JP2003346793A - Negative electrode material for lithium ion secondary battery and its manufacturing method, lithium ion secondary battery negative electrode and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery and its manufacturing method, lithium ion secondary battery negative electrode and lithium ion secondary battery

Info

Publication number
JP2003346793A
JP2003346793A JP2002150675A JP2002150675A JP2003346793A JP 2003346793 A JP2003346793 A JP 2003346793A JP 2002150675 A JP2002150675 A JP 2002150675A JP 2002150675 A JP2002150675 A JP 2002150675A JP 2003346793 A JP2003346793 A JP 2003346793A
Authority
JP
Japan
Prior art keywords
negative electrode
alloy
electrode material
formula
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002150675A
Other languages
Japanese (ja)
Other versions
JP4097127B2 (en
Inventor
Takayuki Otsuki
孝之 大月
Tetsuo Sakai
哲男 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Santoku Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Santoku Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002150675A priority Critical patent/JP4097127B2/en
Publication of JP2003346793A publication Critical patent/JP2003346793A/en
Application granted granted Critical
Publication of JP4097127B2 publication Critical patent/JP4097127B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery negative electrode and a negative electrode material used for the negative electrode which are superior in the initial charge and discharge efficiency and in which cycle deterioration due to charge and discharge is suppressed and high discharge capacity is realized, and their manufacturing method and a lithium secondary battery having the negative electrode. <P>SOLUTION: The negative electrode material contains an alloy having the composition of the formula (1) (Li)x(R)y(Sn)z(Ma)w(Mb)v and its manufacturing method comprises a process (a) for manufacturing the molten alloy having the composition of the formula (1), a process (b) for cooling and solidifying the molten alloy, and a process (c) for holding the cooled and solidified alloy for one minutes to 100 hours in the temperatures of 100-1150°C in a rare gas and/or hydrogen gas of 0.07-10 MPa. In the formula, R is a lanthanoid-series element or the like, Ma is B, C, Si or the like, and Mb is Ti, V, Cr or the like and Ma≠Mb. 0≤x≤13, 0.70≤y≤1.10, 2.20≤z≤3.50, 0≤w≤0.70, 0≤v≤0.70, and 0≤w+v≤0.70. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Li、希土類元素、
Snを主成分とした合金等からなるリチウムイオン二次電
池用負極材料、その製造法、該負極材料を用いた負極及
び該負極を備えたリチウムイオン二次電池に関し、更に
詳しくは、初期充放電効率が高く、放電容量が大きく、
サイクル特性に優れ、且つ工業的な生産性に優れたリチ
ウムイオン二次電池用負極、その原材料となる負極材
料、その製造法及びリチウムイオン二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to Li, rare earth elements,
For a negative electrode material for a lithium ion secondary battery composed of an alloy containing Sn as a main component, a method for producing the same, a negative electrode using the negative electrode material, and a lithium ion secondary battery including the negative electrode, High efficiency, large discharge capacity,
The present invention relates to a negative electrode for a lithium ion secondary battery having excellent cycle characteristics and excellent industrial productivity, a negative electrode material as a raw material thereof, a production method thereof, and a lithium ion secondary battery.

【0002】[0002]

【従来の技術】リチウムイオン二次電池は、理論エネル
ギー密度が他の二次電池と比較して格段に高いため、携
帯電話・電子機器に用いられる高性能電池のみならず、
最近では電気自動車の新型電池として強い関心が寄せら
れている。現在、実用化されているリチウムイオン二次
電池の負極活物質としてリチウムイオンをインターカレ
ートさせた黒鉛系炭素材料等が使用されている。しかし
ながら黒鉛系炭素材料は、炭素6原子に対してリチウム1
原子をインターカレートさせるのが限界であり、炭素材
料の理論的な電気容量は372mAh/gが限界である。従っ
て、今後の二次電池に必要な高容量特性を充足するため
に新たな負極材料の開発が望まれている。このような状
況のもと、Si(密度:2.33g/cm3)とSn(密度:7.3g/cm3)
等は1原子あたり最大4.4個のLiを吸蔵できるため非常に
魅力的な材料である。しかし、Si及びSnは、Liの吸蔵
時、3倍以上の非常に大きな体積膨張を引き起こす。そ
の結果、微粉化が生じ、電極からの脱離等が引き起こさ
れ、十分な導通が保てなくなり、数サイクル程度で初期
放電容量の1/5以下まで容量が低下してしまう。そのよ
うな背景のもと現在、体積膨張率の異なる(Liと合金化
し難い)元素とSi又はSnとをナノレベルで複合化、もし
くは合金化することで微粉化を抑制し、サイクル寿命を
延ばす試みが精力的に行われている。例えば、リチウム
イオン二次電池の負極活物質として、Si系ではFeSi2、N
iSi2、CoSi2、VSi2、MnSi2、またSn系ではNi3Sn2、Ni3S
n、Ni3Sn4、FeSn2、FeSn、CoSn2等の金属間化合物の使
用可能性が検討されている。しかし、上記体積膨張率の
異なる元素と合金化している金属間化合物も、現状にお
いては電池設計時に非常に重要なファクターである初期
充放電効率(初回充電容量に対する初回放電容量の割合)
が低く、放電容量も小さく、更にサイクル特性も良好と
は言えない。
2. Description of the Related Art Since a lithium ion secondary battery has a remarkably high theoretical energy density as compared with other secondary batteries, not only high performance batteries used for mobile phones and electronic devices, but also
Recently, there has been strong interest in new batteries for electric vehicles. At present, a graphite-based carbon material in which lithium ions are intercalated is used as a negative electrode active material of a lithium ion secondary battery that has been put into practical use. However, graphite-based carbon material has lithium 1 for 6 carbon atoms.
The limit is to intercalate atoms, and the theoretical electrical capacity of carbon material is 372 mAh / g. Therefore, development of a new negative electrode material is desired in order to satisfy the high capacity characteristics required for a secondary battery in the future. Under these circumstances, Si (density: 2.33 g / cm 3 ) and Sn (density: 7.3 g / cm 3 )
Are very attractive materials because they can store up to 4.4 Li atoms per atom. However, Si and Sn cause a very large volume expansion of three times or more when occluding Li. As a result, pulverization occurs, detachment from the electrode or the like is caused, sufficient conduction cannot be maintained, and the capacity is reduced to 1/5 or less of the initial discharge capacity in about several cycles. Under such a background, at the present, elements with different volume expansion coefficients (difficult to alloy with Li) and Si or Sn are compounded or alloyed at the nano level to suppress fine powder and extend cycle life Attempts are being made energetically. For example, as a negative electrode active material of a lithium ion secondary battery, FeSi 2 , N
iSi 2 , CoSi 2 , VSi 2 , MnSi 2 , or Ni 3 Sn 2 , Ni 3 S for Sn-based
The possibility of using intermetallic compounds such as n, Ni 3 Sn 4 , FeSn 2 , FeSn, and CoSn 2 has been studied. However, intermetallic compounds that are alloyed with the above-mentioned elements having different volume expansion rates are also presently very important factors at the time of battery design, that is, initial charge / discharge efficiency (the ratio of initial discharge capacity to initial charge capacity).
, The discharge capacity is small, and the cycle characteristics are not good.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、初期
充放電効率に優れ、充放電に伴うサイクル劣化を抑制
し、黒鉛系炭素材料の理論容量である372mAh/gを大きく
超える放電容量を実現したリチウム二次電池用負極、該
負極に用いる負極材料、その製造法及び該負極を備えた
リチウム二次電池を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an excellent initial charge / discharge efficiency, suppress cycle deterioration due to charge / discharge, and achieve a discharge capacity that greatly exceeds 372 mAh / g, which is the theoretical capacity of a graphite-based carbon material. It is an object of the present invention to provide a realized negative electrode for a lithium secondary battery, a negative electrode material used for the negative electrode, a method for producing the negative electrode, and a lithium secondary battery including the negative electrode.

【0004】[0004]

【課題を解決するための手段】発明者らは上記課題を解
決するため、強い極性を有し、微粉化し難いRSn3相(R=
希土類元素等)に着目し、更に初回の充放電により合金
中に残留するLiを予め、吸蔵(充電)させたRSn3-Lix(0≦
x≦13)を基本骨格とした合金を高周波溶解法により作製
した。その結果、高い放電容量及び優れたサイクル特性
を達成した。次いでLiの充放電容量を増加する添加元素
とサイクル寿命を向上させる添加元素について鋭意検討
を行った結果、特定の元素を適正量添加することによ
り、更に放電特性が向上しうることを知見し、本発明を
完成するに至った。
Means for Solving the Problems In order to solve the above problems, the present inventors have developed a three- phase RSn (R =
Focusing on the rare earth element, etc., the Li remaining in the alloy by the first charge / discharge is stored in advance (charged) RSn 3 -Lix (0 ≦
An alloy having x ≦ 13) as a basic skeleton was produced by a high-frequency melting method. As a result, a high discharge capacity and excellent cycle characteristics were achieved. Next, as a result of intensive studies on an additive element that increases the charge and discharge capacity of Li and an additive element that improves the cycle life, it was found that by adding an appropriate amount of a specific element, the discharge characteristics could be further improved, The present invention has been completed.

【0005】すなわち、本発明によれば、式(1)で表さ
れる組成を有する合金を含むリチウムイオン二次電池用
負極材料が提供される。 (Li)x(R)y(Sn)z(Ma)w(Mb)v・・・(1) (式中、RはY、Scを含むランタノイド系列LaからLuまで
の元素からなる群より選択される1種又は2種以上、Maは
B、C、Si、P、Al、Zn、V、Mn、Cu、Ag、In、Sb、Pb及び
Biからなる群より選択される1種又は2種以上、MbはTi、
V、Cr、Fe、Co、Ni、Cu、B、Mg、Zr、Hf、Nb、Ta及びMo
からなる群より選択される1種又は2種以上でMa≠Mb。
x、y、zはそれぞれモル比で、0≦x≦13、0.70≦y≦1.1
0、2.20≦z≦3.50、0≦w≦0.70、0≦v≦0.70、0≦w+v≦
0.70である。) また本発明によれば、式(1)で表される組成を有する合
金溶湯を製造する工程(a)、製造した合金溶湯を冷却固
化する工程(b)、及び冷却固化した合金を、0.07〜10MPa
の希ガス及び/又は水素ガス中において100〜1150℃の
温度範囲で1分〜100時間保持する工程(c)を含む上記リ
チウムイオン二次電池用負極材料の製造法が提供され
る。更に本発明によれば、上記負極材料を活物質として
含むリチウムイオン二次電池用負極が提供される。更に
また本発明によれば、上記負極を備えるリチウムイオン
二次電池が提供される。
That is, according to the present invention, there is provided a negative electrode material for a lithium ion secondary battery including an alloy having a composition represented by the formula (1). (Li) x (R) y (Sn) z (Ma) w (Mb) v ・ ・ ・ (1) (where R is selected from the group consisting of elements from lanthanide series La to Lu including Y and Sc One or two or more, Ma is
B, C, Si, P, Al, Zn, V, Mn, Cu, Ag, In, Sb, Pb and
One or more selected from the group consisting of Bi, Mb is Ti,
V, Cr, Fe, Co, Ni, Cu, B, Mg, Zr, Hf, Nb, Ta and Mo
Ma ≠ Mb in at least one kind selected from the group consisting of
x, y, z are each a molar ratio, 0 ≦ x ≦ 13, 0.70 ≦ y ≦ 1.1
0, 2.20 ≦ z ≦ 3.50, 0 ≦ w ≦ 0.70, 0 ≦ v ≦ 0.70, 0 ≦ w + v ≦
It is 0.70. According to the present invention, according to the present invention, a step (a) of producing a molten alloy having a composition represented by the formula (1), a step (b) of cooling and solidifying the produced molten alloy, and ~ 10MPa
The method for producing a negative electrode material for a lithium ion secondary battery, comprising the step (c) of maintaining the composition in a rare gas and / or hydrogen gas at a temperature of 100 to 1150 ° C. for 1 minute to 100 hours. Further, according to the present invention, there is provided a negative electrode for a lithium ion secondary battery including the negative electrode material as an active material. Furthermore, according to the present invention, there is provided a lithium ion secondary battery including the above-described negative electrode.

【0006】[0006]

【発明の実施の形態】本発明の負極材料は、リチウムイ
オン二次電池負極とした際に従来の炭素材の理論容量よ
り、はるかに高い放電容量、同等以上の初期充放電効率
を示し、またサイクル特性も従来の合金系負極材よりは
るかに優れたサイクル特性を示すことが可能であり、前
記式(1)で表される組成を有する合金を含む。
BEST MODE FOR CARRYING OUT THE INVENTION The negative electrode material of the present invention, when used as a negative electrode for a lithium ion secondary battery, exhibits a discharge capacity much higher than the theoretical capacity of a conventional carbon material, an initial charge / discharge efficiency equal to or higher than that of a conventional carbon material, and The cycle characteristics can also exhibit much better cycle characteristics than conventional alloy-based negative electrode materials, and include alloys having the composition represented by the above formula (1).

【0007】式(1)中、RはY、Scを含むランタノイド系
列LaからLuまでの元素からなる群より選択される1種又
は2種以上(以下、希土類(R)と略す)である。該希土類
(R)は、Snとの組み合わせにおいて電気陰性度の差が大
きく、強い極性を有してイオン結合的にSnと合金化する
ためサイクル寿命の向上が望める。希土類(R)の中でもC
eは、Snとの組合わせにおいて最も電気陰性度の差が大
きな部類に属し、非常に微粉化し難い合金系の達成を可
能にする。またCeは、4価までの酸化数を有するのでLi
の配位能が大きく、種々ある希土類(R)の中で最も充放
電容量が大きい合金系の製造を可能にする元素に属す
る。従って、希土類(R)は、Ce単独であるか、もしくはC
eと、90mol%未満、特に50mol%未満のCe以外の希土類
(R)とからなる構成が好ましい。希土類(R)は、Snと金属
間化合物を主に形成するが、希土類(R)自体で存在して
もLiの吸蔵・放出に伴う体積膨張を緩和することができ
る。希土類(R)の量が多すぎると充放電容量の低下を招
き、少なすぎると微粉化を抑制できなくなるため、式
(1)において希土類(R)の量を示すyの範囲は、0.70≦y≦
1.10、好ましくは0.90≦y≦1.05である。
In the formula (1), R is one or more selected from the group consisting of elements from the lanthanoid series La to Lu containing Y and Sc (hereinafter abbreviated as rare earth (R)). The rare earth
(R) has a large difference in electronegativity in combination with Sn, has strong polarity, and is ionically alloyed with Sn, so that an improvement in cycle life can be expected. C among rare earth (R)
e belongs to the class having the largest difference in electronegativity in combination with Sn, and makes it possible to achieve an alloy system that is very difficult to pulverize. Also, Ce has an oxidation number up to tetravalent, so that Li
Belongs to an element that has a large coordination ability and enables the production of an alloy system having the largest charge / discharge capacity among various rare earths (R). Therefore, the rare earth (R) is Ce alone or C
e and less than 90 mol%, especially less than 50 mol% of rare earths other than Ce
(R) is preferred. The rare earth (R) mainly forms an intermetallic compound with Sn, but even if the rare earth (R) itself exists, the volume expansion accompanying the occlusion and release of Li can be reduced. If the amount of the rare earth (R) is too large, the charge / discharge capacity is reduced.If the amount is too small, pulverization cannot be suppressed.
The range of y indicating the amount of the rare earth (R) in (1) is 0.70 ≦ y ≦
1.10, preferably 0.90 ≦ y ≦ 1.05.

【0008】式(1)においてLiは、所望の合金組成の初
期充放電効率を考慮して、その含有割合を適宜選択する
ことができ、後述する負極の構成によっては必ずしも含
有されてい無くても良い。Liの含有割合が多すぎると取
り扱いが困難になると共に、充放電容量の低下を招く恐
れがある。従って、式(1)においてLiの量を示すxの範囲
は、0≦x≦13、好ましくは4.0≦x≦8.0である。
In the formula (1), the content ratio of Li can be appropriately selected in consideration of the initial charge / discharge efficiency of a desired alloy composition. good. If the content of Li is too large, handling becomes difficult, and the charge / discharge capacity may be reduced. Therefore, the range of x indicating the amount of Li in the formula (1) is 0 ≦ x ≦ 13, preferably 4.0 ≦ x ≦ 8.0.

【0009】式(1)においてSnは、Liを吸蔵する金属で
ある。Snの含有割合は少なすぎると充放電容量が小さく
なる。また多すぎると容量は増加するが他の元素と合金
化できない残留金属Snの割合が増加し、微粉化が促進さ
れ、サイクル寿命が低下する恐れが生じる。従って、式
(1)においてSnの量を示すzの範囲は2.20≦z≦3.50、好
ましくは2.70≦z≦3.10である。本発明の式(1)で表され
る組成を有する合金において許容できる残留金属Snの割
合は、粉末X線回折におけるSnの(2 0 0)面のピーク強
度が、RSn3相(Rは式(1)中のRと同様である)に由来する
ピーク中で最強ピーク強度の30%以下、好ましくは15%
以下、更に好ましくは5%以下となる割合である。
In the formula (1), Sn is a metal that stores Li. If the content ratio of Sn is too small, the charge / discharge capacity becomes small. If it is too large, the capacity increases, but the proportion of residual metal Sn that cannot be alloyed with other elements increases, so that pulverization is promoted and the cycle life may decrease. Therefore, the expression
In (1), the range of z indicating the amount of Sn is 2.20 ≦ z ≦ 3.50, preferably 2.70 ≦ z ≦ 3.10. The allowable proportion of residual metal Sn in the alloy having the composition represented by the formula (1) of the present invention is such that the peak intensity of the (200) plane of Sn in powder X-ray diffraction is RSn 3 phase (R is the formula (Same as R in (1).) 30% or less of the strongest peak intensity in the peak derived from, preferably 15%
The ratio is more preferably 5% or less.

【0010】式(1)において置換元素Maは、B、C、Si、
P、Al、Zn、V、Mn、Cu、Ag、In、Sb、Pb及びBiからなる
群より選択される1種又は2種以上である。該置換元素Ma
の使用によりLi吸蔵量及び放出量を増加させることがで
き、結果として充放電容量を増加させうる。その理由
は、置換元素MaのうちのB、Cは格子間に侵入でき、また
Si、P、Al、Zn、V、Mn、Cu、Ag、In、Sbは原子半径がCe
もしくはSnより小さいため、格子にひずみを与え、格子
欠陥を発生させることができ、この欠陥又はひずみ場に
Liが吸蔵されうるためと推測される。また置換元素Maの
うちAl、Zn、V、Cu、Ag、Inは、CeもしくはSnより導電
率が大きいので、合金自体の導電率を向上させることが
でき、その結果、充放電容量が増加すると考えられる。
式(1)において置換元素Mbは、Ti、V、Cr、Fe、Co、Ni、
Cu、B、Mg、Zr、Hf、Nb、Ta及びMoからなる群より選択
される1種類又は2種類以上であり、且つMa≠Mbである。
該置換元素Mbの使用によりサイクル寿命を延ばすことが
できる。
In the formula (1), the substitution element Ma is represented by B, C, Si,
One or more selected from the group consisting of P, Al, Zn, V, Mn, Cu, Ag, In, Sb, Pb and Bi. The substitution element Ma
Can increase the amount of Li occluded and released, and consequently the charge / discharge capacity can be increased. The reason is that B and C of the substitution element Ma can penetrate the interstitial,
Si, P, Al, Zn, V, Mn, Cu, Ag, In, Sb have atomic radii of Ce
Or, since it is smaller than Sn, the lattice can be strained and lattice defects can be generated.
It is presumed that Li can be occluded. Further, among the substitution elements Ma, Al, Zn, V, Cu, Ag, and In have higher conductivity than Ce or Sn, so that the conductivity of the alloy itself can be improved, and as a result, the charge / discharge capacity increases. Conceivable.
In the formula (1), the substitution element Mb is Ti, V, Cr, Fe, Co, Ni,
One or more selected from the group consisting of Cu, B, Mg, Zr, Hf, Nb, Ta and Mo, and Ma ≠ Mb.
The cycle life can be extended by using the substitution element Mb.

【0011】前記置換元素(Ma、Mb)は、その置換元素単
体、もしくは置換元素(Ma、Mb)と、希土類(R)及び/又
はSnとの金属間化合物を形成し、それらが複合的に合金
中に分散し、Liの充放電に伴うSnの体積膨張を緩和して
いると推定される。これら置換元素(Ma、Mb)の含有割合
を適正値に調整することにより、放電特性のバランスを
制御することができる。Maの含有割合が多いとLi吸蔵量
は増加するが、サイクル寿命が低下する傾向がある。ま
たMbの含有割合が多いとサイクル寿命は向上するが、Li
吸蔵量が低下し、放電容量も低下する傾向がある。従っ
て、式(1)においてMa又はMbの量を示すw又はvの範囲
は、それぞれ0≦w≦0.70、0≦v≦0.70、0≦w+v≦0.70で
ある。
The substitution element (Ma, Mb) forms an intermetallic compound of the substitution element alone or the substitution element (Ma, Mb) with the rare earth (R) and / or Sn. It is presumed that it is dispersed in the alloy and reduces the volume expansion of Sn due to charging and discharging of Li. By adjusting the content ratio of these substitution elements (Ma, Mb) to an appropriate value, the balance of the discharge characteristics can be controlled. When the content of Ma is large, the amount of occluded Li increases, but the cycle life tends to decrease. Also, when the content of Mb is large, the cycle life is improved, but Li
The occlusion amount tends to decrease, and the discharge capacity also tends to decrease. Therefore, the ranges of w or v indicating the amount of Ma or Mb in the formula (1) are 0 ≦ w ≦ 0.70, 0 ≦ v ≦ 0.70, and 0 ≦ w + v ≦ 0.70, respectively.

【0012】本発明において、式(1)で表される合金の
組織は、主にCu3Au構造を有するRSn3相であることが好
ましい。RSn3相はR-Sn系二元系合金では最もSn結合数が
多い相である。言い換えるなら最も放電容量が大きい相
である。式(1)で表される合金の組織は、サイクル寿命
の向上、並びに適度の活性度を得る目的で他の相を含ん
でいても良い。但し、Sn単相を含む場合は特性の劣化が
著しいので好ましくない。RSn3相以外の相の含有割合
は、合金の組織観察を行った場合の面積率で0.5〜30
%、特に2〜5%が好ましい。RSn3相以外の相としては、
Maと希土類(R)との金属間化合物相、Mbと希土類(R)との
金属間化合物相、MaとSnとの金属間化合物相、MbとSnと
の金属間化合物相、希土類(R)とSnとの金属間化合物相
等が挙げられる。また置換元素Mb、Maは、元素単体で存
在していても良い。これら金属間化合物もしくは置換元
素単体は、複合的に合金中に分散し、Liの吸蔵・放出に
伴う合金の体積膨張を緩和する効果がある。前記金属間
化合物相は、1種又は2種以上存在していても良い。
In the present invention, the structure of the alloy represented by the formula (1) is preferably an RSn 3 phase mainly having a Cu 3 Au structure. The RSn 3 phase is the phase having the largest number of Sn bonds in the R-Sn binary alloy. In other words, it is the phase having the largest discharge capacity. The structure of the alloy represented by the formula (1) may contain another phase for the purpose of improving the cycle life and obtaining an appropriate degree of activity. However, it is not preferable to include a Sn single phase because the characteristics are significantly deteriorated. The content ratio of phases other than the RSn 3 phase is 0.5 to 30 in area ratio when the structure of the alloy is observed.
%, Particularly preferably 2 to 5%. As phases other than RSn 3 phase,
Intermetallic compound phase of Ma and rare earth (R), intermetallic compound phase of Mb and rare earth (R), intermetallic compound phase of Ma and Sn, intermetallic compound phase of Mb and Sn, rare earth (R) And an intermetallic compound phase of Sn and Sn. Further, the replacement elements Mb and Ma may exist as a single element. These intermetallic compounds or substitutional elements alone are dispersed in the alloy in a complex manner, and have an effect of alleviating the volume expansion of the alloy accompanying the occlusion and release of Li. One or more kinds of the intermetallic compound phases may be present.

【0013】前記Mbと希土類(R)との金属間化合物相と
しては、例えば、Ce2Fe17、Ce2Fe2、Nd2Fe17、Pr2F
e17、PrFe2、Sm2Fe17、SmFe3、SmFe2、Ce24Co11、CeC
o2、CeCo3、Ce2Co7、Ce5Co19、Ce2Co17、CeCo5、LaC
o13、LaCo5、La5Co19、α-La2Co7、β-La2Co7、La2C
o3、La2Co1.7、LaCo、Nd2Co17、NdCo5、Nd5Co19、Nd2Co
7、NdCo3、NdCo2、α-Nd2Co3、β-Nd2Co3、Nd2Co1.7、N
d7Co3、Nd3Co、Pr2Co17、PrCo5、Pr5Co19、PrCo3、Pr2C
o7、PrCo2、Pr2Co1.7、Pr5Co2、Pr3Co、α-Sm2Co17、β
-Sm2Co17、SmCo3、SmCo2、Sm9Co4、Sm3Co、Ce7Ni3、CeN
i、CeNi2、CeNi3、Ce2Ni7、CeNi5、La3Ni、La7Ni3、LaN
i、La2Ni3、La7Ni16、LaNi3、α-La2Ni7、β-La2Ni7、L
aNi5、Nd3Ni、Nd7Ni3、NdNi、NdNi2、NdNi3、Nd2Ni7、N
dNi5、Nd2Ni17、Pr3Ni、Pr7Ni3、PrNi、PrNi2、PrNi3
Pr2Ni7、PrNi5、Sm3Ni、SmNi、SmNi2、SmNi3、Sm2Ni7
Sm5Ni19、SmNi5、Sm2Ni17、CeCu6、CeCu4、CeCu2、CeC
u、LaCu6、LaCu、NdCu6、NdCu5、NdCu4、Nd2Cu7、NdC
u2、NdCu、PrCu6、PrCu4、PrCu5、PrCu2、PrCu、SmC
u6、SmCu4、SmCu5、Sm2Cu7、SmCu2、SmCu、CeB4、Ce
B6、LaB4、LaB6、LaB9、Nd2B5、NdB4、NdB6、NdB66、Sm
2B5、SmB4、SmB6、SmB66、CeMg12、Ce5Mg4 1、CeMg3、Ce
Mg2、CeMg、CeMg10.3、LaMg12、La2Mg17、LaMg3、LaM
g2、LaMg等が挙げられる。
The intermetallic compound phase of Mb and the rare earth (R) includes, for example, Ce 2 Fe 17 , Ce 2 Fe 2 , Nd 2 Fe 17 , Pr 2 F
e 17, PrFe 2, Sm 2 Fe 17, SmFe 3, SmFe 2, Ce 24 Co 11, CeC
o 2, CeCo 3, Ce 2 Co 7, Ce 5 Co 19, Ce 2 Co 17, CeCo 5, LaC
o 13, LaCo 5, La 5 Co 19, α-La 2 Co 7, β-La 2 Co 7, La 2 C
o 3, La 2 Co 1.7, LaCo, Nd 2 Co 17, NdCo 5, Nd 5 Co 19, Nd 2 Co
7, NdCo 3, NdCo 2, α-Nd 2 Co 3, β-Nd 2 Co 3, Nd 2 Co 1.7, N
d 7 Co 3, Nd 3 Co , Pr 2 Co 17, PrCo 5, Pr 5 Co 19, PrCo 3, Pr 2 C
o 7 , PrCo 2 , Pr 2 Co 1.7 , Pr 5 Co 2 , Pr 3 Co, α-Sm 2 Co 17 , β
-Sm 2 Co 17, SmCo 3, SmCo 2, Sm 9 Co 4, Sm 3 Co, Ce 7 Ni 3, CeN
i, CeNi 2, CeNi 3, Ce 2 Ni 7, CeNi 5, La 3 Ni, La 7 Ni 3, LaN
i, La 2 Ni 3 , La 7 Ni 16 , LaNi 3 , α-La 2 Ni 7 , β-La 2 Ni 7 , L
aNi 5, Nd 3 Ni, Nd 7 Ni 3, NdNi, NdNi 2, NdNi 3, Nd 2 Ni 7, N
dNi 5, Nd 2 Ni 17, Pr 3 Ni, Pr 7 Ni 3, PrNi, PrNi 2, PrNi 3,
Pr 2 Ni 7 , PrNi 5 , Sm 3 Ni, SmNi, SmNi 2 , SmNi 3 , Sm 2 Ni 7 ,
Sm 5 Ni 19, SmNi 5, Sm 2 Ni 17, CeCu 6, CeCu 4, CeCu 2, CeC
u, LaCu 6 , LaCu, NdCu 6 , NdCu 5 , NdCu 4 , Nd 2 Cu 7 , NdC
u 2, NdCu, PrCu 6, PrCu 4, PrCu 5, PrCu 2, PrCu, SmC
u 6, SmCu 4, SmCu 5 , Sm 2 Cu 7, SmCu 2, SmCu, CeB 4, Ce
B 6, LaB 4, LaB 6 , LaB 9, Nd 2 B 5, NdB 4, NdB 6, NdB 66, Sm
2 B 5, SmB 4, SmB 6, SmB 66, CeMg 12, Ce 5 Mg 4 1, CeMg 3, Ce
Mg 2, CeMg, CeMg 10.3, LaMg 12, La 2 Mg 17, LaMg 3, LaM
g 2 , LaMg and the like.

【0014】前記MbとSnとの金属間化合物相としては、
例えば、Ti3Sn、Ti2Sn、Ti5Sn3、α-Ti6Sn5、β-Ti6S
n5、V3Sn、V2Sn3、Fe5Sn3、Fe3Sn2、FeSn、FeSn2、α-C
o3Sn2、β-Co3Sn2、CoSn、CoSn2、Ni3Sn、Ni3Sn2、Ni3S
n4、Cu6Sn5、Cu3Sn、Mg2Sn、Zr4Sn、Zr5Sn3、ZrSn3、Hf
5Sn3、Hf5Sn4、HfSn、HfSn2、Nb3Sn、Nb6Sn5、NbSn2、M
o3Sn、MoSn2等が挙げられる。
The intermetallic compound phase of Mb and Sn includes:
For example, Ti 3 Sn, Ti 2 Sn, Ti 5 Sn 3 , α-Ti 6 Sn 5 , β-Ti 6 S
n 5 , V 3 Sn, V 2 Sn 3 , Fe 5 Sn 3 , Fe 3 Sn 2 , FeSn, FeSn 2 , α-C
o 3 Sn 2 , β-Co 3 Sn 2 , CoSn, CoSn 2 , Ni 3 Sn, Ni 3 Sn 2 , Ni 3 S
n 4, Cu 6 Sn 5, Cu 3 Sn, Mg 2 Sn, Zr 4 Sn, Zr 5 Sn 3, ZrSn 3, Hf
5 Sn 3 , Hf 5 Sn 4 , HfSn, HfSn 2 , Nb 3 Sn, Nb 6 Sn 5 , NbSn 2 , M
o 3 Sn, MoSn 2 and the like.

【0015】前記Maと希土類(R)との金属間化合物相と
しては、例えば、CeB4、CeB6、LaB4、LaB6、LaB9、Nd2B
5、NdB4、NdB6、NdB66、PrB4、PrB6、Sm2B5、SmB4、SmB
6、SmB66、Ce2C3、α-CeC2、β-CeC2、La2C3、α-La
C2、β-LaC2、Pr2C3、α-PrC2、β-PrC2、Ce5Si3、Ce3S
i2、Ce5Si4、CeSi、Ce3Si5、CeSi2、Nd5Si3、Nd5Si4、N
dSi、Nd3Si4、α-Nd2Si3、β-Nd2Si3、α-Pr5Si3、β-P
r5Si3、Pr5Si4、PrSi、Pr 3Si4、α-PrSi2、β-PrSi2、S
m5Si3、Sm5Si4、SmSi、Sm3Si5、α-SmSi2、β-SmSi2、P
rP、PrP2、PrP5、PrP7、α-Al11Ce3、β-Al11Ce3、Al3C
e、Al2Ce、AlCe、α-AlCe3、β-AlCe3、α-Al11La3、β
-Al11La3、Al3La、Al2La、AlLa、AlLa3、α-Al11Nd3
β-Al11Nd3、Al3Nd、Al2Nd、AlNd、AlNd3、α-Al11P
r3、β-Al11Pr 3、Al3Pr、Al2Pr、α-AlPr、β-AlPr、Al
Pr2、α-AlPr3、β-AlPr3、Al3Sm、Al2Sm、AlSm、AlS
m2、CeZn、CeZn2、CeZn3、Ce3Zn11、Ce13Zn58、CeZn5
Ce3Zn22、Ce2Zn17、CeZn11、LaZn、LaZn2、LaZn4、LaZn
8、LaZn13、NdZn、NdZn2、NdZn3、Nd3Zn11、Nd13Zn58
Nd3Zn22、NdZn11、NdZn12、Nd2Zn17、PrZn、α-PrZn2
β-PrZn2、PrZn3、Pr3Zn11、Pr13Zn58、Pr3Zn22、α-Pr
2Zn17、β-Pr2Zn17、PrZn11、SmZn、α-SmZn2、β-SmZn
2、SmZn3、Sm3Zn11、Sm13Zn58、Sm3Zn22、Sm2Zn17、Nd6
Mn23、NdMn2、Mn23Pr6、Mn23Sm6、Mn2Sm、Cu6Ce、Cu5C
e、Cu4Ce、Cu2Ce、CuCe、α-Cu6La、β-Cu6La、Cu5La、
Cu4La、Cu2La、CuLa、Cu6Nd、Cu5Nd、Cu4Nd、Cu7Nd2、C
u2Nd、CuNd、Cu6Pr、Cu4Pr、Cu2Pr、CuPr、Cu6Sm、Cu5S
m、Cu4Sm、Cu7Sm2、Cu2Sm、CuSm、Ag4Ce、Ag51Ce14、α
-Ag2Ce、β-Ag2Ce、γ-Ag2Ce、α-AgCe、β-AgCe、α-A
g5La、β-Ag5La、Ag51La14、Ag2La、AgLa、Ag51Nd14
α-Ag2Nd、β-Ag2Nd、AgNd、Ag5Pr、Ag51Pr14、α-Ag2P
r、β-Ag2Pr、AgPr、Ag51Sm14、α-Ag2Sm、β-Ag2Sm、A
gSm、Ce3In、Ce2In、Ce3In5、CeIn2、CeIn3、In3La、In
2La、In5La3、InLa、InLa2、InLa3、Nd3In、Nd2In、NdI
n、Nd3In5、NdIn3、Pr3In、Pr2In、Pr3In5、PrIn3、Sm3
In、Sm2In、SmIn、Sm3In5、SmIn3、Ce2Sb、Ce5Sb3、Ce4
Sn3、CeSb、CeSn2、La2Sb、La3Sn2、LaSb、LaSb2、Nd2S
b、Nd5Sb3、Nd4Sn3、NdSb、NdSb2、Pr2Sb、Pr5Sn3、Pr4
Sb3、α-PrSb、β-PrSb、Sb2Sm、SbSm、Sb3Sm4、α-Sb3
Sm5、β-Sb3Sm5、La5Pb3、La4Pb3、La5Pb4、α-La3P
b4、β-La3Pb4、LaPb2、LaPb3、Ce2Pb、CePb、CePb3、P
b3Pr、Pb2Pr、Pb4Pr3、Pb10Pr11、Pb4Pr5、Pb3Pr5、PbP
r3、Pb3Sm、Pb2Sm、Pb10Sm11、Pb4Sm5、Pb3Sm5、PbS
m3、La2Bi、La5Bi3、La4Bi3、LaBi、LaBi2、Ce2Bi、Ce5
Bi3、Ce4Bi3、CeBi、CeBi2、Bi2Pr、BiPr、Bi3Pr5、BiP
r2、Nd2Bi、Nd5Bi3、Nd4Bi3、NdBi、NdBi2等が挙げられ
る。
The intermetallic compound phase of Ma and the rare earth (R)
For example, CeBFour, CeB6, LaBFour, LaB6, LaB9, NdTwoB
Five, NdBFour, NdB6, NdB66, PrBFour, PrB6, SmTwoBFive, SmBFour, SmB
6, SmB66, CeTwoCThree, Α-CeCTwo, Β-CeCTwo, LaTwoCThree, Α-La
CTwo, Β-LaCTwo, PrTwoCThree, Α-PrCTwo, Β-PrCTwo, CeFiveSiThree, CeThreeS
iTwo, CeFiveSiFour, CeSi, CeThreeSiFive, CeSiTwo, NdFiveSiThree, NdFiveSiFour, N
dSi, NdThreeSiFour, Α-NdTwoSiThree, Β-NdTwoSiThree, Α-PrFiveSiThree, Β-P
rFiveSiThree, PrFiveSiFour, PrSi, Pr ThreeSiFour, Α-PrSiTwo, Β-PrSiTwo, S
mFiveSiThree, SmFiveSiFour, SmSi, SmThreeSiFive, Α-SmSiTwo, Β-SmSiTwo, P
rP, PrPTwo, PrPFive, PrP7, Α-Al11CeThree, Β-Al11CeThree, AlThreeC
e, AlTwoCe, AlCe, α-AlCeThree, Β-AlCeThree, Α-Al11LaThree, Β
-Al11LaThree, AlThreeLa, AlTwoLa, AlLa, AlLaThree, Α-Al11NdThree,
β-Al11NdThree, AlThreeNd, AlTwoNd, AlNd, AlNdThree, Α-Al11P
rThree, Β-Al11Pr Three, AlThreePr, AlTwoPr, α-AlPr, β-AlPr, Al
PrTwo, Α-AlPrThree, Β-AlPrThree, AlThreeSm, AlTwoSm, AlSm, AlS
mTwo, CeZn, CeZnTwo, CeZnThree, CeThreeZn11, Ce13Zn58, CeZnFive,
CeThreeZntwenty two, CeTwoZn17, CeZn11, LaZn, LaZnTwo, LaZnFour, LaZn
8, LaZn13, NdZn, NdZnTwo, NdZnThree, NdThreeZn11, Nd13Zn58,
NdThreeZntwenty two, NdZn11, NdZn12, NdTwoZn17, PrZn, α-PrZnTwo,
β-PrZnTwo, PrZnThree, PrThreeZn11, Pr13Zn58, PrThreeZntwenty two, Α-Pr
TwoZn17, Β-PrTwoZn17, PrZn11, SmZn, α-SmZnTwo, Β-SmZn
Two, SmZnThree, SmThreeZn11, Sm13Zn58, SmThreeZntwenty two, SmTwoZn17, Nd6
Mntwenty three, NdMnTwo, Mntwenty threePr6, Mntwenty threeSm6, MnTwoSm, Cu6Ce, CuFiveC
e, CuFourCe, CuTwoCe, CuCe, α-Cu6La, β-Cu6La, CuFiveLa,
CuFourLa, CuTwoLa, CuLa, Cu6Nd, CuFiveNd, CuFourNd, Cu7NdTwo, C
uTwoNd, CuNd, Cu6Pr, CuFourPr, CuTwoPr, CuPr, Cu6Sm, CuFiveS
m, CuFourSm, Cu7SmTwo, CuTwoSm, CuSm, AgFourCe, Ag51Ce14, Α
-AgTwoCe, β-AgTwoCe, γ-AgTwoCe, α-AgCe, β-AgCe, α-A
gFiveLa, β-AgFiveLa, Ag51La14, AgTwoLa, AgLa, Ag51Nd14,
α-AgTwoNd, β-AgTwoNd, AgNd, AgFivePr, Ag51Pr14, Α-AgTwoP
r, β-AgTwoPr, AgPr, Ag51Sm14, Α-AgTwoSm, β-AgTwoSm, A
gSm, CeThreeIn, CeTwoIn, CeThreeInFive, CeInTwo, CeInThree, InThreeLa, In
TwoLa, InFiveLaThree, InLa, InLaTwo, InLaThree, NdThreeIn, NdTwoIn, NdI
n, NdThreeInFive, NdInThree, PrThreeIn, PrTwoIn, PrThreeInFive, PrInThree, SmThree
In, SmTwoIn, SmIn, SmThreeInFive, SmInThree, CeTwoSb, CeFiveSbThree, CeFour
SnThree, CeSb, CeSnTwo, LaTwoSb, LaThreeSnTwo, LaSb, LaSbTwo, NdTwoS
b, NdFiveSbThree, NdFourSnThree, NdSb, NdSbTwo, PrTwoSb, PrFiveSnThree, PrFour
SbThree, Α-PrSb, β-PrSb, SbTwoSm, SbSm, SbThreeSmFour, Α-SbThree
SmFive, Β-SbThreeSmFive, LaFivePbThree, LaFourPbThree, LaFivePbFour, Α-LaThreeP
bFour, Β-LaThreePbFour, LaPbTwo, LaPbThree, CeTwoPb, CePb, CePbThree, P
bThreePr, PbTwoPr, PbFourPrThree, PbTenPr11, PbFourPrFive, PbThreePrFive, PbP
rThree, PbThreeSm, PbTwoSm, PbTenSm11, PbFourSmFive, PbThreeSmFive, PbS
mThree, LaTwoBi, LaFiveBiThree, LaFourBiThree, LaBi, LaBiTwo, CeTwoBi, CeFive
BiThree, CeFourBiThree, CeBi, CeBiTwo, BiTwoPr, BiPr, BiThreePrFive, BiP
rTwo, NdTwoBi, NdFiveBiThree, NdFourBiThree, NdBi, NdBiTwoEtc.
You.

【0016】前記MaとSnとの金属間化合物相としては、
例えば、Sn4P3、Sn3P4、SnP3、V3Sn、V2Sn3、Mn3Sn、Mn
2Sn、MnSn2、Cu6Sn5、Cu3Sn、Ag3Sn、Ag4Sn等が挙げら
れる。
The intermetallic compound phase of Ma and Sn includes:
For example, Sn 4 P 3 , Sn 3 P 4 , SnP 3 , V 3 Sn, V 2 Sn 3 , Mn 3 Sn, Mn
2 Sn, MnSn 2 , Cu 6 Sn 5 , Cu 3 Sn, Ag 3 Sn, Ag 4 Sn and the like.

【0017】前記希土類(R)とSnの金属間化合物相とし
ては、RSn3-X(X=有理数、0<X<3)の条件を満たす相が
挙げられ、例えば、Ce3Sn、α-Ce5Sn3、β-Ce5Sn3、Ce5
Sn4、Ce11Sn10、Ce3Sn5、Ce3Sn7、Ce2Sn5、α-La5Sn3
β-La5Sn3、La5Sn4、La11Sn10、LaSn、La2Sn3、La3S
n5、PrSn3、α-Pr5Sn3、β-Pr5Sn3、Pr5Sn4、PrSn、α-
Pr 3Sn5、β-Pr3Sn5、Nd5Sn3、Nd5Sn4、Nd11Sn10、NdS
n、Nd3Sn5、NdSn2、Nd2Sn7、Nd2Sn5、Sm5Sn3、Sm4Sn3
Sm11Sn10、Sm5Sn4、Sm2Sn3、SmSn2、SmSn3が挙げられ
る。該RSn3-X相は、RSn3相と比較してSn含有量が少ない
相である。言い換えればSnの吸蔵量が小さい相であり、
RSn3相と比較してLiの吸蔵・放出に伴う体積膨張が小さ
い。この相は合金中での割合が大きくなると充放電容量
の低下を引き起こすが、ある程度合金中に存在するとLi
の吸蔵・放出に伴う体積膨張を緩和する効果がある。
The rare earth (R) and Sn are intermetallic compound phases.
RSn3-X(X = rational number, 0 <X <3)
For example, CeThreeSn, α-CeFiveSnThree, Β-CeFiveSnThree, CeFive
SnFour, Ce11SnTen, CeThreeSnFive, CeThreeSn7, CeTwoSnFive, Α-LaFiveSnThree,
β-LaFiveSnThree, LaFiveSnFour, La11SnTen, LaSn, LaTwoSnThree, LaThreeS
nFive, PrSnThree, Α-PrFiveSnThree, Β-PrFiveSnThree, PrFiveSnFour, PrSn, α-
Pr ThreeSnFive, Β-PrThreeSnFive, NdFiveSnThree, NdFiveSnFour, Nd11SnTen, NdS
n, NdThreeSnFive, NdSnTwo, NdTwoSn7, NdTwoSnFive, SmFiveSnThree, SmFourSnThree,
Sm11SnTen, SmFiveSnFour, SmTwoSnThree, SmSnTwo, SmSnThreeIs mentioned
You. The RSn3-XPhase is RSnThreeLow Sn content compared to phase
Phase. In other words, it is a phase in which the amount of absorbed Sn is small,
RSnThreeVolume expansion due to occlusion / release of Li is smaller than that of phase
No. This phase has a higher charge / discharge capacity as its proportion in the alloy increases.
However, if present in the alloy to some extent, Li
Has the effect of alleviating the volume expansion associated with occlusion and release.

【0018】式(1)で表される合金を負極材料の活物質
として使用するには、通常、粉末の形態で使用でき、該
粉末の微粉化を抑制するため、その平均粒径は0.1〜25
μmであることが好ましい。該粉末状の合金に含まれる
結晶の平均粒径は、サイクル劣化を抑制するために15μ
m以下が好ましく、特に10μm以下が望ましい。該結晶の
平均粒径が0.1μm未満では、合金粉末の微粉化は抑制さ
れるものの表面積が増大し、酸素値が極端に増加するた
め、充放電効率の低下、充放電容量の低下を招いてしま
うので好ましくない。
In order to use the alloy represented by the formula (1) as an active material of a negative electrode material, it can be usually used in the form of a powder. twenty five
It is preferably μm. The average particle size of the crystals contained in the powdered alloy is 15 μm to suppress cycle deterioration.
m or less, particularly preferably 10 μm or less. When the average particle size of the crystals is less than 0.1 μm, pulverization of the alloy powder is suppressed, but the surface area is increased, and the oxygen value is extremely increased, so that the charge / discharge efficiency is reduced and the charge / discharge capacity is reduced. It is not preferable.

【0019】式(1)で表される合金には、式(1)の組成以
外に、その製造工程等に起因して酸素及び/又は窒素等
が含まれることがある。該酸素は、主として希土類(R)
又はSnとの酸化物として合金粒子表面に存在し、酸化物
皮膜を形成してLiの充放電に伴う合金の体積膨張を緩和
する作用を示す。このような酸化物の存在割合が少なす
ぎるとサイクル劣化が激しくなり、また、多すぎるとLi
イオンの合金中への拡散を阻害し、充放電容量が低下す
ると共に吸蔵したLiを酸化し、充放電効率の低下を招い
てしまう。従って、合金中に含有する酸素元素の含有割
合は、0.05〜5重量%が好ましく、更には0.10〜3重量%
が特に好ましい。同様に合金に含まれる窒素も、適性量
の含有によりサイクル寿命を向上させることができる。
従って、合金中に含有する窒素元素の含有割合は、0.00
05〜2重量%が好ましく、更には0.0005〜0.5重量%が特
に好ましい。
The alloy represented by the formula (1) may contain oxygen and / or nitrogen and the like due to the manufacturing process and the like in addition to the composition of the formula (1). The oxygen is mainly a rare earth (R)
Alternatively, it is present as an oxide with Sn on the surface of the alloy particles, and forms an oxide film to reduce the volume expansion of the alloy accompanying the charging and discharging of Li. If the proportion of such oxides is too small, the cycle deterioration becomes severe, and if it is too large, Li
The diffusion of ions into the alloy is inhibited, the charge / discharge capacity is reduced, and the occluded Li is oxidized, leading to a reduction in charge / discharge efficiency. Therefore, the content of the oxygen element in the alloy is preferably 0.05 to 5% by weight, more preferably 0.10 to 3% by weight.
Is particularly preferred. Similarly, the nitrogen contained in the alloy can improve the cycle life by containing an appropriate amount.
Therefore, the content ratio of the nitrogen element contained in the alloy is 0.00
It is preferably from 05 to 2% by weight, more preferably from 0.0005 to 0.5% by weight.

【0020】本発明の上記負極材料の製造は、例えば、
式(1)で表される組成を有する合金溶湯を製造する工程
(a)と、該合金溶湯を冷却固化する工程(b)と、冷却固化
した合金を特定条件で加熱処理する工程(c)とを含む本
発明の製造法等により得ることができる他、前記工程
(a)及び(b)を含み、工程(c)を含まない方法等によって
も得ることができる。
The production of the above-mentioned negative electrode material of the present invention includes, for example,
Step of manufacturing a molten alloy having a composition represented by formula (1)
(a), step (b) of cooling and solidifying the molten alloy, and step (c) of subjecting the cooled and solidified alloy to heat treatment under specific conditions. Process
It can also be obtained by a method containing (a) and (b) but not containing step (c).

【0021】前記工程(a)において、合金溶湯の原料
は、式(1)で表される組成を構成する金属単体の混合物
でも良いし、予め合金化した母合金を用いても良い。合
金溶湯の製造は公知の方法が採用できるが、高周波溶解
法が好ましく、アーク溶解法やメカニカルアロイング法
は、得られる合金の残留金属Snが多くなる傾向にあるの
で好ましくない。合金溶湯を製造する際の雰囲気は、溶
湯の酸化を防ぐため不活性ガス雰囲気が望ましい。ま
た、原料の歩留まりを向上させるために個々の原料を投
入する時期をずらして溶融しても良い。
In the step (a), the raw material of the molten alloy may be a mixture of simple metals having the composition represented by the formula (1) or a mother alloy pre-alloyed. Known methods can be used for the production of the molten alloy, but the high-frequency melting method is preferable, and the arc melting method and the mechanical alloying method are not preferable because the residual metal Sn of the obtained alloy tends to increase. The atmosphere for producing the molten alloy is preferably an inert gas atmosphere to prevent oxidation of the molten metal. Further, in order to improve the yield of the raw materials, the individual raw materials may be melted at a different timing.

【0022】工程(b)において、合金溶湯の冷却は、例
えば、金型鋳造法、アトマイズ法、ロール冷却法、回転
電極法等の公知の冷却方法を用いることができる。合金
溶湯を冷却する際の雰囲気は、得られる合金の酸化を防
ぐため不活性ガス雰囲気が望ましい。工程(b)により得
られる冷却固化した合金の組織は、Sn単相を含まないこ
とが望ましいが、次工程等によりSn単相を削減すること
ができるので、工程(b)の段階ではSn単相を含んでいて
も良い。従って、工程(b)においてSn単相の含有割合が
少ない場合等には、必ずしも工程(c)を行う必要はな
い。
In step (b), the molten alloy can be cooled by a known cooling method such as a die casting method, an atomizing method, a roll cooling method, and a rotating electrode method. The atmosphere for cooling the molten alloy is preferably an inert gas atmosphere to prevent oxidation of the obtained alloy. It is desirable that the structure of the cooled and solidified alloy obtained in the step (b) does not contain the Sn single phase, but the Sn single phase can be reduced by the next step or the like. It may contain phases. Therefore, when the content of the Sn single phase is small in the step (b), the step (c) is not necessarily required.

【0023】工程(c)は、工程(b)で得られる冷却固化し
た合金の組織の均質化、結晶性の向上、残留金属Snの低
減等を目的とする熱処理工程である。工程(c)は、前記
冷却固化した合金の酸化を防止するために、また、活性
度を向上させる目的で、0.07〜10MPaの希ガス及び/又
は水素ガス雰囲気において行うことができる。希ガス及
び水素ガスの混合ガスを用いる場合には、水素ガス5容
量%以上を含む混合ガスが好ましい。前記雰囲気ガスの
圧力が、0.07MPa未満の高い減圧下の場合、合金中のSn
が熱処理により表面に析出する傾向があり、そのような
材料で電池を作製して評価した場合、サイクル寿命を低
下させてしまう傾向がある。工程(c)では、前記雰囲気
において、工程(b)で冷却した合金を100〜1150℃の温度
範囲で1分〜100時間保持する。熱処理温度が100℃未満
では、残留金属Sn、Liの拡散が極めて起こり難く、熱処
理の効果が得られない。一方、1150℃を超えると合金自
体が再溶融するため、冷却固化した合金同士の溶着等が
生じ、所望の目的が達成できない。熱処理時間は、処理
する合金の組織、量、形状、使用する熱処理装置等によ
って上記範囲から適宜選択できる。1分未満では熱処理
の効果が現れず、100時間を超えると経済性を損なう。
好ましくは30分〜48時間である。
Step (c) is a heat treatment step for the purpose of homogenizing the structure of the cooled and solidified alloy obtained in step (b), improving the crystallinity, reducing the residual metal Sn, and the like. Step (c) can be performed in a rare gas and / or hydrogen gas atmosphere of 0.07 to 10 MPa in order to prevent oxidation of the cooled and solidified alloy and to improve the activity. When a mixed gas of a rare gas and hydrogen gas is used, a mixed gas containing 5% by volume or more of hydrogen gas is preferable. When the pressure of the atmosphere gas is under a high reduced pressure of less than 0.07 MPa, Sn in the alloy
Tends to precipitate on the surface by heat treatment, and when a battery is manufactured from such a material and evaluated, the cycle life tends to be reduced. In the step (c), the alloy cooled in the step (b) is kept in the above atmosphere in a temperature range of 100 to 1150 ° C. for 1 minute to 100 hours. If the heat treatment temperature is lower than 100 ° C., the diffusion of the residual metals Sn and Li is extremely unlikely to occur, and the effect of the heat treatment cannot be obtained. On the other hand, when the temperature exceeds 1150 ° C., the alloy itself is re-melted, so that the cooled and solidified alloys are welded to each other, so that the desired purpose cannot be achieved. The heat treatment time can be appropriately selected from the above range according to the structure, amount, shape, and the like of the alloy to be treated, the heat treatment apparatus to be used, and the like. If it is less than 1 minute, the effect of the heat treatment is not exhibited, and if it exceeds 100 hours, the economic efficiency is impaired.
Preferably it is 30 minutes to 48 hours.

【0024】工程(b)により得られる合金が、サイクル
特性に悪影響を及ぼす残留Sn単相を含む場合、上記工程
(c)により低減できるが、更に残留Sn単相を削減するた
めに、工程(c)で得られた合金を、粉砕後、篩分する工
程(d)を行うこともできる。工程(d)において粉砕は、機
械粉砕等で行うことができる。粉砕した合金からSn単相
を篩分により除去することができるのは、金属Snの延性
が合金中の金属間化合物より大きいため、金属間化合物
の方が優先的に粉砕され、Sn単相の粒径が大きくなるた
めである。篩分する際の粒径の目安は25〜200μmが好
ましく、特に50〜100μmが望ましい。
When the alloy obtained in the step (b) contains a residual Sn single phase which adversely affects the cycle characteristics,
Although it can be reduced by (c), in order to further reduce the residual Sn single phase, a step (d) of sieving the alloy obtained in step (c) after pulverizing the alloy can also be performed. In the step (d), the pulverization can be performed by mechanical pulverization or the like. The reason that the Sn single phase can be removed from the pulverized alloy by sieving is that the ductility of the metal Sn is larger than the intermetallic compound in the alloy, so the intermetallic compound is preferentially pulverized, and the Sn single phase is removed. This is because the particle size increases. The standard of the particle size at the time of sieving is preferably 25 to 200 μm, particularly preferably 50 to 100 μm.

【0025】本発明のリチウムイオン二次電池用負極
は、上記本発明の負極材料を活物質として含み、周知の
任意の電極製造法にしたがって得ることができる。例え
ば、本発明の負極材料の粉末に、適当なバインダを混合
し、必要に応じて導電性向上のために適当な導電粉を混
合する。この混合物に、バインダが溶解する溶媒を加
え、必要であればホモジナイザー等で充分に撹拌してス
ラリー状にする。得られたスラリーを圧延銅箔、電解銅
箔等の電極基板(集電体)に、ドクターブレード等を用い
て塗布し、乾燥した後、ロール圧延等で電極活物質を圧
密化させる方法等により製造することができる。
The negative electrode for a lithium ion secondary battery of the present invention contains the above-described negative electrode material of the present invention as an active material, and can be obtained according to any known method for producing an electrode. For example, a suitable binder is mixed with the powder of the negative electrode material of the present invention, and a suitable conductive powder is mixed as needed to improve conductivity. A solvent in which the binder is dissolved is added to the mixture, and if necessary, the mixture is sufficiently stirred with a homogenizer or the like to form a slurry. The obtained slurry is applied to an electrode substrate (current collector) such as a rolled copper foil or an electrolytic copper foil using a doctor blade or the like, dried, and then roll-rolled or the like to consolidate the electrode active material. Can be manufactured.

【0026】前記バインダとしては、例えば、PVDF(ポ
リフッ化ビニリデン)、PMMA(ポリメチルメタクリレー
ト)、PTFE(ポリテトラフルオロエチレン)等の非水溶性
の樹脂、ならびにCMC(カルボキシメチルセルロース)、P
VA(ポリビニルアルコール)等の水溶性樹脂が挙げられ
る。前記溶媒としては、例えば、NMP(N-メチルピロリド
ン)、DMF(ジメチルホルムアミド)等の有機溶媒、又は水
が挙げられる。前記導電粉としては、例えば、アセチレ
ンブラック、ケッチェンブラック、黒鉛等の炭素材;Ni
等の金属が挙げられる。特に炭素材は、その層間にLiを
吸蔵できるので、導電性に加えて負極の充放電容量にも
寄与でき好ましい。
Examples of the binder include water-insoluble resins such as PVDF (polyvinylidene fluoride), PMMA (polymethyl methacrylate), and PTFE (polytetrafluoroethylene); CMC (carboxymethyl cellulose);
And water-soluble resins such as VA (polyvinyl alcohol). Examples of the solvent include an organic solvent such as NMP (N-methylpyrrolidone) and DMF (dimethylformamide), or water. Examples of the conductive powder include carbon materials such as acetylene black, Ketjen black, and graphite;
And the like. In particular, the carbon material is preferable because it can occlude Li between the layers, and can contribute to the charge and discharge capacity of the negative electrode in addition to the conductivity.

【0027】本発明の負極を製造するにあたり、活物質
として用いる本発明の負極材料は、活物質中に通常50〜
100重量%、特に80〜100重量%含有させることが好まし
い。特に、本発明の負極材料において、式(1)で表され
る組成を有する合金が、Liを含有しないか、もしくは、
所望の組成合金で必要な初期不可逆分に満たないLiしか
含有していない合金である場合には、活物質として本発
明の負極材料に加えて、金属Li、LiH(水素化リチウ
ム)、Li3N(窒化リチウム)等のリチウム供給源を含ませ
ることができる。このようなリチウム供給源を用いるこ
とにより、初回充放電時の不可逆分のLiが補償される
が、負極活物質中におけるリチウム供給源の含有割合が
多くなりすぎると、取扱い性に問題が生じる恐れがあ
る。また、前記リチウム供給源は、密度が小さいため、
負極活物質中の含有割合が多くなりすぎると電池のエネ
ルギー密度を低下させてしまう。従って、リチウム供給
源を用いる場合の活物質中における含有割合は、合金組
成の初期充放電効率を考慮して、50重量%未満、特に、
20重量%未満が好ましい。
In producing the negative electrode of the present invention, the negative electrode material of the present invention used as an active material usually contains 50 to 50% in the active material.
It is preferable to contain 100% by weight, particularly 80 to 100% by weight. In particular, in the negative electrode material of the present invention, the alloy having the composition represented by the formula (1) does not contain Li, or
In the case of an alloy containing only less than the required initial irreversible component in the desired composition alloy, in addition to the negative electrode material of the present invention as an active material, metal Li, LiH (lithium hydride), Li 3 A lithium source such as N (lithium nitride) can be included. By using such a lithium supply source, irreversible Li at the time of initial charge / discharge is compensated.However, if the content ratio of the lithium supply source in the negative electrode active material is too large, there may be a problem in handleability. There is. In addition, since the lithium source has a low density,
If the content ratio in the negative electrode active material is too large, the energy density of the battery will be reduced. Therefore, when a lithium supply source is used, the content ratio in the active material is less than 50% by weight, particularly considering the initial charge and discharge efficiency of the alloy composition,
Less than 20% by weight is preferred.

【0028】本発明のリチウムイオン二次電池は、上記
本発明の負極を備えておれば良く、通常、基本構造とし
て、本発明の負極、正極、セパレータ及び非水系の電解
質、例えばポリマー電解質を含む。これら電池構成材料
は、負極を除いて公知のものを適当に組合わせて構成さ
せることができる。二次電池の形状は特に制限されず、
円筒形、角型、コイン型、シール型等のいずれでも良
い。
The lithium ion secondary battery of the present invention may be provided with the above-described negative electrode of the present invention, and usually includes, as its basic structure, the negative electrode of the present invention, a positive electrode, a separator and a non-aqueous electrolyte such as a polymer electrolyte. . These battery constituent materials can be configured by appropriately combining known materials except for the negative electrode. The shape of the secondary battery is not particularly limited,
Any of cylindrical, square, coin, and seal types may be used.

【0029】[0029]

【実施例】以下、本発明を実施例及び比較例により更に
詳細に説明するが本発明はこれらに限定されない。尚、
例中に使用した原材料は99.5%以上の材料を使用した。
また、ミッシュメタル(Mm)は、重量比でLa:Ce:Nd:P
r:Smが28:51:16:4:1の(株)三徳製の希土類合金を
使用した。実施例1〜20及び比較例1〜2 リチウムイオン二次電池用負極材料合金の作製 表1に示す組成を構成する金属混合物を高周波溶融した
後、得られた溶湯を銅鋳型を用いた金型鋳造法(金型法)
もしくは、回転ロールにタンデッシュを介して溶湯を注
湯するストリップキャスト法(SC法)でフレーク状の合金
片を得た。次いで、実施例2〜5、7、9〜13及び15で得ら
れたそれぞれの合金については、表1に示す条件で熱処
理を施した。熱処理を施していない各合金片及び熱処理
を施した各合金片を、アルゴンガス雰囲気下において機
械的粉砕法により粉砕体し、篩を用いて25μm以下に分
級し負極材料合金を製造した。尚、合金溶湯の製造及び
合金溶湯の冷却はそれぞれアルゴンガス雰囲気中で行っ
た。次に、得られた各粉体合金の組成を元素分析法によ
り測定し、表1に示す組成であることを確認した。ま
た、各粉体合金の構成相を粉末X線回折(XRD)により測定
し、構成相中の残留金属Snの析出割合を(W)とし、以下
の式により算出して評価した。結果を表1に示す。 (W)=(金属Sn(2 0 0)面のピーク強度/RSn3に由来するピ
ーク中で最強ピーク強度)×100
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. still,
The raw materials used in the examples used materials of 99.5% or more.
Misch metal (Mm) is La: Ce: Nd: P in weight ratio.
r: A rare earth alloy manufactured by Santoku Co., Ltd. having an Sm of 28: 51: 16: 4: 1 was used. Preparation of negative electrode material alloy for lithium ion secondary batteries of Examples 1 to 20 and Comparative Examples 1 to 2 After high-frequency melting of a metal mixture constituting the composition shown in Table 1, the resulting molten metal was molded using a copper mold. Casting method (mold method)
Alternatively, a flake-shaped alloy piece was obtained by a strip casting method (SC method) in which a molten metal was poured into a rotating roll via a tundish. Next, the respective alloys obtained in Examples 2 to 5, 7, 9 to 13 and 15 were subjected to a heat treatment under the conditions shown in Table 1. Each alloy piece that had not been subjected to the heat treatment and each alloy piece that had been subjected to the heat treatment were pulverized by a mechanical pulverization method in an argon gas atmosphere, and classified using a sieve to 25 μm or less to produce a negative electrode material alloy. The production of the molten alloy and the cooling of the molten alloy were each performed in an argon gas atmosphere. Next, the composition of each of the obtained powder alloys was measured by elemental analysis, and it was confirmed that the composition was as shown in Table 1. Further, the constituent phases of each powder alloy were measured by powder X-ray diffraction (XRD), and the precipitation ratio of residual metal Sn in the constituent phases was defined as (W), which was calculated and evaluated according to the following equation. Table 1 shows the results. (W) = (Peak intensity of metal Sn (200) plane / strongest peak intensity among peaks derived from RSn 3 ) × 100

【0030】リチウムイオン二次電池用負極の作製及び
充放電試験方法 負極活物質としての上記調製した合金粉末と、導電助剤
としてのケッチェンブラックと、結着剤としてのPVDFと
を重量比で85:5:10に混合し、適量のNMPを加えて混練
した後、18μmの厚さを有する電解銅箔に塗布し、60℃
の乾燥機において仮乾燥した後、ローラープレスにより
圧密化した。それを直径1.0cmの大きさに打ち抜き、130
℃で真空乾燥することにより試験電極を作製した。得ら
れた試験電極と、セパレータとしてのポリプロピレン多
孔質フィルムと、対極としての金属リチウムと、電解液
としての、エチレンカーボネート(EC):ジメチルカーボ
ネート(DMC)=1:2(体積比)の混合溶媒にLiPF6を1mol濃
度で溶解させた溶液とを用いて2極式セルを作製した。
このセルを温度25℃において電流密度0.2mA/cm2で0〜1.
0V vs. Li/Li+の電位範囲において定電流充放電試験を
行った。また、最大放電容量を50サイクル目にどれだけ
維持したかを示す指標としての容量維持率(S)を以下の
式により算出して評価した。 (S)=50サイクル目の放電容量/最大放電容量×100(%) 更に、初回充電容量に対する初回放電容量の割合を示す
指標としての初期充放電効率(Z)を以下の式により算出
して評価した。 (Z)=初回放電容量/初回充電容量×100(%) 以上の結果を表1に示す。尚、セルの組立てと充放電試
験は、アルゴンガス雰囲気下のグローブボックス内で行
った。
Preparation of negative electrode for lithium ion secondary battery and
Charge / discharge test method: The above prepared alloy powder as the negative electrode active material, Ketjen black as a conductive additive, and PVDF as a binder were mixed at a weight ratio of 85: 5: 10, and an appropriate amount of NMP was added. After adding and kneading, apply to an electrolytic copper foil having a thickness of 18 μm,
After being preliminarily dried in a drier of No. 1, the powder was consolidated by a roller press. Punch it into a size of 1.0cm in diameter, 130
A test electrode was prepared by vacuum drying at ° C. The obtained test electrode, a polypropylene porous film as a separator, metallic lithium as a counter electrode, and a mixed solvent of ethylene carbonate (EC): dimethyl carbonate (DMC) = 1: 2 (volume ratio) as an electrolytic solution And a solution in which LiPF 6 was dissolved at a concentration of 1 mol was prepared.
0-1 at a current density of 0.2 mA / cm 2 in the cell temperature 25 ° C..
A constant current charge / discharge test was performed in the potential range of 0 V vs. Li / Li + . Further, a capacity retention ratio (S) as an index indicating how much the maximum discharge capacity was maintained at the 50th cycle was calculated and evaluated by the following formula. (S) = discharge capacity at 50th cycle / maximum discharge capacity × 100 (%) Furthermore, the initial charge / discharge efficiency (Z) as an index indicating the ratio of the initial discharge capacity to the initial charge capacity was calculated by the following equation. evaluated. (Z) = initial discharge capacity / initial charge capacity × 100 (%) The above results are shown in Table 1. The cell assembly and charge / discharge test were performed in a glove box under an argon gas atmosphere.

【0031】比較例3 試験電極として人造黒鉛を用いた以外は、実施例1と同
様に充放電試験を行った。結果を表1に示す。
Comparative Example 3 A charge / discharge test was performed in the same manner as in Example 1 except that artificial graphite was used as a test electrode. Table 1 shows the results.

【0032】[0032]

【表1】 [Table 1]

【0033】表1より実施例1〜20のLixRSn3において、R
としてCe又はMmを用いた実施例1〜15は、他の希土類元
素を用いた実施例16〜20より明らかに初期放電容量及び
初期充放電効率が優れている。特に実施例6及び7から熱
処理を施すことによりサイクル寿命が向上することが判
る。希土類元素を含有しない組成の比較例1及び2では、
放電容量、サイクル特性ともに低いことが判る。また実
施例1〜20の重量あたりの放電容量は、比較例3の黒鉛よ
り1.5倍以上高い値となり、また初期充放電効率も黒鉛
とほぼ同等の値となり、本実施例の負極が優れた放電特
性を示すことが判る。
From Table 1, in LixRSn 3 of Examples 1 to 20, R
In Examples 1 to 15 using Ce or Mm, the initial discharge capacity and initial charge / discharge efficiency are clearly superior to those in Examples 16 to 20 using other rare earth elements. In particular, Examples 6 and 7 show that heat treatment improves cycle life. In Comparative Examples 1 and 2 having a composition not containing a rare earth element,
It can be seen that both the discharge capacity and the cycle characteristics are low. The discharge capacity per weight of Examples 1 to 20 was 1.5 times or more higher than the graphite of Comparative Example 3, and the initial charge / discharge efficiency was also almost the same as that of graphite. It turns out that it shows a characteristic.

【0034】実施例21〜32及び比較例4〜5 合金組成を表2に示す組成に代え、合金片の熱処理条件
を表2に示す条件に代えた以外は実施例1と同様に、残留
金属Snの析出割合(W)の測定、セルの作製及び充放電試
験(初期放電容量及び初期充放電効率)を行った。結果を
表2に示す。
Examples 21-32 and Comparative Examples 4-5 Residual metal was prepared in the same manner as in Example 1 except that the alloy compositions were changed to the compositions shown in Table 2 and the heat treatment conditions for the alloy pieces were changed to the conditions shown in Table 2. Measurement of the precipitation ratio (W) of Sn, preparation of the cell, and charge / discharge test (initial discharge capacity and initial charge / discharge efficiency) were performed. Table 2 shows the results.

【0035】[0035]

【表2】 [Table 2]

【0036】表2より、実施例21〜32は、置換元素(Ma)
の割合が本発明の範囲外である比較例4及び5に比して明
らかに初期放電容量が増加していることが判る。
From Table 2, Examples 21 to 32 show that the substitution element (Ma)
It can be seen that the initial discharge capacity is clearly increased as compared with Comparative Examples 4 and 5 in which the ratio is out of the range of the present invention.

【0037】実施例33〜54及び比較例6 合金組成を表3に示す組成に代え、合金片の熱処理条件
を表3に示す条件に代えた以外は実施例1と同様に、残留
金属Snの析出割合(W)の測定、セルの作製及び充放電試
験(初期充放電効率及び50サイクル目の容量維持率)を行
った。結果を表3に示す。
Examples 33 to 54 and Comparative Example 6 The same procedure as in Example 1 was carried out except that the alloy composition was changed to the composition shown in Table 3 and the heat treatment conditions for the alloy pieces were changed to the conditions shown in Table 3. The deposition ratio (W) was measured, the cell was prepared, and a charge / discharge test (initial charge / discharge efficiency and capacity retention at the 50th cycle) was performed. Table 3 shows the results.

【0038】[0038]

【表3】 [Table 3]

【0039】表3より本発明における置換元素(Mb)以外
の置換元素を有する比較例6では、置換元素(Mb)を有す
る実施例33〜54に比して明らかに容量維持率が劣ること
が判る。また、熱処理を施した合金を用いたサイクル寿
命が向上している実施例では、XRD測定により、置換元
素(Mb)と希土類(R)との金属間化合物相、置換元素(Mb)
とSnとの金属間化合物相、RSn3相(R<0)、置換元素(Mb)
単体が複合的に析出していることが確認された。
From Table 3, it can be seen that Comparative Example 6, which has a substitution element other than the substitution element (Mb) in the present invention, has a clearly lower capacity retention ratio than Examples 33 to 54, which have the substitution element (Mb). I understand. Further, in the example in which the cycle life using the heat-treated alloy is improved, the intermetallic compound phase of the substitution element (Mb) and the rare earth (R) by the XRD measurement, the substitution element (Mb)
Intermetallic compound phase of Sn and Sn, RSn 3 phase (R <0), substitution element (Mb)
It was confirmed that the simple substance was precipitated in a complex manner.

【0040】実施例55〜68及び比較例7〜8 合金組成を表4に示す組成に代え、合金片の熱処理条件
を表4に示す条件に代えた以外は実施例1と同様に、残留
金属Snの析出割合(W)の測定、セルの作製及び充放電試
験を行った。結果を表4に示す。
Examples 55-68 and Comparative Examples 7-8 Residual metals were prepared in the same manner as in Example 1 except that the alloy compositions were changed to the compositions shown in Table 4 and the heat treatment conditions for the alloy pieces were changed to the conditions shown in Table 4. Measurement of the precipitation ratio (W) of Sn, production of a cell, and charge / discharge test were performed. Table 4 shows the results.

【0041】[0041]

【表4】 [Table 4]

【0042】置換元素(Ma、Mb)を含む実施例55〜68で
は、Snの含有割合が本発明の範囲より低く、かつ置換元
素(Ma、Mb)の含有割合が本発明の範囲よりも高い比較例
7及び8に比して、高い初期放電容量を示すことが判る。
In Examples 55 to 68 containing the substitution elements (Ma, Mb), the Sn content was lower than the range of the present invention, and the substitution element (Ma, Mb) content was higher than the range of the present invention. Comparative example
It turns out that it shows high initial discharge capacity compared with 7 and 8.

【0043】実施例69〜71 合金組成を表5に示す組成に代え、また試験電極作製時
の負極活物質として表5に示すLi供給源を加えた以外は
実施例1と同様に、セルの作製及び充放電試験を行っ
た。結果を表5に示す。
Examples 69 to 71 In the same manner as in Example 1, except that the alloy composition was changed to the composition shown in Table 5, and a Li source shown in Table 5 was added as a negative electrode active material at the time of producing a test electrode, Fabrication and charge / discharge tests were performed. Table 5 shows the results.

【0044】[0044]

【表5】 [Table 5]

【0045】実施例69〜71は合金中にLiを含有しない組
成、実施例72はLi割合が低い組成であるが、金属Li、Li
H、LiNを負極活物質中に共存させることで初期放電容
量、初期充放電効率及びサイクル特性に優れた負極が得
られることが判る。
Examples 69 to 71 are compositions containing no Li in the alloy, and Example 72 is a composition having a low Li ratio.
It can be seen that the coexistence of H and LiN in the negative electrode active material provides a negative electrode having excellent initial discharge capacity, initial charge / discharge efficiency, and cycle characteristics.

【0046】実施例73〜74 表6に示す酸素量及び窒素量を含む合金片を実施例1と同
様に調製し、残留金属Snの析出割合(W)の測定、セルの
作製及び充放電試験を行った。結果を表6に示す。
Examples 73 to 74 Alloy pieces containing the amounts of oxygen and nitrogen shown in Table 6 were prepared in the same manner as in Example 1, and the deposition rate (W) of the residual metal Sn was measured. Was done. Table 6 shows the results.

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【発明の効果】本発明のリチウムイオン二次電池用負極
は、特定組成の合金を含む本発明の負極材料を活物質と
するので、初期充放電効率に優れ、充放電に伴うサイク
ル劣化が抑制され、特に優れた放電容量が達成される。
また、本発明の負極材料は、このような負極の製造に有
用である。従って、本発明の負極材料及び負極は、現
在、実用化されている炭素材料負極を用いたリチウムイ
オン二次電池をより高容量化・コンパクト化させること
が可能となり、産業上の利用価値が極めて高い。
The negative electrode for a lithium ion secondary battery of the present invention uses the negative electrode material of the present invention containing an alloy having a specific composition as an active material, and thus has excellent initial charge / discharge efficiency and suppresses cycle deterioration accompanying charge / discharge. And a particularly good discharge capacity is achieved.
Further, the negative electrode material of the present invention is useful for producing such a negative electrode. Therefore, the negative electrode material and the negative electrode of the present invention can make a lithium ion secondary battery using a carbon material negative electrode that is currently in practical use higher in capacity and more compact, and extremely useful for industrial use. high.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01M 4/02 H01M 4/02 D 4/38 4/38 Z 4/58 4/58 10/40 10/40 Z (72)発明者 境 哲男 大阪府池田市緑丘1−8−31 独立行政法 人産業技術総合研究所内 Fターム(参考) 4K018 AA13 AA40 BB04 BC06 FA03 JA01 KA38 5H029 AJ02 AJ03 AJ05 AJ14 AK11 AL11 AM05 AM07 CJ02 CJ28 DJ16 DJ17 EJ04 EJ12 HJ01 HJ02 HJ05 HJ13 HJ14 HJ15 5H050 AA02 AA07 AA08 AA19 BA17 CA17 CB11 EA02 EA10 EA11 EA21 EA23 EA24 FA17 FA19 GA02 GA05 GA17 GA27 HA01 HA02 HA05 HA13 HA14 HA15 HA20 Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) H01M 4/02 H01M 4/02 D 4/38 4/38 Z 4/58 4/58 10/40 10/40 Z ( 72) Inventor Tetsuo Sakai 1-31-31 Midorioka, Ikeda-shi, Osaka F-term in the National Institute of Advanced Industrial Science and Technology (Reference) 4K018 AA13 AA40 BB04 BC06 FA03 JA01 KA38 5H029 AJ02 AJ03 AJ05 AJ14 AK11 AL11 AM05 AM07 CJ02 CJ28 DJ16 DJ17 EJ04 EJ12 HJ01 HJ02 HJ05 HJ13 HJ14 HJ15 5H050 AA02 AA07 AA08 AA19 BA17 CA17 CB11 EA02 EA10 EA11 EA21 EA23 EA24 FA17 FA19 GA02 GA05 GA17 GA27 HA01 HA02 HA05 HA13 HA14 HA15 HA20

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 式(1)で表される組成を有する合金を含む
リチウムイオン二次電池用負極材料。 (Li)x(R)y(Sn)z(Ma)w(Mb)v・・・(1) (式中、RはY、Scを含むランタノイド系列LaからLuまで
の元素からなる群より選択される1種又は2種以上、Maは
B、C、Si、P、Al、Zn、V、Mn、Cu、Ag、In、Sb、Pb及び
Biからなる群より選択される1種又は2種以上、MbはTi、
V、Cr、Fe、Co、Ni、Cu、B、Mg、Zr、Hf、Nb、Ta及びMo
からなる群より選択される1種又は2種以上でMa≠Mb。
x、y、zはそれぞれモル比で、0≦x≦13、0.70≦y≦1.1
0、2.20≦z≦3.50、0≦w≦0.70、0≦v≦0.70、0≦w+v≦
0.70である。)
1. A negative electrode material for a lithium ion secondary battery comprising an alloy having a composition represented by the formula (1). (Li) x (R) y (Sn) z (Ma) w (Mb) v ・ ・ ・ (1) (where R is selected from the group consisting of elements from lanthanide series La to Lu including Y and Sc One or two or more, Ma is
B, C, Si, P, Al, Zn, V, Mn, Cu, Ag, In, Sb, Pb and
One or more selected from the group consisting of Bi, Mb is Ti,
V, Cr, Fe, Co, Ni, Cu, B, Mg, Zr, Hf, Nb, Ta and Mo
Ma ≠ Mb in at least one kind selected from the group consisting of
x, y, z are each a molar ratio, 0 ≦ x ≦ 13, 0.70 ≦ y ≦ 1.1
0, 2.20 ≦ z ≦ 3.50, 0 ≦ w ≦ 0.70, 0 ≦ v ≦ 0.70, 0 ≦ w + v ≦
It is 0.70. )
【請求項2】 式(1)のRが、Ce単独、もしくはCeと90mol
%未満のCe以外のY、Scを含むランタノイド系列LaからL
uまでの元素からなる群より選択される1種又は2種以上
とからなることを特徴とする請求項1記載の負極材料。
2. R of the formula (1) is Ce alone, or 90 mol with Ce.
Lanthanide series La to L containing less than% Y and Sc other than Ce
2. The negative electrode material according to claim 1, comprising one or more selected from the group consisting of elements up to u.
【請求項3】 式(1)で表される合金の粉末X線回折にお
けるSnの(2 0 0)面のピーク強度が、RSn3相(Rは式(1)中
のRと同様である)に由来するピーク中で最強ピーク強度
の30%以下である請求項1又は2記載の負極材料。
3. The peak intensity of the Sn (200) plane in the powder X-ray diffraction of the alloy represented by the formula (1) has three phases of RSn (R is the same as R in the formula (1)). 3. The negative electrode material according to claim 1, which has 30% or less of the strongest peak intensity among peaks derived from (1).
【請求項4】 式(1)で表される合金が、Maと希土類(R)
との金属間化合物相、Mbと希土類(R)との金属間化合物
相、MaとSnとの金属間化合物相、MbとSnとの金属間化合
物相、希土類(R)とSnとの金属間化合物相の少なくとも1
種の金属間化合物相を有する請求項1〜3のいずれか1項
記載の負極材料。
4. An alloy represented by the formula (1) is composed of Ma and a rare earth (R).
Intermetallic compound phase of Mb and rare earth (R), intermetallic compound phase of Ma and Sn, intermetallic compound phase of Mb and Sn, intermetallic phase of rare earth (R) and Sn At least one of the compound phases
The negative electrode material according to any one of claims 1 to 3, which has a kind of intermetallic compound phase.
【請求項5】 希土類(R)とSnとの金属間化合物相が、RS
n3-X(Rは式(1)中のRと同様)、X=有理数で、0<X<3)で
示される金属間化合物相である請求項4記載の負極材
料。
5. The intermetallic compound phase of the rare earth (R) and Sn is represented by RS
5. The negative electrode material according to claim 4, wherein n 3-X (R is the same as R in the formula (1)), wherein X is a rational number and 0 <X <3.
【請求項6】 式(1)で表される合金の形態が、平均粒径
0.1〜25μmの粉末である請求項1〜5のいずれか1項記載
の負極材料。
6. The form of the alloy represented by the formula (1) is an average particle size.
The negative electrode material according to any one of claims 1 to 5, which is a powder of 0.1 to 25 µm.
【請求項7】 式(1)で表される合金が、酸素を0.05〜5
重量%含む請求項1〜6のいずれか1項記載の負極材料。
7. The alloy represented by the formula (1) is capable of adding oxygen to 0.05 to 5
The negative electrode material according to any one of claims 1 to 6, wherein the negative electrode material comprises 0.1% by weight.
【請求項8】 式(1)で表される合金が、窒素を0.0005〜
2重量%含む請求項1〜7のいずれか1項記載の負極材料。
8. The alloy represented by the formula (1) contains nitrogen from 0.0005 to 0.0005.
The negative electrode material according to any one of claims 1 to 7, comprising 2% by weight.
【請求項9】 式(1)で表される組成を有する合金溶湯を
製造する工程(a)、製造した合金溶湯を冷却固化する工
程(b)、及び冷却固化した合金を、0.07〜10MPaの希ガス
及び/又は水素ガス中において100〜1150℃の温度範囲
で1分〜100時間保持する工程(c)を含む請求項1〜8のい
ずれか1項記載のリチウムイオン二次電池用負極材料の
製造法。
9.A step (a) of producing a molten alloy having a composition represented by the formula (1), a step (b) of cooling and solidifying the produced molten alloy, and cooling and solidifying the alloy to a pressure of 0.07 to 10 MPa. The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 8, including a step (c) of maintaining the composition in a rare gas and / or hydrogen gas at a temperature in a range of 100 to 1150 ° C for 1 minute to 100 hours. Manufacturing method.
【請求項10】 工程(a)における合金溶湯の製造を、高
周波溶解法により行う請求項9記載の製造法。
10. The production method according to claim 9, wherein the production of the molten alloy in the step (a) is performed by a high-frequency melting method.
【請求項11】 工程(c)により製造した合金を粉砕後、
篩分し、Sn単相部を除去する工程(d)を含む請求項9又は
10記載の製造法。
11. After grinding the alloy produced in step (c),
Sieving, comprising a step (d) of removing the Sn single phase portion or claim 9 or
10. The production method according to 10.
【請求項12】 請求項1〜8のいずれか1項記載の負極材
料を活物質として含むリチウムイオン二次電池用負極。
A negative electrode for a lithium ion secondary battery, comprising the negative electrode material according to any one of claims 1 to 8 as an active material.
【請求項13】 活物質が、金属Li、LiH及びLi3Nからな
る群より選択される1種又は2種以上を更に含む請求項12
記載の負極。
13. The active material further comprises one or more selected from the group consisting of metal Li, LiH and Li 3 N.
The negative electrode as described.
【請求項14】 請求項1〜8のいずれか1項記載の負極材
料の活物質中における含有割合が、50重量%以上である
請求項12又は13記載の負極。
14. The negative electrode according to claim 12, wherein a content ratio of the negative electrode material according to any one of claims 1 to 8 in the active material is 50% by weight or more.
【請求項15】 請求項12〜14のいずれか1項記載の負極
を備えるリチウムイオン二次電池。
A lithium ion secondary battery comprising the negative electrode according to any one of claims 12 to 14.
JP2002150675A 2002-05-24 2002-05-24 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Expired - Lifetime JP4097127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002150675A JP4097127B2 (en) 2002-05-24 2002-05-24 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150675A JP4097127B2 (en) 2002-05-24 2002-05-24 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2003346793A true JP2003346793A (en) 2003-12-05
JP4097127B2 JP4097127B2 (en) 2008-06-11

Family

ID=29768473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150675A Expired - Lifetime JP4097127B2 (en) 2002-05-24 2002-05-24 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4097127B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155932A (en) * 2004-11-25 2006-06-15 Toshiba Corp Electrode material for nonaqueous electrolyte battery, electrode and its manufacturing method, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2007073215A (en) * 2005-09-05 2007-03-22 Toshiba Corp Nonaqueous electrolyte battery
US7498100B2 (en) 2003-08-08 2009-03-03 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery
CN100464907C (en) * 2007-04-29 2009-03-04 北京科技大学 Method for preparing material with high content of cobalt/antimony alloy for the cathode of lithium iron battery
US7556887B2 (en) 2004-03-23 2009-07-07 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery with negative electrode having a La3Co2Sn7 type crystal structure
JP2010501995A (en) * 2006-08-25 2010-01-21 エルジー・ケム・リミテッド Highly reversible electrode active material capable of inserting lithium, method for producing the same, electrode having the same, and secondary battery
US7767349B2 (en) 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7851085B2 (en) 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7871727B2 (en) 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP2011146388A (en) * 2011-02-07 2011-07-28 Toshiba Corp Electrode material for nonaqueous electrolyte battery and manufacturing method therefor, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2013168328A (en) * 2012-02-16 2013-08-29 Hitachi Chemical Co Ltd Anode material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2013183522A1 (en) * 2012-06-04 2013-12-12 日本電気株式会社 Lithium ion secondary battery
US9118074B2 (en) 2012-11-27 2015-08-25 Samsung Sdi Co., Ltd. Anode active material, lithium secondary battery employing the same, and method of preparing the anode active material
CN107999781A (en) * 2017-12-05 2018-05-08 桂林电器科学研究院有限公司 Zinc bismuth alloy coats the method and ferrosilicon composite powder of magnesium ferrosilicon particle preparation ferrosilicon powder

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498100B2 (en) 2003-08-08 2009-03-03 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery
US7556887B2 (en) 2004-03-23 2009-07-07 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery with negative electrode having a La3Co2Sn7 type crystal structure
JP2006155932A (en) * 2004-11-25 2006-06-15 Toshiba Corp Electrode material for nonaqueous electrolyte battery, electrode and its manufacturing method, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
CN100433420C (en) * 2004-11-25 2008-11-12 株式会社东芝 Electrode material, method of manufacturing the electrode material, electrode, and nonaqueous electrolyte battery
US7837900B2 (en) 2004-11-25 2010-11-23 Kabushiki Kaisha Toshiba Electrode material, method of manufacturing the electrode material, electrode, and nonaqueous electrolyte battery
US7871727B2 (en) 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
TWI393286B (en) * 2005-07-25 2013-04-11 3M Innovative Properties Co Alloy compositions,lithium ion battery comprising the alloy composition,battery pack comprising the lithium ion battery,and method of preparing the lithium ion battery
US7767349B2 (en) 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7851085B2 (en) 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
JP2007073215A (en) * 2005-09-05 2007-03-22 Toshiba Corp Nonaqueous electrolyte battery
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
US8071238B2 (en) 2005-12-23 2011-12-06 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP2010501995A (en) * 2006-08-25 2010-01-21 エルジー・ケム・リミテッド Highly reversible electrode active material capable of inserting lithium, method for producing the same, electrode having the same, and secondary battery
CN100464907C (en) * 2007-04-29 2009-03-04 北京科技大学 Method for preparing material with high content of cobalt/antimony alloy for the cathode of lithium iron battery
JP2011146388A (en) * 2011-02-07 2011-07-28 Toshiba Corp Electrode material for nonaqueous electrolyte battery and manufacturing method therefor, electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2013168328A (en) * 2012-02-16 2013-08-29 Hitachi Chemical Co Ltd Anode material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2013183522A1 (en) * 2012-06-04 2013-12-12 日本電気株式会社 Lithium ion secondary battery
CN104364957A (en) * 2012-06-04 2015-02-18 日本电气株式会社 Lithium ion secondary battery
US9118074B2 (en) 2012-11-27 2015-08-25 Samsung Sdi Co., Ltd. Anode active material, lithium secondary battery employing the same, and method of preparing the anode active material
CN107999781A (en) * 2017-12-05 2018-05-08 桂林电器科学研究院有限公司 Zinc bismuth alloy coats the method and ferrosilicon composite powder of magnesium ferrosilicon particle preparation ferrosilicon powder
CN107999781B (en) * 2017-12-05 2019-01-18 桂林电器科学研究院有限公司 The method and ferrosilicon composite powder of zinc bismuth alloy cladding magnesium ferrosilicon particle preparation ferrosilicon powder

Also Published As

Publication number Publication date
JP4097127B2 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JP4029291B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
EP2375476A2 (en) Active cathode substance for secondary battery
JP4368139B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP4097127B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6608558B1 (en) Nickel metal hydride secondary battery negative electrode active material and nickel metal hydride secondary battery that do not require surface treatment
KR101904499B1 (en) PROCESS FOR PRODUCTION OF (RARE EARTH)-Mg-Ni-BASED HYDROGEN STORAGE ALLOY
JP2001338646A (en) Lithium secondary battery negative electrode
US9859556B2 (en) Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
JP2004185991A (en) Negative electrode material for lithium secondary battery, lithium secondary battery using the same, and negative electrode material manufcturing method
US20060188385A1 (en) Low co hydrogen occlusion alloy
JP2000038606A (en) Hydrogen storage alloy powder, its production and alkali secondary battery
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP0955386B1 (en) Rare earth metal-nickel-hydrogen storage alloy, a method for producing the same, and anode for nickel-hydrogen rechargeable battery
WO2020115953A1 (en) Hydrogen storage material, negative electrode and nickel hydrogen secondary battery
JP5851991B2 (en) Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
JP3697996B2 (en) Hydrogen storage alloy for battery negative electrode that enables high discharge capacity with a small number of charge / discharge cycles and improvement of low-temperature, high-rate discharge capacity with high-rate initial activation treatment
JP2004356054A (en) Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, negative electrode for nonaqueous electrolyte secondary battery using it, and nonaqueous electrolyte secondary battery
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JP2004103478A (en) Negative electrode material for nonaqueous electrolyte secondary battery
JP2000144278A (en) Hydrogen occlusion alloy and its production
JPH08120364A (en) Hydrogen storage alloy for battery, its production and nickel-hydrogen secondary battery
JPH10259436A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JP2008258121A6 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
JPH10265875A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery
JPH10259445A (en) Hydrogen storage alloy, its production and nickel-hydrogen secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

R150 Certificate of patent or registration of utility model

Ref document number: 4097127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term