the conductive resin 105 and the conductive circuit 102 is good, there is a difficulty in filling the covered through-hole with the conductive resin. Filling of the conductive resin in the case of the through hole is easily achieved by printing and injecting the conductive resin from one side of the hole, but in the case of the covered through hole, the filling of the conductive resin is performed in the process of injecting the conductive resin. The air remaining at the bottom of the hole is not discharged, remains as air bubbles, and the filling of the conductive resin tends to be incomplete. Devices have been developed that can fill holes without leaving bubbles by printing in a vacuum, but equipment costs and processing man-hours are extremely increased, and products to which this process is applied are limited. It can be used only in the fields where
[0012]
On the other hand, by printing conductive resin on the area slightly larger than the opening of the through hole, including the surface of the conductive circuit, the contact area between the conductive resin and the conductive circuit is enlarged, and the contact resistance is low and stable. Can be changed. FIG. 22 (land laminated type) shows a cross section of a circuit board 113 produced by this method. As shown in the figure, in the circuit board 113, a land 116 made of a conductive resin is formed on the conductive circuit 102 including the through hole 104, and the conductive circuit 102 and the conductive resin 105 are also formed on the surface of the conductive circuit 102. Since they are in contact, the contact area is larger than that of the through-hole type shown in FIG. 19B. According to this method, when the conductive resin 105 is filled into the through-hole 104 formed in the insulating substrate 101 by using a printing method, a land 116 made of the conductive resin can be simultaneously patterned around the through-hole. Thus, a circuit board can be obtained.
[0013]
However, in the above-described structure, there is a possibility that a problem may occur with respect to miniaturization of a circuit pitch and thinning between conductors for the purpose of downsizing and increasing the density of a single circuit board. That is, since the conductive resin is printed on the conductive circuit 102 in the land portion around the through hole, the land thickness is extremely increased, and the thinning of the substrate is hindered. It is easy to lose. Further, since the center of the land and the position of the through hole need to be aligned when printing the conductive resin, the land size cannot be made smaller than the alignment accuracy of the printing apparatus, and the miniaturization of the circuit is restricted. Therefore, further improvement of the interlayer connection method is desired in order to use a conductive resin for the connection between the layers of the multilayer laminated substrate and to cope with high density while maintaining excellent electrical characteristics at low cost.
[0014]
[Means for Solving the Problems]
In order to solve the above problem, the circuit board of the present invention has a through hole in the insulating substrate, the through hole is filled with a conductive resin, the conductive resin and the surface of the insulating substrate A circuit board electrically connected to a formed conductive circuit, wherein a conductor of the conductive circuit is provided with a gear-shaped opening in a plane shape, the opening is filled with a conductive resin, and the opening is And a through-hole provided in the insulating substrate, and the conductive resin was integrated to form a circuit board in which the conductive circuit and the conductive resin were electrically joined.
In the circuit board of the present invention, an annular, saw-tooth, petal, spiral or S-shaped opening may be used instead of the gear-shaped opening.
By configuring the circuit board in this way, the contact area between the conductive circuit and the conductive resin is increased in a method that minimizes the increase in man-hours without using special equipment, and stabilizes the contact resistance at a low level. And a circuit board having good electrical characteristics.
[0015]
The multilayer circuit board of the present invention is a multilayer circuit board formed by laminating at least one or more circuit boards of the present invention.
Since the contact resistance between the conductive circuit of each circuit board and the conductive resin is low, a multilayer circuit board having low contact resistance as a whole and excellent electric characteristics can be obtained even when laminated in multiple layers.
[0016]
The method of manufacturing a circuit board according to the present invention may further include forming a photoresist film on a conductor film of an insulating substrate having a conductor film on at least one side, and then forming a ring, gear, sawtooth, or petal. A predetermined circuit pattern having one kind of opening pattern selected from a spiral type or an S-shaped type is exposed and developed, and the conductive film is etched using the obtained photoresist film pattern as a mask, After forming a through hole at a predetermined position on the substrate using the obtained conductor pattern as a mask, an opening on the surface of the conductor pattern and the inside of the through hole are filled with a conductive resin, and the conductive resin and the conductor film are formed. An electrical connection manufacturing method was adopted.
[0017]
Further, the method of manufacturing a multilayer circuit board of the present invention employs a method of laminating and joining at least one or more circuit boards obtained by the above-described manufacturing method of the present invention.
According to this method, an inexpensive circuit board is used by minimizing an increase in man-hours without using a special device, and a multilayer circuit board can be obtained at a low cost because the circuit board is laminated by a normal method. .
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings.
In the following drawings, the scale is not always accurate for easy understanding of the structure.
(1st Embodiment)
FIG. 1 is a partial plan view showing a through-hole portion of a circuit board of the present invention. FIG. 2 is a cross-sectional view of the circuit board shown in FIG. 1 along the line AA '.
As shown in FIGS. 1 and 2, in a circuit board 10 of the present invention, a through hole 4 is provided in an insulating substrate 1 made of resin or the like, and a predetermined surface made of copper foil or the like is formed on the surface of the insulating substrate 1. A conductive circuit 2 of a pattern is provided. An opening 3 is formed on the surface of the conductive circuit 2. In the present embodiment, the center of the opening 3 is formed to be the same as the center of the through hole 4. The opening 3 is formed along a circumference concentric with the through hole 4. The inside of the through hole 4 and the inside of the opening 3 are filled with a conductive resin 5 such as a copper paste, and the conductive resin 5 and the conductive circuit 2 are electrically connected.
Therefore, the contact area between the conductive circuit 2 and the conductive resin 5 is greatly increased as compared with the case of the conventional through-hole type circuit board shown in FIG. The contact resistance is low, and the circuit board exhibits stable electric characteristics.
[0019]
Next, an example of a method for manufacturing a circuit board of the present invention as shown in FIGS. 1 and 2 will be described. 3 to 5 are process sectional views showing an example of the method for manufacturing a circuit board according to the present invention. In this example, a laminated film 8 in which an adhesive 7 is adhered to a single-sided copper-clad substrate (Copper Clad Laminate: CCL) 6 in which a copper foil 2a serving as a conductive circuit 2 is attached to one surface of an insulating substrate 1 made of a polyimide film. It is used as a starting material (see FIG. 3A). For CCL, a type in which an insulating resin such as polyimide and a metal conductor foil are bonded using an adhesive, a type in which a polyimide precursor is applied on a copper foil and then baked, or a metal film is deposited on a polyimide film Type, or a type in which copper is grown by plating using a vapor-deposited film as a seed layer. In the present invention, in addition to a laminated film in which an adhesive layer is present on the opposite side of copper of CCL, all layers are made of thermoplastic polyimide. Can also be applied as starting material. Also, CCL using a liquid crystal polymer exhibiting a thermoplastic behavior as an insulating layer can be applied as a starting material.
[0020]
Next, a photoresist film 35 is thermocompression-bonded to the surface on the conductive circuit side of the laminated film 8 using a roll laminator (see FIG. 3B). Next, a circuit pattern having a predetermined shape is exposed on the photoresist film 35 and developed to form a resist mask (see FIG. 3C). At this time, a pattern to be the through hole 41 and the opening 3 connected to the through hole 41 is also formed in the photoresist film at the same time.
[0021]
Next, the substrate on which the resist mask is formed is immersed in an alkaline etchant containing ferric chloride as a main component and subjected to chemical etching to remove unnecessary portions of the copper foil by etching (see FIG. 3D).
[0022]
The copper foil at the positions of the openings 3 and the through holes 4 is removed by chemical etching using an acid etchant containing ferric chloride as a main component, and the photoresist film remaining when the insulating substrate 1 is exposed is dissolved. After the removal, a through hole 4 penetrating through the insulating substrate 1 and the adhesive 7 is formed using, for example, laser irradiation. Beam scanning is controlled so that laser irradiation is performed only at the position of the through hole 4 (see FIG. 3E). Here, FIG. 3E-2 is a plan view, and FIG. 3E-1 is a cross-sectional view taken along line BB ′ of FIG. 3E-2.
For the perforation of the resinous insulating substrate, plasma etching or chemical etching using an appropriate chemical can be used in addition to using laser irradiation. After completion of the etching, the inside of the through hole is cleaned by a chemical treatment as necessary.
[0023]
Finally, a conductive resin 5 is applied using a printing machine to the conductive circuit 2 side of the laminated film 8 having the opening 3 and the through hole 4 formed therein, and a squeegee is brought into direct contact with the surface of the conductive circuit 2 to form a conductive film. The opening 3 and the through hole 4 are filled with the conductive resin 5 (see FIG. 4F). By applying a conductive resin directly on the metal foil without using a printing plate and filling it with a squeegee, the conductive resin 5 remains only in the openings 3 and the through holes 4 which are concave portions. At this time, the conductive resin 5 in the opening 3 and the through hole 4 is continuous, and is integrated by baking later.
[0024]
As the conductive resin, a heat-curable conductive paste having a viscosity of 50 to 150 Pa · s using a binder containing an epoxy resin as a main component and metal particles having an average particle size of about 5 μm as a filler is used. As the metal particles, silver particles, copper particles or particles in which copper particles are used as a filler and the surfaces of the copper particles are coated with silver can be used. The type of the resin is not limited as long as the solvent component is small and the volume decrease during drying and curing is small.
[0025]
After the conductive resin is dried, a photoresist film for a circuit pattern is formed again, the pattern for the conductive circuit is exposed and developed, and the copper foil is etched to form a conductive circuit 2 having a predetermined pattern. A circuit board 20 as shown in FIG. 4 (g) is obtained. Here, FIG. 4 (g-2) shows a plan layout view, and FIG. 4 (g-1) is a cross-sectional view along line CC 'of FIG. 4 (g-2).
The circuit board 20 is the same as the circuit board 10 shown in FIGS. 1 and 2 except that a conductive circuit 2 ′ that is not connected to the through hole is provided on the surface of the conductive circuit.
Of course, in this case, as shown in FIG. 4H, the two conductive circuits 2 may be connected to the through holes 4. Here, FIG. 4H-2 is a plan view, and FIG. 4H-1 is a cross-sectional view taken along line DD ′ of FIG. 4H-2.
[0026]
(Second embodiment)
In the case of manufacturing a multilayer circuit board, by using at least one circuit board of the present invention obtained as described above, a plurality of circuit boards having a desired electric circuit are superimposed, and heated and pressed. At the same time as connecting the layers, the conductive resin is cured to complete the electrical connection between the layers.
For example, FIG. 5 (i) shows one circuit board 20 obtained in the first embodiment, another circuit board 21 having two through holes, and one copper foil 2a. By overlapping one of the through-holes and aligning one of the through-holes, followed by heat-pressing, a multilayer circuit board 50 having three conductive circuits as shown in FIG. 5 (j-1) can be obtained. FIG. 5 (j-2) is a plan view of the multilayer circuit board obtained in this manner, and gear-shaped openings 3, 3 are provided around two through holes 4, 4. The openings 3 and 3 and the conductive resins 5 and 5 in the through holes 4 and 4 are electrically integrally joined.
[0027]
(Third embodiment)
FIG. 6 is a partial plan view showing another embodiment of the opening 3 provided around the through hole 4. In this circuit board 31, the opening 3 is provided in a star shape with the through hole 4 as the center. In this embodiment, the contact area between the conductive circuit 2 and the conductive resin 5 is increased by forming the star-shaped opening 3 in the same manner as in the first embodiment. It is possible to do.
[0028]
(Fourth embodiment)
FIG. 7 is a partial plan view showing still another embodiment of the opening 3 provided around the through hole 4. In the circuit board 32, the opening 3 is provided in a petal shape with the through hole 4 as a center. This shape also increases the contact area between the conductive circuit 2 and the conductive resin 5, so that the contact resistance between the two can be sufficiently reduced.
[0029]
(Fifth embodiment)
Next, a method of manufacturing a multilayer circuit board in which three circuit boards are stacked will be described.
FIG. 8 shows one circuit board 31 in which a through-hole and an opening are formed in a double-sided copper-clad board, and two circuit boards 30 in which a through-hole and an opening are formed in a single-sided copper-clad board. As shown in FIG. 8B, a three-layer multilayer circuit board 51 having four conductive circuits 2 as shown in FIG. An opening 3 is formed in at least one surface of the multilayer circuit board 51 and the contact area with the conductive resin 5 in the through hole 4 is large, so that the multilayer circuit board with low contact resistance is provided. It can be.
[0030]
(Sixth embodiment)
Next, FIG. 9 shows one circuit board 31 having a through-hole and an opening formed in a double-sided copper-clad board, and one circuit board 30 and 32 each having a through-hole and an opening formed in a single-sided copper-clad board. As shown in FIG. 9A, they are overlapped and thermocompression-bonded to form a three-layer multilayer circuit board 52 having four conductive circuits 2 as shown in FIG. 9B. The circuit board to be superposed in this manner may be of any structure as required, and an opening 3 may be formed in at least one conductive circuit of the circuit board to be used and filled with a conductive resin. For example, since the contact area with the conductive resin 5 in the through hole 4 is large, a multilayer circuit board having low contact resistance can be obtained.
[0031]
(Seventh embodiment)
Further, in the second embodiment shown in FIG. 5 (i), when the copper foil 2a is overlapped on the lower side of the copper-clad circuit board 20, instead of the copper foil, the mold is released as shown in FIG. 10 (a). The conductive circuit 2 made of copper foil is previously formed on the surface of the film 36, and the conductive circuit 2 is superimposed on the circuit boards 30 and 32 and thermocompression-bonded. Then, the release film 36 is peeled off, and as shown in FIG. A method for obtaining the multilayer circuit board 53 as shown can also be used.
[0032]
(Eighth embodiment)
FIG. 11 shows an opening 3 in which a part of the conductor of the conductive circuit 2 is located at the same position as the through-hole, and the opening 3 is annular in plan view, and the opening 3 is filled with a conductive resin 5; 3 shows a circuit board 33 in which the conductive circuit 2 and the conductive resin 5 are electrically connected by integrating the conductive resin 5 by overlapping the through holes 4 with the through holes 4. Here, FIG. 11A is a plan view, and FIG. 11B is a cross-sectional view taken along line FF ′ of FIG. 11A. As shown in the figure, the opening 3 has a half-cut annular shape, and communicates with the through hole 4 at the center thereof.
If the circuit board is configured in this manner, the contact area between the conductive circuit 2 and the conductive resin 5 is large, so that a circuit board with low contact resistance can be obtained.
[0033]
FIG. 12 is a sectional process view illustrating an example of a method for manufacturing a circuit board according to the eighth embodiment.
The starting material is a laminated film 8 using a single-sided copper-clad substrate in which a copper foil 2a is attached to one surface of an insulating resin 1 such as polyimide and an adhesive 7 is attached to the back surface in the same manner as in the first embodiment. (See FIG. 12A).
Next, a photoresist film is thermocompression-bonded to the surface on the conductive circuit side of the laminated film 8 using a roll laminator, and the photoresist film is exposed to a circuit pattern having a predetermined shape and developed to form a resist mask. At this time, a pattern that forms the through hole 4 and the opening 3 connected to the through hole 4 is also formed in the photoresist film.
Next, the substrate on which the resist mask is formed is immersed in an alkaline etchant containing ferric chloride as a main component and subjected to chemical etching, and unnecessary portions of the copper foil are removed by etching to form a conductive circuit 2 (FIG. 12B). reference).
[0034]
After the copper foil at the positions of the opening 3 and the through hole 4 is removed by etching to expose the insulating substrate 1, the insulating substrate 1 and the adhesive 7 are penetrated into the position of the through hole 4 by using, for example, laser irradiation. A through hole 4 is formed. Beam scanning is controlled so that laser irradiation is performed only at the position of the through hole 4 (see FIG. 12C).
Finally, the conductive resin 5 is applied to the opening 3 and the through hole 4 using a printing machine, and a squeegee is brought into direct contact with the surface of the conductive circuit 2 to fill the opening 3 and the through hole 4 with the conductive resin 5. Thus, a circuit board 33 is obtained (see FIG. 12D). By applying a conductive resin directly on the metal foil without using a printing plate and filling it with a squeegee, the conductive resin 5 remains only in the openings 3 and the through holes 4 which are concave portions. At this time, the conductive resin 5 in the opening 3 and the through hole 4 is continuous, and is integrated by baking later.
[0035]
(Ninth embodiment)
FIG. 13 shows a sectional structure of a multilayer circuit board 54 using the circuit board obtained by the eighth embodiment. Eighth, after positioning the three circuit boards obtained by the embodiment using alignment marks, reference holes, circuit patterns, or the like provided on the surface or inside of each circuit board, and superimposing them, a vacuum cure press machine or The multilayer circuit board 54 is obtained by thermocompression bonding using a cure press machine.
If the multilayer circuit board is configured as described above, the contact area between each conductive circuit 2 and the conductive resin 5 is large, so that a multilayer circuit board with low contact resistance can be obtained.
[0036]
(Tenth embodiment)
FIG. 14 is a plan view showing another form of the opening 3 provided in the conductive circuit 2. In the circuit board 34 according to the tenth embodiment, the opening 3 has the same spiral shape as the through hole 4 at the center. Therefore, the conductive resin 5 in the opening 3 is integrated with the conductive resin 5 in the through hole 4 at the center of the spiral.
If the circuit board is configured in this manner, the contact area between the conductive circuit 2 and the conductive resin 5 is large, so that a circuit board with low contact resistance can be obtained.
[0037]
(Eleventh embodiment)
FIG. 15 is a plan view showing another form of the opening 3 provided in the conductive circuit 2. In the circuit board 35 according to the eleventh embodiment, the opening 3 has an inverted S-shape whose center passes through the through hole 4. Therefore, the conductive resin 5 in the opening 3 is integrally connected to the conductive resin 5 in the through hole 4 at the center of the inverted S-shape.
If the circuit board is configured in this manner, the contact area between the conductive circuit 2 and the conductive resin 5 is large, so that a circuit board with low contact resistance can be obtained.
[0038]
【Example】
(Example 1)
According to the manufacturing steps of the first and second embodiments shown in FIGS. 3 to 5, a multilayer circuit board 50 having three conductive circuits as shown in FIG. 5J was manufactured. In this example, a polyimide film was used as the insulating substrate, and a copper foil having a thickness of 18 μm was used for the conductive circuit 2. Using a roll laminator, a 15 μm-thick photoresist film was thermocompression-bonded on the copper foil.
Next, the pattern was exposed and developed to form a resist mask pattern of through holes and openings. The diameter of the through hole was 100 μm, the width of the opening was 10 μm, and the length was 10 μm.
[0039]
Next, chemical etching of the copper foil was performed using an etchant containing ferric chloride as a main component. An opening pattern is formed in the copper foil by etching, and CO 2 Laser irradiation was performed to penetrate the polyimide substrate and the adhesive. Note that in this embodiment, CO 2 Although a laser is used, for example, an excimer laser or an Nd.YAG laser can be used as another laser light source.
Next, a silver paste was applied to the surface of the substrate on which the through-holes and the openings were formed, and a squeegee was brought into direct contact with the surface of the copper foil to fill the through-holes and the openings with the silver paste.
[0040]
After the filled silver paste was dried in an oven at 100 ° C., the resist film was pressed, and the circuit pattern was exposed and developed. The conductive circuit was formed by etching the copper foil again using an etchant containing a ferric chloride solution as a main component, and then the resist was peeled off to complete the circuit board 20 having the structure shown in FIG. .
[0041]
Next, a circuit board 21 having a structure as shown in FIG. 4 (h) is prepared by the same method, and one circuit board 21, 99 circuit boards 20 and copper foil 2a are connected as shown in FIG. 5 (i). Lamination, 10-50Kg / cm 2 The substrate was heated to 150 to 250 ° C. while applying a pressing force, and subjected to thermocompression bonding to produce a multilayer circuit board 50 ′ having a structure in which 100 through-holes were connected in series, and the characteristics were evaluated.
[0042]
(Comparative example)
In order to compare and evaluate the characteristics of the interlayer connection parts, 100 through-holes were similarly connected in series to form a multilayer circuit board having a conventional through-hole type structure shown in FIG.
[0043]
Comparison of the electrical resistance when a DC current was applied between the conductive circuit on the front surface and the conductive circuit on the bottom surface of the multilayer substrate of the present example and the comparative example showed that the variation of the electrical resistance was ± 20% in the multilayer substrate of the present invention. It showed a constant value within the range. On the other hand, in the layer substrate having the conventional structure, the fluctuation value of the electric resistance reaches ± 200% and is unstable, and the absolute value of the electric resistance is 1.5 to 3 times as compared with the case of the present invention. Was also expensive.
Further, after passing both substrates through a temperature cycle test of -20 ° C to + 60 ° C for 1000 cycles, the circuit resistance was measured again.
As a result, the resistance value of the multilayer circuit board of the present invention increased by 5 to 10%, whereas the resistance value of the multilayer circuit board of the conventional structure increased by 10 to 100%.
From the above evaluation results, it was confirmed that the contact resistance between the conductive resin and the conductive circuit greatly affected the electric resistance of the entire circuit.
[0044]
[Action]
The circuit board of the present invention has an opening in the surface of the conductive circuit, and fills the opening with a conductive resin to increase the contact area between the conductive circuit and the conductive resin in the through hole, thereby lowering the contact resistance. It was done.
[0045]
【The invention's effect】
According to the circuit board of the present invention, it is not necessary to increase the conductor thickness even in a circuit board requiring a thin insulating layer thickness, and an interlayer connection circuit made of a conductive resin and a conductive circuit on the insulating substrate Contact with a large area to achieve stable interlayer connection with low resistance.Thus, even when a multilayer circuit board is configured, the thickness of the board can be reduced, contributing to the reduction in the weight and thickness of electronic components. become.
Further, according to the method for manufacturing a circuit board of the present invention, it is not necessary to add a significant process compared to the conventional manufacturing process, and the circuit board can be easily thinned using conventional materials and conventional devices. Can be achieved. Also, compared to the land-stacking type, which prints conductive resin on conductor lands, there is no increase in conductor thickness, the insulating layer can be made thinner, and alignment work at the time of printing is not required. It has the advantage that it can be simplified.
[Brief description of the drawings]
FIG. 1 is a partial plan view showing an example of a through hole of a circuit board according to the present invention.
FIG. 2 is a cross-sectional view of the circuit board of the present invention shown in FIG. 1, taken along line AA ′.
FIG. 3 is a sectional process view showing an example of a method for manufacturing a circuit board of the present invention.
FIG. 4 is a sectional process view following FIG. 3;
FIG. 5 is a sectional process view of the method for manufacturing a multilayer circuit board of the present invention, following FIG. 4;
FIG. 6 is a plan view showing an example of a through-hole portion of another circuit board of the present invention.
FIG. 7 is a plan view showing an example of a through-hole portion of still another circuit board of the present invention.
FIG. 8 is a sectional process view showing an example of a method for manufacturing a multilayer circuit board of the present invention.
FIG. 9 is a sectional process view showing an example of another method for manufacturing a multilayer circuit board of the present invention.
FIG. 10 is a sectional process view showing an example of still another method of manufacturing the multilayer circuit board of the present invention.
FIG. 11 is a view showing another example of the opening of the circuit board of the present invention.
12 is a sectional process view showing an example of a method for manufacturing the circuit board shown in FIG.
FIG. 13 is a cross-sectional view of a multilayer circuit board using the circuit board obtained by the method of FIG.
FIG. 14 is a view showing another example of the opening of the circuit board of the present invention.
FIG. 15 is a view showing still another example of the opening of the circuit board of the present invention.
FIG. 16 is a diagram showing a structure of a conventional multilayer circuit board.
FIG. 17 is a sectional process view showing the method of manufacturing the conventional multilayer circuit board shown in FIG.
FIG. 18 is a sectional process view showing another method of manufacturing a conventional multilayer circuit board.
FIG. 19 is a diagram illustrating a structure of a through-hole portion of a conventional circuit board.
FIG. 20 is a diagram illustrating another structure of a conventional circuit board.
FIG. 21 is a diagram illustrating another structure of a conventional circuit board.
FIG. 22 is a diagram illustrating still another structure of a conventional circuit board.
[Explanation of symbols]
1, 101 ... insulating substrate, 2, 102 ... conductive circuit, 3 ... opening, 4, 104 ... through hole, 5, 105 ······ Conductive resin, 6 ··· Single-sided copper-clad substrate, 7 ···· Adhesive, 8 ···· Laminated film, 10, 20, 21, 30, 31 , 32, 33, 34, 35, 110, 111, 112, 113 ... circuit board, 36 ... release film, 50, 51, 52, 53, 54, 100, 200 ..... Multilayer circuit board, 116 ... Land

Claims (7)

絶縁性基板に貫通孔を有し、該貫通孔内に導電性樹脂が充填されており、該導電性樹脂と前記絶縁性基板の表面に形成された導電回路とを電気的に接続してなる回路基板であって、該導電回路の導体に平面形状が歯車型の開口を設けて該開口内に導電性樹脂を充填し、かつ該開口と前記絶縁性基板に設けた貫通孔とを重ね合わせて導電性樹脂を一体化することにより、該導電回路と導電性樹脂を電気的に接合してなることを特徴とする回路基板。The insulating substrate has a through hole, the through hole is filled with a conductive resin, and the conductive resin is electrically connected to a conductive circuit formed on the surface of the insulating substrate. A circuit board, in which a conductor of the conductive circuit is provided with an opening having a gear shape in plan view, filled with a conductive resin in the opening, and the opening is overlapped with a through hole provided in the insulating substrate. A circuit board, wherein the conductive circuit is electrically joined to the conductive circuit by integrating the conductive resin with the conductive circuit. 絶縁性基板に貫通孔を有し、該貫通孔内に導電性樹脂が充填されており、該導電性樹脂と前記絶縁性基板の表面に形成された導電回路とを電気的に接続してなる回路基板であって、該導電回路の導体に平面形状が鋸歯型の開口を設けて該開口内に導電性樹脂を充填し、かつ該開口と前記絶縁性基板に設けた貫通孔とを重ね合わせて導電性樹脂を一体化することにより、該導電回路と導電性樹脂を電気的に接合してなることを特徴とする回路基板。The insulating substrate has a through hole, the through hole is filled with a conductive resin, and the conductive resin is electrically connected to a conductive circuit formed on the surface of the insulating substrate. A circuit board, wherein a conductor of the conductive circuit has a sawtooth-shaped opening in a plane shape, a conductive resin is filled in the opening, and the opening and a through-hole provided in the insulating substrate are overlapped with each other. A circuit board, wherein the conductive circuit is electrically joined to the conductive circuit by integrating the conductive resin with the conductive circuit. 絶縁性基板に貫通孔を有し、該貫通孔内に導電性樹脂が充填されており、該導電性樹脂と前記絶縁性基板の表面に形成された導電回路とを電気的に接続してなる回路基板であって、該導電回路の導体に平面形状が花びら型の開口を設けて該開口内に導電性樹脂を充填し、かつ該開口と前記絶縁性基板に設けた貫通孔とを重ね合わせて導電性樹脂を一体化することにより、該導電回路と導電性樹脂を電気的に接合してなることを特徴とする回路基板。The insulating substrate has a through hole, the through hole is filled with a conductive resin, and the conductive resin is electrically connected to a conductive circuit formed on the surface of the insulating substrate. A circuit board, in which a conductor of the conductive circuit has a petal-shaped opening in a planar shape, a conductive resin is filled in the opening, and the opening and a through hole provided in the insulating substrate are overlapped. A circuit board, wherein the conductive circuit is electrically joined to the conductive circuit by integrating the conductive resin with the conductive circuit. 絶縁性基板に貫通孔を有し、該貫通孔内に導電性樹脂が充填されており、該導電性樹脂と前記絶縁性基板の表面に形成された導電回路とを電気的に接続してなる回路基板であって、該導電回路の導体に少なくとも一部が前記貫通孔と同じ位置にあり、かつ平面形状が環状または渦巻き型ないしはS字型の開口を設け、該開口の内に導電性樹脂を充填し、かつ該開口と前記絶縁性基板に設けた貫通孔とを重ね合わせて導電性樹脂を一体化することにより、該導電回路と導電性樹脂を電気的に接合してなることを特徴とする回路基板。The insulating substrate has a through hole, the through hole is filled with a conductive resin, and the conductive resin is electrically connected to a conductive circuit formed on the surface of the insulating substrate. A circuit board, wherein at least a part of the conductor of the conductive circuit is located at the same position as the through hole, and a planar shape is provided with an annular or spiral or S-shaped opening, and a conductive resin is provided in the opening. And electrically connecting the conductive circuit and the conductive resin by integrating the conductive resin by overlapping the opening with the through hole provided in the insulating substrate. Circuit board. 請求項1から請求項4のいずれか1項に記載の回路基板を、少なくとも1枚以上の積層してなることを特徴とする積層回路基板。A laminated circuit board, comprising at least one or more circuit boards according to any one of claims 1 to 4. 少なくとも一方の面に導電体膜を具備した絶縁性基板の導電体膜上にフォトレジスト膜を形成した後、環状、歯車型、鋸歯型、花びら型、渦巻き型もしくはS字型から選ばれた1種の開口パターンを有する所定の回路パターンを露光して現像処理し、得られたフォトレジスト膜パターンをマスクとして前記導電体膜をエッチングし、次いで、得られた導電体パターンをマスクとして基板の所定位置に貫通孔を設けた後、導電体パターン表面の開口と前記貫通孔内に導電性樹脂を充填して、導電性樹脂と導電体膜とを電気的に接続することを特徴とする回路基板の製造方法。After forming a photoresist film on a conductor film of an insulating substrate provided with a conductor film on at least one surface, one selected from a ring type, a gear type, a saw-tooth type, a petal type, a spiral type or an S-type. A predetermined circuit pattern having a kind of opening pattern is exposed and developed, and the conductive film is etched using the obtained photoresist film pattern as a mask. A circuit board provided with a through hole at a position, filling the opening in the surface of the conductor pattern and the through hole with a conductive resin, and electrically connecting the conductive resin and the conductor film. Manufacturing method. 請求項6に記載の製造方法により得られた回路基板を、少なくとも1枚以上積層して接合することを特徴とする多層回路基板の製造方法。A method for manufacturing a multilayer circuit board, comprising laminating and joining at least one or more circuit boards obtained by the manufacturing method according to claim 6.
JP2002161659A 2002-06-03 2002-06-03 Circuit board, multilayered circuit board, and method of manufacturing the same Withdrawn JP2004014559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002161659A JP2004014559A (en) 2002-06-03 2002-06-03 Circuit board, multilayered circuit board, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002161659A JP2004014559A (en) 2002-06-03 2002-06-03 Circuit board, multilayered circuit board, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004014559A true JP2004014559A (en) 2004-01-15

Family

ID=30430671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002161659A Withdrawn JP2004014559A (en) 2002-06-03 2002-06-03 Circuit board, multilayered circuit board, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004014559A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7238892B2 (en) * 2005-07-25 2007-07-03 Hewlett-Packard Development Company, L.P. Printed circuit board including pads with vacancies
JP2020053587A (en) * 2018-09-27 2020-04-02 日亜化学工業株式会社 Multilayer substrate and component mounting substrate, and manufacturing method thereof
US11410450B2 (en) 2018-04-17 2022-08-09 Samsung Electronics Co., Ltd. Method for manufacturing an electronic device including multiple fixing members to fix a biometric sensor to a display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7238892B2 (en) * 2005-07-25 2007-07-03 Hewlett-Packard Development Company, L.P. Printed circuit board including pads with vacancies
US11410450B2 (en) 2018-04-17 2022-08-09 Samsung Electronics Co., Ltd. Method for manufacturing an electronic device including multiple fixing members to fix a biometric sensor to a display
JP2020053587A (en) * 2018-09-27 2020-04-02 日亜化学工業株式会社 Multilayer substrate and component mounting substrate, and manufacturing method thereof
JP7307303B2 (en) 2018-09-27 2023-07-12 日亜化学工業株式会社 Multilayer board, component mounting board, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4538486B2 (en) Multilayer substrate and manufacturing method thereof
US6192581B1 (en) Method of making printed circuit board
US20060191715A1 (en) Multilayer circuit board and manufacturing method thereof
TWI658761B (en) Circuit board and method for making the same
KR100747022B1 (en) Imbedded circuit board and fabricating method therefore
JP4503583B2 (en) Adhesive sheet for capacitor and method for manufacturing printed wiring board with built-in capacitor using the same
JP2010016339A (en) Module using multilayer flexible printed circuit board and method of manufacturing the same
JP2011216636A (en) Substrate with built-in electronic component, electronic circuit module, and method for manufacturing of substrate with built-in electronic component
JP3188856B2 (en) Manufacturing method of multilayer printed wiring board
WO2004017689A1 (en) Multilayer printed wiring board and production method therefor
JP4012022B2 (en) Multilayer wiring substrate, base material for multilayer wiring substrate, and manufacturing method thereof
JP2004014559A (en) Circuit board, multilayered circuit board, and method of manufacturing the same
KR100704911B1 (en) Electronic chip embedded pcb and method of the same
JP2004134467A (en) Multilayered wiring board, material for it, and method of manufacturing it
KR20030011433A (en) Manufacturing method for hidden laser via hole of multi-layered printed circuit board
JP2004221192A (en) Multilayer substrate, base material therefor and its manufacturing method
JP2003338668A (en) Circuit board, multilayer circuit board and manufacturing method therefor
JPH11284342A (en) Package and manufacture thereof
JP2004221426A (en) Multilayer circuit board, substrate therefor and its manufacturing method
JP2006049457A (en) Wiring board with built-in parts and manufacturing method thereof
JP2005109299A (en) Multilayer wiring board and its manufacturing method
JP2004214273A (en) Method for manufacturing single side lamination wiring board
EP1259102B1 (en) Multi-layer printed circuit bare board enabling higher density wiring and a method of manufacturing the same
JP3858765B2 (en) Film carrier and manufacturing method thereof
JP4736251B2 (en) Film carrier and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906