JP5764395B2 - Secondary battery electrode material and manufacturing method thereof - Google Patents

Secondary battery electrode material and manufacturing method thereof Download PDF

Info

Publication number
JP5764395B2
JP5764395B2 JP2011136298A JP2011136298A JP5764395B2 JP 5764395 B2 JP5764395 B2 JP 5764395B2 JP 2011136298 A JP2011136298 A JP 2011136298A JP 2011136298 A JP2011136298 A JP 2011136298A JP 5764395 B2 JP5764395 B2 JP 5764395B2
Authority
JP
Japan
Prior art keywords
electrode material
transition metal
alloy powder
secondary battery
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011136298A
Other languages
Japanese (ja)
Other versions
JP2013004404A (en
Inventor
千佳 横山
千佳 横山
晶 永富
晶 永富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2011136298A priority Critical patent/JP5764395B2/en
Publication of JP2013004404A publication Critical patent/JP2013004404A/en
Application granted granted Critical
Publication of JP5764395B2 publication Critical patent/JP5764395B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、二次電池用電極材およびその製造方法に関し、特に、リチウムイオン二次電池などの二次電池に使用する電極材およびその製造方法に関する。   The present invention relates to an electrode material for a secondary battery and a method for manufacturing the same, and more particularly to an electrode material used for a secondary battery such as a lithium ion secondary battery and a method for manufacturing the same.

リチウムイオン二次電池は、リチウムまたはリチウム合金またはリチウムを吸蔵し得る物質を負極活物質とする非水電解質二次電池の一種であり、電圧が高く、軽量で、エネルギー密度が高いため、小型軽量化を図り易く、携帯電話などの情報機器の二次電池として使用されている。また、近年では、ハイブリッド自動車用二次電池などの大型動力用二次電池として、リチウムイオン二次電池の需要が高まっており、さらに小型軽量化を図るため、リチウムイオン二次電池のエネルギー密度の向上(高容量化)について様々な検討が行われている。   A lithium ion secondary battery is a type of non-aqueous electrolyte secondary battery that uses lithium, a lithium alloy, or a material capable of occluding lithium as a negative electrode active material, and has a high voltage, light weight, and high energy density. It is used as a secondary battery for information devices such as mobile phones. In recent years, demand for lithium ion secondary batteries has increased as secondary batteries for large power vehicles such as secondary batteries for hybrid vehicles. In order to further reduce the size and weight, the energy density of lithium ion secondary batteries has increased. Various studies have been conducted on improvement (high capacity).

従来、リチウムイオン二次電池の負極材料として、比較的高容量で充放電サイクル特性が良好な難黒鉛化性炭素や黒鉛などの炭素質材料が広く用いられているが、近年、リチウムイオン二次電池の負極材料をさらに高容量化することが課題となっている。   Conventionally, as a negative electrode material of a lithium ion secondary battery, a carbonaceous material such as non-graphitizable carbon or graphite having a relatively high capacity and good charge / discharge cycle characteristics has been widely used. There is a problem of further increasing the capacity of the negative electrode material of the battery.

しかし、リチウムイオン二次電池を高容量化するため負極材料の容量を大きくしようとしても、黒鉛系炭素質材料では、放電容量372mAh/gという理論的な限界があることが知られており、適用限界に近づいている。一方、非黒鉛系の炭素質材料では、放電容量が大きいものの、不可逆容量が大きく、電池設計の段階で大きなロスが生じるという欠点がある。   However, it is known that even if the capacity of the negative electrode material is increased in order to increase the capacity of the lithium ion secondary battery, the graphite-based carbonaceous material has a theoretical limit of a discharge capacity of 372 mAh / g. Approaching the limit. On the other hand, the non-graphite-based carbonaceous material has a drawback that although the discharge capacity is large, the irreversible capacity is large and a large loss occurs at the stage of battery design.

また、炭素質材料の代替となり得る大容量の負極材料も提案されており、炭素質材料より高容量になり得る負極材料として、ある種の金属がリチウムと電気化学的に合金化して可逆的に生成および分解する材料を使用することが研究されている。例えば、Li−Al合金やSi合金の負極材料が報告されているが、これらの合金は充放電に伴って膨張および収縮するため、充放電サイクル特性が極めて悪いという問題がある。   In addition, a large-capacity negative electrode material that can be used as a substitute for a carbonaceous material has also been proposed, and as a negative electrode material that can have a higher capacity than a carbonaceous material, a certain metal is electrochemically alloyed with lithium and reversibly formed. The use of materials that generate and decompose has been studied. For example, although negative electrode materials such as Li—Al alloys and Si alloys have been reported, these alloys expand and contract with charge / discharge, and thus have a problem that charge / discharge cycle characteristics are extremely poor.

この問題を解決するために、SnをCo、Fe、Ni、V、Cu、Crなどの様々な元素と組み合わせた負極材料を得る方法が提案されている。例えば、Sn化合物と遷移金属化合物と錯化剤を含有する混合液と還元剤とを混合した後に還元剤を酸化してSn合金を合成することによって、二次電池の負極材としてSn合金粉末を得る方法(例えば、特許文献1参照)、Snを含む金属原料を加熱溶融して得られた溶融金属をストリップキャスティング法(ロール急冷法)、ガスアトマイズ法、水アトマイズ法、回転電極法などの急冷凝固法により処理した材料を必要に応じて粉砕処理することによって負極材料粉末を得る方法(例えば、特許文献2参照)、Sn粉末とCo粉末の混合粉末をアルゴンガス中においてボールミルで25時間以上処理した後に分級することによって、合金化された75μm以下の金属材料を得る方法(例えば、特許文献3参照)、Snを含む金属原料を加熱溶融して得られた溶融金属をメルトスピニング法により薄片として熱処理した後にカップミルで粉砕することによって、平均粒径15μmの粉末を得る方法(例えば、特許文献4参照)、Snを含む金属原料をアルゴンガス中においてポットミルで1週間処理することによって、平均粒径0.5〜2.3μmの粉末を得る方法(例えば、特許文献5参照)が提案されている。   In order to solve this problem, a method of obtaining a negative electrode material in which Sn is combined with various elements such as Co, Fe, Ni, V, Cu, and Cr has been proposed. For example, by mixing a Sn compound, a transition metal compound, a mixed solution containing a complexing agent and a reducing agent, and then oxidizing the reducing agent to synthesize an Sn alloy, Sn alloy powder can be used as a negative electrode material for a secondary battery. A method of obtaining (for example, refer to Patent Document 1), rapid solidification such as strip casting method (roll quench method), gas atomization method, water atomization method, rotating electrode method, etc. A method of obtaining a negative electrode material powder by pulverizing a material treated by the method as necessary (see, for example, Patent Document 2), a mixed powder of Sn powder and Co powder was treated in a ball mill for 25 hours or more in argon gas A method for obtaining an alloyed metal material of 75 μm or less by classification (for example, see Patent Document 3), adding a metal raw material containing Sn. The molten metal obtained by melting is heat treated as a flake by the melt spinning method and then pulverized by a cup mill to obtain a powder having an average particle size of 15 μm (see, for example, Patent Document 4). There has been proposed a method for obtaining a powder having an average particle size of 0.5 to 2.3 μm by treating with a pot mill for 1 week in a gas (see, for example, Patent Document 5).

特開2001−332254号公報(段落番号0013、0017)JP 2001-332254 A (paragraph numbers 0013 and 0017) 特開2006−236835号公報(段落番号0010、0035)JP 2006-236835 A (paragraph numbers 0010 and 0035) 特開2001−143761号公報(段落番号0044)JP 2001-143761 A (paragraph number 0044) 特開2004−111202号公報(段落番号0050)JP 2004-111202 A (paragraph number 0050) 特開2010−161078号公報(段落番号0029)JP 2010-161078 A (paragraph number 0029)

しかし、特許文献1の方法では、反応のために多くの槽を設ける必要があり、それらの槽内を不活性ガス雰囲気にして反応を行う必要がある。また、金属原料の他に錯化剤や還元剤も必要になるため、製造コストが高くなり、生産性が悪いという問題がある。また、特許文献2および4の方法では、金属を溶融して粉末を得るまでの各工程を不活性ガス雰囲気下で行って酸化を抑制する必要があり、不活性ガス雰囲気に維持できる溶融設備やアトマイズ設備などが必要になり、設備コストが高くなるという問題がある。また、特許文献3および5の方法では、ミルを用いて機械的に合金化するので、処理時間が長くなり、生産性が悪いという問題がある。   However, in the method of Patent Document 1, it is necessary to provide many tanks for the reaction, and it is necessary to carry out the reaction in an inert gas atmosphere in the tanks. Further, since a complexing agent and a reducing agent are required in addition to the metal raw material, there is a problem that the manufacturing cost is increased and the productivity is poor. In the methods of Patent Documents 2 and 4, it is necessary to suppress oxidation by performing each process from melting metal to obtaining a powder in an inert gas atmosphere. Atomizing equipment is required, and there is a problem that equipment costs increase. Further, the methods of Patent Documents 3 and 5 have a problem that the processing time becomes long and the productivity is poor because the alloy is mechanically alloyed using a mill.

また、二次電池用電極材は、平均粒径が小さい程、比表面積が増加して、電池反応の効率を向上させることができるため、平均粒径が小さい二次電池用電極材が望まれている。また、平均粒径が小さい程、負極へのLi吸蔵時の体積膨張、すなわちSnとLiの反応に伴う体積膨張の影響を緩和して、良好な充放電サイクル特性を得ることができるので、平均粒径が小さい二次電池用電極材、好ましくは平均粒径が数十nm以下の二次電池用電極材が望まれているが、特許文献1〜5の方法では、平均粒径が数十nm以下の電極材を得ることができない。   Moreover, since the specific surface area of the electrode material for a secondary battery increases as the average particle size decreases, and the efficiency of the battery reaction can be improved, a secondary battery electrode material with a small average particle size is desired. ing. Also, as the average particle size is smaller, the volume expansion during Li occlusion in the negative electrode, that is, the effect of volume expansion associated with the reaction of Sn and Li can be relaxed, and good charge / discharge cycle characteristics can be obtained. A secondary battery electrode material having a small particle size, preferably a secondary battery electrode material having an average particle size of several tens of nanometers or less is desired. However, in the methods of Patent Documents 1 to 5, the average particle size is several tens of nanometers. An electrode material of nm or less cannot be obtained.

したがって、本発明は、このような従来の問題点に鑑み、平均粒径が小さく、電池反応の効率と充放電サイクル特性を向上させることができる二次電池用電極材を提供することを目的とする。また、本発明は、このような二次電池用電極を低コストで且つ高い生産性で製造することができる方法を提供することを目的とする。
Accordingly, the present invention has been made in view of such conventional problems, and an object of the present invention is to provide an electrode material for a secondary battery that has a small average particle size and can improve battery reaction efficiency and charge / discharge cycle characteristics. To do. Another object of the present invention is to provide a method capable of producing such an electrode for a secondary battery at low cost and high productivity.

本発明者らは、上記課題を解決するために鋭意研究した結果、Snおよび遷移金属の水酸化物とAl、Si、Zrおよび(Yを含む)希土類元素からなる群から選択される1種以上の添加元素とを含む粒子を生成させ、得られた粒子を乾燥した後、還元性ガス雰囲気下で加熱することによって、平均粒径が小さく、電池反応の効率と充放電サイクル特性を向上させることができる二次電池用電極材を低コストで且つ高い生産性で製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have found that at least one selected from the group consisting of hydroxides of Sn and transition metals and rare earth elements (including Y, Al, Si, Zr). After generating particles containing the additive elements, and drying the obtained particles, the average particle size is reduced by heating in a reducing gas atmosphere, improving the battery reaction efficiency and charge / discharge cycle characteristics It has been found that an electrode material for a secondary battery that can be manufactured at low cost and with high productivity, and has completed the present invention.

すなわち、本発明による二次電池用電極材の製造方法は、Snおよび遷移金属の水酸化物とAl、Si、Zrおよび(Yを含む)希土類元素からなる群から選択される1種以上の添加元素とを含む粒子を生成させ、得られた粒子を乾燥した後、還元性ガス雰囲気下で加熱することを特徴とする。   That is, the method for producing an electrode material for a secondary battery according to the present invention includes at least one additive selected from the group consisting of Sn and transition metal hydroxides and Al, Si, Zr, and rare earth elements (including Y). Particles containing the element are generated, and the obtained particles are dried and then heated in a reducing gas atmosphere.

この二次電池用電極材の製造方法において、粒子の生成は、Snおよび遷移金属が溶解した溶液とアルカリ溶液を混合した後に添加元素が溶解した溶液を混合することによって行ってもよいし、Snおよび遷移金属が溶解した溶液と添加元素が溶解した溶液を混合した後にアルカリ溶液を混合することによって行ってもよいし、Snおよび遷移金属が溶解した溶液と添加元素が溶解したアルカリ溶液を混合することによって行ってもよい。   In this method for producing an electrode material for a secondary battery, the generation of particles may be performed by mixing a solution in which an additive element is dissolved after mixing a solution in which Sn and a transition metal are dissolved with an alkali solution, or Sn. The solution in which the transition metal is dissolved and the solution in which the additive element is dissolved may be mixed and then mixed with the alkali solution, or the solution in which Sn and the transition metal are dissolved and the alkali solution in which the additive element is dissolved are mixed. It may be done by.

また、上記の二次電池用電極材の製造方法において、Snおよび遷移金属が溶解した溶液が、Sn塩と、Co、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される1種以上の遷移金属の塩とを溶媒に溶解した溶液であるのが好ましい。また、加熱の温度が210〜600℃であるのが好ましい。   In the method for producing an electrode material for a secondary battery, the solution in which Sn and transition metal are dissolved is selected from the group consisting of Sn salt and Co, Ni, Fe, Cu, Cr, In, Ag, and Ti. A solution in which one or more transition metal salts are dissolved in a solvent is preferable. Moreover, it is preferable that the temperature of a heating is 210-600 degreeC.

また、本発明による二次電池用電極材は、Snと、Co、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される1種以上の遷移金属元素と、Al、Si、Zrおよび(Yを含む)希土類元素からなる群から選択される1種以上の添加元素との金属粉末からなり、平均粒径が10〜400nmであることを特徴とする。   The electrode material for a secondary battery according to the present invention includes Sn, one or more transition metal elements selected from the group consisting of Co, Ni, Fe, Cu, Cr, In, Ag, and Ti, and Al, Si. , Zr and a metal powder with one or more additive elements selected from the group consisting of rare earth elements (including Y), and having an average particle size of 10 to 400 nm.

この二次電池用電極材において、金属粉末中の酸素濃度が0.1〜20質量%であるのが好ましく、金属粉末中のSnの含有量に対する遷移金属の含有量の比(遷移金属/Sn)が0.2〜3.0であるのが好ましく、金属粉末中の添加元素の含有量が0.1〜30質量%であるのが好ましい。また、金属粉末の結晶子径が50nm以下であるのが好ましい。また、平均粒径が200nm以下であるのが好ましく、100nmより小さいのがさらに好ましい。さらに、金属粉末のBET径が2〜200nmであるのが好ましく、50nm以下であるのがさらに好ましい。   In this secondary battery electrode material, the oxygen concentration in the metal powder is preferably 0.1 to 20% by mass, and the ratio of the transition metal content to the Sn content in the metal powder (transition metal / Sn ) Is preferably 0.2 to 3.0, and the content of the additive element in the metal powder is preferably 0.1 to 30% by mass. Moreover, it is preferable that the crystallite diameter of a metal powder is 50 nm or less. Moreover, it is preferable that an average particle diameter is 200 nm or less, and it is more preferable that it is smaller than 100 nm. Furthermore, the BET diameter of the metal powder is preferably 2 to 200 nm, and more preferably 50 nm or less.

本発明によれば、平均粒径が小さく、電池反応の効率と充放電サイクル特性を向上させることができる二次電池用電極材を低コストで且つ高い生産性で製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the electrode material for secondary batteries which has a small average particle diameter and can improve the efficiency of a battery reaction and charging / discharging cycling characteristics can be manufactured at low cost and with high productivity.

実施例および比較例で得られたCoSn合金粉末のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the CoSn alloy powder obtained by the Example and the comparative example. 実施例2で得られたCoSn合金粉末の透過型電子顕微鏡(TEM)写真である。4 is a transmission electron microscope (TEM) photograph of the CoSn alloy powder obtained in Example 2. FIG. 実施例5で得られたCoSn合金粉末の透過型電子顕微鏡(TEM)写真である。6 is a transmission electron microscope (TEM) photograph of the CoSn alloy powder obtained in Example 5. FIG.

本発明による二次電池用電極材の製造方法の実施の形態では、Snおよび遷移金属の水酸化物とAl、Si、Zrおよび(Yを含む)希土類元素からなる群から選択される1種以上の添加元素とを含む粒子を生成させ、得られた粒子を乾燥した後、還元性ガス雰囲気下で加熱する。   In the embodiment of the method for producing a secondary battery electrode material according to the present invention, one or more selected from the group consisting of Sn and transition metal hydroxides and Al, Si, Zr and rare earth elements (including Y) The particles containing the additive element are generated, and the obtained particles are dried and then heated in a reducing gas atmosphere.

上記の粒子の生成は、Snおよび遷移金属が溶解した溶液とアルカリ溶液を混合した後に上記の添加元素が溶解した溶液を混合することによって行ってもよいし、Snおよび遷移金属が溶解した溶液と上記の添加元素が溶解した溶液を混合した後にアルカリ溶液を混合することによって行ってもよいし、Snおよび遷移金属が溶解した溶液と上記の添加元素が溶解したアルカリ溶液を混合することによって行ってもよい。   The generation of the particles may be performed by mixing a solution in which Sn and transition metal are dissolved, and then mixing a solution in which the additive element is dissolved after mixing the solution in which Sn and transition metal are dissolved. The mixing may be performed by mixing the solution in which the additive element is dissolved and then mixing the alkali solution, or by mixing the solution in which Sn and the transition metal are dissolved with the alkali solution in which the additive element is dissolved. Also good.

Snおよび遷移金属が溶解した溶液は、Sn塩と、Co、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される1種以上の遷移金属の塩とを溶媒に溶解させることによって得られる。Sn塩の量と遷移金属の塩の量の比率は、製造するSn合金粉末の組成に合わせて調整すればよい。溶媒は、コスト面や環境面を考慮して水を使用するのが好ましい。溶液中のSnと遷移金属の合計の金属濃度は、0.01〜10モル/Lであるのが好ましい。金属濃度が10モル/Lを超えると、生産性は優れているが、合金濃度が高過ぎて、微細な前駆体を形成し難いという不具合が生じるおそれがあり、金属濃度が0.01モル/L未満になると、生産性が悪くなる。   The solution in which Sn and transition metal are dissolved dissolves Sn salt and one or more transition metal salts selected from the group consisting of Co, Ni, Fe, Cu, Cr, In, Ag, and Ti in a solvent. Can be obtained. The ratio between the amount of Sn salt and the amount of transition metal salt may be adjusted according to the composition of the Sn alloy powder to be produced. It is preferable to use water as the solvent in consideration of cost and environment. The total metal concentration of Sn and transition metal in the solution is preferably 0.01 to 10 mol / L. When the metal concentration exceeds 10 mol / L, the productivity is excellent, but the alloy concentration is too high, and there is a risk that it is difficult to form a fine precursor, and the metal concentration is 0.01 mol / L. When it is less than L, the productivity is deteriorated.

アルカリ溶液は、NaOHやKOHなどの水酸化アルカリ、炭酸ナトリウムなどの炭酸塩、アンモニアなどを溶媒に溶解させることによって得られる。溶媒は、コスト面や環境面を考慮して水を使用するのが好ましい。   The alkaline solution can be obtained by dissolving an alkali hydroxide such as NaOH or KOH, a carbonate such as sodium carbonate, ammonia or the like in a solvent. It is preferable to use water as the solvent in consideration of cost and environment.

Snおよび遷移金属が溶解した溶液とアルカリ溶液とを混合することにより、Snと遷移金属の水酸化物粒子を含むスラリーが得られる。この混合直後の溶液の温度を10〜60℃にするのが好ましい。この混合直後の溶液の温度が60℃を超えると、前駆体の粒子径が大きくなり過ぎて、還元後の合金粒子や結晶子径も大きくなるという不具合が生じる場合がある。また、混合直後の溶液の温度が10℃より低いと、反応温度を制御するための冷却装置が必要になり、生産性の点から好ましくない。また、混合時および混合後に溶液を攪拌するのが好ましい。   By mixing a solution in which Sn and transition metal are dissolved and an alkali solution, a slurry containing Sn and transition metal hydroxide particles is obtained. The temperature of the solution immediately after mixing is preferably 10 to 60 ° C. If the temperature of the solution immediately after mixing exceeds 60 ° C., the particle diameter of the precursor becomes too large, and there may be a problem that the alloy particles and crystallite diameter after reduction also increase. Moreover, when the temperature of the solution immediately after mixing is lower than 10 ° C., a cooling device for controlling the reaction temperature is required, which is not preferable from the viewpoint of productivity. Moreover, it is preferable to stir the solution during and after mixing.

添加元素が溶解した溶液は、Al、Si、Zrおよび(Yを含む)希土類元素からなる群から選択される1種以上の元素の化合物を溶媒に溶解させることによって得られる。溶媒は、コスト面や環境面を考慮して水を使用するのが好ましい。この添加元素が溶解した溶液は、Snおよび遷移金属が溶解した溶液とアルカリ溶液を混合してSnと遷移金属の水酸化物粒子を生成させた後に、その水酸化物粒子を含むスラリーに混合してSnおよび遷移金属の水酸化物と添加元素を含む粒子を生成させてもよいし、Snおよび遷移金属が溶解した溶液と混合した後に、アルカリ溶液と混合してSnおよび遷移金属の水酸化物と添加元素を含む粒子を生成させてもよい。あるいは、添加元素に加えてSnと遷移金属が溶解した溶液をアルカリ溶液と混合してSnおよび遷移金属の水酸化物と添加元素を含む粒子を生成させてもよいし、添加元素が溶解したアルカリ溶液をSnおよび遷移金属が溶解した溶液と混合してSnおよび遷移金属の水酸化物と添加元素を含む粒子を生成させてもよい。   The solution in which the additive element is dissolved is obtained by dissolving a compound of one or more elements selected from the group consisting of Al, Si, Zr, and a rare earth element (including Y) in a solvent. It is preferable to use water as the solvent in consideration of cost and environment. The solution in which the additive element is dissolved is mixed with a solution in which Sn and transition metal are dissolved and an alkali solution to form Sn and transition metal hydroxide particles, and then mixed with the slurry containing the hydroxide particles. Particles containing Sn and transition metal hydroxide and additive elements may be generated, or mixed with a solution in which Sn and transition metal are dissolved, and then mixed with an alkali solution to produce Sn and transition metal hydroxide. And particles containing the additive element may be generated. Alternatively, a solution in which Sn and transition metal are dissolved in addition to the additive element may be mixed with an alkali solution to produce particles containing Sn and transition metal hydroxide and the additive element, or an alkali in which the additive element is dissolved. The solution may be mixed with a solution in which Sn and transition metal are dissolved to produce particles containing Sn and transition metal hydroxide and an additive element.

添加元素は、Al、Si、Zrおよび(Yを含む)希土類元素からなる群から選択される1種以上の元素であり、標準酸化還元電位が−0.8V以下の元素であるのが好ましい。Snと遷移金属からなる合金粉末は、還元処理工程において金属まで還元することができるが、標準酸化還元電位が−0.8V以下の添加元素は、水素ガスや一酸化炭素ガスなどの還元性ガスによって金属まで還元しないで酸化物として存在するので、焼結防止効果を得ることができる。   The additive element is at least one element selected from the group consisting of Al, Si, Zr, and rare earth elements (including Y), and is preferably an element having a standard oxidation-reduction potential of −0.8 V or less. An alloy powder composed of Sn and a transition metal can be reduced to a metal in the reduction treatment step, but an additive element having a standard oxidation-reduction potential of −0.8 V or less is a reducing gas such as hydrogen gas or carbon monoxide gas. By virtue of this, it is present as an oxide without being reduced to a metal, so that a sintering preventing effect can be obtained.

添加元素の化合物として、水溶性の化合物を使用するのが好ましく、例えば、添加元素がAlの場合には、アルミン酸ナトリウムなどのアルミン酸塩、硝酸アルミニウム、硫酸アルミニウムなどの水溶性のアルミニウム塩を使用することができ、添加元素がSiの場合には、珪酸ナトリウムなどの珪酸塩を使用することができ、添加元素がY、Zrまたは希土類の場合には、硫酸イットリウム、硝酸イットリウム、硝酸ジルコニウム、硝酸ランタンなどの硫酸、硝酸塩、希土類−硫酸、硝酸塩類などを使用することができる。   It is preferable to use a water-soluble compound as the compound of the additive element. For example, when the additive element is Al, a water-soluble aluminum salt such as aluminate such as sodium aluminate, aluminum nitrate or aluminum sulfate is used. When the additive element is Si, a silicate such as sodium silicate can be used. When the additive element is Y, Zr or rare earth, yttrium sulfate, yttrium nitrate, zirconium nitrate, Sulfuric acid such as lanthanum nitrate, nitrate, rare earth-sulfuric acid, nitrates and the like can be used.

添加元素の化合物の一部は、Snと遷移金属の水酸化物粒子に取り込まれ、残りの添加元素の化合物は、スラリーの液相中に存在し、ろ液として分離される。このように水酸化物粒子に取り込まれる比率は、製造条件により変化する。また、添加元素の化合物の添加量は、目的とするSnと遷移金属の合金粉末中の添加元素の含有量に合わせて調整すればよい。   A part of the compound of the additive element is taken into the Sn and transition metal hydroxide particles, and the remaining compound of the additive element exists in the liquid phase of the slurry and is separated as a filtrate. Thus, the ratio taken in the hydroxide particles varies depending on the production conditions. Moreover, what is necessary is just to adjust the addition amount of the compound of an addition element according to content of the addition element in the target alloy powder of Sn and a transition metal.

このようにして得られたSnおよび遷移金属の水酸化物と添加元素を含む粒子のスラリーを固液分離することにより、Snおよび遷移金属の水酸化物と添加元素を含むケーキを得ることができる。この固液分離は、ブフナー漏斗などを用いたろ過や、遠心分離などの公知の方法によって行うことができる。また、得られたケーキを純水などで洗浄してもよい。その後、ケーキを乾燥させてSnおよび遷移金属の水酸化物と添加元素を含む粉末を得る。この乾燥は、加熱乾燥や真空乾燥などの公知の方法によって行うことができる。   A slurry containing Sn and transition metal hydroxide and additive element can be obtained by solid-liquid separation of the thus obtained slurry of particles containing Sn and transition metal hydroxide and additive element. . This solid-liquid separation can be performed by a known method such as filtration using a Buchner funnel or centrifugal separation. The obtained cake may be washed with pure water or the like. Thereafter, the cake is dried to obtain a powder containing Sn and transition metal hydroxide and an additive element. This drying can be performed by a known method such as heat drying or vacuum drying.

このようにして得られたSnおよび遷移金属の水酸化物と添加元素を含む粉末を還元性ガス雰囲気下において加熱することにより、Sn合金粉末を得ることができる。還元性ガスとしては、水素、窒素と水素の混合ガス、一酸化炭素などを使用することができる。特に、還元力と安全性を考慮して水素ガスを使用するのが好ましい。   The Sn alloy powder can be obtained by heating the powder containing Sn and transition metal hydroxide and the additive element thus obtained in a reducing gas atmosphere. As the reducing gas, hydrogen, a mixed gas of nitrogen and hydrogen, carbon monoxide, or the like can be used. In particular, it is preferable to use hydrogen gas in consideration of reducing power and safety.

加熱温度は210〜600℃にするのが好ましい。加熱温度が210℃より低いと、水酸化物の粉末が十分に還元されないおそれがあり、600℃を超えると、粒子成長が進んで粒子径や結晶子径が大きくなることがあり、充放電サイクル特性が低下するおそれがある。平均粒径が小さいSn合金粉末を得るためには、加熱温度を210〜500℃にするのが好ましく、250〜300℃にするのがさらに好ましい。また、加熱時間は0.5時間以上にするのが好ましい。加熱時間が0.5時間より短いと、十分に還元せずに目的とする生成相が得られないおそれがある。   The heating temperature is preferably 210 to 600 ° C. If the heating temperature is lower than 210 ° C, the hydroxide powder may not be sufficiently reduced. If the heating temperature exceeds 600 ° C, particle growth may progress and the particle size or crystallite size may increase, and the charge / discharge cycle There is a risk that the characteristics will deteriorate. In order to obtain an Sn alloy powder having a small average particle size, the heating temperature is preferably 210 to 500 ° C, more preferably 250 to 300 ° C. The heating time is preferably 0.5 hours or longer. If the heating time is shorter than 0.5 hour, the target product phase may not be obtained without sufficient reduction.

上述した二次電池用電極材の製造方法の実施の形態によって、Snと、Co、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される1種以上の遷移金属元素と、Al、Si、Zrおよび(Yを含む)希土類元素からなる群から選択される1種以上の添加元素とを含む金属粉末からなり、平均粒径が10〜400nmの二次電池用電極材(負極材)を製造することができる。   According to the embodiment of the method for manufacturing a secondary battery electrode material described above, Sn and one or more transition metal elements selected from the group consisting of Co, Ni, Fe, Cu, Cr, In, Ag, and Ti , Al, Si, Zr, and an electrode material for a secondary battery having a mean particle diameter of 10 to 400 nm (including a metal powder containing one or more additive elements selected from the group consisting of rare earth elements (including Y)) Negative electrode material) can be manufactured.

この二次電池用電極材(負極材)は、Liと合金化する元素であるSnと、Liと合金化し難いCo、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される少なくとも1種以上の遷移金属元素と、粒子径の粗大化を抑制するためのAl、Si、Zrおよび(Yを含む)希土類元素からなる群から選択される1種類以上の添加元素とを含む金属粉末(好ましくはSn合金粉末)からなる。負極材を構成する金属元素として、Liと合金化する元素であるSnのみを用いた二次電池では、SnがLiと合金化する際に大きな体積変化を伴うので、充放電サイクル特性が悪いという問題があるが、Liと合金化し難い遷移金属元素をSnと共存させた金属材料を含有する負極材を用いた二次電池では、負極材としての体積変化が抑制され、充放電サイクル特性の悪化を防止することができる。また、Al、Si、Zrおよび(Yを含む)希土類元素からなる群から選択される1種類以上の元素を含むことにより、小さい平均粒径の粉末を得ることができる。   The secondary battery electrode material (negative electrode material) is selected from the group consisting of Sn, which is an element alloyed with Li, and Co, Ni, Fe, Cu, Cr, In, Ag, and Ti, which are difficult to alloy with Li. And at least one transition metal element and one or more additive elements selected from the group consisting of Al, Si, Zr and rare earth elements (including Y) for suppressing coarsening of the particle diameter. It consists of metal powder (preferably Sn alloy powder). In a secondary battery using only Sn, which is an element alloyed with Li, as a metal element constituting the negative electrode material, a large volume change is caused when Sn is alloyed with Li, so that charge / discharge cycle characteristics are poor. There is a problem, but in a secondary battery using a negative electrode material containing a metal material in which a transition metal element difficult to alloy with Li coexists with Sn, volume change as the negative electrode material is suppressed, and charge / discharge cycle characteristics deteriorate. Can be prevented. In addition, a powder having a small average particle diameter can be obtained by including one or more elements selected from the group consisting of Al, Si, Zr, and rare earth elements (including Y).

このSnと遷移金属元素と添加元素を含む金属粉末(好ましくはSn合金粉末)は、組成比A/Sn(AはCo、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される1種以上の遷移金属元素)が0.2〜3.0の範囲内であるのが好ましい。この組成比A/Snが0.2未満であると、Snの比率が大き過ぎて、充放電時の負極材の体積変化を十分に抑制することができずに、そのSn合金粉末を負極材として用いた電池の充放電サイクル特性が悪化する場合がある。一方、組成比A/Snが3.0を超えると、Snの比率が小さ過ぎて、その金属粉末を負極材として用いた電池の容量が小さくなる場合がある。なお、組成比A/Snは、0.5〜2.5であるのがさらに好ましい。   The metal powder (preferably Sn alloy powder) containing Sn, a transition metal element, and an additive element is selected from the group consisting of A / Sn (A is Co, Ni, Fe, Cu, Cr, In, Ag, and Ti). It is preferred that the one or more transition metal elements) be in the range of 0.2 to 3.0. When the composition ratio A / Sn is less than 0.2, the Sn ratio is too large, and the volume change of the negative electrode material during charge / discharge cannot be sufficiently suppressed, and the Sn alloy powder is used as the negative electrode material. As a result, the charge / discharge cycle characteristics of the battery used may deteriorate. On the other hand, when the composition ratio A / Sn exceeds 3.0, the ratio of Sn is too small, and the capacity of a battery using the metal powder as a negative electrode material may be small. The composition ratio A / Sn is more preferably 0.5 to 2.5.

この金属粉末の遷移金属元素はCoを含むのが好ましい。Coを含むことにより、Liと合金化し難く且つ導電性が高い金属元素の負極材を得ることができる。なお、この金属粉末は、合金相を主体とするが、複数種類の合金相を含んでもよく、Snと遷移金属を単相で含んでもよい。   The transition metal element of the metal powder preferably contains Co. By including Co, it is possible to obtain a negative electrode material of a metal element which is difficult to be alloyed with Li and has high conductivity. The metal powder mainly includes an alloy phase, but may include a plurality of types of alloy phases, and may include Sn and a transition metal in a single phase.

この金属粉末中の添加元素の含有量は、0.1〜30質量%であるのが好ましく、2〜20質量%であるのがさらに好ましい。0.1質量%未満では、金属粉末の平均粒径が大きくなることがあり、30質量%を超えると、添加元素の割合が多過ぎて負極として寄与するSnの割合が低下するため、容量が下がる不具合が生じる場合がある。   The content of the additive element in the metal powder is preferably 0.1 to 30% by mass, and more preferably 2 to 20% by mass. If the amount is less than 0.1% by mass, the average particle size of the metal powder may increase. If the amount exceeds 30% by mass, the proportion of Sn that contributes as a negative electrode is decreased due to the excessive proportion of the additive element. There may be a problem of lowering.

還元処理前の状態であるSnおよび遷移金属の水酸化物と添加元素を含む粉末では、添加元素は、Al、Zrまたは(Yを含む)希土類元素の場合には、酸素と結合した状態である水酸化物などの形態で存在していると考えられる。添加元素と結合した酸素は、還元処理により除去することができず、金属粉末中には酸素が含まれる。この酸素濃度(酸素含有量)は20質量%以下であるのが好ましく、10質量%以下であるのがさらに好ましい。酸素含有量が20質量%を超えると、還元が十分ではなく、Snと遷移金属との酸化物になっている可能性が高く、不可逆容量が増加したり、充放電サイクル特性が低下するおそれがある。なお、この酸素含有量を0.1質量%未満にするのは困難である。   In a powder containing Sn and transition metal hydroxide and an additive element in a state before the reduction treatment, the additive element is in a state of being bonded to oxygen in the case of Al, Zr or a rare earth element (including Y). It is thought to exist in the form of hydroxide. Oxygen combined with the additive element cannot be removed by reduction treatment, and oxygen is contained in the metal powder. The oxygen concentration (oxygen content) is preferably 20% by mass or less, and more preferably 10% by mass or less. When the oxygen content exceeds 20% by mass, the reduction is not sufficient, and there is a high possibility that it is an oxide of Sn and a transition metal, and the irreversible capacity may increase or the charge / discharge cycle characteristics may deteriorate. is there. In addition, it is difficult to make this oxygen content less than 0.1 mass%.

このSnと遷移金属元素と添加元素の金属粉末(好ましくはSn合金粉末)の平均粒径は2〜400nmであるのが好ましい。平均粒径が400nmを超えると、金属粉末を負極材として用いた場合に、電池反応の効率が低くなったり、充放電サイクル特性が低下する場合がある。一方、平均粒径が2nmより小さいと、取扱いの不便さや、金属粒子が非常に酸化し易くなるなどの不具合が生じるおそれがある。その金属粉末を負極材として用いた場合の電池反応の効率や充放電サイクル特性を考慮すると、平均粒径は100nm以下であるのが好ましく、60nm以下であるのがさらに好ましく、40nm以下であるのが最も好ましい。   The average particle size of the Sn, transition metal element, and additive element metal powder (preferably Sn alloy powder) is preferably 2 to 400 nm. When the average particle diameter exceeds 400 nm, when metal powder is used as the negative electrode material, the efficiency of the battery reaction may be lowered, and the charge / discharge cycle characteristics may be deteriorated. On the other hand, if the average particle size is smaller than 2 nm, there is a possibility that problems such as inconvenience in handling and the fact that metal particles are very easy to oxidize may occur. Considering the efficiency of the battery reaction and charge / discharge cycle characteristics when the metal powder is used as the negative electrode material, the average particle size is preferably 100 nm or less, more preferably 60 nm or less, and 40 nm or less. Is most preferred.

Snと遷移金属元素と添加元素の金属粉末(好ましくはSn合金粉末)の結晶子径は50nm以下であるのが好ましい。この結晶子径は小さいほど好ましい。一方、結晶子径が50nmを超えると、充放電時の負極材の体積変化を十分に抑制することができずに、その金属粉末を負極材として用いた電池の充放電サイクル特性が悪化する場合がある。   The crystallite diameter of the metal powder (preferably Sn alloy powder) of Sn, transition metal element and additive element is preferably 50 nm or less. The smaller the crystallite diameter, the better. On the other hand, when the crystallite diameter exceeds 50 nm, the volume change of the negative electrode material during charge / discharge cannot be sufficiently suppressed, and the charge / discharge cycle characteristics of the battery using the metal powder as the negative electrode material deteriorate. There is.

このSnと遷移金属元素と添加元素の金属粉末(好ましくはSn合金粉末)のBET径は、2〜200nmであるのが好ましい。BET径が200nmを超えると、金属粉末を負極材として用いた場合に、電池反応の効率が低くなったり、充放電サイクル特性が低下する場合がある。一方、BET径が2nmより小さいと、取扱いの不便さや、金属粒子が非常に酸化し易くなるなどの不具合が生じるおそれがある。その金属粉末を負極材として用いた場合の電池反応の効率や充放電サイクル特性を考慮すると、BET径は50nm以下であるのが好ましく、30nm以下であるのがさらに好ましく、20nm以下であるのが最も好ましい。   The BET diameter of the Sn, transition metal element, and additive element metal powder (preferably Sn alloy powder) is preferably 2 to 200 nm. When the BET diameter exceeds 200 nm, when metal powder is used as the negative electrode material, battery reaction efficiency may be lowered, and charge / discharge cycle characteristics may be deteriorated. On the other hand, when the BET diameter is smaller than 2 nm, there is a possibility that problems such as inconvenience in handling and in which metal particles are very easily oxidized are caused. Considering the efficiency of the battery reaction and charge / discharge cycle characteristics when the metal powder is used as the negative electrode material, the BET diameter is preferably 50 nm or less, more preferably 30 nm or less, and 20 nm or less. Most preferred.

上述した金属粉末を用いて、公知の方法により、リチウムイオン二次電池用負極を製造することができる。例えば、上述した金属粉末に適当なバインダを混合し、必要に応じて導電性の向上のために適当な導電性粉末を混合する。この混合物にバインダが溶解する溶媒を加え、必要に応じて公知の攪拌機によって十分に攪拌してスラリー状にする。このスラリーをドクターブレードなどによって圧延銅箔などの電極基板(集電体)に塗布して乾燥した後、ロール圧延などによって圧密化して、非水電解質二次電池用負極を製造することができる。   The negative electrode for lithium ion secondary batteries can be manufactured by a well-known method using the metal powder mentioned above. For example, an appropriate binder is mixed with the above-described metal powder, and an appropriate conductive powder is mixed as necessary to improve conductivity. A solvent in which the binder is dissolved is added to this mixture, and if necessary, the mixture is sufficiently stirred with a known stirrer to form a slurry. The slurry is applied to an electrode substrate (current collector) such as a rolled copper foil with a doctor blade or the like, dried, and then consolidated by roll rolling or the like to produce a negative electrode for a non-aqueous electrolyte secondary battery.

このようにして製造された負極を用いてリチウムイオン二次電池を作製するのが好ましいが、他の非水電解質二次電池を作製することもできる。なお、リチウムイオン二次電池は、基本構造として負極、正極、セパレータおよび非水系の電解質を含んでいるが、上記のように製造された負極を用いるとともに、公知の正極、セパレータおよび電解質を用いて、リチウムイオン二次電池を作製することができる。   Although it is preferable to produce a lithium ion secondary battery using the negative electrode thus produced, other nonaqueous electrolyte secondary batteries can also be produced. The lithium ion secondary battery includes a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte as a basic structure, but uses a negative electrode manufactured as described above and a known positive electrode, separator, and electrolyte. A lithium ion secondary battery can be manufactured.

以下、本発明による二次電池用電極材およびその製造方法の実施例について詳細に説明する。   Examples of the secondary battery electrode material and the method for manufacturing the same according to the present invention will be described below in detail.

[実施例1]
硫酸コバルト・7水和物(CoSO・7HO)28.11gと塩化スズ(IV)(SnCl・5HO)35.06gを純水400gに溶解してCoとSnを含む水溶液を作製した。また、48.5質量%の水酸化ナトリウム水溶液54.22gを純水200gに添加してアルカリ水溶液を作製した。上記のCoとSnを含む水溶液を加熱して40℃に保持し、攪拌した状態で、上記のアルカリ水溶液を40℃に加熱してCoとSnを含む水溶液に添加し、CoとSnの水酸化物を含むスラリーを得た。
[Example 1]
An aqueous solution containing Co and Sn by dissolving 28.11 g of cobalt sulfate heptahydrate (CoSO 4 · 7H 2 O) and 35.06 g of tin (IV) chloride (SnCl 4 · 5H 2 O) in 400 g of pure water. Produced. Moreover, 54.22g of 48.5 mass% sodium hydroxide aqueous solution was added to 200g of pure water, and alkaline aqueous solution was produced. The aqueous solution containing Co and Sn is heated and maintained at 40 ° C. and stirred, and the alkaline aqueous solution is heated to 40 ° C. and added to the aqueous solution containing Co and Sn. A slurry containing the product was obtained.

また、アルミン酸ナトリウム(和光純薬工業社製、モル比(Al/Na)=0.79)10.6gを純水130gに添加して、アルミン酸ナトリウム水溶液を作製した。このアルミン酸ナトリウム水溶液を上記のCoとSnの水酸化物を含むスラリーに添加して攪拌し、CoとSnとAlの水酸化物を含むスラリーを得た。このスラリーを濾過し、純水で洗浄して、CoとSnとAlの水酸化物のケーキを得た。このCoとSnとAlの水酸化物のケーキを大気中において140℃で3時間乾燥した後、水素雰囲気中において300℃で3時間還元して、CoSn合金粉末を得た。   Further, 10.6 g of sodium aluminate (manufactured by Wako Pure Chemical Industries, Ltd., molar ratio (Al / Na) = 0.79) was added to 130 g of pure water to prepare a sodium aluminate aqueous solution. The aqueous sodium aluminate solution was added to the slurry containing Co and Sn hydroxides and stirred to obtain a slurry containing Co, Sn and Al hydroxides. The slurry was filtered and washed with pure water to obtain a Co, Sn, and Al hydroxide cake. The Co, Sn, and Al hydroxide cake was dried in the atmosphere at 140 ° C. for 3 hours and then reduced in a hydrogen atmosphere at 300 ° C. for 3 hours to obtain a CoSn alloy powder.

得られたCoSn合金粉末について、X線回折装置(島津製作所製のXRD−6100)によりCu線源(40kV/30mA)で20〜70°/2θの範囲を測定して、X線回折(XRD)の評価を行った。本実施例で得られたCoSn合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの相を主体とすることが確認された。   About the obtained CoSn alloy powder, the range of 20 to 70 ° / 2θ was measured with a Cu radiation source (40 kV / 30 mA) using an X-ray diffractometer (XRD-6100 manufactured by Shimadzu Corporation), and X-ray diffraction (XRD) Was evaluated. An X-ray diffraction pattern of the CoSn alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was mainly composed of a CoSn phase.

また、X線回折パターンから得られたCoSn相の(201)面の半価幅βを用いて、Scherrerの式D=(K・λ)/(β・cosθ)から結晶子径(Dx)を算出したところ、結晶子径(Dx)は23.8nmであった。なお、Scherrerの式において、Dは結晶子径(nm)、λは測定X線波長(nm)、βは結晶子による回折幅の広がり、θは回折角のブラッグ角、KはScherrer定数を示し、この式中の測定X線波長λを1.54nm、Scherrer定数Kを0.9とした。   Further, by using the half width β of the (201) plane of the CoSn phase obtained from the X-ray diffraction pattern, the crystallite diameter (Dx) is obtained from Scherrer's equation D = (K · λ) / (β · cos θ). When calculated, the crystallite diameter (Dx) was 23.8 nm. In the Scherrer equation, D is the crystallite diameter (nm), λ is the measured X-ray wavelength (nm), β is the diffraction width spread by the crystallite, θ is the Bragg angle of the diffraction angle, and K is the Scherrer constant. In this equation, the measurement X-ray wavelength λ is 1.54 nm, and the Scherrer constant K is 0.9.

また、本実施例で得られたCoSn合金粉末について、透過型電子顕微鏡(日本電子社製のJEM−100CX)によって倍率174,000倍で撮影し、得られた透過型電子顕微鏡写真(TEM像)からCoSn合金粉末の粒子50個の各々の長軸径を測定し、その平均値をCoSn合金粉末の平均粒径とした。その結果、得られたCoSn合金粉末の平均粒径は28.6nmであった。なお、「長軸径」とは、粒子像を2本の平行線で挟んだときの最小間隔を短軸径として、この短軸径に直交する2本の平行線で粒子像を挟んだときの間隔をいう。   Further, the CoSn alloy powder obtained in this example was photographed at a magnification of 174,000 with a transmission electron microscope (JEM-100CX manufactured by JEOL Ltd.), and the obtained transmission electron micrograph (TEM image). The major axis diameter of each of 50 CoSn alloy powder particles was measured, and the average value was taken as the average particle diameter of the CoSn alloy powder. As a result, the average particle diameter of the obtained CoSn alloy powder was 28.6 nm. The “major axis diameter” means that the minimum distance when a particle image is sandwiched between two parallel lines is the minor axis diameter, and the particle image is sandwiched between two parallel lines orthogonal to the minor axis diameter. The interval.

また、本実施例で得られたCoSn合金粉末について、比表面積測定器(カンタクロム社製のMONOSORB)を用いてBET1点法により比表面積(BET値)を求め、BET径=6/(ρs×10×BET値)×10(但し、ρsは粒子の密度=8.5g/cm)からBET径を求めた。その結果、得られたCoSn合金粉末のBET径は6.2nmであった。 Further, for the CoSn alloy powder obtained in this example, a specific surface area (BET value) was determined by a BET 1-point method using a specific surface area measuring device (MONOSORB manufactured by Cantachrome), and a BET diameter = 6 / (ρs × 10 6 × BET value) × 10 9 (wherein ρs is the particle density = 8.5 g / cm 3 ), the BET diameter was determined. As a result, the BET diameter of the obtained CoSn alloy powder was 6.2 nm.

また、本実施例で得られたCoSn合金粉末を不活性ガス雰囲気中で密封容器に封入し、酸素・窒素同時分析装置(LECO社製のTC−436)を用いて、CoSn合金粉末の酸素濃度を測定したところ、4.1質量%であった。   In addition, the CoSn alloy powder obtained in this example was sealed in a sealed container in an inert gas atmosphere, and the oxygen concentration of the CoSn alloy powder was measured using a simultaneous oxygen / nitrogen analyzer (TC-436 manufactured by LECO). Was 4.1% by mass.

さらに、本実施例で得られたCoSn合金粉末を酸に溶解し、ICP発光分光分析装置(エスアイアイ・ナノテクノロジー社製のSPS−3520V)による測定結果からCoとSnとAlの組成比(質量比)求め、この質量比と上記の酸素濃度からCoSn合金粉末中の各元素の含有量を算出した。その結果、得られたCoSn合金粉末中のSn、CoおよびAlの含有量は、それぞれ61.5質量%、30.5質量%および3.9質量%であった。   Further, the CoSn alloy powder obtained in this example was dissolved in an acid, and the composition ratio (mass) of Co, Sn, and Al was determined from the measurement result using an ICP emission spectroscopic analyzer (SPS-3520V manufactured by SII Nanotechnology). Ratio), and the content of each element in the CoSn alloy powder was calculated from this mass ratio and the above oxygen concentration. As a result, the contents of Sn, Co and Al in the obtained CoSn alloy powder were 61.5 mass%, 30.5 mass% and 3.9 mass%, respectively.

これらの結果を表1に示す。   These results are shown in Table 1.

Figure 0005764395
Figure 0005764395

[実施例2]
還元時間を6時間にした以外は、実施例1と同様の方法により、CoSn合金粉末を製造し、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出、BET径の算出、酸素濃度の測定および各元素の含有量の算出を行った。本実施例で得られたCoSn合金粉末の透過型顕微鏡写真(TEM像)を図2に示し、X線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの相を主体とすることが確認された。また、結晶子径は10.7nm、平均粒径は12.3nm、BET径は6.0nm、酸素濃度は6.6質量%であり、Sn、CoおよびAlの含有量は、それぞれ59.8質量%、29.7質量%および4.0質量%であった。これらの結果を表1に示す。
[Example 2]
A CoSn alloy powder was produced in the same manner as in Example 1 except that the reduction time was set to 6 hours. Evaluation by an X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, calculation of BET diameter, The oxygen concentration was measured and the content of each element was calculated. A transmission micrograph (TEM image) of the CoSn alloy powder obtained in this example is shown in FIG. 2, and an X-ray diffraction pattern is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was mainly composed of a CoSn phase. The crystallite diameter is 10.7 nm, the average particle diameter is 12.3 nm, the BET diameter is 6.0 nm, the oxygen concentration is 6.6% by mass, and the contents of Sn, Co, and Al are 59.8 respectively. They were mass%, 29.7 mass%, and 4.0 mass%. These results are shown in Table 1.

[実施例3]
硫酸コバルト・7水和物(CoSO・7HO)28.11gと塩化スズ(IV)(SnCl・5HO)35.06gを純水400gに溶解してCoとSnを含む水溶液を作製した。また、48.5質量%の水酸化ナトリウム水溶液54.22gとアルミン酸ナトリウム(和光純薬工業社製、モル比(Al/Na)=0.79)8.2gを純水200gに添加してアルカリ水溶液を作製した。上記のCoとSnを含む水溶液を加熱して40℃に保持し、攪拌した状態で、上記のアルカリ水溶液を40℃に加熱してCoとSnを含む水溶液に添加し、CoとSnとAlの水酸化物を含むスラリーを得た。このスラリーを濾過し、純水で洗浄して、CoとSnとAlの水酸化物のケーキを得た。このCoとSnとAlの水酸化物のケーキを大気中において140℃で3時間乾燥した後、水素雰囲気中において400℃で3時間還元して、CoSn合金粉末を得た。
[Example 3]
An aqueous solution containing Co and Sn by dissolving 28.11 g of cobalt sulfate heptahydrate (CoSO 4 · 7H 2 O) and 35.06 g of tin (IV) chloride (SnCl 4 · 5H 2 O) in 400 g of pure water. Produced. Moreover, 54.22g of 48.5 mass% sodium hydroxide aqueous solution and 8.2g of sodium aluminate (the Wako Pure Chemical Industries Ltd. make, molar ratio (Al / Na) = 0.79) were added to the pure water 200g. An alkaline aqueous solution was prepared. The aqueous solution containing Co and Sn is heated to 40 ° C. and stirred, and the alkaline aqueous solution is heated to 40 ° C. and added to the aqueous solution containing Co and Sn. A slurry containing hydroxide was obtained. The slurry was filtered and washed with pure water to obtain a Co, Sn, and Al hydroxide cake. The Co, Sn, and Al hydroxide cake was dried in the atmosphere at 140 ° C. for 3 hours and then reduced in a hydrogen atmosphere at 400 ° C. for 3 hours to obtain a CoSn alloy powder.

得られたCoSn合金粉末について、実施例1と同様の方法により、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出、BET径の算出、酸素濃度の測定および各元素の含有量の算出を行った。本実施例で得られたCoSn合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの相を主体とすることが確認された。また、結晶子径は13.4nm、平均粒径は15.0nm、BET径は5.9nm、酸素濃度は5.4質量%であり、Sn、CoおよびAlの含有量は、それぞれ59.7質量%、29.6質量%および5.3質量%であった。これらの結果を表1に示す。   About the obtained CoSn alloy powder, evaluation by X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, calculation of BET diameter, measurement of oxygen concentration and inclusion of each element in the same manner as in Example 1 The amount was calculated. An X-ray diffraction pattern of the CoSn alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was mainly composed of a CoSn phase. The crystallite diameter is 13.4 nm, the average particle diameter is 15.0 nm, the BET diameter is 5.9 nm, the oxygen concentration is 5.4% by mass, and the contents of Sn, Co, and Al are 59.7%, respectively. They were mass%, 29.6 mass%, and 5.3 mass%. These results are shown in Table 1.

[実施例4]
還元温度を500℃にした以外は、実施例3と同様の方法により、CoSn合金粉末を製造し、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出、BET径の算出、酸素濃度の測定および各元素の含有量の算出を行った。本実施例で得られたCoSn合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの相を主体とすることが確認された。また、結晶子径は17.1nm、平均粒径は18.2nm、BET径は8.7nm、酸素濃度は4.8質量%であり、Sn、CoおよびAlの含有量は、それぞれ60.0質量%、29.8質量%および5.4質量%であった。これらの結果を表1に示す。
[Example 4]
A CoSn alloy powder was produced in the same manner as in Example 3 except that the reduction temperature was changed to 500 ° C., evaluated by X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, calculation of BET diameter, The oxygen concentration was measured and the content of each element was calculated. An X-ray diffraction pattern of the CoSn alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was mainly composed of a CoSn phase. The crystallite diameter is 17.1 nm, the average particle diameter is 18.2 nm, the BET diameter is 8.7 nm, the oxygen concentration is 4.8% by mass, and the contents of Sn, Co, and Al are 60.0%, respectively. It was mass%, 29.8 mass%, and 5.4 mass%. These results are shown in Table 1.

[実施例5]
アルミン酸ナトリウム10.6gを硫酸イットリウム8水和物(Y(SO・8HO)8.5gに代えるとともに、還元時間を6時間にした以外は、実施例1と同様の方法により、CoSn合金粉末を製造し、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出、BET径の算出、酸素濃度の測定および各元素の含有量の算出を行った。本実施例で得られたCoSn合金粉末の透過型顕微鏡写真(TEM像)を図3に示し、X線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの相を主体とすることが確認された。また、結晶子径は19.7nm、平均粒径は26.1nm、BET径は11.8nm、酸素濃度は3.1質量%であり、Sn、CoおよびYの含有量は、それぞれ60.0質量%、29.8質量%および7.2質量%であった。これらの結果を表1に示す。
[Example 5]
The same method as in Example 1 except that 10.6 g of sodium aluminate was replaced with 8.5 g of yttrium sulfate octahydrate (Y 2 (SO 4 ) 3 · 8H 2 O) and the reduction time was 6 hours. Thus, a CoSn alloy powder was manufactured, and evaluation by an X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, calculation of BET diameter, measurement of oxygen concentration, and calculation of content of each element were performed. A transmission micrograph (TEM image) of the CoSn alloy powder obtained in this example is shown in FIG. 3, and an X-ray diffraction pattern is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was mainly composed of a CoSn phase. The crystallite diameter was 19.7 nm, the average particle diameter was 26.1 nm, the BET diameter was 11.8 nm, the oxygen concentration was 3.1% by mass, and the contents of Sn, Co, and Y were 60.0%, respectively. Mass%, 29.8 mass%, and 7.2 mass%. These results are shown in Table 1.

[実施例6]
アルミン酸ナトリウム10.6gを無水メタ珪酸ナトリウム(NaSiO)10.0gに代えて、CoおよびSnの水酸化物とSiを含むスラリーからCoおよびSnの水酸化物とSiのケーキを得るとともに、還元時間を6時間にした以外は、実施例1と同様の方法により、CoSn合金粉末を製造し、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出、BET径の算出、酸素濃度の測定および各元素の含有量の算出を行った。本実施例で得られたCoSn合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの相を主体とすることが確認された。また、結晶子径は15.6nm、平均粒径は18.1nm、BET径は13.3nm、酸素濃度は3.4質量%であり、Sn、CoおよびSiの含有量は、それぞれ62.8質量%、31.2質量%および2.6質量%であった。これらの結果を表1に示す。
[Example 6]
Substituting 10.0 g of sodium aluminate with 10.0 g of anhydrous sodium metasilicate (Na 2 SiO 3 ) to obtain a cake of Co and Sn hydroxide and Si from a slurry containing Co and Sn hydroxide and Si In addition, a CoSn alloy powder was produced in the same manner as in Example 1 except that the reduction time was set to 6 hours, evaluation by X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, BET diameter Calculation, measurement of oxygen concentration, and calculation of the content of each element were performed. An X-ray diffraction pattern of the CoSn alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was mainly composed of a CoSn phase. The crystallite diameter is 15.6 nm, the average particle diameter is 18.1 nm, the BET diameter is 13.3 nm, the oxygen concentration is 3.4% by mass, and the contents of Sn, Co, and Si are 62.8, respectively. They were 3 mass%, 31.2 mass%, and 2.6 mass%. These results are shown in Table 1.

[比較例1]
アルミン酸ナトリウム水溶液を添加しなかった以外は、実施例2と同様の方法により、CoSn合金粉末を製造し、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出、BET径の算出、酸素濃度の測定および各元素の含有量の算出を行った。本実施例で得られたCoSn合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの相を主体とすることが確認された。また、結晶子径は22.9nm、平均粒径は116.0nm、BET径は72.7nmであり、実施例1〜6と比べて平均粒径が大きかった。また、酸素濃度は0.3質量%であり、SnおよびCoの含有量は、それぞれ66.6質量%および33.1質量%であった。これらの結果を表1に示す。
[Comparative Example 1]
A CoSn alloy powder was produced in the same manner as in Example 2 except that the sodium aluminate aqueous solution was not added. Evaluation by an X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, calculation of BET diameter Calculation, measurement of oxygen concentration, and calculation of the content of each element were performed. An X-ray diffraction pattern of the CoSn alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was mainly composed of a CoSn phase. The crystallite diameter was 22.9 nm, the average particle diameter was 116.0 nm, and the BET diameter was 72.7 nm, which was larger than those in Examples 1 to 6. The oxygen concentration was 0.3% by mass, and the contents of Sn and Co were 66.6% by mass and 33.1% by mass, respectively. These results are shown in Table 1.

Claims (13)

Snおよび遷移金属が溶解した溶液とアルカリ溶液を混合した後にAl、Si、Zrおよび希土類元素からなる群から選択される1種以上の添加元素が溶解した溶液を混合することによって、Snと遷移金属との水酸化物と添加元素とを含む粒子を生成させ、この粒子を乾燥した後、還元性ガス雰囲気下で加熱することによりSn合金粉末を得ることを特徴とする、二次電池用電極材の製造方法。 By mixing a solution in which one or more additive elements selected from the group consisting of Al, Si, Zr and rare earth elements are mixed after mixing a solution in which Sn and transition metal are dissolved with an alkali solution , Sn and transition metal The electrode material for a secondary battery is characterized in that an Sn alloy powder is obtained by producing particles containing a hydroxide and an additive element, and drying the particles, followed by heating in a reducing gas atmosphere. Manufacturing method. Snおよび遷移金属が溶解した溶液とAl、Si、Zrおよび希土類元素からなる群から選択される1種以上の添加元素が溶解した溶液を混合した後にアルカリ溶液を混合することによって、Snと遷移金属との水酸化物と添加元素とを含む粒子を生成させ、この粒子を乾燥した後、還元性ガス雰囲気下で加熱することによりSn合金粉末を得ることを特徴とする、二次電池用電極材の製造方法。 Sn and transition metal dissolved solution and Al, Si, by mixing the alkaline solution after the at least one additive element selected from the group consisting of Zr and rare earth elements was mixed with a solution prepared by dissolving, Sn And a transition metal hydroxide and an additive element are formed, and after drying the particles, the resultant is heated in a reducing gas atmosphere to obtain a Sn alloy powder. Method for manufacturing an electrode material. Snおよび遷移金属が溶解した溶液とAl、Si、Zrおよび希土類元素からなる群から選択される1種以上の添加元素が溶解したアルカリ溶液を混合することによって、Snと遷移金属との水酸化物と添加元素とを含む粒子を生成させ、この粒子を乾燥した後、還元性ガス雰囲気下で加熱することによりSn合金粉末を得ることを特徴とする、二次電池用電極材の製造方法。 By mixing a solution in which Sn and transition metal are dissolved with an alkali solution in which one or more additive elements selected from the group consisting of Al, Si, Zr and rare earth elements are dissolved , a hydroxide of Sn and transition metal A method for producing an electrode material for a secondary battery , comprising: producing particles containing an additive element; and drying the particles, followed by heating in a reducing gas atmosphere to obtain an Sn alloy powder. 前記Snおよび遷移金属が溶解した溶液が、Sn塩と、Co、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される1種以上の遷移金属の塩とを溶媒に溶解した溶液であることを特徴とする、請求項1乃至3のいずれかに記載の二次電池用電極材の製造方法。 The solution in which Sn and transition metal are dissolved dissolves Sn salt and one or more transition metal salts selected from the group consisting of Co, Ni, Fe, Cu, Cr, In, Ag and Ti in a solvent. The method for producing an electrode material for a secondary battery according to any one of claims 1 to 3, wherein the solution is a solution. 前記加熱の温度が210〜600℃であることを特徴とする、請求項1乃至4のいずれかに記載の二次電池用電極材の製造方法。 The method for producing an electrode material for a secondary battery according to any one of claims 1 to 4, wherein the heating temperature is 210 to 600 ° C. Snと、Co、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される1種以上の遷移金属元素と、Al、Si、Zrおよび希土類元素からなる群から選択される1種以上の添加元素との合金粉末からなり、平均粒径が10〜400nmであり、BET径が2〜200nmであることを特徴とする、二次電池用電極材。 Sn, one or more transition metal elements selected from the group consisting of Co, Ni, Fe, Cu, Cr, In, Ag and Ti, and 1 selected from the group consisting of Al, Si, Zr and rare earth elements An electrode material for a secondary battery, comprising an alloy powder with more than one kind of additive element, having an average particle diameter of 10 to 400 nm and a BET diameter of 2 to 200 nm. 前記合金粉末中の酸素濃度が0.1〜20質量%であることを特徴とする、請求項6に記載の二次電池用電極材。 The electrode material for a secondary battery according to claim 6, wherein an oxygen concentration in the alloy powder is 0.1 to 20% by mass. 前記合金粉末中のSnの含有量に対する前記遷移金属の含有量の比(遷移金属/Sn)が0.2〜3.0であることを特徴とする、請求項6または7に記載の二次電池用電極材。 The secondary ratio according to claim 6 or 7, wherein a ratio of the content of the transition metal to a content of Sn in the alloy powder (transition metal / Sn) is 0.2 to 3.0. Battery electrode material. 前記合金粉末中の前記添加元素の含有量が0.1〜30質量%であることを特徴とする請求項6乃至8のいずれかに記載の二次電池用電極材。 The secondary battery electrode material according to any one of claims 6 to 8, wherein the content of the additive element in the alloy powder is 0.1 to 30% by mass. 前記合金粉末の結晶子径が50nm以下であることを特徴とする、請求項6乃至9のいずれかに記載の二次電池用電極材。 The electrode material for a secondary battery according to any one of claims 6 to 9, wherein a crystallite diameter of the alloy powder is 50 nm or less. 前記合金粉末の平均粒径が200nm以下であることを特徴とする、請求項6乃至10のいずれかに記載の二次電池用電極材。 11. The electrode material for a secondary battery according to claim 6, wherein an average particle diameter of the alloy powder is 200 nm or less. 前記合金粉末の平均粒径が100nmより小さいことを特徴とする、請求項6乃至10のいずれかに記載の二次電池用電極材。 The electrode material for a secondary battery according to any one of claims 6 to 10, wherein an average particle diameter of the alloy powder is smaller than 100 nm. 前記合金粉末のBET径が50nm以下であることを特徴とする、請求項6乃至12のいずれかに記載の二次電池用電極材。 The secondary battery electrode material according to claim 6, wherein the alloy powder has a BET diameter of 50 nm or less.
JP2011136298A 2011-06-20 2011-06-20 Secondary battery electrode material and manufacturing method thereof Expired - Fee Related JP5764395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011136298A JP5764395B2 (en) 2011-06-20 2011-06-20 Secondary battery electrode material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011136298A JP5764395B2 (en) 2011-06-20 2011-06-20 Secondary battery electrode material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013004404A JP2013004404A (en) 2013-01-07
JP5764395B2 true JP5764395B2 (en) 2015-08-19

Family

ID=47672757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011136298A Expired - Fee Related JP5764395B2 (en) 2011-06-20 2011-06-20 Secondary battery electrode material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5764395B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158685A1 (en) * 2019-01-28 2020-08-06 三井金属鉱業株式会社 Sn particles, conductive composition using the same, and method for producing sn particles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012015A (en) * 1998-06-10 2000-01-14 Jurgen Otto Besenhard Nonaqueous secondary battery
JP2001332254A (en) * 2000-03-13 2001-11-30 Canon Inc Manufacturing method for electrode material of lithium secondary battery, electrode structure of the lithium secondary battery and the lithium secondary battery and manufacturing method therefor
JP4029291B2 (en) * 2003-09-02 2008-01-09 福田金属箔粉工業株式会社 Negative electrode material for lithium secondary battery and method for producing the same
JP2010218958A (en) * 2009-03-18 2010-09-30 Akita Univ Copper-tin-containing paste, manufacturing method of copper-tin-containing paste, electrode for lithium ion secondary battery, and kit for forming copper-tin-containing paste
JP5718734B2 (en) * 2010-12-14 2015-05-13 Dowaホールディングス株式会社 Secondary battery electrode material and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013004404A (en) 2013-01-07

Similar Documents

Publication Publication Date Title
JP6089433B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
TWI423504B (en) A positive electrode for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery
JP6176109B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
KR101562686B1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP5720899B2 (en) Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
Saha et al. A rapid solid-state synthesis of electrochemically active Chevrel phases (Mo 6 T 8; T= S, Se) for rechargeable magnesium batteries
JP5950389B2 (en) Lithium silicate compound, positive electrode active material, method for producing positive electrode active material, non-aqueous electrolyte secondary battery and vehicle equipped with the same
JP4316656B1 (en) Lithium transition metal oxide with layer structure
TW201205936A (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
WO2012176471A1 (en) Lithium-containing complex oxide powder and method for producing same
JP5678685B2 (en) Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery
Liu et al. Molten salts for rechargeable batteries
JP5674055B2 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
Cherian et al. Facile synthesis and Li-storage performance of SnO nanoparticles and microcrystals
JP5718734B2 (en) Secondary battery electrode material and manufacturing method thereof
JP6619832B2 (en) Oxide positive electrode active material for lithium ion battery, method for producing precursor of oxide positive electrode active material for lithium ion battery, method for producing oxide positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
JP4997706B2 (en) Anode material for non-aqueous secondary battery and method for producing the same
CN115881944B (en) Layered oxide positive electrode material with transition metal layer superlattice structure and preparation method thereof
JP5456218B2 (en) Negative electrode active material for lithium ion secondary battery
JP4915227B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP4133116B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2023145559A (en) Method for manufacturing positive electrode active material for lithium ion secondary battery
WO2020011179A1 (en) Positive electrode material and preparation method therefor, lithium ion battery and vehicle
JP5764395B2 (en) Secondary battery electrode material and manufacturing method thereof
EP3636597A1 (en) Lithium transition metal composite oxide and method of production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5764395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees