JP2004006384A - 高周波加熱装置 - Google Patents

高周波加熱装置 Download PDF

Info

Publication number
JP2004006384A
JP2004006384A JP2003198321A JP2003198321A JP2004006384A JP 2004006384 A JP2004006384 A JP 2004006384A JP 2003198321 A JP2003198321 A JP 2003198321A JP 2003198321 A JP2003198321 A JP 2003198321A JP 2004006384 A JP2004006384 A JP 2004006384A
Authority
JP
Japan
Prior art keywords
magnetron
power supply
waveform
voltage
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003198321A
Other languages
English (en)
Inventor
Kenji Yasui
安井 健治
Daisuke Betsusou
別荘 大介
Yoshiaki Ishio
石尾 嘉朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003198321A priority Critical patent/JP2004006384A/ja
Publication of JP2004006384A publication Critical patent/JP2004006384A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/681Circuits comprising an inverter, a boost transformer and a magnetron
    • H05B6/682Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit
    • H05B6/685Circuits comprising an inverter, a boost transformer and a magnetron wherein the switching control is based on measurements of electrical values of the circuit the measurements being made at the low voltage side of the circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Abstract

【課題】高周波加熱装置において、マグネトロンの温度特性に起因する電源電流波形の高調波の増大を解決すること。
【解決手段】変調部21と駆動部22と半導体スイッチング素子23とを有するインバータ24と、インバータ24で駆動されるマグネトロン25とを備え、変調部21はインバータ24が電力を得る電源26の電圧を検知する電源電圧検知27と、マグネトロン25の動作電圧を検知するマグネトロン動作電圧検知手段28とから変調信号をつくり、駆動部22は半導体スイッチング素子23を駆動するためのパルスを前記変調信号に基づいて決定する構成とする。したがって、マグネトロン25の温度特性によって、その動作電圧が変化した場合にも、最適な変調信号を得ることができ、入力電流の高調波を少なくすることができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は電子レンジに用いられているマグネトロンを駆動するためのインバータ電源に関するものである。
【0002】
【従来の技術】
マグネトロンはアノードとカソードからなる真空管である。図7はマグネトロンの特性を示す図で、横軸はマグネトロンのアノード電流(以下IAと記述する)を示し、縦軸はマグネトロンのアノードとカソード間の電圧(以下VAKと記述する)を示している。マグネトロンは負の電圧で付勢され、約−4kVで発振してアノード電流が流れ始め、アンテナからマイクロ波が放射される。マグネトロンのVAKは温度依存性があり、高温になるほど低下する傾向にある。室温状態にある場合は約−4kVであるが、連続動作で温度が上昇していくと−3.2kV程度まで低下する特性を有する。同図の実線が室温状態での特性を示し、破線が温度上昇した場合の特性を示している。
【0003】
図8はマグネトロンを駆動するための回路構成を示したブロック図である。同図において1は商用電源、2はインバータ、3はマグネトロンである。インバータ2は商用電源1の電圧を全波整流する全波整流回路と、ノイズを低減するフィルタ回路部、半導体スイッチング素子と、昇圧トランスと、半導体スイッチング素子を駆動する駆動部と、商用電源1の電圧を検知するための電源電圧検知手段と、変調部とから構成される。変調部は電源電圧検知手段からの信号を基にして駆動部に送る変調信号をつくる。駆動部は変調信号に基づいて半導体スイッチング素子を駆動するパルスのオン時間を決定する。駆動部から半導体スイッチング素子に与えられるパルスの周波数は20kHzから50kHzである。半導体スイッチング素子の動作で得られる、高周波の電圧を昇圧トランスが昇圧してマグネトロンを駆動する高電圧を発生する回路構成である。
【0004】
図9はインバータとマグネトロンの各部の電圧または電流波形を示したもので、同図(a)から(d)は時間軸を合わせて記述している。同図(a)は商用電源を全波整流して、フィルタ回路を通して出力された個所の電圧波形で、60Hzの商用電源を用いた場合の図にしてある。同図(b)の実線は室温状態におけるマグネトロンのVAKを示しており、前述したマグネトロンのVAK−IA特性から−4kVで電圧がカットされる形をしている。VAKが約−4kVに達した時点からIAが流れ始める。同図(c)の実線に示す商用電源の入力電流はIAと相似な波形を示すので、VAKが−4kVに達した時点から流れ始める。このように、入力電流波形には電流が流れていない休止期間が存在する。このような入力電流波形をフーリエ級数展開すると、基本波以外の次数の高調波が存在する。この高調波の大きさはIEC1000−3−2で規制されている。高調波を少なくするためには、入力電流の休止期間をできるだけ短くすることが必要となる。このためには、同図(a)に示すフィルタ部の出力電圧波形の低い部分では半導体スイッチング素子を駆動するためのパルスのオン時間を長くして、できるだけ昇圧トランスから出力する電圧を上げるように制御している。
【0005】
また、マグネトロンの寿命はIAのピーク値に依存しており、IAのピーク値が大きくなるほど寿命が短くなる傾向に有る。そこでIAのピーク値が高くならないようにインバータを構成する半導体スイッチング素子を制御することが必要となる。IAが大きくなるのは、同図(a)に示すフィルタ部の出力電圧波形のピーク近傍であるので、この部分では半導体スイッチング素子を駆動するためのパルスのオン時間を短くして、IAが大きくならないように制御されている。IAと相似な波形を示す同図(c)の実線で示される入力電流波形はピークがほぼ平らになっている。
【0006】
このような制御は図8の回路ブック図に示されるように、半導体スイッチング素子を駆動するパルスをつくる駆動部に与えられる変調信号によって指令される。変調部は電源電圧検知手段の信号に基づいて変調信号をつくり、図9の(d)に示される変調信号を駆動部に与えている。同図の変調部の出力電圧波形は、電圧が高くなるほど半導体スイッチング素子を駆動するパルスのオン時間が長くなるように作用する。
【0007】
駆動部は図8に示されるように、出力指令手段の信号と変調部の信号とを足し合わせて、駆動パルスを決定する。出力指令手段の信号は直流電圧で、出力を増大させる場合その直流電圧は高くなる(例えば特許文献1、特許文献2参照)。
【0008】
【特許文献1】
特開平7−176375号公報
【特許文献2】
特開平1−225090号公報
【0009】
【発明が解決しようとする課題】
しかしながら、従来の方法は以下のような課題があった。
【0010】
前述したように、マグネトロンのVAK−IA特性には温度特性があり、温度上昇とともにVAKが減少する傾向にある。図9(b)の破線で示される波形は、温度上昇した場合のVAKを示したもので、約−3.2kVで発振する状態を示している。このようなマグネトロンの特性変化に伴って、入力電流波形は同図(c)の破線に示されるようになる。VAKが約−3.2kVで発振を始めるので、入力電流が流れ始め急激に増加し、同図(d)の変調部の出力電圧波形が下がり始めた個所から同図(c)入力電流が低下するという山ができている。このような波形はフーリエ級数展開すると、高次までの波形が存在し、その振幅も大きくなるという課題がある。
【0011】
【課題を解決するための手段】
本発明の高周波加熱装置は、前述した課題を解決するためになされたもので、まず、マグネトロンのVAK−IA特性の温度特性に起因した入力電流の高調波の増大に関しては、マグネトロンの動作電圧の温度情報を、電源電流を一定に保つための出力指令手段と電源電流検知手段の信号の差に応じて得るとともに、これを変調信号に反映させて、VAKの温度による変化時にも適正な変調信号を得られる構成とする。
【0012】
【発明の実施の形態】
請求項1記載の発明は、マグネトロンの動作電圧の温度情報を、電源電流を一定に保つための出力指令手段と電源電流検知手段の信号の差に応じて得るとともに、これを変調信号に反映させて、マグネトロン電圧VAKの温度による変化時にも適正な変調信号が得られるようになる。
【0013】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
【0014】
図1は本発明の実施例における高周波加熱装置に用いるマグネトロン駆動回路のブロック図である。図1において26は電源で商用電源が用いられ、24のインバータに電力を供給する。29は出力指令手段でマグネトロンの出力の大きさを指令する。25はマグネトロンでインバータ24により駆動される。インバータ24は電源26の電圧を検知する電源電圧検知手段27、駆動部22のパルスで駆動される半導体スイッチング素子23、半導体スイッチング素子23の動作により得られる高周波電圧を昇圧する昇圧トランスとから構成される。電源26の電力は全波整流回路、フィルタ回路を介して半導体スイッチング素子23や昇圧トランスに供給されるが図では省略している。
【0015】
また、比較手段31は電源26の電流を検知する電源電流検知手段30と出力指令手段29との信号を比較し、両者の差に対応した信号を出力する。比較手段31の信号は駆動部22に伝達されるので、駆動部22はこの信号に応じて半導体スイッチング素子23を駆動するパルスを決定する。これにより、電源26の入力電流は、出力指令手段で設定された一定の大きさになるように制御される。すなわちインバータへの入力電力が出力指令手段で決められるようになる。さらに、比較手段31の信号は変調部22に伝達されるので、変調部21はこの信号と電源電圧検知手段27の信号から変調信号を作る。これにより変調部21は温度特性により動作電圧VAKが変化した情報を得ることができ、この信号を基にして処理を行い最適な変調信号を作り出すことができる。この点について、もう少し詳しく説明する。
【0016】
比較手段31は出力指令手段29の信号と電源電流検知手段30との信号を比較して、その差がなくなるように駆動部22に指令するので、電源電流は一定に保たれる。言いかえれば、インバータ24の入力電力が一定に保たれる。
【0017】
ここで、マグネトロンが室温と同じ温度TAである時のマグネトロン動作電圧VAK1と、温度が上昇して温度TH時のマグネトロン動作電圧VAK2との場合を考えると、半導体スイッチング素子23が何れの場合も、同じ条件で動作すると、電源電流は一定に保たれない。具体的には、同じ条件で動作すると電源電流が増加する。そこで、比較手段31は出力指令手段29の信号と、電源電流検知手段30の信号の差を検知して、その差がなくなるように駆動部22に指令を与える。従って、比較手段31の信号は、マグネトロンの温度変化TAからTHに伴う、マグネトロン動作電圧の変化VAK1からVAK2の情報を持っていることになる。従って、比較手段31の信号を変調部21に伝達することで、変調部21は温度特性により動作電圧VAKが変化した情報を得ることができ、この信号を基にして処理を行い最適な変調信号を作り出すことができる。
【0018】
図2は本発明の他の実施例における高周波加熱装置に用いるマグネトロン駆動回路のブロック図で、図1と同等な構成要素には同符合を用いて記載し、その機能の説明は省略する。
【0019】
変調部21は電源電圧検知手段27の信号に基づいて変調の基本波を形成する基本波形形成手段32と、それで得られた基本波の上限値を設定する上限設定手段A33とから構成される。上限設定手段A33は比較手段31の信号で、上限値を設定する。このような構成により、マグネトロン25の温度特性により動作電圧VAKが変化した情報を含む比較手段の31の信号で、変調信号を操作して最適な変調信号を作り出すことができる。
【0020】
図3は本発明の他の実施例における高周波加熱装置に用いるマグネトロン駆動回路のブロック図で、図1と図2に同等な構成要素には同符合を用いて記載し、その機能の説明は省略する。
【0021】
上限設定手段B34は出力指令手段29の信号で上限値を設定する。このような構成により、それぞれの出力に対して最適な変調信号を作り出すことができる。
【0022】
図4は本発明の他の実施例における高周波加熱装置に用いるマグネトロン駆動回路のブロック図で、図1から図3と同等な構成要素には同符合を用いて記載し、その機能の説明は省略する。本実施例は、図2と図3に示した上限設定手段Aと上限設定手段Bとを上限設定手段として、以下に説明する構成で一体化したものである。上限設定手段43は、基準値36と増幅器35とからなる。
【0023】
基準値36は出力指令手段29の信号で基準値を設定する。基準値36の信号は増幅器35に与えられる。増幅器35は比較手段からの信号と、基準値36からの信号との差を増幅して、基本波形成手段32で作られた基本波の上限を設定する構成としている。このような構成により、マグネトロン25の温度特性により動作電圧VAKが変化した情報を含む比較手段の31の信号で、変調信号を操作できるとともに、出力指令手段29の信号に応じた最適な変調信号を作り出すことができる。
【0024】
次に、各構成要素の作用を明確にするために、図5の構成要素の波形を参照して説明する。同図の(a)から(h)の波形は時間を合わせて記載している。また同図に示される波形▲1▼から波形▲8▼の記号の波形は、図4に記載されている波形▲1▼から波形▲8▼の記号が記載されている個所の波形を示している。すなわち波形▲1▼は電源電圧検知手段27の出力波形、波形▲2▼は基本波形成手段32の出力波形、波形▲3▼は出力指令手段29の出力波形、波形▲4▼は電源電流検知手段30の出力波形、波形▲5▼は比較手段31の出力波形、波形▲6▼は基準値36の出力波形、波形▲7▼は増幅器35の出力波形、波形▲8▼は基本波形成手段32出力を増幅器35の出力で、その電圧の上限を設定した出力波形である。
【0025】
図5(a)の波形▲1▼は商用電源を用いた電源26の電圧を検知しているので正弦波を全波整流した形をしている。同図(b)の波形▲2▼は波形▲1▼の下限値を設定したもので、この波形が変調信号の基本波となる。同図(c)の波形▲3▼と波形▲4▼は、電源電流の大きさを出力指令手段29が指令する大きさになるように比較手段31で制御されるために同一の波形になる。同図(d)の波形▲5▼は比較手段31の出力波形で、波形▲6▼は基準値36の出力波形であり、これらが増幅器35の入力となる。増幅器35はこれらの入力の差を増幅し同図(e)の波形▲7▼を出力する。この波形が上限設定手段Aと上限設定手段Bとを一体にして得られる上限値となる。
【0026】
波形▲7▼の電圧値で波形▲2▼の上限値が設定されるが、波形▲7▼と波形▲2▼は抵抗器を介して合成されるので、波形▲2▼は波形▲7▼の電圧値でカットされるのではなく、波形▲7▼の電圧値から緩やかに上限が制限されて、破線で示される波形▲2▼が波形▲8▼のように滑らかな波形となるように構成されている。駆動部22は波形▲8▼の信号を反転した信号が与えられ、半導体スイッチング素子23の駆動パルスを決定するようにしている。すなわち、波形▲8▼の波形の電圧が高くなるほど、半導体スイッチング素子23を駆動するパルスのオン時間を短くなるようにしている。パルスのオン時間が短くなるほど、インバータの出力は抑制される。
【0027】
ここで、マグネトロン25が温度上昇して動作電圧VAKが低下した場合について説明する。半導体スイッチング素子23の駆動パルスが温度上昇する前と同じ状態にあると仮定する。このとき入力電流が増大するようになる。
【0028】
図5(f)から(h)はマグネトロン25が室温状態から温度上昇したときの各部の波形を示した図で、(f)の波形▲4▼はマグネトロン25の温度が上昇すると波形▲4▼´に変化する。実際は、比較手段31の作用で波形▲3▼と同じ電圧になるが説明のためにずらして記述している。同図(g)の波形▲5▼はマグネトロン25の温度が上昇すると波形▲5▼´に変化する。同図(g)の波形▲7▼と▲8▼はマグネトロン25の温度が上昇すると、それぞれ波形▲7▼´と▲8▼´に変化する。
【0029】
このようにして得られた波形が、駆動部22に伝達されて入力電流波形に、どのように作用するかを説明するために、従来の技術の説明で用いた図9の波形図に重ねて記述して、これを図6示す。図6に示された点線の波形は図9に示された点線の波形と同じものである。同図(a)はフィルタ部の出力電圧波形、同図(b)はマグネトロンのVAKで温度上昇したときの電圧波形を示している。同図(c)は入力電流波形で点線は従来の波形で、実線は上記手段を用いることにより得られた波形である。同図(d)は変調部の出力電圧波形で点線は従来の波形で、実線は図5(h)の波形▲8▼´を反転して得られる変調部の出力電圧波形として示している。
【0030】
このような変調信号によれば同図(c)に示す入力電流の山をなくすことができる。マグネトロンの25の温度変化に起因した動作電圧の変化が生じた場合でも、本発明によれば最適な変調信号を作り出すことができ入力電流の高調波を低減することができる。また、出力指令手段29の信号に応じても最適な変調信号を作り出すことができる。
【0031】
【発明の効果】
以上のように本発明によれば、マグネトロンの動作電圧の温度情報を、電源電流を一定に保つための出力指令手段と電源電流検知手段の信号の差に応じて得るとともに、これを変調信号に反映させて、VAKの温度による変化時にも適正な変調信号を得られる構成としたことにより、その動作電圧が変化した場合にも、最適な変調信号を得ることができ、入力電流の高調波を少なくすることができる。
【図面の簡単な説明】
【図1】本発明の実施例における高周波加熱装置に用いるマグネトロン駆動回路のブロック図
【図2】本発明の他の実施例における高周波加熱装置に用いるマグネトロン駆動回路のブロック図
【図3】本発明の他の実施例における高周波加熱装置に用いるマグネトロン駆動回路のブロック図
【図4】本発明の他の実施例における高周波加熱装置に用いるマグネトロン駆動回路のブロック図
【図5】(a)同高周波加熱装置の電源電圧検知手段の出力電圧波形図
(b)同高周波加熱装置の基本波形形成手段の出力電圧波形図
(c)同高周波加熱装置の出力指令手段、電源電流検知手段の出力電圧波形図
(d)同高周波加熱装置の比較手段、基準値の出力電圧波形図
(e)同高周波加熱装置の増幅器で電圧の上限を設定された基本波形形成手段の出力電圧波形図
(f)同高周波加熱装置でマグネトロンが温度上昇した時の電源電流検知手段の出力電圧波形図
(g)同高周波加熱装置手段でマグネトロンが温度上昇した時の比較手段の出力電圧波形図
(h)同高周波加熱装置でマグネトロンが温度上昇した時の増幅器で電圧の上限を設定された基本波形形成手段の出力電圧波形図
【図6】(a)同高周波加熱装置のフィルタ部の出力電圧波形図
(b)同高周波加熱装置のマグネトロンのVAK波形図
(c)同高周波加熱装置の入力電流波形図
(d)同高周波加熱装置の変調部の出力電圧波形図
【図7】マグネトロンのVAKとIAの関係を示す特性図
【図8】従来の高周波加熱装置に用いるマグネトロン駆動回路のブロック図
【図9】(a)従来の高周波加熱装置のフィルタ部の出力電圧波形図
(b)同高周波加熱装置のマグネトロンのVAK波形図
(c)同高周波加熱装置の入力電流波形図
(d)同高周波加熱装置の変調部の出力電圧波形図
【符号の説明】
21 変調部
22 駆動部
23 半導体スイッチング素子
24 インバータ
25 マグネトロン
26 電源
27 電源電圧検知手段
29 出力指令手段
30 電源電流検知手段
31 比較手段
32 基本波形成手段
33 上限設定手段A
34 上限設定手段B
35 増幅器
36 基準値
43 上限設定手段

Claims (1)

  1. マグネトロンと、前記マグネトロンを高電圧駆動するためのインバータと、前記インバータに電力を供給するための電源の電圧を検知する電源電圧検知手段と、前記電源の電流を検知する電源電流検知手段と、前記マグネトロンの出力の大きさを指令する出力指令手段と、前記マグネトロンの動作電圧を検知するマグネトロン動作電圧検知手段とを備え、前記インバータは、マグネトロンを高圧駆動すべく昇圧トランスに高周波電圧を供給するためのスイッチング素子と、マグネトロンのアノード電流のピーク値が高くならないように上限値を有しつつ前記電源電圧検知手段とマグネトロン動作電圧検知手段の出力に応じて変調信号を作るための変調部と、前記変調部の出力信号に基づき前記半導体スイッチング素子を駆動するためのパルスを決定する駆動部とを設け、前記マグネトロン動作電圧検知手段は、そのマグネトロンの動作電圧を、電源電流を一定に保つための前記出力指令手段と電源電流検知手段の信号の差に応じて検知してなる高周波加熱装置。
JP2003198321A 2003-07-17 2003-07-17 高周波加熱装置 Pending JP2004006384A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003198321A JP2004006384A (ja) 2003-07-17 2003-07-17 高周波加熱装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003198321A JP2004006384A (ja) 2003-07-17 2003-07-17 高周波加熱装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000005494A Division JP2001196159A (ja) 2000-01-14 2000-01-14 高周波加熱装置

Publications (1)

Publication Number Publication Date
JP2004006384A true JP2004006384A (ja) 2004-01-08

Family

ID=30438468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198321A Pending JP2004006384A (ja) 2003-07-17 2003-07-17 高周波加熱装置

Country Status (1)

Country Link
JP (1) JP2004006384A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043512A1 (ja) * 2004-10-18 2006-04-27 Matsushita Electric Industrial Co., Ltd. 高周波加熱電源装置
WO2006043513A2 (ja) 2004-10-19 2006-04-27 Matsushita Electric Industrial Co., Ltd. 高周波加熱電源装置
WO2006077879A1 (ja) * 2005-01-18 2006-07-27 Matsushita Electric Industrial Co., Ltd. 高周波加熱装置
WO2006080258A1 (ja) * 2005-01-25 2006-08-03 Matsushita Electric Industrial Co., Ltd. マグネトロン駆動用電源
WO2007142126A1 (ja) 2006-06-02 2007-12-13 Panasonic Corporation 高周波誘電加熱用電力制御装置およびその制御方法
JP2007328983A (ja) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd 高周波誘電加熱用電力制御装置およびその制御方法
CN104613516A (zh) * 2014-12-17 2015-05-13 美的集团股份有限公司 调节逆变器功率的控制系统及控制方法及微波炉

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043512A1 (ja) * 2004-10-18 2006-04-27 Matsushita Electric Industrial Co., Ltd. 高周波加熱電源装置
WO2006043513A2 (ja) 2004-10-19 2006-04-27 Matsushita Electric Industrial Co., Ltd. 高周波加熱電源装置
US7432484B2 (en) 2004-10-19 2008-10-07 Matsushita Electric Industrial Co., Ltd. Current control for high-frequency heating apparatus
WO2006077879A1 (ja) * 2005-01-18 2006-07-27 Matsushita Electric Industrial Co., Ltd. 高周波加熱装置
WO2006080258A1 (ja) * 2005-01-25 2006-08-03 Matsushita Electric Industrial Co., Ltd. マグネトロン駆動用電源
US8253082B2 (en) 2005-01-25 2012-08-28 Panasonic Corporation Magnetron driving power source
WO2007142126A1 (ja) 2006-06-02 2007-12-13 Panasonic Corporation 高周波誘電加熱用電力制御装置およびその制御方法
EP2178340A2 (en) 2006-06-02 2010-04-21 Panasonic Corporation Power Control Unit for High-Frequency Dielectric Heating and Control Method Thereof
EP2178338A2 (en) 2006-06-02 2010-04-21 Panasonic Corporation Power control unit for high-frequency dielectric heating and control method thereof
EP2178339A2 (en) 2006-06-02 2010-04-21 Panasonic Corporation Power control unit for high-frequency dielectric heating and control method thereof
JP2007328983A (ja) * 2006-06-07 2007-12-20 Matsushita Electric Ind Co Ltd 高周波誘電加熱用電力制御装置およびその制御方法
CN104613516A (zh) * 2014-12-17 2015-05-13 美的集团股份有限公司 调节逆变器功率的控制系统及控制方法及微波炉

Similar Documents

Publication Publication Date Title
US5923542A (en) Method and apparatus for driving piezoelectric transformer
JP5138164B2 (ja) 高周波誘電加熱用電力制御装置およびその制御方法
WO2005109957A1 (ja) 高周波加熱装置
JP2005302375A (ja) 高周波加熱装置
WO2012081221A1 (ja) マグネトロン駆動用電源およびそれを備えた高周波加熱装置
JP2004006384A (ja) 高周波加熱装置
JP4783605B2 (ja) 電源装置
US10182473B2 (en) Power converter and cooking apparatus including the same
JP3501135B2 (ja) 高周波加熱装置
JP2001196159A (ja) 高周波加熱装置
JP2005317306A (ja) 高周波加熱装置
JP2005174916A (ja) インバータ電子レンジ及びその制御方法
JP2005116385A (ja) 誘導加熱装置
JP5138166B2 (ja) 高周波誘電加熱用電力制御装置およびその制御方法
JPH09135573A (ja) 圧電トランス式インバータ電源装置
JP5138165B2 (ja) 高周波誘電加熱用電力制御装置およびその制御方法
JP2004304869A (ja) インバータ装置
JP2001185340A (ja) マグネトロン駆動電源回路
JP2003257613A (ja) 電子レンジのインバータ装置
JP2006134689A (ja) 誘導加熱装置
JP2006066194A (ja) マグネトロン駆動用電源
JP2006164525A (ja) 誘導加熱装置
KR101694170B1 (ko) 전력변환장치, 및 이를 구비하는 조리기기
JPH07176375A (ja) 高周波加熱装置
JP5179717B2 (ja) 高周波誘電加熱用電力制御装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Effective date: 20051116

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20060124

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060324

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060620