JP5718734B2 - Secondary battery electrode material and manufacturing method thereof - Google Patents

Secondary battery electrode material and manufacturing method thereof Download PDF

Info

Publication number
JP5718734B2
JP5718734B2 JP2011125946A JP2011125946A JP5718734B2 JP 5718734 B2 JP5718734 B2 JP 5718734B2 JP 2011125946 A JP2011125946 A JP 2011125946A JP 2011125946 A JP2011125946 A JP 2011125946A JP 5718734 B2 JP5718734 B2 JP 5718734B2
Authority
JP
Japan
Prior art keywords
electrode material
secondary battery
alloy powder
transition metal
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011125946A
Other languages
Japanese (ja)
Other versions
JP2012142257A (en
Inventor
千佳 横山
千佳 横山
晶 永富
晶 永富
隆之 菊地
隆之 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2011125946A priority Critical patent/JP5718734B2/en
Publication of JP2012142257A publication Critical patent/JP2012142257A/en
Application granted granted Critical
Publication of JP5718734B2 publication Critical patent/JP5718734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、二次電池用電極材およびその製造方法に関し、特に、リチウムイオン二次電池などの二次電池に使用する電極材およびその製造方法に関する。   The present invention relates to an electrode material for a secondary battery and a method for manufacturing the same, and more particularly to an electrode material used for a secondary battery such as a lithium ion secondary battery and a method for manufacturing the same.

リチウムイオン二次電池は、リチウムまたはリチウム合金またはリチウムを吸蔵し得る物質を負極活物質とする非水電解質二次電池の一種であり、電圧が高く、軽量で、エネルギー密度が高いため、小型軽量化を図り易く、携帯電話などの情報機器の二次電池として使用されている。また、近年では、ハイブリッド自動車用二次電池などの大型動力用二次電池として、リチウムイオン二次電池の需要が高まっており、さらに小型軽量化を図るため、リチウムイオン二次電池のエネルギー密度の向上(高容量化)について様々な検討が行われている。   A lithium ion secondary battery is a type of non-aqueous electrolyte secondary battery that uses lithium, a lithium alloy, or a material capable of occluding lithium as a negative electrode active material, and has a high voltage, light weight, and high energy density. It is used as a secondary battery for information devices such as mobile phones. In recent years, demand for lithium ion secondary batteries has increased as secondary batteries for large power vehicles such as secondary batteries for hybrid vehicles. In order to further reduce the size and weight, the energy density of lithium ion secondary batteries has increased. Various studies have been conducted on improvement (high capacity).

従来、リチウムイオン二次電池の負極材料として、比較的高容量で充放電サイクル特性が良好な難黒鉛化性炭素や黒鉛などの炭素質材料が広く用いられているが、近年、リチウムイオン二次電池の負極材料をさらに高容量化することが課題となっている。   Conventionally, as a negative electrode material of a lithium ion secondary battery, a carbonaceous material such as non-graphitizable carbon or graphite having a relatively high capacity and good charge / discharge cycle characteristics has been widely used. There is a problem of further increasing the capacity of the negative electrode material of the battery.

しかし、リチウムイオン二次電池を高容量化するため負極材料の容量を大きくしようとしても、黒鉛系炭素質材料では、放電容量372mAh/gという理論的な限界があることが知られており、適用限界に近づいている。一方、非黒鉛系の炭素質材料では、放電容量が大きいものの、不可逆容量が大きく、電池設計の段階で大きなロスが生じるという欠点がある。   However, it is known that even if the capacity of the negative electrode material is increased in order to increase the capacity of the lithium ion secondary battery, the graphite-based carbonaceous material has a theoretical limit of a discharge capacity of 372 mAh / g. Approaching the limit. On the other hand, the non-graphite-based carbonaceous material has a drawback that although the discharge capacity is large, the irreversible capacity is large and a large loss occurs at the stage of battery design.

また、炭素質材料の代替となり得る大容量の負極材料も提案されており、炭素質材料より高容量になり得る負極材料として、ある種の金属がリチウムと電気化学的に合金化して可逆的に生成および分解する材料を使用することが研究されている。例えば、Li−Al合金やSi合金の負極材料が報告されているが、これらの合金は充放電に伴って膨張および収縮するため、充放電サイクル特性が極めて悪いという問題がある。   In addition, a large-capacity negative electrode material that can be used as a substitute for a carbonaceous material has also been proposed, and as a negative electrode material that can have a higher capacity than a carbonaceous material, a certain metal is electrochemically alloyed with lithium and reversibly formed. The use of materials that generate and decompose has been studied. For example, although negative electrode materials such as Li—Al alloys and Si alloys have been reported, these alloys expand and contract with charge / discharge, and thus have a problem that charge / discharge cycle characteristics are extremely poor.

この問題を解決するために、SnをCo、Fe、Ni、V、Cu、Crなどの様々な元素と組み合わせた負極材料を得る方法が提案されている。例えば、Sn化合物と遷移金属化合物と錯化剤を含有する混合液と還元剤とを混合した後に還元剤を酸化してSn合金を合成することによって、二次電池の負極材としてSn合金粉末を得る方法(例えば、特許文献1参照)、Snを含む金属原料を加熱溶融して得られた溶融金属をストリップキャスティング法(ロール急冷法)、ガスアトマイズ法、水アトマイズ法、回転電極法などの急冷凝固法により処理した材料を必要に応じて粉砕処理することによって負極材料粉末を得る方法(例えば、特許文献2参照)、Sn粉末とCo粉末の混合粉末をアルゴンガス中においてボールミルで25時間以上処理した後に分級することによって、合金化された75μm以下の金属材料を得る方法(例えば、特許文献3参照)、Snを含む金属原料を加熱溶融して得られた溶融金属をメルトスピニング法により薄片として熱処理した後にカップミルで粉砕することによって、平均粒径15μmの粉末を得る方法(例えば、特許文献4参照)、Snを含む金属原料をアルゴンガス中においてポットミルで1週間処理することによって、平均粒径0.5〜2.3μmの粉末を得る方法(例えば、特許文献5参照)が提案されている。   In order to solve this problem, a method of obtaining a negative electrode material in which Sn is combined with various elements such as Co, Fe, Ni, V, Cu, and Cr has been proposed. For example, by mixing a Sn compound, a transition metal compound, a mixed solution containing a complexing agent and a reducing agent, and then oxidizing the reducing agent to synthesize an Sn alloy, Sn alloy powder can be used as a negative electrode material for a secondary battery. A method of obtaining (for example, refer to Patent Document 1), rapid solidification such as strip casting method (roll quench method), gas atomization method, water atomization method, rotating electrode method, etc. A method of obtaining a negative electrode material powder by pulverizing a material treated by the method as necessary (see, for example, Patent Document 2), a mixed powder of Sn powder and Co powder was treated in a ball mill for 25 hours or more in argon gas A method for obtaining an alloyed metal material of 75 μm or less by classification (for example, see Patent Document 3), adding a metal raw material containing Sn. The molten metal obtained by melting is heat treated as a flake by the melt spinning method and then pulverized by a cup mill to obtain a powder having an average particle size of 15 μm (see, for example, Patent Document 4). There has been proposed a method for obtaining a powder having an average particle size of 0.5 to 2.3 μm by treating with a pot mill for 1 week in a gas (see, for example, Patent Document 5).

特開2001−332254号公報(段落番号0013、0017)JP 2001-332254 A (paragraph numbers 0013 and 0017) 特開2006−236835号公報(段落番号0010、0035)JP 2006-236835 A (paragraph numbers 0010 and 0035) 特開2001−143761号公報(段落番号0044)JP 2001-143761 A (paragraph number 0044) 特開2004−111202号公報(段落番号0050)JP 2004-111202 A (paragraph number 0050) 特開2010−161078号公報(段落番号0029)JP 2010-161078 A (paragraph number 0029)

しかし、特許文献1の方法では、反応のために多くの槽を設ける必要があり、それらの槽内を不活性ガス雰囲気にして反応を行う必要がある。また、金属原料の他に錯化剤や還元剤も必要になるため、製造コストが高くなり、生産性が悪いという問題がある。また、特許文献2および4の方法では、金属を溶融して粉末を得るまでの各工程を不活性ガス雰囲気下で行って酸化を抑制する必要があり、不活性ガス雰囲気に維持できる溶融設備やアトマイズ設備などが必要になり、設備コストが高くなるという問題がある。また、特許文献3および5の方法では、ミルを用いて機械的に合金化するので、処理時間が長くなり、生産性が悪いという問題がある。   However, in the method of Patent Document 1, it is necessary to provide many tanks for the reaction, and it is necessary to carry out the reaction in an inert gas atmosphere in the tanks. Further, since a complexing agent and a reducing agent are required in addition to the metal raw material, there is a problem that the manufacturing cost is increased and the productivity is poor. In the methods of Patent Documents 2 and 4, it is necessary to suppress oxidation by performing each process from melting metal to obtaining a powder in an inert gas atmosphere. Atomizing equipment is required, and there is a problem that equipment costs increase. Further, the methods of Patent Documents 3 and 5 have a problem that the processing time becomes long and the productivity is poor because the alloy is mechanically alloyed using a mill.

また、二次電池用電極材は、平均粒径が小さい程、比表面積が増加して、電池反応の効率を向上させることができるため、平均粒径が小さい二次電池用電極材が望まれている。   Moreover, since the specific surface area of the electrode material for a secondary battery increases as the average particle size decreases, and the efficiency of the battery reaction can be improved, a secondary battery electrode material with a small average particle size is desired. ing.

したがって、本発明は、このような従来の問題点に鑑み、高容量で充放電サイクル特性が良好で且つ平均粒径が小さい二次電池用電極材およびその二次電池用電極を低コストで且つ高い生産性で製造することができる方法を提供することを目的とする。   Accordingly, in view of such conventional problems, the present invention provides a secondary battery electrode material having a high capacity, good charge / discharge cycle characteristics and a small average particle size, and the secondary battery electrode at low cost. It aims at providing the method which can be manufactured with high productivity.

本発明者らは、上記課題を解決するために鋭意研究した結果、Snおよび遷移金属が溶解した溶液とアルカリ溶液とを混合して、Snと遷移金属の水酸化物粒子を生成させ、得られた水酸化物粒子を乾燥した後、還元性ガス雰囲気下で加熱することにより、高容量で充放電サイクル特性が良好で且つ平均粒径が小さい二次電池用電極材を低コストで且つ高い生産性で製造することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention mixed a solution in which Sn and transition metal are dissolved with an alkali solution to produce hydroxide particles of Sn and transition metal. After drying the hydroxide particles, they are heated in a reducing gas atmosphere to produce a secondary battery electrode material with high capacity, good charge / discharge cycle characteristics and a small average particle size at low cost and high production. The present invention has been completed.

すなわち、本発明による二次電池用電極材の製造方法は、Snおよび遷移金属が溶解した溶液とアルカリ溶液とを混合して、Snと遷移金属の水酸化物粒子を生成させ、得られた水酸化物粒子を乾燥した後、還元性ガス雰囲気下で加熱することを特徴とする。   That is, in the method for producing an electrode material for a secondary battery according to the present invention, a solution in which Sn and transition metal are dissolved and an alkali solution are mixed to produce hydroxide particles of Sn and transition metal, and water obtained The oxide particles are dried and then heated in a reducing gas atmosphere.

この二次電池用電極材の製造方法において、Snおよび遷移金属が溶解した溶液が、Sn塩と、Co、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される少なくとも1種以上の遷移金属の塩とを溶媒に溶解した溶液であるのが好ましい。また、加熱の温度が210〜600℃であるのが好ましい。   In this method of manufacturing a secondary battery electrode material, the solution in which Sn and the transition metal are dissolved is at least one selected from the group consisting of Sn salt and Co, Ni, Fe, Cu, Cr, In, Ag, and Ti. A solution prepared by dissolving a salt of a transition metal or more in a solvent is preferable. Moreover, it is preferable that the temperature of a heating is 210-600 degreeC.

また、本発明による二次電池用電極材は、Snと、Co、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される少なくとも1種以上の遷移金属元素との金属粉末からなり、平均粒径が10〜500nmであることを特徴とする。   The electrode material for a secondary battery according to the present invention is a metal powder of Sn and at least one transition metal element selected from the group consisting of Co, Ni, Fe, Cu, Cr, In, Ag and Ti. The average particle size is 10 to 500 nm.

この二次電池用電極材において、金属粉末が、SnAx(AはCo、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される少なくとも1種以上の遷移金属元素であり、xは0.2〜3.0)の組成を有するSn合金粉末であるのが好ましい。また、二次電池用電極材の結晶子径が50nm以下であるのが好ましく、酸素濃度が0.6質量%以下であるのが好ましい。また、二次電池用電極材の平均粒径が300nm以下であるのが好ましく、200nm以下であるのがさらに好ましく、100nmより小さいのが最も好ましい。   In this secondary battery electrode material, the metal powder is SnAx (A is at least one transition metal element selected from the group consisting of Co, Ni, Fe, Cu, Cr, In, Ag and Ti, x is preferably an Sn alloy powder having a composition of 0.2 to 3.0). Moreover, it is preferable that the crystallite diameter of the electrode material for secondary batteries is 50 nm or less, and it is preferable that oxygen concentration is 0.6 mass% or less. The average particle diameter of the secondary battery electrode material is preferably 300 nm or less, more preferably 200 nm or less, and most preferably less than 100 nm.

本発明によれば、高容量で充放電サイクル特性が良好で且つ平均粒径が小さい二次電池用電極材を低コストで且つ高い生産性で製造することができる。   According to the present invention, an electrode material for a secondary battery having a high capacity, good charge / discharge cycle characteristics and a small average particle size can be produced at low cost and high productivity.

実施例および比較例で得られたCoSn合金粉末のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the CoSn alloy powder obtained by the Example and the comparative example.

本発明による二次電池用電極材の製造方法の実施の形態では、Snおよび遷移金属が溶解した溶液とアルカリ溶液とを混合して、Snと遷移金属の水酸化物粒子を生成させ、得られた水酸化物粒子を乾燥した後、還元性ガス雰囲気下で加熱する。   In the embodiment of the method for producing a secondary battery electrode material according to the present invention, a solution in which Sn and transition metal are dissolved and an alkali solution are mixed to produce hydroxide particles of Sn and transition metal. After drying the hydroxide particles, they are heated in a reducing gas atmosphere.

Snおよび遷移金属が溶解した溶液は、Sn塩と、Co、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される少なくとも1種以上の遷移金属の塩とを溶媒に溶解させることによって得られる。Sn塩の量と遷移金属の塩の量の比率は、製造するSn合金粉末の組成に合わせて調整すればよい。溶媒は、コスト面や環境面を考慮して水を使用するのが好ましい。溶液中のSnと遷移金属の合計の金属濃度は、0.01〜10モル/Lであるのが好ましい。金属濃度が10モル/Lを超えると、生産性は優れているが、合金濃度が高過ぎて、微細な前駆体を形成し難いという不具合が生じるおそれがあり、金属濃度が0.01モル/L未満になると、生産性が悪くなる。   The solution in which Sn and transition metal are dissolved dissolves Sn salt and at least one transition metal salt selected from the group consisting of Co, Ni, Fe, Cu, Cr, In, Ag and Ti in a solvent. To obtain. The ratio between the amount of Sn salt and the amount of transition metal salt may be adjusted according to the composition of the Sn alloy powder to be produced. It is preferable to use water as the solvent in consideration of cost and environment. The total metal concentration of Sn and transition metal in the solution is preferably 0.01 to 10 mol / L. When the metal concentration exceeds 10 mol / L, the productivity is excellent, but the alloy concentration is too high, and there is a risk that it is difficult to form a fine precursor, and the metal concentration is 0.01 mol / L. When it is less than L, the productivity is deteriorated.

アルカリ溶液は、NaOHやKOHなどの水酸化アルカリ、炭酸ナトリウムなどの炭酸塩、アンモニアなどを溶媒に溶解させることによって得られる。溶媒は、コスト面や環境面を考慮して水を使用するのが好ましい。   The alkaline solution can be obtained by dissolving an alkali hydroxide such as NaOH or KOH, a carbonate such as sodium carbonate, ammonia or the like in a solvent. It is preferable to use water as the solvent in consideration of cost and environment.

Snおよび遷移金属が溶解した溶液とアルカリ溶液とを混合することにより、Snと遷移金属の水酸化物粒子を含むスラリーが得られる。この混合直後の溶液の温度を10〜60℃にするのが好ましい。この混合直後の溶液の温度が60℃を超えると、前駆体の粒子径が大きくなり過ぎて、還元後の合金粒子や結晶子径も大きくなるという不具合が生じる場合がある。また、混合直後の溶液の温度が10℃より低いと、反応温度を制御するための冷却装置が必要になり、生産性の点から好ましくない。また、混合時および混合後に溶液を攪拌するのが好ましい。   By mixing a solution in which Sn and transition metal are dissolved and an alkali solution, a slurry containing Sn and transition metal hydroxide particles is obtained. The temperature of the solution immediately after mixing is preferably 10 to 60 ° C. If the temperature of the solution immediately after mixing exceeds 60 ° C., the particle diameter of the precursor becomes too large, and there may be a problem that the alloy particles and crystallite diameter after reduction also increase. Moreover, when the temperature of the solution immediately after mixing is lower than 10 ° C., a cooling device for controlling the reaction temperature is required, which is not preferable from the viewpoint of productivity. Moreover, it is preferable to stir the solution during and after mixing.

このようにして得られたSnと遷移金属の水酸化物粒子を含むスラリーを固液分離することにより、Snと遷移金属の水酸化物のケーキを得ることができる。この固液分離は、ブフナー漏斗などを用いたろ過や、遠心分離などの公知の方法によって行うことができる。また、得られたケーキを純水などで洗浄してもよい。その後、ケーキを乾燥させてSnと遷移金属の水酸化物の粉末を得る。この乾燥は、加熱乾燥や真空乾燥などの公知の方法によって行うことができる。   A slurry of Sn and transition metal hydroxide can be obtained by solid-liquid separation of the slurry containing Sn and transition metal hydroxide particles thus obtained. This solid-liquid separation can be performed by a known method such as filtration using a Buchner funnel or centrifugal separation. The obtained cake may be washed with pure water or the like. Thereafter, the cake is dried to obtain a powder of Sn and transition metal hydroxide. This drying can be performed by a known method such as heat drying or vacuum drying.

このようにして得られたSnと遷移金属の水酸化物の粉末を還元性ガス雰囲気下において加熱することにより、Sn合金粉末を得ることができる。還元性ガスとしては、水素、窒素と水素の混合ガス、一酸化炭素などを使用することができる。特に、還元力と安全性を考慮して水素ガスを使用するのが好ましい。   The Sn alloy powder can be obtained by heating the thus obtained powder of Sn and transition metal hydroxide in a reducing gas atmosphere. As the reducing gas, hydrogen, a mixed gas of nitrogen and hydrogen, carbon monoxide, or the like can be used. In particular, it is preferable to use hydrogen gas in consideration of reducing power and safety.

加熱温度は210〜600℃にするのが好ましい。加熱温度が210℃より低いと、水酸化物の粉末が十分に還元されないおそれがあり、600℃を超えると、粒子成長が進んで粒子径や結晶子径が大きくなるため、充放電サイクル特性が低下するおそれがある。平均粒径が小さいSn合金粉末を得るためには、加熱温度を210〜500℃にするのが好ましく、250〜300℃にするのがさらに好ましい。また、加熱時間は0.5時間以上にするのが好ましい。加熱時間が0.5時間より短いと、十分に還元せずに目的とする生成相が得られないおそれがある。   The heating temperature is preferably 210 to 600 ° C. If the heating temperature is lower than 210 ° C., the hydroxide powder may not be sufficiently reduced. If the heating temperature exceeds 600 ° C., particle growth proceeds and the particle size and crystallite size increase. May decrease. In order to obtain an Sn alloy powder having a small average particle size, the heating temperature is preferably 210 to 500 ° C, more preferably 250 to 300 ° C. The heating time is preferably 0.5 hours or longer. If the heating time is shorter than 0.5 hour, the target product phase may not be obtained without sufficient reduction.

上述した二次電池用電極材の製造方法の実施の形態によって、Snと、Co、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される少なくとも1種以上の遷移金属元素との金属粉末からなり、平均粒径が10〜500nm、結晶子径が50nm以下、酸素濃度が0.6質量%以下である二次電池用電極材(負極材)を製造することができる。   At least one or more transition metal elements selected from the group consisting of Sn and Co, Ni, Fe, Cu, Cr, In, Ag, and Ti according to the embodiment of the method for manufacturing the electrode material for a secondary battery described above. A secondary battery electrode material (negative electrode material) having an average particle diameter of 10 to 500 nm, a crystallite diameter of 50 nm or less, and an oxygen concentration of 0.6% by mass or less.

この二次電池用電極材(負極材)は、Liと合金化する元素であるSnと、Liと合金化し難いCo、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される少なくとも1種以上の遷移金属元素との金属粉末からなる。負極材を構成する金属元素として、Liと合金化する元素であるSnのみを用いた二次電池では、SnがLiと合金化する際に大きな体積変化を伴うので、充放電サイクル特性が悪いという問題があるが、Liと合金化し難い遷移金属元素をSnと共存させた金属材料を含有する負極材を用いた二次電池では、負極材としての体積変化が抑制されて、充放電サイクル特性の悪化を防止することができる。   The secondary battery electrode material (negative electrode material) is selected from the group consisting of Sn, which is an element alloyed with Li, and Co, Ni, Fe, Cu, Cr, In, Ag, and Ti, which are difficult to alloy with Li. It consists of a metal powder with at least one transition metal element. In a secondary battery using only Sn, which is an element alloyed with Li, as a metal element constituting the negative electrode material, a large volume change is caused when Sn is alloyed with Li, so that charge / discharge cycle characteristics are poor. There is a problem, but in a secondary battery using a negative electrode material containing a metal material in which a transition metal element difficult to alloy with Li coexists with Sn, volume change as the negative electrode material is suppressed, and charge / discharge cycle characteristics are reduced. Deterioration can be prevented.

Snと遷移金属元素との金属粉末は、SnAx(AはCo、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される少なくとも1種以上の遷移金属元素であり、xは0.2〜3.0)の組成を有するSn合金粉末であるのが好ましい。このSn合金粉末のxが0.2未満であると、Snの比率が大き過ぎて、充放電時の負極材の体積変化を十分に抑制することができずに、そのSn合金粉末を負極材として用いた電池の充放電サイクル特性が悪化する場合がある。一方、xが3.0を超えると、Snの比率が小さ過ぎて、そのSn合金粉末を負極材として用いた電池の容量が小さくなる場合がある。なお、xは、0.5〜1.5であるのがさらに好ましい。   The metal powder of Sn and the transition metal element is SnAx (A is at least one transition metal element selected from the group consisting of Co, Ni, Fe, Cu, Cr, In, Ag and Ti, and x is A Sn alloy powder having a composition of 0.2 to 3.0) is preferred. If the Sn alloy powder x is less than 0.2, the Sn ratio is too large, and the volume change of the negative electrode material during charging / discharging cannot be sufficiently suppressed. As a result, the charge / discharge cycle characteristics of the battery used may deteriorate. On the other hand, when x exceeds 3.0, the ratio of Sn is too small, and the capacity of a battery using the Sn alloy powder as a negative electrode material may be small. In addition, it is more preferable that x is 0.5 to 1.5.

Sn合金粉末において、遷移金属元素がCoを含むのが好ましい。Coを含むことにより、Liと合金化し難く且つ導電性が高い金属元素の負極材を得ることができる。なお、Sn合金粉末は、合金相を主体とするが、複数種類の合金相を含んでもよく、Snと遷移金属を単相で含んでもよい。   In the Sn alloy powder, the transition metal element preferably contains Co. By including Co, it is possible to obtain a negative electrode material of a metal element which is difficult to be alloyed with Li and has high conductivity. The Sn alloy powder mainly includes an alloy phase, but may include a plurality of types of alloy phases and may include Sn and a transition metal in a single phase.

Snと遷移金属元素との金属粉末(好ましくはSn合金粉末)の平均粒径は10〜500nm以下であるのが好ましい。平均粒径が500nmを超えると、Sn合金粉末を負極材として用いた場合の電池反応の効率が低くなる場合がある。一方、平均粒径が10nmより小さいと、取扱いの不便さや、電解質との副反応の発生などの不具合が生じるおそれがある。その金属粉末を負極材として用いた場合の電池反応の効率を考慮すると、平均粒径は300nm以下であるのが好ましく、200nm以下であるのがさらに好ましく、100nm以下であるのが最も好ましい。   The average particle size of the metal powder (preferably Sn alloy powder) of Sn and the transition metal element is preferably 10 to 500 nm or less. When the average particle size exceeds 500 nm, the efficiency of the battery reaction may be lowered when Sn alloy powder is used as the negative electrode material. On the other hand, when the average particle size is smaller than 10 nm, there is a risk that problems such as inconvenience in handling and occurrence of side reaction with the electrolyte may occur. Considering the efficiency of the battery reaction when the metal powder is used as the negative electrode material, the average particle size is preferably 300 nm or less, more preferably 200 nm or less, and most preferably 100 nm or less.

Snと遷移金属元素との金属粉末(好ましくはSn合金粉末)の結晶子径は50nm以下であるのが好ましい。この結晶子径は小さいほど好ましい。一方、結晶子径が50nmを超えると、充放電時の負極材の体積変化を十分に抑制することができずに、その金属粉末を負極材として用いた電池の充放電サイクル特性が悪化する場合がある。   The crystallite diameter of the metal powder (preferably Sn alloy powder) of Sn and the transition metal element is preferably 50 nm or less. The smaller the crystallite diameter, the better. On the other hand, when the crystallite diameter exceeds 50 nm, the volume change of the negative electrode material during charge / discharge cannot be sufficiently suppressed, and the charge / discharge cycle characteristics of the battery using the metal powder as the negative electrode material deteriorate. There is.

Snと遷移金属元素との金属粉末(好ましくはSn合金粉末)の酸素濃度(酸素含有量)は0.6質量%以下であるのが好ましい。この酸素濃度が高いと、その金属粉末を負極材としてリチウムイオン二次電池を製造した場合に、電池の初回充電時における不可逆容量が大きくなるなどの不具合が生じるおそれがある。   The oxygen concentration (oxygen content) of the metal powder (preferably Sn alloy powder) of Sn and the transition metal element is preferably 0.6% by mass or less. When this oxygen concentration is high, when a lithium ion secondary battery is manufactured using the metal powder as a negative electrode material, there is a risk that problems such as an increase in irreversible capacity during the initial charge of the battery may occur.

上述した金属粉末を用いて、公知の方法により、リチウムイオン二次電池用負極を製造することができる。例えば、上述した金属粉末に適当なバインダを混合し、必要に応じて導電性の向上のために適当な導電性粉末を混合する。この混合物にバインダが溶解する溶媒を加え、必要に応じて公知の攪拌機によって十分に攪拌してスラリー状にする。このスラリーをドクターブレードなどによって圧延銅箔などの電極基板(集電体)に塗布して乾燥した後、ロール圧延などによって圧密化して、非水電解質二次電池用負極を製造することができる。   The negative electrode for lithium ion secondary batteries can be manufactured by a well-known method using the metal powder mentioned above. For example, an appropriate binder is mixed with the above-described metal powder, and an appropriate conductive powder is mixed as necessary to improve conductivity. A solvent in which the binder is dissolved is added to this mixture, and if necessary, the mixture is sufficiently stirred with a known stirrer to form a slurry. The slurry is applied to an electrode substrate (current collector) such as a rolled copper foil with a doctor blade or the like, dried, and then consolidated by roll rolling or the like to produce a negative electrode for a non-aqueous electrolyte secondary battery.

このようにして製造された負極を用いてリチウムイオン二次電池を作製するのが好ましいが、他の非水電解質二次電池を作製することもできる。なお、リチウムイオン二次電池は、基本構造として負極、正極、セパレータおよび非水系の電解質を含んでいるが、上記のように製造された負極を用いるとともに、公知の正極、セパレータおよび電解質を用いて、リチウムイオン二次電池を作製することができる。   Although it is preferable to produce a lithium ion secondary battery using the negative electrode thus produced, other nonaqueous electrolyte secondary batteries can also be produced. The lithium ion secondary battery includes a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte as a basic structure, but uses a negative electrode manufactured as described above and a known positive electrode, separator, and electrolyte. A lithium ion secondary battery can be manufactured.

以下、本発明による二次電池用電極材およびその製造方法の実施例について詳細に説明する。   Examples of the secondary battery electrode material and the method for manufacturing the same according to the present invention will be described below in detail.

[実施例1]
硫酸コバルト・7水和物(CoSO・7HO)17.57gと塩化スズ(II)(SnCl・2HO)14.10gを純水400gに溶解してCoとSnを含む水溶液を作製した。また、48.5質量%の水酸化ナトリウム水溶液20.6gを純水200gに添加して水酸化ナトリウム水溶液を作製した。この水酸化ナトリウム水溶液を加熱して40℃に保持し、攪拌した状態で、上記のCoとSnを含む水溶液を40℃に加熱して水酸化ナトリウム水溶液に添加し、CoとSnの水酸化物を含むスラリーを得た。このスラリーを濾過し、純水で洗浄して、CoとSnの水酸化物のケーキを得た。このCoとSnの水酸化物のケーキを大気中において140℃で3時間乾燥した後、水素雰囲気中において300℃で3時間還元して、CoSn合金粉末を得た。
[Example 1]
An aqueous solution containing Co and Sn by dissolving 17.57 g of cobalt sulfate heptahydrate (CoSO 4 .7H 2 O) and 14.10 g of tin (II) chloride (SnCl 2 .2H 2 O) in 400 g of pure water. Produced. Moreover, 20.6 g of 48.5 mass% sodium hydroxide aqueous solution was added to 200 g of pure water, and sodium hydroxide aqueous solution was produced. The aqueous sodium hydroxide solution is heated to 40 ° C. and stirred, and the aqueous solution containing Co and Sn is heated to 40 ° C. and added to the aqueous sodium hydroxide solution to obtain a hydroxide of Co and Sn. A slurry containing was obtained. The slurry was filtered and washed with pure water to obtain a Co and Sn hydroxide cake. The Co and Sn hydroxide cake was dried in the atmosphere at 140 ° C. for 3 hours and then reduced in a hydrogen atmosphere at 300 ° C. for 3 hours to obtain a CoSn alloy powder.

得られたCoSn合金粉末について、X線回折装置(島津製作所製のXRD−6100)によりCu線源(40kV/30mA)で20〜70°/2θの範囲を測定して、X線回折(XRD)の評価を行った。本実施例で得られたCoSn合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの単一相であることが確認された。   About the obtained CoSn alloy powder, the range of 20 to 70 ° / 2θ was measured with a Cu radiation source (40 kV / 30 mA) using an X-ray diffractometer (XRD-6100 manufactured by Shimadzu Corporation), and X-ray diffraction (XRD) Was evaluated. An X-ray diffraction pattern of the CoSn alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was a single phase of CoSn.

また、X線回折パターンから得られたCoSn相の(2,0,1)面の半価幅βを用いて、Scherrerの式D=(K・λ)/(β・cosθ)から結晶子径(Dx)を算出したところ、結晶子径(Dx)は24.1nmであった。なお、Scherrerの式において、Dは結晶子径(nm)、λは測定X線波長(nm)、βは結晶子による回折幅の広がり、θは回折角のブラッグ角、KはScherrer定数を示し、この式中の測定X線波長λを1.54nm、Scherrer定数Kを0.9とした。   Further, by using the half width β of the (2, 0, 1) plane of the CoSn phase obtained from the X-ray diffraction pattern, the crystallite diameter is calculated from Scherrer's equation D = (K · λ) / (β · cos θ). When (Dx) was calculated, the crystallite diameter (Dx) was 24.1 nm. In the Scherrer equation, D is the crystallite diameter (nm), λ is the measured X-ray wavelength (nm), β is the diffraction width spread by the crystallite, θ is the Bragg angle of the diffraction angle, and K is the Scherrer constant. In this equation, the measurement X-ray wavelength λ is 1.54 nm, and the Scherrer constant K is 0.9.

また、本実施例で得られたCoSn合金粉末の50,000倍の走査電子顕微鏡写真(SEM像)からCoSn粒子50個の各々の長軸径を測定し、その平均値をCoSn合金粉末の平均粒径とした。その結果、得られたCoSn合金粉末の平均粒径は116.9nmであった。なお、「長軸径」とは、粒子像を2本の平行線で挟んだときの最小間隔を短軸径として、この短軸径に直交する2本の平行線で粒子像を挟んだときの間隔をいう。   Further, the major axis diameter of each of the 50 CoSn particles was measured from a 50,000 times scanning electron micrograph (SEM image) of the CoSn alloy powder obtained in this example, and the average value was calculated as the average of the CoSn alloy powder. The particle size was taken. As a result, the average particle size of the obtained CoSn alloy powder was 116.9 nm. The “major axis diameter” means that the minimum distance when a particle image is sandwiched between two parallel lines is the minor axis diameter, and the particle image is sandwiched between two parallel lines orthogonal to the minor axis diameter. The interval.

また、本実施例で得られたCoSn合金粉末を不活性ガス雰囲気中で密封容器に封入し、酸素・窒素同時分析装置(LECO社製のTC−436)を用いて、CoSn合金粉末の酸素濃度を測定したところ、0.52質量%であった。   In addition, the CoSn alloy powder obtained in this example was sealed in a sealed container in an inert gas atmosphere, and the oxygen concentration of the CoSn alloy powder was measured using a simultaneous oxygen / nitrogen analyzer (TC-436 manufactured by LECO). Was 0.52% by mass.

これらの結果を表1に示す。   These results are shown in Table 1.

Figure 0005718734
Figure 0005718734

[実施例2]
還元温度を400℃にした以外は、実施例1と同様の方法により、CoSn合金粉末を製造し、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出および酸素濃度の測定を行った。本実施例で得られたCoSn合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの単一相であることが確認された。また、結晶子径は31.6nm、平均粒径は162.1nm、酸素濃度は0.21質量%であった。これらの結果を表1に示す。
[Example 2]
A CoSn alloy powder was produced in the same manner as in Example 1 except that the reduction temperature was set to 400 ° C., and evaluation by X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, and measurement of oxygen concentration were performed. went. An X-ray diffraction pattern of the CoSn alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was a single phase of CoSn. The crystallite size was 31.6 nm, the average particle size was 162.1 nm, and the oxygen concentration was 0.21% by mass. These results are shown in Table 1.

[実施例3]
還元温度を500℃にした以外は、実施例1と同様の方法により、CoSn合金粉末を製造し、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出および酸素濃度の測定を行った。本実施例で得られたCoSn合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの単一相であることが確認された。また、結晶子径は48.6nm、平均粒径は262.5nm、酸素濃度は0.33質量%であった。これらの結果を表1に示す。
[Example 3]
A CoSn alloy powder was produced in the same manner as in Example 1 except that the reduction temperature was changed to 500 ° C., and evaluation by X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, and measurement of oxygen concentration were performed. went. An X-ray diffraction pattern of the CoSn alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was a single phase of CoSn. The crystallite size was 48.6 nm, the average particle size was 262.5 nm, and the oxygen concentration was 0.33 mass%. These results are shown in Table 1.

[実施例4]
硫酸コバルト・7水和物(CoSO・7HO)28.11gと塩化スズ(IV)(SnCl・5HO)35.06gを純水400gに溶解してCoとSnを含む水溶液を作製した。また、48.5質量%の水酸化ナトリウム水溶液54.43gを純水200gに添加して水酸化ナトリウム水溶液を作製した。この水酸化ナトリウム水溶液を加熱して40℃に保持し、攪拌した状態で、上記のCoとSnを含む水溶液を40℃に加熱して添加し、CoとSnの水酸化物を含むスラリーを得た。このスラリーを濾過し、純水で洗浄して、CoとSnの水酸化物(SnCo(OH))のケーキを得た。このCoとSnの水酸化物のケーキを大気中において140℃で3時間乾燥した後、水素雰囲気中において285℃で4時間還元して、CoSn合金粉末を得た。
[Example 4]
An aqueous solution containing Co and Sn by dissolving 28.11 g of cobalt sulfate heptahydrate (CoSO 4 · 7H 2 O) and 35.06 g of tin (IV) chloride (SnCl 4 · 5H 2 O) in 400 g of pure water. Produced. Moreover, 54.43g of 48.5 mass% sodium hydroxide aqueous solution was added to 200g of pure water, and sodium hydroxide aqueous solution was produced. The aqueous sodium hydroxide solution is heated to 40 ° C. and stirred, and the aqueous solution containing Co and Sn is heated to 40 ° C. and added to obtain a slurry containing Co and Sn hydroxides. It was. This slurry was filtered and washed with pure water to obtain a cake of Co and Sn hydroxide (SnCo (OH) 6 ). The Co and Sn hydroxide cake was dried in the atmosphere at 140 ° C. for 3 hours and then reduced in a hydrogen atmosphere at 285 ° C. for 4 hours to obtain a CoSn alloy powder.

得られたCoSn合金粉末について、実施例1と同様の方法により、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出および酸素濃度の測定を行った。本実施例で得られたCoSn合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの単一相であることが確認された。また、結晶子径は20.1nm、平均粒径は98.2nm、酸素濃度は0.11質量%であった。これらの結果を表1に示す。   With respect to the obtained CoSn alloy powder, evaluation by an X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, and measurement of oxygen concentration were performed in the same manner as in Example 1. An X-ray diffraction pattern of the CoSn alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was a single phase of CoSn. The crystallite size was 20.1 nm, the average particle size was 98.2 nm, and the oxygen concentration was 0.11% by mass. These results are shown in Table 1.

[実施例5]
還元温度を275℃にした以外は、実施例4と同様の方法により、CoSn合金粉末を製造し、実施例1と同様の方法により、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出および酸素濃度の測定を行った。本実施例で得られたCoSn合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの単一相であることが確認された。また、結晶子径は18.3nm、平均粒径は95.1nm、酸素濃度は0.18質量%であった。これらの結果を表1に示す。
[Example 5]
A CoSn alloy powder was produced by the same method as in Example 4 except that the reduction temperature was changed to 275 ° C., and evaluated by an X-ray diffraction pattern, calculation of crystallite diameter, average grain size by the same method as in Example 1. The diameter was calculated and the oxygen concentration was measured. An X-ray diffraction pattern of the CoSn alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was a single phase of CoSn. The crystallite diameter was 18.3 nm, the average particle diameter was 95.1 nm, and the oxygen concentration was 0.18% by mass. These results are shown in Table 1.

[実施例6]
硫酸コバルト・7水和物(CoSO・7HO)28.11gと塩化スズ(IV)(SnCl・5HO)35.06gを純水400gに溶解してCoとSnを含む水溶液を作製した。また、48.5質量%の水酸化ナトリウム水溶液54.43gを純水200gに添加して水酸化ナトリウム水溶液を作製した。上記のCoとSnを含む水溶液を加熱して40℃に保持し、攪拌した状態で、上記の水酸化ナトリウム水溶液を40℃に加熱してCoとSnを含む水溶液に添加し、CoとSnの水酸化物を含むスラリーを得た。このスラリーを濾過し、CoとSnの水酸化物(SnCo(OH))のケーキを得た。このCoとSnの水酸化物のケーキを大気中において140℃で3時間乾燥した後、水素雰囲気中において300℃で3時間還元して、CoSn合金粉末を得た。なお、乾燥した後のCoとSnの水酸化物について、実施例1と同様の方法により、X線回折パターンによる評価を行ったところ、アモルファス相になっていた。また、乾燥した後のCoとSnの水酸化物を酸に溶解して、ICP発光分光分析法による測定結果からCoとSnのモル比を計算したところ、モル比(Co:Sn)は1.0:1.0であった。
[Example 6]
An aqueous solution containing Co and Sn by dissolving 28.11 g of cobalt sulfate heptahydrate (CoSO 4 · 7H 2 O) and 35.06 g of tin (IV) chloride (SnCl 4 · 5H 2 O) in 400 g of pure water. Produced. Moreover, 54.43g of 48.5 mass% sodium hydroxide aqueous solution was added to 200g of pure water, and sodium hydroxide aqueous solution was produced. The aqueous solution containing Co and Sn is heated to 40 ° C. and stirred, and the aqueous sodium hydroxide solution is heated to 40 ° C. and added to the aqueous solution containing Co and Sn. A slurry containing hydroxide was obtained. The slurry was filtered to obtain a cake of Co and Sn hydroxide (SnCo (OH) 6 ). The Co and Sn hydroxide cake was dried in the atmosphere at 140 ° C. for 3 hours and then reduced in a hydrogen atmosphere at 300 ° C. for 3 hours to obtain a CoSn alloy powder. In addition, about the hydroxide of Co and Sn after drying, when it evaluated by the X-ray-diffraction pattern by the method similar to Example 1, it became an amorphous phase. Further, the Co and Sn hydroxides after drying were dissolved in an acid, and the molar ratio of Co and Sn was calculated from the measurement result by ICP emission spectroscopic analysis. The molar ratio (Co: Sn) was 1. 0: 1.0.

得られたCoSn合金粉末について、実施例1と同様の方法により、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出および酸素濃度の測定を行った。本実施例で得られたCoSn合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSnの単一相であることが確認された。また、結晶子径は22.6nm、平均粒径は110.1nm、酸素濃度は0.25質量%であった。これらの結果を表1に示す。   With respect to the obtained CoSn alloy powder, evaluation by an X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, and measurement of oxygen concentration were performed in the same manner as in Example 1. An X-ray diffraction pattern of the CoSn alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn alloy powder obtained in this example was a single phase of CoSn. The crystallite size was 22.6 nm, the average particle size was 110.1 nm, and the oxygen concentration was 0.25% by mass. These results are shown in Table 1.

[実施例7]
硫酸コバルト・7水和物(CoSO・7HO)18.78gと塩化スズ(IV)(SnCl・5HO)46.84gを純水400gに溶解してCoとSnを含む水溶液を作製した。また、48.7質量%の水酸化ナトリウム水溶液60.6gを純水200gに添加して水酸化ナトリウム水溶液を作製した。この水酸化ナトリウム水溶液を加熱して40℃に保持し、攪拌した状態で、上記のCoとSnを含む水溶液を40℃に加熱して水酸化ナトリウム水溶液に添加し、CoとSnの水酸化物を含むスラリーを得た。このスラリーを濾過し、純水で洗浄して、CoとSnの水酸化物のケーキを得た。このCoとSnの水酸化物のケーキを大気中において140℃で3時間乾燥した後、水素雰囲気中において350℃で6時間還元して、CoSn合金粉末を得た。なお、乾燥した後のCoとSnの水酸化物を酸に溶解して、ICP発光分光分析法による測定結果からCoとSnのモル比を計算したところ、モル比(Co:Sn)は1.0:2.0であった。
[Example 7]
An aqueous solution containing Co and Sn by dissolving 18.78 g of cobalt sulfate heptahydrate (CoSO 4 · 7H 2 O) and 46.84 g of tin (IV) chloride (SnCl 4 · 5H 2 O) in 400 g of pure water. Produced. Moreover, 60.6 g of 48.7 mass% sodium hydroxide aqueous solution was added to 200 g of pure water, and sodium hydroxide aqueous solution was produced. The aqueous sodium hydroxide solution is heated to 40 ° C. and stirred, and the aqueous solution containing Co and Sn is heated to 40 ° C. and added to the aqueous sodium hydroxide solution to obtain a hydroxide of Co and Sn. A slurry containing was obtained. The slurry was filtered and washed with pure water to obtain a Co and Sn hydroxide cake. The Co and Sn hydroxide cake was dried in the atmosphere at 140 ° C. for 3 hours and then reduced in a hydrogen atmosphere at 350 ° C. for 6 hours to obtain a CoSn 2 alloy powder. In addition, when the hydroxide of Co and Sn after drying was dissolved in an acid and the molar ratio of Co and Sn was calculated from the measurement result by ICP emission spectroscopic analysis, the molar ratio (Co: Sn) was 1. 0: 2.0.

得られたCoSn合金粉末について、実施例1と同様の方法により、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出および酸素濃度の測定を行った。本実施例で得られたCoSn合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSn合金粉末は、CoSn相と僅かなCoSn相を有することが確認された。また、結晶子径は32.6nm、平均粒径は174.8nm、酸素濃度は0.60質量%であった。これらの結果を表1に示す。なお、本実施例では、結晶子径を算出する際に使用する半価幅βとして、CoSn相の(2,1,1)面の半価幅βを用いた。 For the obtained CoSn 2 alloy powder, evaluation by an X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, and measurement of oxygen concentration were performed in the same manner as in Example 1. An X-ray diffraction pattern of the CoSn 2 alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSn 2 alloy powder obtained in this example had a CoSn 2 phase and a slight CoSn phase. The crystallite diameter was 32.6 nm, the average particle diameter was 174.8 nm, and the oxygen concentration was 0.60 mass%. These results are shown in Table 1. In this example, the half width β of the (2,1,1) plane of the CoSn 2 phase was used as the half width β used when calculating the crystallite diameter.

[実施例8]
硫酸コバルト・7水和物(CoSO・7HO)28.11gと塩化スズ(IV)(SnCl・5HO)35.06gを純水400gに溶解してCoとSnを含む水溶液を作製した。また、48.7質量%の水酸化ナトリウム水溶液54.22gを純水200gに水酸化ナトリウム水溶液を作製した。上記のCoとSnを含む水溶液を加熱して40℃に保持し、攪拌した状態で、上記の水酸化ナトリウム水溶液を40℃に加熱してCoとSnを含む水溶液に添加し、CoとSnの水酸化物を含むスラリーを得た。また、硫酸銅・5水和物(CuSO・5HO)3.49gを純水60gに溶解して硫酸銅水溶液を作製した。この硫酸銅水溶液を40℃に加熱して上記のCoとSnの水酸化物を含むスラリーに添加して攪拌し、CoとSnとCuの水酸化物を含むスラリーを得た。このCoとSnとCuの水酸化物を含むスラリーを濾過し、純水で洗浄して、CoとSnとCuの水酸化物のケーキを得た。このCoとSnとCuの水酸化物のケーキを大気中において140℃で3時間乾燥した後、水素雰囲気中において300℃で6時間還元して、CoSnCu0.14合金粉末を得た。なお、乾燥した後のCoとSnとCuの水酸化物を酸に溶解して、ICP発光分光分析法による測定結果からCoとSnとCuのモル比を計算したところ、モル比(Co:Sn:Cu)は1.0:1.0:0.14であった。
[Example 8]
An aqueous solution containing Co and Sn by dissolving 28.11 g of cobalt sulfate heptahydrate (CoSO 4 · 7H 2 O) and 35.06 g of tin (IV) chloride (SnCl 4 · 5H 2 O) in 400 g of pure water. Produced. Further, a sodium hydroxide aqueous solution was prepared by using 54.22 g of a 48.7 mass% sodium hydroxide aqueous solution and 200 g of pure water. The aqueous solution containing Co and Sn is heated to 40 ° C. and stirred, and the aqueous sodium hydroxide solution is heated to 40 ° C. and added to the aqueous solution containing Co and Sn. A slurry containing hydroxide was obtained. Moreover, 3.49 g of copper sulfate pentahydrate (CuSO 4 .5H 2 O) was dissolved in 60 g of pure water to prepare a copper sulfate aqueous solution. This aqueous copper sulfate solution was heated to 40 ° C., added to the slurry containing Co and Sn hydroxides, and stirred to obtain a slurry containing Co, Sn and Cu hydroxides. The slurry containing Co, Sn and Cu hydroxide was filtered and washed with pure water to obtain a Co, Sn and Cu hydroxide cake. The Co, Sn, and Cu hydroxide cake was dried in the atmosphere at 140 ° C. for 3 hours and then reduced in a hydrogen atmosphere at 300 ° C. for 6 hours to obtain a CoSnCu 0.14 alloy powder. In addition, the hydroxide of Co, Sn, and Cu after drying was dissolved in an acid, and the molar ratio of Co, Sn, and Cu was calculated from the measurement result by ICP emission spectroscopic analysis. The molar ratio (Co: Sn : Cu) was 1.0: 1.0: 0.14.

得られたCoSnCu0.14合金粉末について、実施例1と同様の方法により、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出および酸素濃度の測定を行った。本実施例で得られたCoSnCu0.14合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSnCu0.14合金粉末は、CoSn相とSnCu相を有することが確認された。また、結晶子径は31.3nm、平均粒径は99.5nm、酸素濃度は0.22質量%であった。これらの結果を表1に示す。 With respect to the obtained CoSnCu 0.14 alloy powder, evaluation by an X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, and measurement of oxygen concentration were performed in the same manner as in Example 1. The X-ray diffraction pattern of the CoSnCu 0.14 alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSnCu 0.14 alloy powder obtained in this example had a CoSn phase and a Sn 5 Cu 6 phase. The crystallite size was 31.3 nm, the average particle size was 99.5 nm, and the oxygen concentration was 0.22% by mass. These results are shown in Table 1.

[実施例9]
還元温度を350℃にし、還元時間を3時間にした以外は、実施例8と同様の方法により、CoSnCu0.14合金粉末を製造し、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出および酸素濃度の測定を行った。なお、乾燥した後のCoとSnとCuの水酸化物を酸に溶解して、ICP発光分光分析法による測定結果からCoとSnとCuのモル比を計算したところ、モル比(Co:Sn:Cu)は1.0:1.0:0.14であった。本実施例で得られたCoSnCu0.14合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSnCu0.14合金粉末は、CoSn相とSnCu相を有することが確認された。また、結晶子径は19.2nm、平均粒径は92.9nm、酸素濃度は0.43質量%であった。これらの結果を表1に示す。
[Example 9]
A CoSnCu 0.14 alloy powder was produced by the same method as in Example 8 except that the reduction temperature was 350 ° C. and the reduction time was 3 hours, evaluation by X-ray diffraction pattern, calculation of crystallite diameter, average The particle size was calculated and the oxygen concentration was measured. In addition, the hydroxide of Co, Sn, and Cu after drying was dissolved in an acid, and the molar ratio of Co, Sn, and Cu was calculated from the measurement result by ICP emission spectroscopic analysis. The molar ratio (Co: Sn : Cu) was 1.0: 1.0: 0.14. The X-ray diffraction pattern of the CoSnCu 0.14 alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSnCu 0.14 alloy powder obtained in this example had a CoSn phase and a Sn 5 Cu 6 phase. The crystallite size was 19.2 nm, the average particle size was 92.9 nm, and the oxygen concentration was 0.43% by mass. These results are shown in Table 1.

[実施例10]
硫酸銅・5水和物(CuSO・5HO)の量を7.49gにし、還元温度を350℃にし、還元時間を3時間にした以外は、実施例8と同様の方法により、CoSnCu0.3合金粉末を製造し、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出および酸素濃度の測定を行った。なお、乾燥した後のCoとSnとCuの水酸化物を酸に溶解して、ICP発光分光分析法による測定結果からCoとSnとCuのモル比を計算したところ、モル比(Co:Sn:Cu)は1.0:1.0:0.3であった。本実施例で得られたCoSnCu0.3合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSnCu0.3合金粉末は、CoSn相とSnCu相を有することが確認された。また、結晶子径は24.2nm、平均粒径は95.4nm、酸素濃度は0.31質量%であった。これらの結果を表1に示す。
[Example 10]
CoSnCu was prepared in the same manner as in Example 8 except that the amount of copper sulfate pentahydrate (CuSO 4 .5H 2 O) was 7.49 g, the reduction temperature was 350 ° C., and the reduction time was 3 hours. A 0.3 alloy powder was produced, and evaluation by an X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, and measurement of oxygen concentration were performed. In addition, the hydroxide of Co, Sn, and Cu after drying was dissolved in an acid, and the molar ratio of Co, Sn, and Cu was calculated from the measurement result by ICP emission spectroscopic analysis. The molar ratio (Co: Sn : Cu) was 1.0: 1.0: 0.3. The X-ray diffraction pattern of the CoSnCu 0.3 alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSnCu 0.3 alloy powder obtained in this example had a CoSn phase and a Sn 5 Cu 6 phase. The crystallite size was 24.2 nm, the average particle size was 95.4 nm, and the oxygen concentration was 0.31% by mass. These results are shown in Table 1.

[実施例11]
硫酸銅・5水和物(CuSO・5HO)の量を15.0gにし、還元温度を400℃にし、還元時間を3時間にした以外は、実施例8と同様の方法により、CoSnCu0.6合金粉末を製造し、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出および酸素濃度の測定を行った。なお、乾燥した後のCoとSnとCuの水酸化物を酸に溶解して、ICP発光分光分析法による測定結果からCoとSnとCuのモル比を計算したところ、モル比(Co:Sn:Cu)は1.0:1.0:0.6であった。本実施例で得られたCoSnCu0.6合金粉末のX線回折パターンを図1に示す。このX線回折パターンから、本実施例で得られたCoSnCu0.6合金粉末は、SnCu相を有することが確認された。また、結晶子径は26.6nm、平均粒径は88.1nm、酸素濃度は0.80質量%であった。これらの結果を表1に示す。なお、本実施例では、結晶子径を算出する際に使用する半価幅βとして、SnCu相の(1,1,−3)面の半価幅βを用いた。
[Example 11]
CoSnCu was prepared in the same manner as in Example 8 except that the amount of copper sulfate pentahydrate (CuSO 4 .5H 2 O) was 15.0 g, the reduction temperature was 400 ° C., and the reduction time was 3 hours. A 0.6 alloy powder was produced, and evaluation based on an X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, and measurement of oxygen concentration were performed. In addition, the hydroxide of Co, Sn, and Cu after drying was dissolved in an acid, and the molar ratio of Co, Sn, and Cu was calculated from the measurement result by ICP emission spectroscopic analysis. The molar ratio (Co: Sn : Cu) was 1.0: 1.0: 0.6. The X-ray diffraction pattern of the CoSnCu 0.6 alloy powder obtained in this example is shown in FIG. From this X-ray diffraction pattern, it was confirmed that the CoSnCu 0.6 alloy powder obtained in this example had a Sn 5 Cu 6 phase. The crystallite size was 26.6 nm, the average particle size was 88.1 nm, and the oxygen concentration was 0.80% by mass. These results are shown in Table 1. In this example, the half-value width β of the (1,1, -3) plane of the Sn 5 Cu 6 phase was used as the half-value width β used when calculating the crystallite diameter.

[実施例12]
硫酸コバルト・7水和物(CoSO・7HO)28.11gと塩化スズ(IV)(SnCl・5HO)35.06gと硫酸銅・5水和物(CuSO・5HO)3.49gを純水400gに溶解してCoとSnとCuを含む水溶液を作製した。また、48.7質量%の水酸化ナトリウム水溶液56.75gを純水200gに添加して水酸化ナトリウム水溶液を作製した。上記のCoとSnとCuを含む水溶液を加熱して40℃に保持し、攪拌した状態で、上記の水酸化ナトリウム水溶液を40℃に加熱してCoとSnとCuを含む水溶液に添加し、CoとSnとCuの水酸化物を含むスラリーを得た。このCoとSnとCuの水酸化物を含むスラリーを濾過して純水で洗浄し、CoとSnとCuの水酸化物のケーキを得た。このCoとSnとCuの水酸化物のケーキを大気中において140℃で3時間乾燥した後、水素雰囲気中において320℃で6時間還元して、CoSnCu0.14合金粉末を得た。なお、乾燥した後のCoとSnとCuの水酸化物を酸に溶解して、ICP発光分光分析法による測定結果からCoとSnとCuのモル比を計算したところ、モル比(Co:Sn:Cu)は1.0:1.0:0.14であった。
[Example 12]
Cobalt sulfate heptahydrate (CoSO 4 · 7H 2 O) 28.11g tin chloride (IV) (SnCl 4 · 5H 2 O) 35.06g copper sulfate pentahydrate (CuSO 4 · 5H 2 O ) 3.49 g was dissolved in 400 g of pure water to prepare an aqueous solution containing Co, Sn and Cu. Moreover, 56.75 g of 48.7 mass% sodium hydroxide aqueous solution was added to 200 g of pure water, and sodium hydroxide aqueous solution was produced. The aqueous solution containing Co, Sn and Cu is heated to 40 ° C. and stirred, and the aqueous sodium hydroxide solution is heated to 40 ° C. and added to the aqueous solution containing Co, Sn and Cu. A slurry containing Co, Sn and Cu hydroxide was obtained. The slurry containing Co, Sn, and Cu hydroxide was filtered and washed with pure water to obtain a Co, Sn, and Cu hydroxide cake. The Co, Sn, and Cu hydroxide cake was dried in the atmosphere at 140 ° C. for 3 hours and then reduced in a hydrogen atmosphere at 320 ° C. for 6 hours to obtain a CoSnCu 0.14 alloy powder. In addition, the hydroxide of Co, Sn, and Cu after drying was dissolved in an acid, and the molar ratio of Co, Sn, and Cu was calculated from the measurement result by ICP emission spectroscopic analysis. The molar ratio (Co: Sn : Cu) was 1.0: 1.0: 0.14.

得られたCoSnCu0.14合金粉末について、実施例1と同様の方法により、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出および酸素濃度の測定を行った。本実施例で得られたCoSnCu0.14合金粉末のX線回折パターンを図1に示す。X線回折パターンから、本実施例で得られたCoSnCu0.14合金粉末は、CoSn相とSnCu相を有することが確認された。また、結晶子径は14.8nm、平均粒径は80.2nm、酸素濃度は0.27質量%であった。これらの結果を表1に示す。 With respect to the obtained CoSnCu 0.14 alloy powder, evaluation by an X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, and measurement of oxygen concentration were performed in the same manner as in Example 1. The X-ray diffraction pattern of the CoSnCu 0.14 alloy powder obtained in this example is shown in FIG. From the X-ray diffraction pattern, it was confirmed that the CoSnCu 0.14 alloy powder obtained in this example had a CoSn phase and a Sn 5 Cu 6 phase. The crystallite size was 14.8 nm, the average particle size was 80.2 nm, and the oxygen concentration was 0.27% by mass. These results are shown in Table 1.

[実施例13]
硫酸銅・5水和物(CuSO・5HO)の量を1.75gにし、48.5質量%の水酸化ナトリウム水溶液55.5gを添加し、還元温度を300℃にした以外は、実施例12と同様の方法により、CoSnCu0.07合金粉末を製造し、X線回折パターンによる評価、結晶子径の算出、平均粒径の算出および酸素濃度の測定を行った。なお、乾燥した後のCoとSnとCuの水酸化物を酸に溶解して、ICP発光分光分析法による測定結果からCoとSnとCuのモル比を計算したところ、モル比(Co:Sn:Cu)は1.0:1.0:0.07であった。本実施例で得られたCoSnCu0.07合金粉末のX線回折パターンを図1に示す。このX線回折パターンでは、CoSn相は確認されたが、SnCu相に起因するピークは確認できなかった。これは、Cu含有率が低かったためと考えられる。また、結晶子径は21.0nm、平均粒径は91.0nm、酸素濃度は0.26質量%であった。これらの結果を表1に示す。
[Example 13]
The amount of copper sulfate pentahydrate (CuSO 4 .5H 2 O) was 1.75 g, 45.5% by mass of a 5% sodium hydroxide aqueous solution was added, and the reduction temperature was 300 ° C. A CoSnCu 0.07 alloy powder was produced in the same manner as in Example 12, and evaluation by X-ray diffraction pattern, calculation of crystallite diameter, calculation of average particle diameter, and measurement of oxygen concentration were performed. In addition, the hydroxide of Co, Sn, and Cu after drying was dissolved in an acid, and the molar ratio of Co, Sn, and Cu was calculated from the measurement result by ICP emission spectroscopic analysis. The molar ratio (Co: Sn : Cu) was 1.0: 1.0: 0.07. The X-ray diffraction pattern of the CoSnCu 0.07 alloy powder obtained in this example is shown in FIG. In this X-ray diffraction pattern, a CoSn phase was confirmed, but a peak attributed to the Sn 5 Cu 6 phase could not be confirmed. This is probably because the Cu content was low. The crystallite size was 21.0 nm, the average particle size was 91.0 nm, and the oxygen concentration was 0.26% by mass. These results are shown in Table 1.

[比較例1]
還元温度を200℃にした以外は、実施例1と同様の方法により、得られた粉末について、X線回折パターンによる評価を行った。本比較例で得られた粉末のX線回折パターンを図1に示す。このX線回折パターンから、本比較例で得られた粉末では、SnCoのX線回折ピークが確認できなかったので、還元されない水酸化物のアモルファス相であり、CoSnは生成されていないと考えられる。また、本比較例で得られた粉末について、実施例1と同様の方法により、酸素濃度の測定を行ったところ、12質量%であった。これらの結果を表1に示す。
[Comparative Example 1]
The obtained powder was evaluated by an X-ray diffraction pattern in the same manner as in Example 1 except that the reduction temperature was 200 ° C. The X-ray diffraction pattern of the powder obtained in this comparative example is shown in FIG. From the X-ray diffraction pattern, in the powder obtained in this comparative example, the SnCo X-ray diffraction peak could not be confirmed. . Moreover, when the oxygen concentration was measured for the powder obtained in this Comparative Example by the same method as in Example 1, it was 12% by mass. These results are shown in Table 1.

Claims (8)

Snおよび遷移金属が溶解した溶液とアルカリ溶液とを混合して、Snと遷移金属の水酸化物粒子を生成させ、得られた水酸化物粒子を乾燥した後、還元性ガス雰囲気下で加熱することを特徴とする、二次電池用電極材の製造方法。 A solution in which Sn and transition metal are dissolved and an alkali solution are mixed to produce Sn and transition metal hydroxide particles. The obtained hydroxide particles are dried and then heated in a reducing gas atmosphere. The manufacturing method of the electrode material for secondary batteries characterized by the above-mentioned. 前記Snおよび遷移金属が溶解した溶液が、Sn塩と、Co、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される少なくとも1種以上の遷移金属の塩とを溶媒に溶解した溶液であることを特徴とする、請求項1に記載の二次電池用電極材の製造方法。 The solution in which Sn and transition metal are dissolved uses Sn salt and at least one transition metal salt selected from the group consisting of Co, Ni, Fe, Cu, Cr, In, Ag and Ti as a solvent. The method for producing an electrode material for a secondary battery according to claim 1, wherein the solution is a dissolved solution. 前記加熱の温度が210〜600℃であることを特徴とする、請求項1または2に記載の二次電池用電極材の製造方法。 The method for producing an electrode material for a secondary battery according to claim 1 or 2, wherein the heating temperature is 210 to 600 ° C. SnAx(AはCo、Ni、Fe、Cu、Cr、In、AgおよびTiからなる群から選択される少なくとも1種以上の遷移金属元素であり、xは0.2〜3.0)の組成を有するSn合金粉末からなり、平均粒径が10〜500nmであり、酸素濃度が0.6質量%以下であることを特徴とする、二次電池用電極材。 Sn Ax (A is at least one transition metal element selected from the group consisting of Co, Ni, Fe, Cu, Cr, In, Ag and Ti , and x is 0.2 to 3.0) An electrode material for a secondary battery comprising an Sn alloy powder having a mean particle size of 10 to 500 nm and an oxygen concentration of 0.6% by mass or less . 前記二次電池用電極材の結晶子径が50nm以下であることを特徴とする、請求項に記載の二次電池用電極材。 The electrode material for a secondary battery according to claim 4 , wherein a crystallite diameter of the electrode material for the secondary battery is 50 nm or less. 前記平均粒径が300nm以下であることを特徴とする、請求項4または5に記載の二次電池用電極材。 Characterized in that said average particle diameter is 300nm or less, the secondary battery electrode material according to claim 4 or 5. 前記平均粒径が200nm以下であることを特徴とする、請求項4または5に記載の二次電池用電極材。 Characterized in that said average particle diameter is 200nm or less, the secondary battery electrode material according to claim 4 or 5. 前記平均粒径が100nmより小さいことを特徴とする、請求項4または5に記載の二次電池用電極材。
Characterized in that said average particle size is less than 100 nm, secondary battery electrode material according to claim 4 or 5.
JP2011125946A 2010-12-14 2011-06-06 Secondary battery electrode material and manufacturing method thereof Active JP5718734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011125946A JP5718734B2 (en) 2010-12-14 2011-06-06 Secondary battery electrode material and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010277609 2010-12-14
JP2010277609 2010-12-14
JP2011125946A JP5718734B2 (en) 2010-12-14 2011-06-06 Secondary battery electrode material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012142257A JP2012142257A (en) 2012-07-26
JP5718734B2 true JP5718734B2 (en) 2015-05-13

Family

ID=46678308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011125946A Active JP5718734B2 (en) 2010-12-14 2011-06-06 Secondary battery electrode material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5718734B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5764395B2 (en) * 2011-06-20 2015-08-19 Dowaホールディングス株式会社 Secondary battery electrode material and manufacturing method thereof
JP2015179605A (en) * 2014-03-19 2015-10-08 三菱マテリアル株式会社 Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery arranged by use thereof
CN109604626B (en) * 2018-12-06 2022-02-01 中国计量大学 Preparation method of tin anode material
CN114414634B (en) * 2022-01-20 2023-07-21 重庆工商大学 Iron-doped cobalt hydroxystannate gas sensor material and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000012015A (en) * 1998-06-10 2000-01-14 Jurgen Otto Besenhard Nonaqueous secondary battery
JP2001332254A (en) * 2000-03-13 2001-11-30 Canon Inc Manufacturing method for electrode material of lithium secondary battery, electrode structure of the lithium secondary battery and the lithium secondary battery and manufacturing method therefor
JP2003040620A (en) * 2001-07-25 2003-02-13 Kisan Kinzoku Kk Method for producing ito powder
JP2004284904A (en) * 2003-03-24 2004-10-14 Sumitomo Metal Mining Co Ltd Method of producing sunbeam shielding material, sunbeam shielding material, coating liquid for forming sunbeam shielding film, and sunbeam shielding film
JP2006236685A (en) * 2005-02-23 2006-09-07 Sony Corp Negative electrode, battery, and their manufacturing method
KR20070005149A (en) * 2005-07-05 2007-01-10 삼성에스디아이 주식회사 Anode active material, producing method thereof and lithium battery using the same

Also Published As

Publication number Publication date
JP2012142257A (en) 2012-07-26

Similar Documents

Publication Publication Date Title
JP6089433B2 (en) Li-Ni composite oxide particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
TWI423504B (en) A positive electrode for a lithium ion battery, a positive electrode for a lithium ion battery, a lithium ion battery, and a method for producing a positive electrode active material for a lithium ion battery
KR101562686B1 (en) Oxycobalt hydroxide particulate powder and manufacturing method therefor, as well as lithium cobaltate particulate powder, manufacturing method therefor, and non-aqueous electrolyte secondary battery using the same
JP5720899B2 (en) Manganese nickel composite oxide particle powder and method for producing the same, method for producing positive electrode active material particle powder for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP4994631B2 (en) Nonaqueous electrolyte secondary battery and positive electrode active material thereof
JP5950389B2 (en) Lithium silicate compound, positive electrode active material, method for producing positive electrode active material, non-aqueous electrolyte secondary battery and vehicle equipped with the same
WO2012176471A1 (en) Lithium-containing complex oxide powder and method for producing same
JP5678685B2 (en) Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery
JP2013206679A (en) Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
JP2011132095A (en) Method for producing olivine-type compound particle powder, and nonaqueous electrolyte secondary battery
JP5718734B2 (en) Secondary battery electrode material and manufacturing method thereof
JPWO2012032709A1 (en) Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery
JP2024138449A (en) Method for producing positive electrode active material for lithium ion secondary battery
JP4915227B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2013012336A (en) Secondary battery and charging method of the same
JP2020205268A (en) Silicon-based negative electrode active material
JP5121625B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
JP2014232569A (en) Positive electrode active material for lithium ion secondary batteries, and method for manufacturing the same
CN115881944A (en) Layered oxide positive electrode material with transition metal layer superlattice structure and preparation
JP2013037879A (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery including the positive electrode active material, and method for producing lithium manganese silver complex oxide
KR20110095006A (en) Method for synthesizing nanostructured gamma manganese oxide at atmospheric pressure and low temperature and spinel lithium manganese oxide thereof
JP4763970B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5764395B2 (en) Secondary battery electrode material and manufacturing method thereof
WO2020166658A1 (en) Active material
JP5804217B2 (en) Electrode active material particles, electrode and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150319

R150 Certificate of patent or registration of utility model

Ref document number: 5718734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250