JP4029291B2 - Negative electrode material for lithium secondary battery and method for producing the same - Google Patents

Negative electrode material for lithium secondary battery and method for producing the same Download PDF

Info

Publication number
JP4029291B2
JP4029291B2 JP2003309912A JP2003309912A JP4029291B2 JP 4029291 B2 JP4029291 B2 JP 4029291B2 JP 2003309912 A JP2003309912 A JP 2003309912A JP 2003309912 A JP2003309912 A JP 2003309912A JP 4029291 B2 JP4029291 B2 JP 4029291B2
Authority
JP
Japan
Prior art keywords
component
negative electrode
electrode material
composite powder
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003309912A
Other languages
Japanese (ja)
Other versions
JP2005078999A (en
Inventor
仁 和田
治 梶田
哲男 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Metal Foil and Powder Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fukuda Metal Foil and Powder Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Metal Foil and Powder Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fukuda Metal Foil and Powder Co Ltd
Priority to JP2003309912A priority Critical patent/JP4029291B2/en
Publication of JP2005078999A publication Critical patent/JP2005078999A/en
Application granted granted Critical
Publication of JP4029291B2 publication Critical patent/JP4029291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池用負極材料及びその製造方法に関する。   The present invention relates to a negative electrode material for a lithium secondary battery and a method for producing the same.

リチウムイオン電池、リチウムポリマー電池等のリチウム二次電池は、高いエネルギー密度を有するものであり、近年、移動体通信機器、携帯用電子機器等の主電源としての利用が拡大している。   Lithium secondary batteries such as lithium ion batteries and lithium polymer batteries have a high energy density, and in recent years, their use as main power sources for mobile communication devices, portable electronic devices, and the like is expanding.

このようなリチウム電池における負極としては、黒鉛、結晶化度の低い炭素等の各種炭素材料が広く用いられている。しかしながら、炭素材料からなる電極は、使用可能な電流密度が低く、理論容量も不十分である。例えば炭素材料のひとつである黒鉛は、理論容量が372mAh/gに過ぎないため、より一層の高容量化が望まれている。   As a negative electrode in such a lithium battery, various carbon materials such as graphite and carbon having a low crystallinity are widely used. However, an electrode made of a carbon material has a low usable current density and an insufficient theoretical capacity. For example, graphite, which is one of the carbon materials, has a theoretical capacity of only 372 mAh / g, and therefore a higher capacity is desired.

一方、リチウム金属をリチウム二次電池の負極材料とする場合には、高い理論容量が得られるが、充電時に負極にデンドライトが析出し、充放電を繰り返すことによって正極側に達して、内部短絡の現象が起こるというという大きな欠点がある。その上、析出したデンドライトは、比表面積が大きいために反応活性度が高く、その表面で電子伝導性のない溶媒の分解生成物からなる界面被膜が形成され、これにより電池の内部抵抗が高くなって充放電効率の低下を生じる。このような理由により、リチウム金属を用いるリチウム二次電池は、信頼性が低く、サイクル寿命が短いという欠点があり、広く実用化される段階には達していない。   On the other hand, when lithium metal is used as a negative electrode material for a lithium secondary battery, a high theoretical capacity can be obtained, but dendrites are deposited on the negative electrode during charging, reach the positive electrode side by repeated charge and discharge, and cause internal short circuit. There is a major drawback that the phenomenon occurs. In addition, the deposited dendrites have high reaction activity due to their large specific surface area, and an interfacial film consisting of decomposition products of solvents having no electron conductivity is formed on the surface, thereby increasing the internal resistance of the battery. As a result, the charge / discharge efficiency decreases. For these reasons, lithium secondary batteries using lithium metal have the disadvantages of low reliability and short cycle life, and have not yet reached a stage where they are widely put into practical use.

このような背景から、汎用の炭素材料よりも放電容量の大きい物質であって、リチウム金属以外の材料からなる負極材料が望まれている。例えば、錫、珪素、銀などの元素、これらの窒化物、酸化物等は、リチウムと合金を形成することによってリチウムを吸蔵することができ、その吸蔵量は炭素よりはるかに大きい値を示すことが知られており、これらの物質を含む各種の合金負極が提案されている。   From such a background, a negative electrode material made of a material other than lithium metal and having a larger discharge capacity than a general-purpose carbon material is desired. For example, elements such as tin, silicon and silver, nitrides and oxides of these elements can occlude lithium by forming an alloy with lithium, and the occlusion amount is much larger than that of carbon. And various types of alloy negative electrodes containing these substances have been proposed.

しかしながら、これらの物質を負極材料とする場合には、充放電のサイクルを繰り返すうちに、リチウムの吸蔵・放出に伴って大きな膨張・収縮が生じ、電極そのものが瓦解することがある。   However, when these materials are used as negative electrode materials, as the charge / discharge cycle is repeated, large expansion and contraction may occur with the insertion and extraction of lithium, and the electrode itself may collapse.

その対策として、リチウムを吸蔵・放出しやすい金属と、吸蔵・放出を行なわない金属とからなる合金を負極材料とすることが試みられている。この様な合金によれば、リチウムの吸蔵・放出を行なわない金属が存在することによって、膨潤、微細化を抑制することが可能となると考えることができ、各種の合金が提案されている。   As a countermeasure, an attempt has been made to use an alloy composed of a metal that easily stores and releases lithium and a metal that does not store and release lithium as a negative electrode material. According to such an alloy, it can be considered that the presence of a metal that does not occlude / release lithium makes it possible to suppress swelling and miniaturization, and various alloys have been proposed.

例えば、下記特許文献1には、急冷凝固させた組織を有する合金が開示され、下記特許文献2には、A相とB相のどちらか一方の相が他方の相のマトリックス中に平均粒径0.05〜20μmの島状に分散した構造の合金が開示されている。しかしながら、これらの合金材料についても、大きな初期放電容量は得られるものの、充放電を繰り返すうちに膨張、微細化することは避けられず、放電容量の低下を十分に抑制できる段階には達していない。
特開2001−297757号公報(第5頁、図2) 特開2001−93524号公報(第2頁)
For example, Patent Document 1 listed below discloses an alloy having a rapidly solidified structure, and Patent Document 2 listed below discloses that either one of the phases A and B has an average particle size in the matrix of the other phase. An alloy having a structure dispersed in an island shape of 0.05 to 20 μm is disclosed. However, even with these alloy materials, although a large initial discharge capacity can be obtained, expansion and miniaturization are unavoidable while charging and discharging are repeated, and the stage has not yet reached a stage where the reduction in discharge capacity can be sufficiently suppressed. .
JP 2001-297757 A (5th page, FIG. 2) JP 2001-93524 A (page 2)

本発明は、上記従来技術の現状に鑑みてなされたものであり、その主な目的は、高い放電容量を維持しつつ、優れたサイクル特性を発揮できるリチウム二次電池用負極材料を提供することにある。   The present invention has been made in view of the current state of the prior art, and its main object is to provide a negative electrode material for a lithium secondary battery that can exhibit excellent cycle characteristics while maintaining a high discharge capacity. It is in.

本発明者は、上記した従来技術の現状に留意しつつ鋭意研究を重ねてきた。その結果、二種以上の特定の元素を含み、ナノオーダーの一次粒子径を有する複合粉末をリチウム二次電池の負極材料とする場合には、リチウムの吸蔵・放出に伴う膨張及び収縮が緩和されて、電極の劣化を防止できることを見出し、ここに本発明を完成するに至った。   The inventor has conducted extensive research while paying attention to the current state of the prior art. As a result, when a composite powder containing two or more specific elements and having a nano-order primary particle size is used as a negative electrode material for a lithium secondary battery, expansion and contraction associated with insertion and extraction of lithium are alleviated. Thus, the inventors have found that the electrode can be prevented from deteriorating, and have completed the present invention.

即ち、本発明は、下記のリチウム二次電池用負極材料及びその製造方法を提供するものである。
1. 下記(1)〜(3)の条件を満足する複合粉末からなるリチウム二次電池用負極材料;
(1)該複合粉末が、Ag、Al、Au、Ca、Cu、Fe、In、Mg、Pd、Pt、Y、Zn、Ti、V、Cr、Mn、Co、Ni、Y、Zr、Nb、Mo、Hf、Ta、W及び希土類元素からなる群から選ばれた少なくとも一種の元素であるA成分、Ga、Ge、Sb、Si及びSnからなる群から選ばれた少なくとも一種の元素であるB成分、並びにA成分とB成分との合金からなるものであること、
(2)該複合粉末全体におけるA成分とB成分の割合が、両者の合計量を100原子%として、A成分30〜70原子%とB成分70〜30原子%であること、
(3)該複合粉末の一次粒子の10%以上が粒径10〜500nmの範囲内にあること。
2. 該複合粉末全体におけるA成分とB成分の割合が、両者の合計量を100原子%として、A成分40〜60原子%とB成分60〜40原子%である上記項1に記載のリチウム二次電池用負極材料。
3. A成分が、Ag、Cu、Fe、In及びMgからなる群から選ばれた少なくとも一種の元素であり、B成分が、Sb、Si及びSnからなる群から選ばれた少なくとも一種の元素である請求項1又は2に記載のリチウム二次電池用負極材料。
4. A成分とB成分の組合せが、Ag−Sb、Au−Sb、Cu−Sb、Zn−Sn、Au−Si、Ca−Si、Cu−Si、Y−Si、Zn−Si、Ag−Sn、Au−Sn、Cu−Sn、In−Sn、Mg−Sn、Pd−Sn、Pt−Sn又はY−Snである上記項1又は2に記載のリチウム二次電池用負極材料。
5. Ag、Al、Au、Ca、Cu、Fe、In、Mg、Pd、Pt、Y、Zn、Ti、V、Cr、Mn、Co、Ni、Y、Zr、Nb、Mo、Hf、Ta、W及び希土類元素からなる群から選ばれた少なくとも一種の元素であるA成分、並びにGa、Ge、Sb、Si及びSnからなる群から選ばれた少なくとも一種の元素であるB成分からなる原料物質を混合し、メカニカルアロイング処理を行って複合粉末を形成することを特徴とする上記項1〜4のいずれかに記載のリチウム二次電池用負極材料の製造方法。
That is, this invention provides the following negative electrode material for lithium secondary batteries, and its manufacturing method.
1. A negative electrode material for a lithium secondary battery comprising a composite powder satisfying the following conditions (1) to (3);
(1) The composite powder is made of Ag, Al, Au, Ca, Cu, Fe, In, Mg, Pd, Pt, Y, Zn, Ti, V, Cr, Mn, Co, Ni, Y, Zr, Nb, A component which is at least one element selected from the group consisting of Mo, Hf, Ta, W and rare earth elements, and B component which is at least one element selected from the group consisting of Ga, Ge, Sb, Si and Sn And an alloy of an A component and a B component,
(2) The ratio of the A component and the B component in the entire composite powder is 30 to 70 atomic% of the A component and 70 to 30 atomic% of the B component, with the total amount of both being 100 atomic%.
(3) 10% or more of the primary particles of the composite powder are in the range of 10 to 500 nm in particle size.
2. 2. The lithium secondary according to item 1, wherein the ratio of the A component and the B component in the entire composite powder is 40 to 60 atomic% of the A component and 60 to 40 atomic% of the B component, with the total amount of both being 100 atomic%. Negative electrode material for batteries.
3. A component is at least one element selected from the group consisting of Ag, Cu, Fe, In and Mg, and B component is at least one element selected from the group consisting of Sb, Si and Sn Item 3. The negative electrode material for a lithium secondary battery according to Item 1 or 2.
4). The combination of the A component and the B component is Ag-Sb, Au-Sb, Cu-Sb, Zn-Sn, Au-Si, Ca-Si, Cu-Si, Y-Si, Zn-Si, Ag-Sn, Au. Item 3. The negative electrode material for a lithium secondary battery according to Item 1 or 2, which is —Sn, Cu—Sn, In—Sn, Mg—Sn, Pd—Sn, Pt—Sn, or Y—Sn.
5. Ag, Al, Au, Ca, Cu, Fe, In, Mg, Pd, Pt, Y, Zn, Ti, V, Cr, Mn, Co, Ni, Y, Zr, Nb, Mo, Hf, Ta, W and A raw material comprising an A component, which is at least one element selected from the group consisting of rare earth elements, and a B component, which is at least one element selected from the group consisting of Ga, Ge, Sb, Si and Sn, is mixed. The method for producing a negative electrode material for a lithium secondary battery according to any one of Items 1 to 4, wherein the composite powder is formed by performing mechanical alloying treatment.

本発明のリチウム二次電池用負極材料は、Ag、Al、Au、Ca、Cu、Fe、In、Mg、Pd、Pt、Y、Zn、Ti、V、Cr、Mn、Co、Ni、Y、Zr、Nb、Mo、Hf、Ta、W及び希土類元素からなる群から選ばれた少なくとも一種の元素であるA成分、Ga、Ge、Sb、Si及びSnからなる群から選ばれた少なくとも一種の元素であるB成分、並びにA成分とB成分との合金、からなる複合粉末を有効成分とするものである。この複合粉末において、希土類元素としては、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Lu等を例示できる。   The negative electrode material for a lithium secondary battery of the present invention includes Ag, Al, Au, Ca, Cu, Fe, In, Mg, Pd, Pt, Y, Zn, Ti, V, Cr, Mn, Co, Ni, Y, A component which is at least one element selected from the group consisting of Zr, Nb, Mo, Hf, Ta, W and rare earth elements, at least one element selected from the group consisting of Ga, Ge, Sb, Si and Sn A composite powder composed of the B component and the alloy of the A component and the B component is used as an active ingredient. In this composite powder, examples of rare earth elements include La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Lu.

上記複合粉末において、A成分とB成分との合金とは、A成分にB成分が固溶した合金相、A成分とB成分の金属間化合物相、B成分にA成分が固溶した合金相などからなるものである。   In the composite powder, the alloy of the A component and the B component is an alloy phase in which the B component is dissolved in the A component, an intermetallic compound phase of the A component and the B component, and an alloy phase in which the A component is dissolved in the B component. Etc.

上記複合粉末では、特に、A成分は、Ag、Al、Au、Ca、Cu、Fe、In、Mg、Pd、Pt、Y、Zn及び希土類元素からなる群から選ばれた少なくとも一種の元素が好ましく、Ag、Cu、Fe、In及びMgからなる群から選ばれた少なくとも一種の元素がより好ましい。また、B成分は、Sb、Si及びSnからなる群から選ばれた少なくとも一種の元素が好ましい。   In the composite powder, in particular, the component A is preferably at least one element selected from the group consisting of Ag, Al, Au, Ca, Cu, Fe, In, Mg, Pd, Pt, Y, Zn, and rare earth elements. At least one element selected from the group consisting of Ag, Cu, Fe, In, and Mg is more preferable. The B component is preferably at least one element selected from the group consisting of Sb, Si and Sn.

好ましいA成分とB成分の組合せは、Ag−Sb、Au−Sb、Cu−Sb、Zn−Sn、Au−Si、Ca−Si、Cu−Si、Y−Si、Zn−Si、Ag−Sn、Au−Sn、Cu−Sn、In−Sn、Mg−Sn、Pd−Sn、Pt−Sn、Y−Sn等の各組合せである。   Preferred combinations of A component and B component are Ag-Sb, Au-Sb, Cu-Sb, Zn-Sn, Au-Si, Ca-Si, Cu-Si, Y-Si, Zn-Si, Ag-Sn, Each combination includes Au—Sn, Cu—Sn, In—Sn, Mg—Sn, Pd—Sn, Pt—Sn, Y—Sn, and the like.

上記複合粉末は、一次粒子、特に、A成分とB成分が合金化した粒子の粒径がナノサイズオーダーであることによって、後述する様な優れた特性を発揮できる。但し、後述するメカニカルアロイング法で該複合粒子を製造すると、A成分とB成分の組合せによってはミクロンオーダーの一次粒子が含まれる場合があるが、この様なミクロンオーダーの一次粒子が存在することは許容でき、また、微粉化の防止や導電の向上に寄与する場合がある。この様な点から、上記複合粉末は、複合粉末全体を基準として、10%以上の一次粒子が10〜500nm程度の範囲内にあればよく、10〜200nm程度の範囲内にあることが好ましい。この場合、特に、ミクロンオーダーの一次粒子が多く存在すると電極を長寿命化することができる。また、電極を高容量化するためには、50%以上、好ましくは70%以上、より好ましくは90%以上の一次粒子が10〜500nm(好ましくは10〜200nm)程度の範囲にあることが好適である。   The composite powder can exhibit excellent characteristics as described later when the particle size of the primary particles, particularly the particles obtained by alloying the A component and the B component is in the nano-size order. However, when the composite particles are produced by the mechanical alloying method to be described later, primary particles in the order of microns may be included depending on the combination of the component A and the component B, but such micron order primary particles are present. May be acceptable and may contribute to prevention of pulverization and improvement of electrical conductivity. In view of this, the composite powder may have 10% or more primary particles in the range of about 10 to 500 nm, preferably in the range of about 10 to 200 nm, based on the entire composite powder. In this case, in particular, when there are many primary particles in the order of microns, the life of the electrode can be extended. In order to increase the capacity of the electrode, it is preferable that the primary particles are in the range of about 10 to 500 nm (preferably 10 to 200 nm) of 50% or more, preferably 70% or more, more preferably 90% or more. It is.

一次粒子の粒径が上記した範囲内にあることによって、リチウム吸蔵時の原子の再配列が可逆的に生じ易くなり、所期の特性を発揮することが可能となる。上記した粒径を下回る一次粒子については、粉砕に長時間を要するために好ましくなく、また、上記した粒径を上回る一次粒子は、リチウム吸蔵時の原子の再配列が生じ難くなるので、やはり好ましくない。尚、本願明細書では、一次粒子の粒径は、透過型電子顕微鏡観察によって求めた値である。   When the particle size of the primary particles is within the above-described range, the rearrangement of atoms during lithium occlusion is likely to occur reversibly, and the desired characteristics can be exhibited. The primary particles having a particle size smaller than that described above are not preferable because a long time is required for pulverization, and the primary particles having a particle size larger than that described above are also preferable because the rearrangement of atoms during lithium storage is less likely to occur. Absent. In the present specification, the particle size of the primary particles is a value obtained by observation with a transmission electron microscope.

この様なナノオーダーの複合粉末を負極材料として用いることによって、充電時には、材料全体が容易にリチウムと化合してリチウムを吸蔵することができ、その後、放電時には、不可逆の骨格を残して容易にリチウムを放出して、微粉化を防止することが可能となる。   By using such a nano-order composite powder as a negative electrode material, the entire material can easily combine with lithium during charging and occlude lithium, and then during discharge, easily leave an irreversible skeleton. Lithium can be released to prevent pulverization.

上記した複合粉末では、A成分とB成分の割合は、複合粉末全体におけるA成分とB成分の合計量を100原子%として、A成分30〜70原子%程度とB成分70〜30原子%程度とすることが必要であり、A成分40〜60原子%程度とB成分60〜40原子%程度であることが好ましい。このような組成とすることによって、リチウム吸蔵時に、面心立方構造のリチウム三元系化合物Li2AB相を主に生成させることができる。この相は、LixABにおいて、x=4付近まで合金の分相がなくリチウム吸蔵することが可能であり、リチウム吸蔵時の体積変化を抑制するのに有効である。 In the composite powder described above, the ratio of the A component and the B component is about 30 to 70 atomic percent of the A component and about 70 to 30 atomic percent of the B component, where the total amount of the A and B components in the entire composite powder is 100 atomic percent. The component A is preferably about 40 to 60 atom% and the component B is preferably about 60 to 40 atom%. With such a composition, it can be at the time of lithium occlusion, thereby mainly produces lithium ternary compound Li 2 AB phase of a face-centered cubic structure. In LixAB, lithium can be occluded without an alloy phase separation up to around x = 4, and is effective in suppressing volume change during lithium occlusion.

本発明の負極材料の有効成分である複合粉末は、例えば、メカニカルアロイング法によって製造することができる。この方法では、粒径が10〜200nm程度の微細な一次粒子を容易に形成することが可能である。具体的な方法としては、A成分及びB成分からなる原料物質を混合し、メカニカルアロイング処理を行って、一次粒子径を10〜200nm程度とすることによって目的とする複合粉末を得ることができる。メカニカルアロイング処理における遠心加速度(投入エネルギー)は、5〜20G程度であることが好ましく、7〜15G程度であることがより好ましい。   The composite powder which is an active ingredient of the negative electrode material of the present invention can be produced by, for example, a mechanical alloying method. In this method, it is possible to easily form fine primary particles having a particle size of about 10 to 200 nm. As a specific method, the target composite powder can be obtained by mixing the raw materials composed of the A component and the B component, performing mechanical alloying treatment, and setting the primary particle diameter to about 10 to 200 nm. . The centrifugal acceleration (input energy) in the mechanical alloying process is preferably about 5 to 20G, and more preferably about 7 to 15G.

メカニカルアロイング処理自体は公知の方法をそのまま適用すれば良い。例えば、原料混合物を機械的接合力により混合・付着を繰返しながら複合化(一部合金化)させることによって目的とする複合粉末を得ることができる。使用する装置としては、一般に粉体分野で使用される混合機、分散機、粉砕機等をそのまま使用することができる。具体的には、ライカイ機、ボールミル、振動ミル、アジテーターミル等が例示される。特に、ネットワーク間に存在する電池活物質を主成分とする粉末の積み重なりを少なくするためには、複合化操作中に重なり合ったり、凝集したりした粉末を1粒子づつに効率良く分散させる必要があるので、せん断力を与えることのできる混合機を用いることが望ましい。これらの装置の操作条件は特に限定されるものではない。   The mechanical alloying process itself may be applied as it is. For example, the target composite powder can be obtained by compounding (partially alloying) the raw material mixture while repeating mixing and adhesion by mechanical joining force. As an apparatus to be used, a mixer, a disperser, a pulverizer and the like generally used in the powder field can be used as they are. Specific examples include a reiki machine, a ball mill, a vibration mill, an agitator mill, and the like. In particular, in order to reduce the stacking of powders mainly composed of battery active materials present between networks, it is necessary to efficiently disperse the powders that are overlapped or aggregated during the compositing operation one by one. Therefore, it is desirable to use a mixer that can give a shearing force. The operating conditions of these devices are not particularly limited.

この様にして得られる微細な一次粒子は、通常、凝集して二次凝集物となっており、メカニカルアロイング法で合金を製造する場合には、レーザー回折法で調べると、二次凝集物の粒度は最大が38〜150μm程度となっている。   The fine primary particles obtained in this way are usually agglomerated to form secondary agglomerates. When an alloy is produced by the mechanical alloying method, the secondary agglomerates are examined by laser diffraction. The maximum particle size is about 38 to 150 μm.

二次凝集物の粒径については特に限定はされないが、負極材料として用いる場合には、二次凝集物の90%以上、好ましくは99.9%以上が、粒径1〜105μm程度の範囲内にあることが好ましく、1〜50μm程度の範囲内にあることがより好ましい。また、二次凝集物の平均粒径については、5〜50μm程度であることが好ましく、5〜10μm程度であることがより好ましい。二次凝集物の粒径がこの範囲内にあることによって、電極の作製を高精度に行うことが可能となる。尚、二次凝集物の粒径は、レーザー回折法又は走査電子顕微鏡観察により求めたものである。   The particle size of the secondary agglomerates is not particularly limited, but when used as a negative electrode material, 90% or more, preferably 99.9% or more of the secondary agglomerates are in the range of about 1 to 105 μm in particle size. Preferably, it exists in the range of about 1-50 micrometers. Moreover, about the average particle diameter of a secondary aggregate, it is preferable that it is about 5-50 micrometers, and it is more preferable that it is about 5-10 micrometers. When the particle size of the secondary agglomerates is within this range, the electrode can be produced with high accuracy. The particle size of the secondary aggregate is determined by laser diffraction method or scanning electron microscope observation.

上記した複合粉末からなる負極材料では、初充電(リチウム吸蔵)時にリチウムを含む三元化合物が形成され、次の放電(リチウム放出)時に元の複合材料に戻るが、リチウムを含む不可逆な化合物が一部残存する。このことから、リチウムの吸蔵・放出が、このリチウムを含む化合物を介して行われ、初充電(1回目)に形成された不可逆なリチウム化合物が骨格として存在し、2回目以後の充放電では、このリチウム化合物中にリチウムが吸蔵されて、放出されるものと思われる。これにより、充放電による体積変化が緩和されて微粉化が抑制され、電極の劣化が防止されてサイクル特性寿命が向上するものと考えられる。   In the negative electrode material composed of the composite powder described above, a ternary compound containing lithium is formed at the first charge (lithium occlusion) and returns to the original composite material at the next discharge (lithium release), but an irreversible compound containing lithium is formed. Some remain. From this, insertion and extraction of lithium is performed through this lithium-containing compound, the irreversible lithium compound formed in the first charge (first time) exists as a skeleton, and in the second and subsequent charge and discharge, It is considered that lithium is occluded in this lithium compound and released. Thereby, it is considered that the volume change due to charging / discharging is mitigated, pulverization is suppressed, deterioration of the electrode is prevented, and the cycle characteristic life is improved.

次に、上記複合粉末を負極材料として用いる場合の充放電反応について説明する。   Next, the charge / discharge reaction when the composite powder is used as a negative electrode material will be described.

本発明の負極材料では、充電時には、(1)式で示すように、B成分のLi化合物化が進行する。また(2)式で示すように A3B合金については、Li吸蔵量が増加するに従って、A2LiB からALi2Bへと変化する。同時に(3)式で示す反応も生じるものと思われる。更に(4)式で示すように、高いLi含有のLi三元化合物が生成すると考えられる。LixB、特にx=4.4になると大きな体積膨張から材料の微粉化が生じて、電極特性が劣化するので、Li吸蔵をALi2Bまでにしておくことで、電極特性の向上ができると考えられる。 In the negative electrode material of the present invention, as shown in the formula (1), the B component is converted to a Li compound during charging. Further, as shown by the formula (2), the A 3 B alloy changes from A 2 LiB to ALi 2 B as the Li storage amount increases. At the same time, the reaction represented by the formula (3) is also expected to occur. Furthermore, as shown by the formula (4), it is considered that a Li ternary compound containing high Li is formed. Li x B, especially when x = 4.4, material pulverization occurs due to large volume expansion and electrode characteristics deteriorate, so it is thought that electrode characteristics can be improved by keeping Li storage up to ALi 2 B. It is done.

xLi + B ( LixB (x≦4.4) (1)
2Li + A3B ( A2LiB + A + Li ( ALi2B + 2A (2)
ALiB + A + LixB ( ALi2B + LiyB (拡散反応) (3)
(y+z)Li + ALi2B ( Li2+yA1-zB + zLiA (y≦2.4, z≦1) (4)
図1は、A成分とB成分を原料とする複合粉末について、リチウムを吸蔵する際に、上記各反応に基づいて、該複合粉末の内部構造が変化する状態を模式的に示す図面である。この図面は、複合粉末とLiとの反応からLiを含む三元化合物が形成される過程を模式的に示すものである。
xLi + B (Li x B (x ≦ 4.4) (1)
2Li + A 3 B (A 2 LiB + A + Li (ALi 2 B + 2A (2)
ALiB + A + Li x B (ALi 2 B + Li y B (diffusion reaction) (3)
(y + z) Li + ALi 2 B (Li 2 + y A 1-z B + zLiA (y ≦ 2.4, z ≦ 1) (4)
FIG. 1 is a drawing schematically showing a state in which the internal structure of a composite powder changes based on each of the above reactions when lithium is occluded with respect to a composite powder using A component and B component as raw materials. This drawing schematically shows a process in which a ternary compound containing Li is formed from the reaction between the composite powder and Li.

本発明の負極材料では、リチウムの吸蔵放出過程が三元系化合物A2LiBnとALi2Bを経て行われることが重要である。 In the negative electrode material of the present invention, it is important that the lithium occlusion / release process is performed through the ternary compounds A 2 LiBn and ALi 2 B.

例えば、Ag/Sn(原子比)=52/48の複合材料を用いた負極では、2サイクル目の放電容量は570mAh/gとなり、1サイクルに比べて容量が約270mAh/g低下する。この不可逆な容量変化は、1回目の充電で生成したAgLi2Sn相に起因すると考えられる。リチウムの吸蔵放出過程がAg2LiSn(密度7920 g/cm3)及びAgLi2Sn(密度5630 kg/m3)を経て行われることにより、Ag3Sn(密度9932 g/cm3)に対する体積変化は、それぞれ、1.25倍(Ag2LiSn)と1.76倍(AgLi2Sn)となる。Sn(密度7286 kg/m3)がLiを吸蔵してLi4.4Sn (密度1920 g/cm3)になる場合には体積変化が3.8倍であることと比較すると、上記した三元化合物が形成される場合には体積増加が非常に少なくなる。このため、電極の膨潤や微細化による容量低下が抑制されてサイクル寿命が向上するものと思われる。その結果、該複合粉末は、放電容量が高く、充放電に伴う劣化が少なく、リチウム電池用負極材料として用いた場合に、高い放電容量と優れたサイクル特性を両立することができる。 For example, in a negative electrode using a composite material of Ag / Sn (atomic ratio) = 52/48, the discharge capacity at the second cycle is 570 mAh / g, and the capacity is reduced by about 270 mAh / g as compared to one cycle. This irreversible capacity change is considered to be caused by the AgLi 2 Sn phase generated by the first charge. Volume change with respect to Ag 3 Sn (density 9932 g / cm 3 ) by the process of occluding and releasing lithium through Ag 2 LiSn (density 7920 g / cm 3 ) and AgLi 2 Sn (density 5630 kg / m 3 ) Are 1.25 times (Ag 2 LiSn) and 1.76 times (AgLi 2 Sn), respectively. When Sn (density 7286 kg / m 3 ) occludes Li and becomes Li 4.4 Sn (density 1920 g / cm 3 ), the above ternary compound is formed compared with the volume change of 3.8 times. When done, the volume increase is very small. For this reason, it seems that the capacity | capacitance fall by swelling and refinement | miniaturization of an electrode is suppressed and a cycle life improves. As a result, the composite powder has a high discharge capacity, little deterioration due to charge / discharge, and can achieve both a high discharge capacity and excellent cycle characteristics when used as a negative electrode material for a lithium battery.

図2は、AgFeSn(AB型)複合粉末からなる電極のリチウム吸蔵状態の内部構造組織を示す透過電子顕微鏡写真である。図中の濃色(点1、2)や灰色(点3,4)はLiAg2SnやLi2AgSnの三元化合物を、明色(5、6)はLiSn、LiAg化合物を示し、AB型複合材料がLiを吸蔵してLi三元化合物を形成していることが判る。 FIG. 2 is a transmission electron micrograph showing the internal structure of a lithium occlusion state of an electrode made of AgFeSn (AB type) composite powder. In the figure, dark colors (points 1 and 2) and gray (points 3 and 4) indicate ternary compounds of LiAg 2 Sn and Li 2 AgSn, and light colors (5 and 6) indicate LiSn and LiAg compounds. It can be seen that the composite material occludes Li to form a Li ternary compound.

上記した複合粉末をリチウム電池用の負極材料として用いる場合には、リチウム電池用負極の構成は、該複合粉末を負極材料として用いる他は、公知のものと同様でよい。例えば、必要に応じて樹脂系バインダ−、導電助材等を配合し、銅箔集電体等の公知の集電体上に電極層を形成し、一体化することによって負極を作製することができる。この負極を用いてリチウム電池を製造する場合には、公知のリチウムイオン電池の電池要素(正極、セパレ−タ−、電解液等)を用い、角型、円筒型、コイン型など公知のリチウムイオン電池の組立方法に従えばよい。   When the composite powder described above is used as a negative electrode material for a lithium battery, the configuration of the negative electrode for a lithium battery may be the same as that known in the art except that the composite powder is used as a negative electrode material. For example, a negative electrode can be produced by blending a resin-based binder, a conductive additive, etc. as necessary, forming an electrode layer on a known current collector such as a copper foil current collector, and integrating them. it can. When manufacturing a lithium battery using this negative electrode, battery elements (positive electrode, separator, electrolyte, etc.) of known lithium ion batteries are used, and known lithium ions such as rectangular, cylindrical, and coin types are used. What is necessary is just to follow the assembly method of a battery.

本発明の負極材料は、初期放電容量が大きく、サイクル特性に優れた材料であり、リチウムイオン電池、リチウムポリマー電池などのリチウム二次電池用の負極材料として有用性が高いものである。   The negative electrode material of the present invention is a material having a large initial discharge capacity and excellent cycle characteristics, and is highly useful as a negative electrode material for lithium secondary batteries such as lithium ion batteries and lithium polymer batteries.

以下、実施例を挙げて本発明を更に詳細に説明する。
実施例1〜50
下記表1に示す比率(原子%)となるように金属粉末を混合し、金属粉末100重量部に対して滑剤としてステアリン酸を0.5重量部添加し、フリッチェ製遊星ボ−ルミルに投入し、メカニカルアロイング処理を行うことによって複合粉末を得た。得られた複合粉末の一次粒子の粒径を透過型電子顕微鏡で測定した結果、全ての粒子が、50〜200nmの範囲内であった。
Hereinafter, the present invention will be described in more detail with reference to examples.
Examples 1-50
Metal powder was mixed so that the ratio (atomic%) shown in Table 1 below was obtained, 0.5 part by weight of stearic acid was added as a lubricant to 100 parts by weight of metal powder, and the mixture was put into a planetary ball mill made of Fritche. A composite powder was obtained by performing an alloying treatment. As a result of measuring the particle diameter of the primary particles of the obtained composite powder with a transmission electron microscope, all the particles were in the range of 50 to 200 nm.

このようにして得られた複合粉末85重量部に、ポリビニリデンフルオライド(PVdF)をN-メチルピロリドン(NMP)に溶解させたペースト10重量部とカ−ボンブラック5重量部を添加し、混合してスラリ−を調製した。   To 85 parts by weight of the composite powder thus obtained, 10 parts by weight of a paste in which polyvinylidene fluoride (PVdF) is dissolved in N-methylpyrrolidone (NMP) and 5 parts by weight of carbon black are added and mixed. A slurry was prepared.

次いで、厚さ12μmの電解銅箔に上記スラリ−を乗せて、ドクターブレードでラミネートし、シート化した。得られたシートを80℃で10分間乾燥してNMPを揮発させて除去した後、ロ−ルプレス機により、電解銅箔からなる集電体と上記複合粉体からなる負極層を強固に密着接合させた。これを1cm2の円形ポンチで抜き取り、120℃で6時間真空乾燥させて厚さ10μmの電極とした。 Subsequently, the slurry was placed on an electrolytic copper foil having a thickness of 12 μm and laminated with a doctor blade to form a sheet. The obtained sheet was dried at 80 ° C. for 10 minutes to volatilize and remove NMP, and then the current collector made of electrolytic copper foil and the negative electrode layer made of the composite powder were firmly adhered and bonded by a roll press machine. I let you. This was extracted with a 1 cm 2 circular punch and vacuum dried at 120 ° C. for 6 hours to obtain an electrode having a thickness of 10 μm.

上記した電極を負極とし、金属リチウムを対極として、1モルのリチウムPF6/エチレンカ−ボネ−ト(EC)+ジメチルカ−ボネ−ト(DMC)(EC:DMC=1:2(体積比))溶液を電解液として、ドライボックス中でコイン型モデル電池(CR2032タイプ)を作製した。 1 mol of lithium PF 6 / ethylene carbonate (EC) + dimethyl carbonate (DMC) (EC: DMC = 1: 2 (volume ratio)) using the above electrode as a negative electrode and metallic lithium as a counter electrode A coin-type model battery (CR2032 type) was produced in a dry box using the solution as an electrolytic solution.

このモデル電池における負極の評価を次の方法で行った。   The negative electrode in this model battery was evaluated by the following method.

まず、モデル電池を、0.2mA/cm2 の定電流で0Vに達するまで放電し、10分間の休止後、0.2mA/cm2 の定電流で1.0Vに達するまで充電した。これを、1サイクルとして、繰り返し充放電を行って放電容量を調べた。 First, the model battery was discharged at a constant current of 0.2 mA / cm 2 until reaching 0 V, and after 10 minutes of rest, it was charged at a constant current of 0.2 mA / cm 2 until reaching 1.0 V. This was made into 1 cycle, charging / discharging was performed repeatedly and the discharge capacity was investigated.

各実施例の複合粉末を用いた電池について、サイクル数と放電容量を表1に示す。尚、表2には、比較例として、単独金属(比較例1〜8)、2成分系合金(比較例9〜21)又は3成分系合金(比較例22〜24)を負極材料として用いた場合について、サイクル数と放電容量を示す。   Table 1 shows the cycle number and discharge capacity of the battery using the composite powder of each example. In Table 2, single metals (Comparative Examples 1 to 8), binary alloys (Comparative Examples 9 to 21) or ternary alloys (Comparative Examples 22 to 24) were used as negative electrode materials as comparative examples. For cases, the number of cycles and the discharge capacity are shown.

上記表から明らかなように、各実施例の複合粉末を負極とした電池では、初期放電容量が高く、しかも50サイクル後の放電容量も十分維持されていることが判る。 As is apparent from the above table, the batteries having the composite powder of each example as the negative electrode have a high initial discharge capacity and a sufficient discharge capacity after 50 cycles.

図3は、実施例30の負極材料を用いた電池と、比較例8の負極材料を用いた電池について、放電容量とサイクル数との関係であるサイクル特性を示すグラフである。図3から明らかなように、実施例30の負極材料を用いた電池については、初期容量が560mAh/gであって、300サイクル後でも370mAh/gの容量を維持しており、比較例8の負極材料を用いた電池と比較して、優れたサイクル寿命を有することが判る。   FIG. 3 is a graph showing cycle characteristics, which are the relationship between the discharge capacity and the number of cycles, for the battery using the negative electrode material of Example 30 and the battery using the negative electrode material of Comparative Example 8. As is clear from FIG. 3, the battery using the negative electrode material of Example 30 had an initial capacity of 560 mAh / g and maintained a capacity of 370 mAh / g even after 300 cycles. It can be seen that the battery has an excellent cycle life as compared with a battery using a negative electrode material.

図4は、実施例3の負極材料の内部構造組織を示す透過電子顕微鏡写真である。図4によれば、この材料は、数10nmオーダーの微結晶粒子から構成されていることが判る。   FIG. 4 is a transmission electron micrograph showing the internal structure of the negative electrode material of Example 3. According to FIG. 4, it can be seen that this material is composed of microcrystalline particles of the order of several tens of nm.

リチウムを吸蔵する際の本発明負極材料の内部構造変化を模式的に示す図面。Drawing which shows typically the internal structure change of this invention negative electrode material at the time of occluding lithium. 本発明負極材料のリチウム吸蔵状態の内部構造組織を示す透過電子顕微鏡写真。The transmission electron micrograph which shows the internal structure of the lithium occlusion state of this invention negative electrode material. 実施例30の負極材料を用いた電池と、比較例8の負極材料を用いた電池についてサイクル特性を示すグラフ。The graph which shows cycling characteristics about the battery using the negative electrode material of Example 30, and the battery using the negative electrode material of the comparative example 8. FIG. 実施例3の負極材料の内部構造組織を示す透過電子顕微鏡写真。4 is a transmission electron micrograph showing the internal structure of the negative electrode material of Example 3. FIG.

Claims (5)

下記(1)〜(3)の条件を満足する複合粉末からなるリチウム二次電池用負極材料;
(1)該複合粉末が、Ag、Al、Au、Ca、Cu、Fe、In、Pd、Pt、Y、Zn及び希土類元素からなる群から選ばれた少なくとも一種の元素であるA成分、Sb、Si及びSnからなる群から選ばれた少なくとも一種の元素であるB成分、並びにA成分とB成分との合金からなるものであること、
(2)該複合粉末全体におけるA成分とB成分の割合が、両者の合計量を100原子%として、A成分30〜70原子%とB成分70〜30原子%であること、
(3)該複合粉末の一次粒子の10%以上が粒径10〜500nmの範囲内にあること。
A negative electrode material for a lithium secondary battery comprising a composite powder satisfying the following conditions (1) to (3);
(1) the composite powder, Ag, Al, Au, Ca , Cu, Fe, In, P d, Pt, Y, A component is at least one element selected from the group consisting of Z n及 beauty rare earth elements B component which is at least one element selected from the group consisting of Sb , Si and Sn, and an alloy of A component and B component,
(2) The ratio of the A component and the B component in the entire composite powder is 30 to 70 atomic% of the A component and 70 to 30 atomic% of the B component, with the total amount of both being 100 atomic%.
(3) 10% or more of the primary particles of the composite powder are in the range of 10 to 500 nm in particle size.
該複合粉末全体におけるA成分とB成分の割合が、両者の合計量を100原子%として、A成分40〜60原子%とB成分60〜40原子%である請求項1に記載のリチウム二次電池用負極材料。 2. The lithium secondary according to claim 1, wherein the ratio of the A component and the B component in the entire composite powder is 40 to 60 atomic% of the A component and 60 to 40 atomic% of the B component, with the total amount of both being 100 atomic%. Negative electrode material for batteries. A成分が、Ag、Cu、Fe及びInからなる群から選ばれた少なくとも一種の元素であり、B成分が、Sb、Si及びSnからなる群から選ばれた少なくとも一種の元素である請求項1又は2に記載のリチウム二次電池用負極材料。 Claim A component, Ag, Cu, at least one element selected from Fe and In or Ranaru group, B component is at least one element selected from the group consisting of Sb, Si and Sn The negative electrode material for lithium secondary batteries according to 1 or 2. A成分とB成分の組合せが、Ag−Sb、Au−Sb、Cu−Sb、Zn−Sn、Au−Si、Ca−Si、Cu−Si、Y−Si、Zn−Si、Ag−Sn、Au−Sn、Cu−Sn、In−Sn、Pd−Sn、Pt−Sn又はY−Snである請求項1又は2に記載のリチウム二次電池用負極材料。 The combination of the A component and the B component is Ag-Sb, Au-Sb, Cu-Sb, Zn-Sn, Au-Si, Ca-Si, Cu-Si, Y-Si, Zn-Si, Ag-Sn, Au. The negative electrode material for a lithium secondary battery according to claim 1 or 2, which is -Sn, Cu-Sn, In-Sn , Pd-Sn, Pt-Sn, or Y-Sn. Ag、Al、Au、Ca、Cu、Fe、In、Pd、Pt、Y、Zn及び希土類元素からなる群から選ばれた少なくとも一種の元素であるA成分、並びにSb、Si及びSnからなる群から選ばれた少なくとも一種の元素であるB成分からなる原料物質を混合し、メカニカルアロイング処理を行って複合粉末を形成することを特徴とする請求項1〜4のいずれかに記載のリチウム二次電池用負極材料の製造方法。 Ag, Al, Au, Ca, Cu, Fe, In, P d, Pt, Y, Z n beauty A component is at least one element selected from the group consisting of rare earth elements, arranged in S b, Si and 5. The composite powder is formed by mixing a raw material composed of a B component which is at least one element selected from the group consisting of Sn and performing mechanical alloying treatment. The manufacturing method of the negative electrode material for lithium secondary batteries as described.
JP2003309912A 2003-09-02 2003-09-02 Negative electrode material for lithium secondary battery and method for producing the same Expired - Lifetime JP4029291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309912A JP4029291B2 (en) 2003-09-02 2003-09-02 Negative electrode material for lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309912A JP4029291B2 (en) 2003-09-02 2003-09-02 Negative electrode material for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005078999A JP2005078999A (en) 2005-03-24
JP4029291B2 true JP4029291B2 (en) 2008-01-09

Family

ID=34411935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309912A Expired - Lifetime JP4029291B2 (en) 2003-09-02 2003-09-02 Negative electrode material for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP4029291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419531C (en) * 2003-11-01 2008-09-17 鸿富锦精密工业(深圳)有限公司 Light guide device and back light module assmbly

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100667866B1 (en) 2004-12-22 2007-01-12 한국기계연구원 Composite powder for anode material of lithium secondary battery, its processing method, and anode material by using it
JP4412304B2 (en) 2006-05-17 2010-02-10 ソニー株式会社 Secondary battery
KR100814816B1 (en) 2006-11-27 2008-03-20 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery
KR101375326B1 (en) * 2007-02-15 2014-03-18 삼성에스디아이 주식회사 Composite anode active material, method of preparing the same, anode and lithium battery containing the material
FR2913011B1 (en) * 2007-02-22 2010-03-12 Centre Nat Rech Scient NEW MATERIALS COMPRISING GROUP ELEMENTS 14
KR100796664B1 (en) 2007-03-21 2008-01-22 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery
KR100869796B1 (en) 2007-04-05 2008-11-21 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery comprising same
JP5343342B2 (en) * 2007-06-26 2013-11-13 大同特殊鋼株式会社 Negative electrode active material for lithium secondary battery and lithium secondary battery
WO2009048146A1 (en) * 2007-10-10 2009-04-16 Kobelco Research Institute, Inc. Negative electrode active material for rechargeable battery, rechargeble battery using the negative electrode active material, and air rechargeable battery
JP5342188B2 (en) * 2008-06-05 2013-11-13 株式会社コベルコ科研 Negative electrode active material for secondary battery and secondary battery using the same
KR101463112B1 (en) * 2007-12-18 2014-11-21 삼성에스디아이 주식회사 Composite anode active material, method of preparing the same, and anode and lithium battery containing the material
US8287772B2 (en) 2009-05-14 2012-10-16 3M Innovative Properties Company Low energy milling method, low crystallinity alloy, and negative electrode composition
US8257864B2 (en) 2009-06-29 2012-09-04 3M Innovative Properties Company Method of making tin-based alloys for negative electrode compositions
WO2012063762A1 (en) 2010-11-08 2012-05-18 古河電気工業株式会社 Nanoscale particles used in negative electrode for lithium ion secondary battery and method for manufacturing same
WO2012073815A1 (en) 2010-11-30 2012-06-07 昭和電工株式会社 Negative pole active substance for lithium secondary battery and method for producing same
KR101676401B1 (en) * 2011-01-11 2016-11-15 주식회사 엘지화학 Anode active material for lithium secondary battery and Lithium secondary battery comprising the same
JP5751449B2 (en) * 2011-05-25 2015-07-22 日産自動車株式会社 Negative electrode active material for lithium ion secondary battery
JP5751448B2 (en) * 2011-05-25 2015-07-22 日産自動車株式会社 Negative electrode active material for lithium ion secondary battery
JP5764395B2 (en) * 2011-06-20 2015-08-19 Dowaホールディングス株式会社 Secondary battery electrode material and manufacturing method thereof
JP5945903B2 (en) 2011-12-16 2016-07-05 日産自動車株式会社 Negative electrode active material for electrical devices
EP2924772B1 (en) 2012-11-22 2021-03-17 Nissan Motor Co., Ltd Negative electrode for electric device, and electric device using the same
US10290855B2 (en) 2012-11-22 2019-05-14 Nissan Motor Co., Ltd. Negative electrode for electrical device, and electrical device using the same
WO2015111187A1 (en) 2014-01-24 2015-07-30 日産自動車株式会社 Electrical device
JP6202106B2 (en) 2014-01-24 2017-09-27 日産自動車株式会社 Electrical device
JP2015179605A (en) * 2014-03-19 2015-10-08 三菱マテリアル株式会社 Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery arranged by use thereof
JP6303710B2 (en) * 2014-03-28 2018-04-04 三菱マテリアル株式会社 Method for producing negative electrode active material for lithium ion secondary battery
EP3236518B1 (en) * 2014-12-17 2019-08-28 Nissan Motor Co., Ltd. Negative-electrode active material for lithium ion secondary battery, and lithium ion secondary battery using same
ES2733630T3 (en) * 2015-07-30 2019-12-02 Belenos Clean Power Holding Ag Method of production of MSnx nanoparticles as anodic materials for a rechargeable battery
KR102198713B1 (en) * 2019-01-16 2021-01-05 금오공과대학교 산학협력단 METHODS FOR MANUFACTURING Nb-Sb INTERMETALLIC COMPOUND, ELECTRODE MATERIALS FOR SECONDARY BATTERY INCLUDING COMPOUND MANUFACTURED THEREBY, AND Li-ION OR Na-ION SECONDARY BATTERY COMPRISING THE SAME
CN110380015B (en) * 2019-05-27 2020-09-29 合山市华美新能源科技有限公司 Preparation method of lithium battery positive electrode slurry

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100419531C (en) * 2003-11-01 2008-09-17 鸿富锦精密工业(深圳)有限公司 Light guide device and back light module assmbly

Also Published As

Publication number Publication date
JP2005078999A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP4029291B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JP4406789B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
JP4654381B2 (en) Negative electrode for lithium secondary battery and method for producing the same
WO2013115223A1 (en) Si-BASED-ALLOY ANODE MATERIAL
JP4992128B2 (en) Negative electrode active material particles for lithium secondary battery and method for producing negative electrode
JP5516860B2 (en) Negative electrode material for lithium secondary battery and method for producing the same
KR101482478B1 (en) Si based negative electrode material
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP2004335272A (en) Negative electrode material for nonaqueous electrolyte secondary battery
JP4058585B2 (en) Negative electrode material for lithium battery and manufacturing method thereof
KR102163020B1 (en) Metal phosphide Negative electrode material for secondary battery, and preparation method thereof
JP4097127B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPH1186854A (en) Lithium secondary battery
JP3934800B2 (en) Hydrogen storage alloy and secondary battery
JP2004185991A (en) Negative electrode material for lithium secondary battery, lithium secondary battery using the same, and negative electrode material manufcturing method
JP2016062660A (en) Silicon-based alloy negative electrode material for power storage device, and electrode arranged by use thereof
JP5706065B2 (en) Composite negative electrode active material, manufacturing method thereof, and negative electrode and lithium battery employing the same
KR20150036208A (en) Alloy particles, electrode, nonaqueous electrolyte secondary battery, and method for producing alloy particles
JP5577672B2 (en) Hydrogen storage alloy electrode and nickel metal hydride battery using the same
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3266980B2 (en) Hydrogen storage alloy, method for producing the same, and hydrogen storage alloy electrode
JP4304430B2 (en) Hydrogen storage alloy and electrode using the same
JP4029265B2 (en) Negative electrode material for lithium battery and manufacturing method thereof
JP5769578B2 (en) Method for producing negative electrode active material for lithium secondary battery
JP2000113885A (en) Negative electrode for lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071002

R150 Certificate of patent or registration of utility model

Ref document number: 4029291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term