WO2020166658A1 - Active material - Google Patents

Active material Download PDF

Info

Publication number
WO2020166658A1
WO2020166658A1 PCT/JP2020/005518 JP2020005518W WO2020166658A1 WO 2020166658 A1 WO2020166658 A1 WO 2020166658A1 JP 2020005518 W JP2020005518 W JP 2020005518W WO 2020166658 A1 WO2020166658 A1 WO 2020166658A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
less
silicon
negative electrode
material according
Prior art date
Application number
PCT/JP2020/005518
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 光本
仁彦 井手
拓也 甲斐
真奈 上野
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2020572306A priority Critical patent/JPWO2020166658A1/en
Publication of WO2020166658A1 publication Critical patent/WO2020166658A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/06Metal silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material, a negative electrode using the same, and a solid-state battery.
  • the Si-containing active material has a potential that the capacity per mass is 5 to 10 times that of graphite.
  • it has a problem that the electron conductivity is not higher than that of graphite. Therefore, in order to increase the electron conductivity of the Si-containing active material, it has been proposed to add a conductive auxiliary agent, for example, for the purpose of imparting electron conductivity between the current collector and the active material.
  • Patent Document 1 discloses that the periphery of a core particle containing silicon is coated with a silicon solid solution such as Mg 2 Si, CoSi, or NiSi, and the surface thereof is further coated with a conductive material such as graphite or acetylene black. There is.
  • the Si-containing active material also undergoes a large volume change due to the insertion and desorption of lithium ions, and repeats expansion and contraction during charge and discharge cycles, so separation with the conductive auxiliary agent tends to occur as charge and discharge are repeated, and as a result, cycle
  • the battery performance is deteriorated and the safety of the battery is deteriorated by causing deterioration of the battery and a decrease in energy density.
  • Patent Document 2 discloses active material particles containing silicon and having an average particle diameter of 5 ⁇ m or more and 25 ⁇ m or less. By setting the average particle diameter of the active material particles to 5 ⁇ m or more, the specific surface area of the original active material can be reduced, and thus the contact area between the electrolyte and the new surface of the active material can be reduced. It is described that the suppression effect of is increased.
  • an electrode material for a lithium secondary battery which comprises particles of a solid-state alloy containing silicon as a main component, is used as an electrode material having a high efficiency of lithium insertion/desorption.
  • an electrode material for a lithium secondary battery characterized in that particles are microcrystalline silicon or amorphized silicon, in which microcrystalline or amorphous particles composed of elements other than silicon are dispersed. ..
  • Patent Document 4 a negative electrode active material for a lithium secondary battery containing silicon, copper and oxygen as main constituent elements, wherein Cu 3 Si and an average crystallite diameter (Dx) measured by an X-ray diffraction method are used.
  • a negative electrode active material for a lithium secondary battery which contains silicon particles of 50 nm or less and has a peak intensity ratio (Cu 3 Si/Si) of 0.05 to 1.5 calculated from XRD measurement results. ..
  • Patent Document 3 a material in which fine crystals or amorphous materials composed of elements other than silicon are dispersed in silicon, or a material in which an alloy of silicon elements is dispersed in silicon is used as a negative electrode active material.
  • Use as a substance is disclosed. Since only silicon in the negative electrode active material contributes to the insertion/desorption of lithium ions, if the occupancy ratio of silicon is reduced, the capacity is reduced, while the expansion and contraction of the negative electrode active material can be suppressed. Theoretically, it should be possible to improve the cycle characteristics. However, for example, when an alloy of elements other than silicon is mixed in silicon and actually used as a negative electrode active material of a lithium secondary battery, it has been found that the cycle characteristics cannot be improved to an expected degree. It was
  • the present invention relates to a silicon-containing active material, which has a new active material capable of enhancing the cycle characteristics, reducing or eliminating the plateau region in the discharge profile, and further improving the high rate characteristics. It is intended to be provided. In particular, it is intended to provide a new active material capable of further improving cycle characteristics.
  • the present invention relates to silicon and a chemical formula M x Si y (where x and y satisfy 0.1 ⁇ x/y ⁇ 7.0, and M is a metalloid element other than Si and a metal element).
  • D 50 and D max (referred to as “D 50 ”and “D max ”, respectively) obtained by measurement by a laser diffraction scattering particle size distribution measurement method, D 50 is less than 4.0 ⁇ m and D max is less than 25 ⁇ m.
  • the active material proposed by the present invention can be used as a negative electrode active material.
  • the active material of the present invention can be used in batteries such as liquid batteries and solid batteries, and can be preferably used in solid batteries.
  • the active material of the present invention is advantageously used in a solid battery containing a sulfide solid electrolyte as the solid electrolyte.
  • the solid-state battery using the active material of the present invention can have improved cycle characteristics and high rate characteristics.
  • the active material proposed by the present invention is silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide or stainless steel, because the active material particles present inside the particles, due to expansion and contraction The effect of cracking can be reduced, and cycle characteristics can be further improved.
  • the active material proposed by the present invention can reduce or eliminate the plateau region in the discharge profile, so that it not only exhibits the effect when used alone, but also in combination with, for example, a carbon material (Graphite), a battery, especially a solid material. It can be suitably used as a negative electrode active material for a battery, especially a solid secondary battery such as a solid lithium secondary battery, and further, high rate characteristics can be improved.
  • a carbon material Graphite
  • a battery especially a solid material.
  • FIG. 3 is a diagram showing a discharge profile of a non-aqueous electrolyte secondary battery using the sample obtained in Example 1 as an active material.
  • FIG. 5 is a diagram showing a discharge profile of a non-aqueous electrolyte secondary battery using the sample obtained in Comparative Example 1 as an active material. It is a diffraction pattern figure of the silicon powder material which is a standard sample for X-ray diffraction made from NIST.
  • An active material according to an example of the present embodiment includes silicon and a chemical formula MxSiy (where x and y satisfy 0.1 ⁇ x/y ⁇ 7.0, M Is a compound represented by one or more of metalloid elements other than Si and metal elements), and active material particles containing the compound (hereinafter referred to as “main active material particles”).
  • the active material is an aggregate of the active material particles.
  • silicon also means Si capable of inserting and releasing lithium ions. That is, the main active material particles have a function as main active material particles by containing silicon.
  • silicon mainly refers to pure silicon, but may contain an element that forms a solid solution with Si to form a Si solid solution. In this case, the Si solid solution may have a function as an active material.
  • the proportion of silicon in the main active material is preferably 30 wt% or more of the main active material, more preferably 40 wt% or more, and even more preferably 50 wt% or more.
  • silicon is preferably the main component of the active material in order for the proportion of silicon to affect the charge/discharge capacity and increase the charge/discharge capacity.
  • the proportion of silicon in the substance is preferably more than 50 wt %, and particularly preferably 60 wt% or more.
  • the active material particles have a chemical formula M x Si y (where x and y satisfy 0.1 ⁇ x/y ⁇ 7.0, and M is one of metalloid elements other than Si and metal elements). Or a compound represented by two or more kinds).
  • M x Si y By containing the compound represented by M x Si y , the present active material particles can further improve the cycle characteristics, and can further reduce or eliminate the plateau region in the discharge profile, and further have high rate characteristics. Can be improved.
  • M The compound represented by the chemical formula M x Si y (0.1 ⁇ x/y ⁇ 7.0) is called so-called silicide.
  • M in the chemical formula M x Si y is one or more of metalloid elements and metal elements other than Si. That is, M may be a metalloid element other than Si, a metal element, or a combination of two or more of metalloid elements and metal elements.
  • the metalloid element and the metal element include elements such as B, Ti, V, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Ta, and W, and among them, B, Ti, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Ta and W are preferable. Further, among them, B, Ti, Mn, Fe, Co and Ni are preferable, and among them, B, Ti, Mn and Fe are particularly preferable.
  • “X/y” in the chemical formula M x Si y is preferably 0.1 or more and 7.0 or less, particularly 0.2 or more or 4.0 or less, and among them 0.3 or more or 3.0 or less, Among them, 0.4 or more or 2.0 or less is more preferable.
  • “x” in the chemical formula M x Si y is preferably 0.5 or more and 15 or less, more preferably 0.75 or more or 13 or less, and further preferably 1 or more or 11 or less.
  • “y” is preferably 0.5 or more and 27 or less, more preferably 0.75 or more or 23 or less, and even more preferably 1 or more or 19 or less.
  • silicide examples include titanium silicide (TiSi 2 , TiSi, Ti 5 Si 4 , Ti 5 Si 3 ), cobalt silicide (CoSi 2 , CoSi, CoSi, Co 2 Si, Co 3 Si), nickel silicide (NiSi).
  • the active material particles contain one or more compounds (also referred to as “compound A”) of silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide and stainless steel, and The compound is present inside the active material particles. Since such a compound A exists inside the particles of the present active material particles, when the present active material is used as, for example, an active material of a secondary battery and charging and discharging are repeated, the present active material particles expand and contract. The effect of cracking due to repetition can be reduced, and cycle characteristics can be further improved.
  • whether or not the compound A exists inside the active material particles can be determined by observing the cross section of the active material particles. In addition, as described later in Examples, it is determined by observing the cross section of the active material particles in the electrode cross section using a field emission scanning electron microscope (FE-SEM) and energy dispersive X-ray analysis (EDS). be able to.
  • FE-SEM field emission scanning electron microscope
  • EDS energy dispersive X-ray analysis
  • the content of the above compound A present inside the particles of the active material is more than 0 wt% and preferably less than 15 wt% with respect to the active material. Above all, more than 0.001 wt% is more preferable, above 0.01 wt% is more preferable, and above 0.10 wt% is still more preferable. On the other hand, it is more preferably less than 9 wt%, more preferably less than 7 wt%, still more preferably less than 2 wt%, especially less than 1 wt%.
  • the content of compound A above can be calculated based on the results of gas analysis and ICP analysis.
  • the content of nitrogen element (wt%) is measured by gas analysis, the nitrogen is considered to be derived from silicon nitride, and the content of silicon nitride (wt%) is calculated. be able to.
  • the content (wt%) of zirconium should be calculated by measuring the content (wt%) of zirconium by ICP analysis and assuming that this zirconium is derived from zirconium oxide. You can
  • the compound A In order to allow the compound A to exist inside the particles of the active material particles, it is preferable to add the compound A as described later.
  • the method is not limited to this.
  • the active material particles may contain "other components” as necessary.
  • the “other components” include silicon-containing substances such as silicon compounds.
  • examples of the silicon compound include Si 3 N 4 and SiC.
  • the “other component” for example, not one as a constituent element of the compound represented by the chemical formula M x Si y , but one or more elements out of a metalloid element and a metal element other than Si are included. It may be contained as a metal, an oxide, a carbide, a nitride or the like.
  • H, Li, B, C, O, N, F, Na, Mg, Al, P, K, Cu, Ca, Ga, Ge, Ag, In, Sn and Au or Examples thereof include metals, oxides, carbides, nitrides, and other compounds having two or more elements.
  • one or more of H, Li, B, C, O, N, F, Na, Mg, Al, P, K, Ca, Ga, Ge, Ag, In, Sn and Au among others, or Two or more elements are preferable, and one or more elements selected from H, Li, B, C, O, N, F, Al, P and Sn are particularly preferable.
  • the content of the “other component” is preferably less than 15 at %, more than 0 at% or less than 12 at %, among them more than 1 at% or less than 10 at %, and further among them. It is preferably more than 2 at% or less than 7 at %.
  • the active material particles contain a carbon (C) element as the “other component”
  • the content thereof is preferably less than 5 wt% of the amount of the active material, particularly less than 4 wt %, and particularly less than 3 wt %.
  • the content of C element in the active material has the above upper limit, it is possible to suppress the decrease in capacity.
  • the numerical value of the charge capacity is the basis of the present invention, and the present invention distinguishes itself from an active material containing a large amount of C and having a low capacity.
  • Carbon component species When the active material contains a carbon (C) element as the “other component”, the carbon is roughly classified into carbon derived from an organic substance and carbon corresponding to an inorganic substance.
  • examples of carbon that corresponds to the inorganic substance include diamond and graphite.
  • a carbon material having a regular layered structure such as graphite occludes a large amount of Li ( ⁇ 300 mAh/g), and is not preferable as carbon corresponding to the inorganic substance contained in the active material.
  • As the carbon corresponding to the inorganic substance contained in the active material one having a low Li occlusion capacity ( ⁇ 300 mAh/g) is preferable. Specific examples include activated carbon, carbon black, coke, carbon fiber, and amorphous carbon.
  • activated carbon, coke, carbon fiber and amorphous carbon are preferable. Therefore, as the carbon component species contained in the active material, carbon derived from an organic substance or carbon corresponding to an inorganic substance having a low Li storage capacity ( ⁇ 300 mAh/g) (ex: activated carbon, coke, carbon fiber, amorphous carbon) ) Is preferred.
  • the active material particles may contain inevitable impurities derived from the raw materials.
  • the content of unavoidable impurities in the active material is preferably, for example, less than 2 wt %, more preferably less than 1 wt %, and most preferably less than 0.5 wt.
  • the content of the unavoidable impurities in the active material has the above upper limit, it is possible to suppress the decrease in capacity.
  • the active material particles may contain a Si oxide containing a Si element.
  • the Si oxide include SiO a (0 ⁇ a ⁇ 2). Specifically, SiO, SiO 2, etc. can be mentioned.
  • the content of the Si element in the active material is preferably more than 50 wt %. Above all, it is preferably more than 52 wt %, particularly preferably more than 60 wt %, more preferably more than 63 wt %, and even more preferably more than 65 wt %.
  • the content of the Si element in the active material is, for example, preferably less than 98 wt%, more preferably less than 88 wt%, further preferably less than 82 wt%, and even more preferably 78 wt%. It is preferably less than.
  • the content of the Si element here means the total amount of the Si element contained in the active material.
  • the content of the Si element can be the total amount of the Si element mainly derived from silicon and the Si element derived from the compound represented by M x Si y .
  • the content of Si element having the above lower limit can suppress the decrease in capacity.
  • the content of the Si element has the upper limit, expansion and contraction of the active material can be suppressed, and cycle characteristics can be improved.
  • the oxygen (O) element content in the active material is preferably less than 30 wt %. Above all, it is preferably less than 20 wt%, particularly preferably less than 15 wt%, further preferably less than 10 wt%, and further preferably less than 5 wt%. Further, the content of oxygen (O) element in the active material is, for example, preferably more than 0 wt%, more preferably more than 0.1 wt%, and particularly preferably more than 0.2 wt%. Above all, it is preferably more than 0.6 wt %.
  • the content of the oxygen (O) element in the present active material has the above upper limit, it is possible to suppress an increase in the ratio of the oxygen (O) element that does not contribute to charging and discharging, and suppress a decrease in capacity and charging/discharging efficiency. it can.
  • So-called SiO silicon monoxide
  • SiO silicon monoxide
  • the content of the oxygen (O) element has the above lower limit, it is possible to prevent a rapid reaction with oxygen in the atmosphere.
  • the content of M in the active material is preferably less than 38 wt %. Above all, it is more preferably less than 35% by weight, more preferably less than 32% by weight, and particularly preferably less than 29% by weight. In addition, the content of M in the active material is preferably more than 2 wt%, more preferably more than 5 wt%, particularly preferably more than 8 wt%, and more preferably more than 12 wt%. .. When the content of M in the active material has the above lower limit, expansion and contraction of the active material can be suppressed, and cycle characteristics can be improved. On the other hand, when the content of M in the active material has the above upper limit, it becomes possible to suppress the decrease in capacity.
  • the ratio (M/Si) of the content (wt%) of M to the content (wt%) of the Si element in the active material is, for example, preferably greater than 0.020, and more preferably 0.052. It is preferably large, particularly preferably larger than 0.078, and particularly preferably larger than 0.183.
  • the ratio of the content of M to the content of Si element (M/Si) is, for example, preferably less than 0.961, more preferably less than 0.767, and particularly less than 0.572. Is preferable, and particularly less than 0.414 is particularly preferable.
  • the ratio of the content of M to the content of Si element in the active material has the above lower limit, expansion and contraction of the active material can be suppressed, and cycle characteristics can be improved.
  • the ratio of the content of M to the content of Si element in the present active material has the above upper limit, it becomes possible to suppress the decrease in capacity.
  • the content of each element is the amount of element which is quantified by chemical analysis such as inductively coupled plasma (ICP) emission spectroscopic analysis in which the active material is completely dissolved.
  • the oxygen element content can be measured using an oxygen/nitrogen analyzer (for example, manufactured by LECO).
  • an oxide such as zirconium oxide is contained, it is a numerical value including oxygen derived from them.
  • the full width at half maximum of peak A is preferably 0.25° or more, more preferably more than 0.50°, still more preferably more than 0.60°, and particularly more than 0.70°. Is preferred, and more preferably greater than 0.75°.
  • the full width at half maximum of peak A is, for example, preferably less than 2.0°, more preferably less than 1.5°, particularly preferably less than 1.2°, and further 1.0 It is preferably less than °. Since the full width at half maximum of the peak A has the above lower limit, the present active material can improve the cycle characteristics and can reduce or eliminate the plateau region in the discharge profile, and can improve the discharge characteristics at a high rate. On the other hand, when the full width at half maximum of peak A has the above upper limit, it is possible to suppress a decrease in charge/discharge capacity or charge/discharge efficiency.
  • the above M may be added to a raw material in a predetermined amount, melted, cast, and further modified as described below. Good.
  • the method is not limited to this.
  • the active material the peak intensity of the peak B attributable to the compound represented by the chemical formula M x Si y and I B, when the peak intensity of the peak A was I A, wherein for the I B I A the ratio of (I a / I B) is preferably less than 1.
  • the “peak B belonging to the compound represented by the chemical formula M x Si y ” means a peak that appears when the above compound is present.
  • Such “peak B” refers to the peak having the maximum peak intensity among the peaks derived from the compound represented by the chemical formula M x Si y , so-called silicide.
  • the total value of the peak intensities of the maximum peaks derived from each compound is treated as the intensity of “peak B”.
  • the region where the peak B appears differs depending on the type of the compound represented by the chemical formula M x Si y .
  • M x Si y As a specific example, the case of TiSi 2 and Mn 11 Si 19 will be described.
  • the ratio of the I A with respect to the I B is preferably Among them less than 0.80, especially 0. It is preferably less than 72, more preferably less than 0.40.
  • the I A ratio (I A / I B) for the I B is preferably greater than preferably greater than 0.01, among others 0.05, It is particularly preferable that it is greater than 0.10.
  • the active material to adjust the ratio of the I A with respect to the I B and (I A / I B) in the above range, for example, to melt and adding the M by a predetermined amount starting material, cast, described further below It suffices to carry out such a modification treatment.
  • the method is not limited to this.
  • the active material preferably has a peak intensity I A of the peak A of, for example, less than 20,000 cps, and particularly less than 7,000 cps. It is preferable that it is, particularly preferably less than 4000 cps, more preferably less than 3000 cps, and even more preferably less than 2000 cps.
  • the peak intensity I A of the peak A is preferably, for example, more than 100 cps, more preferably more than 200 cps, and particularly preferably more than 400 cps.
  • the peak intensity I A has the upper limit
  • the plateau region in the discharge profile can be reduced or eliminated.
  • the peak intensity I A has the above lower limit
  • a predetermined amount of the above M is added to the raw material, melted, cast, and further modified as described below. You can do this.
  • the method is not limited to this.
  • Patent Document 4 the peak intensity of silicon and the peak intensity of silicide are compared with each other, and the one having high peak intensity of silicide is disclosed.
  • the capacity obtained as the negative electrode active material is inferior.
  • the present active material since the amount of silicide is less than a certain amount, that is, the amount of silicon that can contribute to charge and discharge is large, the capacity obtained as the negative electrode active material is relatively high, and the peak intensity of silicon is It has a characteristic that it is lower than the peak intensity of silicide.
  • D 50 of the active material i.e. D 50 according to the volume particle size distribution measurement obtained by the measurement by a laser diffraction scattering particle size distribution measurement method is preferably less than 4.0 .mu.m, and more to be among them less than 3.9 ⁇ m It is particularly preferably less than 3.4 ⁇ m, more preferably less than 3.2 ⁇ m, still more preferably less than 3.0 ⁇ m, still more preferably less than 2.8 ⁇ m. Further, it is preferably less than 2.5 ⁇ m.
  • the D 50 of the active material is preferably larger than 0.01 ⁇ m, more preferably larger than 0.05 ⁇ m, particularly preferably larger than 0.1 ⁇ m, and further preferably larger than 0.5 ⁇ m. Furthermore, it is preferable that it is larger than 1.0 ⁇ m.
  • the D 50 according to this measuring method means a 50% volume cumulative particle diameter, that is, a cumulative 50% diameter from the finer of the cumulative percentage notation of the volume-converted particle diameter measured value in the volume-based particle size distribution chart.
  • the D 50 of the present active material has the above lower limit, an increase in the number of contacts with the solid electrolyte due to an increase in the specific surface area can be suppressed, and an increase in contact resistance can be suppressed.
  • the D 50 of the present active material can be adjusted by changing the crushing condition and the crushing condition. However, the adjustment method is not limited to these.
  • D max i.e. D max by volume particle size distribution measurement obtained by measuring by a laser diffraction scattering particle size distribution measuring method of the present active material is preferably less than 25 [mu] m, more preferably among them less than 20 [mu] m, in particular 15 ⁇ m It is preferably less than 10 ⁇ m, and more preferably less than 10 ⁇ m.
  • D max of the present active material is, for example, preferably larger than 0.5 ⁇ m, more preferably larger than 1.0 ⁇ m, particularly preferably larger than 3.0 ⁇ m, and further preferably 5.0 ⁇ m. It is preferably large.
  • the D max according to the measuring method means 100% volume cumulative particle diameter, that is, the cumulative 100% diameter in terms of cumulative percentage of the particle diameter measurement value converted into volume in the volume-based particle size distribution chart.
  • the particle shape of the active material is not particularly limited.
  • a spherical shape, a polyhedral shape, a spindle shape, a plate shape, a scaly shape, an amorphous shape, or a combination thereof can be used.
  • the particles are spherical according to the gas atomizing method, and that when they are pulverized by a jet mill or the like, the particles are broken along the grain boundaries, resulting in an irregular shape.
  • the true density of the present active material is, for example, preferably more than 2.4 g/cm 3, more preferably more than 2.5 g/cm 3 , particularly preferably more than 2.7 g/cm 3 , and further 2 It is preferably larger than 0.9 g/cm 3 .
  • the true density of the active material that for example, preferably less than 3.9 g / cm 3, preferably less than Above all 3.8 g / cm 3, in particular less than 3.7 g / cm 3 preferable.
  • the true density of the present active material has the above lower limit, the electrode density can be improved and the energy density can be improved.
  • the true density of the present active material has the upper limit described above, it is possible to suppress the occurrence of the problem that the content of Si element in the active material decreases and the capacity decreases.
  • the true density of the present active material can be adjusted by the amount of M, for example. However, the method is not limited to this.
  • the specific surface area (SSA) of the present active material is, for example, preferably larger than 2.0 m 2 /g, more preferably larger than 2.5 m 2 /g, particularly preferably larger than 3.0 m 2 /g, Further, it is preferably larger than 3.3 m 2 /g.
  • the specific surface area (SSA) of the active material is, for example, preferably less than 140.0 m 2 /g, more preferably less than 60.0 m 2 /g, and most preferably less than 50.0 m 2 /g. Is preferable, and particularly preferably less than 30.0 m 2 /g, and more preferably less than 10.0 m 2 /g.
  • the SSA of the present active material has the above lower limit, the surface is sufficiently modified and the electrode resistance can be reduced.
  • the active material SSA has the above upper limit, it is possible to suppress an increase in the number of contacts with the solid electrolyte and suppress an increase in contact resistance.
  • the SSA of the active material can be adjusted by, for example, pulverizing conditions or modifying conditions. However, the adjustment method is not limited to these.
  • This active material is obtained by mixing silicon or a silicon (Si)-containing substance, M or an M-containing substance, compound A and, if necessary, other raw material, heating and melting to alloy them, and if necessary, It can be obtained by crushing or crushing, classifying if necessary, and then reforming using a reformer utilizing a strong impact force.
  • the method is not limited to this.
  • silicon or silicon (Si)-containing substance is meant to include pure silicon and silicon oxide, as well as silicon-containing substances such as silicon compounds such as Si 3 N 4 and SiC.
  • the compound A examples include silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide, and stainless steel. Among these, one kind may be a combination of two or more kinds. May be. As described above, the addition compound A may be mixed with other raw materials, may be mixed in the crushing or pulverizing step, and may be mixed in the classifying step. Alternatively, it may be in a previous stage. Above all, it is preferable to add it during the modification treatment step.
  • this active material is obtained by mixing silicon or a silicon (Si)-containing substance, the above M or the above M-containing substance, and optionally other raw materials and heating them to obtain a molten liquid, and then an atomizing method.
  • the alloy may be alloyed by the above method, or may be melted as described above, cast by a roll casting method, and further pulverized in a non-oxygen atmosphere to be alloyed. Other alloying methods may be used.
  • the apparatus shown in FIG. 2 of WO 01/081033 pamphlet is used, and the pressure wave generated by causing boiling due to spontaneous nucleation is used and dropped into the cooling medium. It is preferable to employ a method of alloying molten metal (this alloying method is referred to as "steam explosion atomizing method" in the present specification).
  • the reforming treatment using a reforming device that uses a strong impact force is a reforming treatment that uses a device that can perform mechanical milling or mechanical alloying depending on the condition settings.
  • (SSA) can be increased, and a process for the ratio of the I a with respect to the I B as described above and (I a / I B) may be less than 1.
  • Si element content is large and in a sample the amount of M is small, the relative said I B it is difficult to the ratio of I a and (I a / I B) to less than 1.
  • a treatment device having a rotary blade in the reaction tank is used, and the peripheral speed of the rotating blade is set to, for example, 3.0 m/s or more and 20.0 m/s or less, It is preferable to use beads having a particle size of, for example, 1500 times or more and 4000 times or less with respect to the D 50 of the active material as a medium to be charged in the above.
  • the pin mill is, for example, about 100 m/s or more and 130 m/s or less, it can be said that the peripheral speed of the rotary blade is slower than the peripheral speed at the time of fine pulverization processing.
  • the peripheral speed of the rotary blade is preferably, for example, 4.0 m/s or more or 17.0 m/s or less, and particularly 4.5 m/s or more or 15.0 m/s or less, of which 5.0 m /S or more or 12.0 m/s or less is preferable. Even when the size of the stirring blade is changed, the same effect can be obtained by adjusting the peripheral speeds.
  • the above-mentioned reforming treatment is preferably carried out in a low oxygen atmosphere, preferably in an inert atmosphere such as nitrogen or argon.
  • the medium put into the reaction tank can be crushed to about 1/1000 of its size. Therefore, the use of beads having a particle size of, for example, 1500 times or more and 4000 times or less with respect to D 50 of the present active material means that the surface modification is performed preferentially over the pulverization.
  • the particle size of the medium charged into the reaction vessel is preferably 4 mm ⁇ or more and 10 mm ⁇ or less, more preferably 5 mm ⁇ or more or 8 mm ⁇ or less, and further preferably 6 mm ⁇ or more or 7 mm ⁇ or less.
  • the material of the medium for example SiO 2, Al 2 O 3, ZrO 2, SiC, Si 3 N 4, WC , etc. can be cited, among others, Al 2 O 3, ZrO 2 , SiC, Si 3 N 4 is preferable.
  • the present active material can be preferably used as a negative electrode active material for batteries, especially solid batteries, and solid secondary batteries such as solid lithium secondary batteries.
  • a negative electrode active material of a solid battery containing a sulfide solid electrolyte as the solid electrolyte can be suitably used as a negative electrode active material of a solid battery containing a sulfide solid electrolyte as the solid electrolyte.
  • the negative electrode according to this embodiment contains the present active material.
  • the present negative electrode is a member composed of a negative electrode mixture.
  • the negative electrode mixture includes, for example, a main active material, a binder if necessary, a conductive material if necessary, a solid electrolyte if necessary, and graphite as another negative electrode active material if necessary. It may be contained. Further, the present negative electrode can be formed by applying a negative electrode mixture on a negative electrode current collector.
  • the present negative electrode can be used, for example, in a solid state battery. More specifically, it can be used for a lithium solid state battery.
  • the lithium solid state battery may be a primary battery or a secondary battery, but among them, it is preferably used for a lithium secondary battery.
  • solid state battery includes not only a solid state battery that does not contain any liquid substance or gelled substance as an electrolyte, but also a solid state battery that contains a small amount, for example, 10 wt% or less of a liquid substance or gelled substance as an electrolyte.
  • the binder is not particularly limited as long as it is a material that can be used for the negative electrode.
  • polyimide, polyamide, polyamide imide, etc. may be mentioned. These may be used alone or in combination of two or more (hereinafter, these may be collectively referred to as "polyimide or the like").
  • a binder other than these may be used in combination.
  • the details of the binder can be the same as those of known binders, and thus the description thereof is omitted here.
  • the binder is not particularly limited as long as it is a material that can be used for the negative electrode.
  • examples thereof include fine metal powder and powder of conductive carbon material such as acetylene black.
  • metal fine powder it is preferable to use fine powder of a metal having lithium ion conductivity such as Sn, Zn, Ag and In, or an alloy of these metals.
  • Solid electrolyte examples include a sulfide solid electrolyte, an oxide solid electrolyte, a nitride solid electrolyte, a halide solid electrolyte, and the like. Among them, a sulfide solid electrolyte containing a sulfur (S) element is preferable. ..
  • the sulfide solid electrolyte may be any of a crystalline material, glass ceramics and glass.
  • a crystalline material glass ceramics and glass.
  • the oxide solid electrolyte, the nitride solid electrolyte, and the halide solid electrolyte can be the same as known ones, and thus the description thereof
  • the content of the binder is preferably 1 to 25 parts by mass with respect to 100 parts by mass of the active material, and more preferably 2 parts by mass or more or 20 parts by mass or less.
  • the content of the conductive material is preferably 1 to 15 parts by mass, and particularly 2 parts by mass or more or 10 parts by mass or less based on 100 parts by mass of the active material. Is more preferable.
  • graphite is blended as the negative electrode active material, the content of graphite is 0.5:95 to 50:50, particularly 0.5:95 to 20:50 in terms of the mixing mass ratio of the main active material and graphite. It is preferably 80.
  • the present negative electrode includes, for example, the above-mentioned main active material (particulate), a binder, a conductive material, the above-mentioned solid electrolyte as necessary, a solvent, and optionally other materials such as a carbon material (Graphite). It may be formed by mixing and to prepare a negative electrode mixture, coating the negative electrode mixture on the surface of a current collector made of Cu or the like, and drying the mixture, and then pressing it as necessary. it can. Alternatively, the main active material (in the form of particles), the conductive material, the powder of the solid electrolyte, and the carbon material (Graphite), if necessary, may be mixed, press-molded, and then appropriately processed to be manufactured.
  • the main active material in the form of particles
  • the conductive material the powder of the solid electrolyte
  • the carbon material Graphite
  • Drying after applying the negative electrode mixture to the surface of the current collector is preferably performed for 1 hour to 10 hours, particularly 1 hour to 7 hours in a non-oxygen atmosphere such as a nitrogen atmosphere or an argon atmosphere.
  • the main active material (particulate), a polyimide precursor compound, an organic solvent such as N-methyl-2-pyrrolidone, and if necessary, a conductive material such as fine metal powder or acetylene black or a carbon material (Graphite) And the like are mixed to prepare a negative electrode mixture, and this negative electrode mixture is applied to the surface of a current collector made of Cu or the like.
  • a polyamic acid (polyamic acid) can be used as the polyimide precursor compound.
  • the coating film can be heated to volatilize the organic solvent, and at the same time, the polyimide precursor compound can be polymerized to obtain a polyimide.
  • the polyimide can be planarly adhered to the surface of the active material particles, and the active materials can be connected in a beaded shape via the connection site made of the polyimide.
  • the first-step heating is preferably performed at 100 to 150°C
  • the second-step heating is preferably performed at 200 to 400°C.
  • the heating time it is preferable that the heating time of the first step is the same as or longer than the heating time of the second step. For example, it is preferable to set the heating time for the first step to 120 to 300 minutes, particularly 180 minutes or more or 240 minutes or less, and the heating time for the second step to 30 to 120 minutes, especially 30 to 60 minutes.
  • an intermediate heating temperature between the first stage and the second stage in the above-described two-stage heating is preferably performed at 150 to 190°C.
  • the heating time is preferably the same as the time of the first step and the second step or an intermediate time between the first step and the second step. That is, when performing heating in three stages, it is preferable that the heating time be the same in each stage, or that the heating time be shortened as the stages progress. Further, when performing heating in four stages, it is preferable to adopt a heating temperature higher than that in the third stage.
  • the heating is preferably performed in an inert atmosphere such as nitrogen or argon. Further, during the heat treatment, it is also preferable to press the active material layer with a pressing member such as a glass plate.
  • a pressing member such as a glass plate.
  • Polyimide can be fixed on a wide range of the surface of the particle, and three-dimensional mesh-like voids can be formed in the active material layer over the entire thickness direction.
  • the non-aqueous electrolyte battery examples include a battery that can be composed of the present negative electrode, a positive electrode, a separator, a non-aqueous electrolyte solution, and the like. You can
  • the positive electrode in the present non-aqueous electrolyte battery has, for example, a positive electrode active material layer formed on at least one surface of a current collector.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material those known in the art can be used without particular limitation.
  • various lithium transition metal composite oxides can be used. Examples of such substances include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1.
  • Li(Li x Mn 2x Co 1-3x )O 2 in the formula, 0 ⁇ x ⁇ 1/3)
  • LiFePO 4 LiMn 1-z M z PO 4 (in the formula, 0 ⁇ z ⁇ 0.1
  • M is at least one metal element selected from the group consisting of Co, Ni, Fe, Mg, Zn, and Cu).
  • a synthetic resin non-woven fabric As the separator used together with the present negative electrode and the positive electrode, a synthetic resin non-woven fabric, a polyolefin such as polyethylene or polypropylene, or a porous film of polytetrafluoroethylene is preferably used.
  • the non-aqueous electrolytic solution in the present non-aqueous electrolytic solution battery is composed of a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
  • the organic solvent include carbonate-based organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, and fluorine-based organic solvents obtained by fluorinating a part of the carbonate-based organic solvent such as fluoroethylene carbonate. Or a combination of two or more thereof is used. Specifically, fluoroethylene carbonate, diethyl fluorocarbonate, dimethyl fluorocarbonate or the like can be used.
  • the lithium salt CF 3 SO 3 Li, ( CF 3 SO 2) NLi, (C 2 F 5 SO 2) 2 NLi, LiClO 4, LiA1Cl 4, LiPF 6, LiAsF 6, LiSbF 6, LiCl, LiBr, LiI , LiC 4 F 9 SO 3 and the like. These may be used alone or in combination of two or more.
  • the solid-state battery according to the present embodiment may include a positive electrode, the present negative electrode, and a solid electrolyte layer provided between the positive electrode and the negative electrode. That is, the present active material can be used as a negative electrode active material included in the negative electrode. In other words, the active material can be used in a solid state battery. More specifically, it can be used for a lithium all-solid-state battery.
  • the lithium all-solid-state battery may be a primary battery or a secondary battery, but among them, it is preferably used for the lithium secondary battery. Examples of the shape of the present solid state battery include a laminate type, a cylindrical type and a square type.
  • the solid electrolyte layer is, for example, a method of dropping a slurry containing a solid electrolyte, a binder and a solvent onto a substrate and scraping it off with a doctor blade, a method of cutting the substrate with the slurry and then cutting with an air knife, a screen printing method, etc. It can be manufactured by a method in which a coating film is formed by, followed by heating and drying to remove the solvent. Alternatively, the solid electrolyte powder may be press-molded and then appropriately processed to be manufactured. What was mentioned above can be used as a solid electrolyte.
  • a positive electrode active material for the positive electrode, a positive electrode active material (particulate), a binder, a conductive material, a solid electrolyte, and a solvent are mixed to prepare a positive electrode mixture, and this positive electrode mixture is applied to the surface of a current collector and dried. It can be formed by pressing and then pressing if necessary.
  • the positive electrode active material porosity
  • the conductive material for the positive electrode, the conductive material, and the powder of the solid electrolyte may be mixed, press-molded, and then appropriately processed to be manufactured.
  • the positive electrode active material those known in the art can be used without particular limitation. For example, various lithium transition metal composite oxides can be used.
  • Examples of such a substance include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiMn 1.5 Ni 0.5 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 O 2 , Li(Li x Mn 2x Co 1-3x )O 2 (where 0 ⁇ x ⁇ 1/3), LiFePO 4 , LiMn 1-z M z PO 4 ( In the formula, 0 ⁇ z ⁇ 0.1, and M is at least one metal element selected from the group consisting of Co, Ni, Fe, Mg, Zn, and Cu.) and the like.
  • Example 1 A silicon (Si) ingot and a titanium (Ti) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy.
  • a liquid rapid solidification device single roll type
  • Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
  • the obtained alloy powder was subjected to a reforming treatment by using a nanoparticle surface reforming device (product name “Simroyer”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and silicon nitride powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
  • the alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 ⁇ m to obtain an alloy powder (sample) as a negative electrode active material.
  • Si: 68 wt% and Ti: 23 wt% were found.
  • the amount of carbon (C) element was 1.2 wt %.
  • Example 2 A silicon (Si) ingot and a titanium (Ti) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy.
  • a liquid rapid solidification device single roll type
  • Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
  • the obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and zirconium oxide powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
  • the alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 ⁇ m to obtain an alloy powder (sample) as a negative electrode active material.
  • Si: 64 wt% and Ti: 25 wt% were found.
  • the amount of carbon (C) element was 0.8 wt %.
  • Example 3 A silicon (Si) ingot and a titanium (Ti) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy.
  • a liquid rapid solidification device single roll type
  • Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted by using to obtain an alloy powder.
  • the obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and zirconium oxide powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
  • the alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 ⁇ m to obtain an alloy powder (sample) as a negative electrode active material.
  • an alloy powder sample
  • it was Si: 70 wt% and Ti: 20 wt %.
  • the amount of carbon (C) element was 0.6 wt %.
  • Example 4 A silicon (Si) ingot and a titanium (Ti) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy.
  • a liquid rapid solidification device single roll type
  • Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
  • the obtained alloy powder was subjected to a reforming treatment by using a nanoparticle surface reforming device (product name “Simroyer”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and zirconium oxide were charged into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
  • the alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 ⁇ m to obtain an alloy powder (sample) as a negative electrode active material.
  • an alloy powder (sample) was Si: 76 wt% and Ti: 17 wt %.
  • the amount of carbon (C) element was 0.9 wt %.
  • Example 5 A silicon (Si) ingot, a titanium (Ti) ingot, and an aluminum (Al) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled by a liquid rapid solidification device (single roll type). After cooling, a quenched ribbon alloy was obtained. The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
  • a liquid rapid solidification device single roll type
  • the obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and zirconium oxide powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
  • the alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 ⁇ m to obtain an alloy powder (sample) as a negative electrode active material.
  • the chemical analysis of the obtained alloy powder (sample) was performed, it was Si:69 wt%, Ti:26 wt%, and Al:0.10 wt%.
  • the amount of carbon (C) element was 0.7 wt %.
  • Example 6 A silicon (Si) ingot, a titanium (Ti) ingot, a boron (B) ingot, and an aluminum (Al) ingot are mixed and melted by heating, and the molten liquid heated to 1700° C. Roll type) was used for rapid cooling to obtain a quenched ribbon alloy.
  • the obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
  • the obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and zirconium oxide powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
  • the alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 ⁇ m to obtain an alloy powder (sample) as a negative electrode active material.
  • Example 7 A silicon (Si) ingot and a titanium (Ti) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy.
  • a liquid rapid solidification device single roll type
  • Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
  • the obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and aluminum oxide powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
  • the alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 ⁇ m to obtain an alloy powder (sample) as a negative electrode active material.
  • Si: 66 wt% and Ti: 25 wt% were found.
  • the amount of carbon (C) element was 0.9 wt %.
  • Example 8 A silicon (Si) ingot and a titanium (Ti) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy.
  • a liquid rapid solidification device single roll type
  • Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
  • the obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and aluminum oxide powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
  • the alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 ⁇ m to obtain an alloy powder (sample) as a negative electrode active material.
  • an alloy powder sample
  • it was Si: 66 wt% and Ti: 24 wt %.
  • the amount of carbon (C) element was 0.9 wt %.
  • ⁇ Comparative Example 1> A silicon (Si) ingot was heated and melted, and the molten liquid heated to 1700° C. was rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched thin strip metal.
  • the obtained quenched thin strip metal is roughly crushed by using a dry ball mill, and then further dry crusher under a nitrogen atmosphere (atmosphere less than 1%, and the balance being vaporized nitrogen from liquid nitrogen (purity 99.999% or more)).
  • the particle size was adjusted using to obtain a metal powder (sample). When a chemical analysis of the obtained metal powder (sample) was performed, it was Si: 99 wt %.
  • Silicon (Si) ingot and massive titanium are mixed at an atomic ratio of 85:15 (weight ratio of 76.8:23.2) and melted using a liquid rapid solidification device (single roll type), and the molten metal is argon gas. Then, it was sprayed on a rotating copper roll and rapidly cooled to produce a Si—Ti alloy. Next, the Si—Ti alloy was pulverized for 2 hours in a planetary ball mill using a silicon nitride ball in an argon gas atmosphere to obtain an alloy powder (sample) electrode material.
  • ⁇ Reference example 1> A silicon (Si) ingot and massive titanium are mixed at an atomic ratio of 85:15, melted using a liquid rapid solidification device (single roll type), and the molten metal is sprayed with argon gas onto a rotating copper roll to quench it. , Si-Ti alloy was prepared. Next, the Si—Ti alloy was roughly pulverized using a dry ball mill to obtain an alloy powder (sample).
  • ⁇ Reference example 2> Si and Ti were charged at a ratio of 81 at% Si-19 at% Ti and were melted in an Ar atmosphere by using high frequency induction melting, and the obtained melt was obtained as an alloy particle by a gas atomizing method.
  • the D50 of the alloy particles was 29 ⁇ m.
  • Ni nickel
  • This mixed powder was subjected to mechanical alloying treatment for 30 hours using a planetary ball mill (spherical medium made of zirconia) to obtain a negative electrode material (sample).
  • composition analysis With respect to the alloy powders (samples) obtained in Examples and Comparative Examples, the content of each element was measured by inductively coupled plasma (ICP) emission spectroscopy. However, regarding oxygen, the content was measured using an oxygen/nitrogen analyzer (manufactured by LECO). Regarding carbon, the content was measured using a carbon/sulfur analyzer (manufactured by Horiba, Ltd.).
  • ICP inductively coupled plasma
  • the dispersion liquid was used as a water-soluble solvent (ion-exchanged water containing 20 vol% of ethanol added). I put it in.
  • the particle size distribution was measured using a laser diffraction particle size distribution analyzer “MT3300II” manufactured by Microtrac Bell Co., Ltd. at a flow rate of 70 mL/sec, and D 50 and D max were determined from the obtained volume-based particle size distribution chart. ..
  • the water-soluble solvent used in the measurement was passed through a 60 ⁇ m filter, the solvent refractive index was 1.33, the particle permeability condition was reflection, the measurement range was 0.021 to 2000 ⁇ m, and the measurement time was 10 seconds.
  • the obtained values were defined as the respective measured values.
  • the specific surface area (SSA) of the alloy powders (samples) obtained in Examples and Comparative Examples was measured as follows. First, 1.0 g of a sample (powder) was weighed in a glass cell (standard cell) for a fully automatic specific surface area measuring apparatus Macsorb (manufactured by Mountech Co., Ltd.) and set in an auto sampler. After replacing the inside of the glass with nitrogen gas, heat treatment was performed at 250° C. for 15 minutes in the nitrogen gas atmosphere. Then, the mixture was cooled for 4 minutes while flowing a mixed gas of nitrogen and helium. After cooling, the sample was measured by the BET single point method. A mixed gas of 30 vol% nitrogen and 70 vol% helium was used as the adsorption gas during cooling and measurement.
  • the true densities of the alloy powders (samples) obtained in Examples and Comparative Examples were measured as follows. First, the sample (powder) was put into a sample basket of 10 cm 3 until the 7th minute, and the amount of the put sample was measured. Next, the sample basket containing the sample was set in the true density measuring device BELPycno (manufactured by Mountech Co., Ltd.), the lid of the device was closed, and the measurement was started. Helium gas was used for the measurement, and the temperature of the measurement part was controlled at 25° C. ⁇ 0.1° C.
  • the mapping is performed by selecting one active material particle corresponding to D 50 , enlarging it so that more than half of the field of view is occupied by the selected active material particle, and performing measurement by designating only the area corresponding to the active material particle cross section.
  • mapping to a particle having a D 50 of 2 to 3 ⁇ m it was set to 30,000 times.
  • the integration time was 90 seconds. Note that it is important to set the integrated time so that sufficient strength can be obtained, and the integrated time described above is an example. From the mapping image, silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide, and a concentrated portion of a specific element contained in stainless steel were confirmed.
  • the concentrated portion and the portion other than the concentrated portion were measured by point analysis. It was confirmed that the strength of the element was high. This indicates that silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide, and stainless steel exist inside the active material particles.
  • silicon nitride when silicon nitride is included, the concentration part is determined by nitrogen, and when zirconium oxide is included, the concentration part is determined by zirconium.
  • zirconium oxide When zirconium oxide was contained, the zirconium content (wt %) was measured by ICP analysis, and the zirconium oxide content (wt %) was calculated by considering this zirconium as being derived from zirconium oxide. For example, in Example 1, since the nitrogen element was 2.3 wt% from the gas analysis result, when converted to silicon nitride (Si 3 N 4 ), it was 5.8 wt %. Further, in Examples 2 to 4, zirconium was 6.3 wt%, 4.7 wt%, and 0.9 wt%, respectively. Therefore, when converted to zirconium oxide, 8.5 wt%, 6.3 wt%, and 1.2 wt%.
  • the content (wt%) of aluminum was measured by ICP analysis, and the content (wt%) of aluminum oxide was calculated by considering this aluminum as derived from aluminum oxide. For example, in Examples 6 to 7, aluminum was 2.6 wt% and 2.9 wt%, respectively, so that when converted to aluminum oxide, it becomes 4.9 wt% and 5.5 wt%.
  • X-ray diffraction An X-ray diffraction pattern (also referred to as “XRD pattern”) was obtained by measurement under the following measurement condition 1 using an X-ray diffraction device (XRD, device name “Ultima IV, manufactured by Rigaku Corporation”) using CuK ⁇ 1 rays. It was
  • XRD measurement condition 1 Radiation source: CuK ⁇ (line focus), wavelength: 1.541836 ⁇ Operation axis: 2 ⁇ / ⁇ , measurement method: continuous, counting unit: cps Start angle: 15.0°, End angle: 120.0°, Number of integrations: 1 Sampling width: 0.01°, Scan speed: 1.0°/min Voltage: 40kV, Current: 40mA Divergence slit: 0.2mm, Divergence vertical restriction slit: 10mm Scattering slit: open, light receiving slit: open Offset angle: 0° Goniometer radius: 285 mm, optical system: focusing method Attachment: ASC-48 Slit: Slit for D/teX Ultra Detector: D/teX Ultra Incident Monochrome: CBO Ni-K ⁇ filter: No rotation speed: 50 rpm
  • FIG. 3 shows an XRD pattern of a silicon powder material (ex: SRM640e) which is a standard sample for X-ray diffraction manufactured by NIST.
  • FIG. 4 is a diagram in which ICDD card numbers: 00-005-0565 (chemical formula: Si) and 01-071-0187 (chemical formula: TiSi 2 ) cards are collated with the reference example 1. In this way, if you can confirm the peaks that can be assigned to each compound, use them as they are.If there is a deviation in the peak position or the number of peaks, manually re-select from the card numbers picked up as the crystal phase search results. Make a choice.
  • the reliability (Quality) of the card set in the ICDD card was used as a reference, and the peak position was confirmed by reselecting the cards in descending order of Quality (S ⁇ I ⁇ B). Note that, for example, when there is a factor such that the peak intensity is lowered as a whole, such as when the content of silicon or compound is low, among the peaks described in the ICDD card, only the peak having a relatively high intensity is observed. Care must be taken because peaks with relatively low intensity may not be observed.
  • the ICDD card number of the selected compound containing M and Si elements (M x Si y ) is read, and the region where the main peak attributed to the compound appears (for example, TiSi of ICDD card number 01-071-0187).
  • the difference between the peak intensity I B and the intensity of the background (BG) I BG is defined as the peak intensity I B of the peak B having the maximum intensity.
  • the peak intensity I B of the compound (M x Si y ) was used. Then, the ratio of the peak intensity I A of the peak A to the peak intensity I B of a peak B attributable to the compound (M x Si y), shown in Table 1.
  • the surface capacity was set to 2.8 mAh/cm 2 for evaluation.
  • the charge capacity is set to 4200 mAh/g
  • 85 wt% of the sample is contained in the negative electrode active material, so the negative electrode active material layer has a coating amount of 0.78 mg/cm 2 . If the charge capacity of the sample is lower than 4200 mAh/g, the coating amount is increased to adjust the same surface capacity.
  • the negative electrode obtained as described above was punched into a circle having a diameter of 14 mm ⁇ , and vacuum dried at 160° C. for 6 hours. Then, the electrochemical evaluation cell TOMCEL (registered trademark) was assembled in a glove box under an argon atmosphere. Metal lithium was used as the counter electrode.
  • As the electrolytic solution an electrolytic solution prepared by dissolving LiPF 6 in a carbonate-based mixed solvent so as to be 1 mol/l was used. A polypropylene porous film was used as the separator.
  • discharge profile shape was determined based on the discharge curve of the first cycle obtained above. That is, the obtained discharge curves were linearly approximated, the heights of the correlation coefficients were compared, and they were used as an index of the “discharge profile shape”. In Tables 2 and 4, the indices are shown when the numerical value of Comparative Example 3 is 100. At this time, if the potential changes continuously in the section from the initial stage of discharge to the final stage of discharge, that is, if the linearity is high, the correlation coefficient at the time of linear approximation becomes high, and there is no plateau region or the plateau region is small. Will show that.
  • a cell TOMCEL for electrochemical evaluation was prepared in the same manner as described above. After the prepared cell for electrochemical evaluation TOMCEL (registered trademark) was allowed to stand for 6 hours, it was charged with a constant current and constant potential at 0.1 C at 25° C. to 0.01 V (when the current value reached 0.01 C). Charging was completed), and constant current discharge was performed at 0.1 C to 1.0 V. This was repeated 3 cycles. The current value actually set was calculated from the content of the negative electrode active material in the negative electrode. Using the electrochemical evaluation cell TOMCEL after the initial activation as described above, a charge/discharge test was performed by the method described below to evaluate the 45° C. cycle characteristics.
  • the cell was placed in an environmental tester set so that the environmental temperature for charging/discharging the battery was 45° C., the battery was prepared for charging/discharging, and the cell was allowed to stand for 5 hours so as to reach the environmental temperature.
  • the charging/discharging range was set to 0.01V-1.0V, charging was performed at 0.1C constant current and constant potential and discharging was performed at 0.1C constant current for 1 cycle, and then 1C was performed for 98 charging/discharging cycles.
  • one charge/discharge cycle was performed at 0.1 C, and then 50 charge/discharge cycles were performed at 1 C. went.
  • the C rate was calculated based on the discharge capacity at 25° C. at the time of initial activation and the third cycle.
  • the percentage (%) of the numerical value obtained by dividing the discharge capacity at the 150th cycle by the discharge capacity at the second cycle was determined as the 45°C cycle characteristic value. It should be noted that Tables 2 and 4 are shown as indices when the numerical value of Comparative Example 3 is 100.
  • the electrode mixture powder is prepared by mixing the active material powder, the solid electrolyte powder, and the conductive agent (VGCF (registered trademark)) powder in a mortar in a mass ratio of 4.5:86.2:9.3. Uniaxial press molding was performed at 10 MPa to obtain a mixture pellet.
  • VGCF registered trademark
  • the capacity confirmation in the battery characteristic evaluation was evaluated by putting the all-solid-state battery in an environmental tester kept at 25° C. and connecting it to a charge/discharge measuring device. Since the cell capacity is 1.6 mAh, 1 C is 1.6 mA.
  • the charge/discharge of the battery was 0.1 C, and the CCCV system was charged to -0.62 V (charging was completed when the current value reached 0.01 C) to obtain the initial charge capacity.
  • the discharge was 0.1 C, and CC discharge was performed up to 0.88 V.
  • the recording interval during charging/discharging was set so that one point was recorded when either 10 seconds or 1 mV change was satisfied.
  • a sample having an initial charge capacity of more than 3000 mAh/g is shown in Table 3 as “A”, a sample “B” of 1200 mAh/g or more and 3000 mAh/g or less, and a sample “C” of less than 1200 mAh/g.
  • the materials classified into C do not have sufficient capacity because of insufficient capacity, the subsequent measurements were stopped.
  • discharge profile shape was determined based on the discharge curve obtained above. That is, the obtained discharge curves were linearly approximated, the heights of the correlation coefficients were compared, and they were used as an index of the “discharge profile shape”. In addition, in Table 3, it is shown as an index when the numerical value of Comparative Example 2 is 100. At this time, if the potential changes continuously in the section from the initial stage of discharge to the final stage of discharge, that is, if the linearity is high, the correlation coefficient in the linear approximation becomes high, indicating that there is no or small plateau. become.
  • High-rate characteristic evaluation was performed using the above-mentioned charged and discharged cells. The evaluation was carried out continuously in the environmental tester kept at 25°C. The battery capacity was calculated based on the above-mentioned charge capacity, and the C rate was determined. Next, after charging to -0.62V by the 0.1C, CCCV method (charging ends when the current value reaches 0.01C), discharging is performed to 0.88V by the 0.1C, CC method. .. The discharge capacity at this time was set to 0.1 C discharge capacity (A).
  • Cycle evaluation was performed using the cell that underwent the high rate characteristic evaluation described above. The evaluation was carried out continuously in the environmental tester kept at 25°C.
  • the initial current value is set to 5 C, and the CV method is used to perform discharge at 0.88 V (discharge is completed when the current value reaches 0.01 C). It was Next, after charging to -0.62V by the 0.1C, CCCV method (charging ends when the current value reaches 0.01C), discharging is performed to 0.88V by the 0.1C, CC method. ..
  • the discharge capacity at this time was set to 0.1 C discharge capacity (B). “0.1 C discharge capacity (B)/0.1 C discharge capacity (A) ⁇ 100” was calculated and evaluated as a cycle characteristic value.
  • the index of Comparative Example 2 is set as 100 and shown as an index.
  • silicon and the chemical formula M x Si y (where x and y satisfy 0.1 ⁇ x/y ⁇ 7.0, and M is A compound represented by one or more of semimetal elements and metal elements other than Si), and an active material comprising active material particles, the content of the Si element in the active material
  • the amount is more than 50 wt%, the content of oxygen atoms (O) is less than 30 wt%, and D 50 and D max (“D 50 ”and “D max, respectively) obtained by measurement by a laser diffraction scattering type particle size distribution measurement method are obtained.
  • D 50 of less than 4.0 .mu.m
  • D max of less than 25 [mu] m
  • the full width at half maximum of peak A appearing at 42° ⁇ 1.25° is 0.25° or more, and when observing the cross section of the active material particles, silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide
  • the cycle characteristics can be enhanced, and the plateau region in the discharge profile can be reduced or eliminated. It has been found that the high rate characteristics can be improved.
  • the charge capacity described in Table 4 was evaluated.
  • the initial charge capacity was less than 1200 mAh/g. It can be seen that this is a much smaller capacity than the charging capacity expected from the relationship between the Si amount that contributes to the storage and release of Li estimated from each weight% and the theoretical capacity of Si. It was The reason for this is not clear, but one reason is that the Si occlusion potentials of natural graphite are different.
  • the ratio Si>natural graphite and the carbon amount is 5% by mass or more, the Li absorption in the natural graphite starts in parallel before the Li absorption in the relatively large amount of Si is completed. Then, the potential drops, and it is considered that the charge end condition is likely to be satisfied, and the charge capacity decreases.

Abstract

The present invention provides a novel active material which is capable of enhancing the cycle characteristics, while being also capable of enhancing the high-rate characteristics by reducing or eliminating a plateau region in the discharge profile. An active material which is characterized by being composed of active material particles that contain silicon and a compound represented by chemical formula MxSiy (wherein x and y satisfy 0.1 ≤ x/y ≤ 7.0, and M represents one or more elements among semimetal elements and metal elements other than Si), and which is also characterized in that: the content of elemental Si is more than 50 wt%; the content of oxygen atoms (O) is less than 30 wt%; D50 is less than 4.0 μm and Dmax is less than 25 μm as determined by laser diffraction/scattering particle size distribution measurement; the full width at half maximum of peak A that is observed at 2θ = 28.42° ± 1.25° in the X-ray diffraction pattern obtained using a CuKα1 ray is 0.25° or more; and one or more substances among silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide and stainless steel are present within the active material particles.

Description

活物質Active material
 本発明は、活物質、それを用いた負極および固体電池に関する。 The present invention relates to an active material, a negative electrode using the same, and a solid-state battery.
 近年、電気自動車やスマートフォンといったアプリケーションの発達に伴い、電池の高容量化や高寿命化がさらに望まれている。現在、市販されている電池の負極は、そのほとんどが炭素材料(「グラファイト」とも称する)を負極活物質として使っているが、容量の面ではすでに理論限界に至っており、新たな負極活物質の開発が必要とされている。その有力候補の一つとして挙げられるのが、ケイ素を含有する活物質(「Si含有活物質」とも称する)である。 In recent years, with the development of applications such as electric vehicles and smartphones, there is a growing demand for higher capacity and longer life of batteries. Currently, most of the negative electrodes of commercially available batteries use a carbon material (also referred to as “graphite”) as the negative electrode active material, but in terms of capacity, the theoretical limit has already been reached, and a new negative electrode active material Development is needed. One of the promising candidates is an active material containing silicon (also referred to as “Si-containing active material”).
 Si含有活物質は、質量当たりの容量がグラファイトの5~10倍というポテンシャルを有している。しかしその反面、グラファイトと比べて電子伝導性が高くないという課題を有している。
 そこで、Si含有活物質の電子伝導性を高めるために、例えば集電体と活物質との間の電子伝導性を付与する目的で導電助剤を添加することなどが提案されている。例えば特許文献1において、ケイ素を含む核粒子の周囲をMg2Si、CoSi、NiSi等のケイ素固溶体によって被覆し、更にその表面を黒鉛やアセチレンブラック等の導電性材料で被覆することが開示されている。
The Si-containing active material has a potential that the capacity per mass is 5 to 10 times that of graphite. However, on the other hand, it has a problem that the electron conductivity is not higher than that of graphite.
Therefore, in order to increase the electron conductivity of the Si-containing active material, it has been proposed to add a conductive auxiliary agent, for example, for the purpose of imparting electron conductivity between the current collector and the active material. For example, Patent Document 1 discloses that the periphery of a core particle containing silicon is coated with a silicon solid solution such as Mg 2 Si, CoSi, or NiSi, and the surface thereof is further coated with a conductive material such as graphite or acetylene black. There is.
 Si含有活物質はまた、リチウムイオンの挿入脱離による体積変化が大きく、充放電サイクル中に膨張・収縮を繰り返すため、充放電を繰り返すにつれて導電助剤との分離が起こりやすく、結果的にサイクルの劣化やエネルギー密度の減少を引き起こし、電池性能が低下し、また、電池の安全性が低下するという課題を抱えていた。 The Si-containing active material also undergoes a large volume change due to the insertion and desorption of lithium ions, and repeats expansion and contraction during charge and discharge cycles, so separation with the conductive auxiliary agent tends to occur as charge and discharge are repeated, and as a result, cycle However, there is a problem that the battery performance is deteriorated and the safety of the battery is deteriorated by causing deterioration of the battery and a decrease in energy density.
 この課題を解消するために、例えば特許文献2は、ケイ素を含む活物質粒子に関し、平均粒径が5μm以上25μm以下の活物質粒子を開示している。活物質粒子の平均粒径を5μm以上とすることで、元々の活物質の比表面積を低減でき、これにより電解質と活物質新生面の接触面積を低減できるため、サイクル特性の向上効果及び活物質膨化の抑制効果が大きくなる旨が記載されている。 In order to solve this problem, for example, Patent Document 2 discloses active material particles containing silicon and having an average particle diameter of 5 μm or more and 25 μm or less. By setting the average particle diameter of the active material particles to 5 μm or more, the specific surface area of the original active material can be reduced, and thus the contact area between the electrolyte and the new surface of the active material can be reduced. It is described that the suppression effect of is increased.
 また、特許文献3において、リチウムの挿入脱離の効率が高い電極材料として、シリコンを主成分とする固体状態の合金の粒子からなるリチウム二次電池用の電極材料において、前記固体状態の合金の粒子は微結晶シリコンあるいは非晶質化シリコンの中に、シリコン以外の元素からなる微結晶あるいは非晶質が分散していることを特徴とするリチウム二次電池用の電極材料を開示している。 Further, in Patent Document 3, an electrode material for a lithium secondary battery, which comprises particles of a solid-state alloy containing silicon as a main component, is used as an electrode material having a high efficiency of lithium insertion/desorption. Disclosed is an electrode material for a lithium secondary battery, characterized in that particles are microcrystalline silicon or amorphized silicon, in which microcrystalline or amorphous particles composed of elements other than silicon are dispersed. ..
 さらに、特許文献4において、ケイ素、銅および酸素を主要な構成元素とするリチウム二次電池用負極活物質であって、CuSiおよびX線回折法により測定される平均結晶子径(Dx)が50nm以下のケイ素粒子を含み、XRDの測定結果から算出されるピーク強度比(CuSi/Si)が0.05から1.5であるリチウム二次電池用負極活物質を開示している。 Furthermore, in Patent Document 4, a negative electrode active material for a lithium secondary battery containing silicon, copper and oxygen as main constituent elements, wherein Cu 3 Si and an average crystallite diameter (Dx) measured by an X-ray diffraction method are used. Discloses a negative electrode active material for a lithium secondary battery, which contains silicon particles of 50 nm or less and has a peak intensity ratio (Cu 3 Si/Si) of 0.05 to 1.5 calculated from XRD measurement results. ..
特開2000-285919号公報Japanese Patent Laid-Open No. 2000-285919 特開2008-123814号公報JP, 2008-123814, A 特開2010-135336号公報JP, 2010-135336, A 特開2016-35825号公報JP, 2016-35825, A
 上記特許文献3には、シリコン中に、シリコン以外の元素からなる微結晶或いは非晶質が分散している材料、または、シリコン中に、シリコンの元素の合金が分散している材料を負極活物質として使用することが開示されている。リチウムイオンの挿入脱離に寄与するのは、負極活物質中のシリコンのみであるため、シリコンの占有割合が低下すれば、容量は低下する一方、負極活物質の膨張収縮を抑えることができ、理論的にはサイクル特性を向上させることができるはずである。
 しかしながら、例えばシリコン中に、シリコン以外の元素の合金を混合してリチウム二次電池の負極活物質として実際に使用してみると、サイクル特性を期待した程度に向上させることができないことが分かってきた。
In the above-mentioned Patent Document 3, a material in which fine crystals or amorphous materials composed of elements other than silicon are dispersed in silicon, or a material in which an alloy of silicon elements is dispersed in silicon is used as a negative electrode active material. Use as a substance is disclosed. Since only silicon in the negative electrode active material contributes to the insertion/desorption of lithium ions, if the occupancy ratio of silicon is reduced, the capacity is reduced, while the expansion and contraction of the negative electrode active material can be suppressed. Theoretically, it should be possible to improve the cycle characteristics.
However, for example, when an alloy of elements other than silicon is mixed in silicon and actually used as a negative electrode active material of a lithium secondary battery, it has been found that the cycle characteristics cannot be improved to an expected degree. It was
 また、Si含有負極活物質を、黒鉛などの炭素材料(Graphite)と組み合わせて負極活物質として使用することが検討されている。しかし、Si含有負極活物質を炭素材料と組み合わせて負極活物質として使用すると、それぞれの充放電曲線プロファイルの違いによって両者は別々に作動するため、制御し難いという課題を抱えている。
 この点について本発明者が検討したところ、炭素材料(Graphite)の放電プロファイルと比較すると、Si含有負極活物質の放電プロファイルは、そのプラトー領域が炭素材料(Graphite)の作動電位と異なるため、Si含有負極活物質を炭素材料と組み合わせて負極活物質として使用すると、充放電曲線に段部が生じ、これが制御し難い原因の一つであることが分かってきた。そのため、Si含有負極活物質の放電プロファイルにおけるプラトー領域を低減若しくは無くすことで、充放電曲線の立ち上がり部分における段部を低減若しくは無くすことができ、制御し易くなると考えることができる。
Further, it has been studied to use a Si-containing negative electrode active material as a negative electrode active material in combination with a carbon material (Graphite) such as graphite. However, when a Si-containing negative electrode active material is used as a negative electrode active material in combination with a carbon material, both of them operate separately due to the difference in their respective charge/discharge curve profiles, which makes it difficult to control.
When the present inventor examined this point, as compared with the discharge profile of the carbon material (Graphite), the discharge profile of the Si-containing negative electrode active material is different in the plateau region from the operating potential of the carbon material (Graphite). It has been found that when the contained negative electrode active material is used as a negative electrode active material in combination with a carbon material, a step portion is generated in the charge/discharge curve, which is one of the causes that are difficult to control. Therefore, it can be considered that by reducing or eliminating the plateau region in the discharge profile of the Si-containing negative electrode active material, the step portion at the rising portion of the charge/discharge curve can be reduced or eliminated, and control can be facilitated.
 さらにまた、リチウム二次電池では、急速充放電特性を求められており、ハイレート特性の改善が求められている。 Furthermore, rapid charge and discharge characteristics are required for lithium secondary batteries, and improvement of high rate characteristics is also required.
 そこで本発明は、シリコン含有活物質に関し、サイクル特性を高めることができ、しかも、放電プロファイルにおけるプラトー領域を低減若しくは無くすことができ、さらにはハイレート特性を向上することができる、新たな活物質を提供せんとするものである。特にサイクル特性をより改善することができる、新たな活物質を提供せんとするものである。 Therefore, the present invention relates to a silicon-containing active material, which has a new active material capable of enhancing the cycle characteristics, reducing or eliminating the plateau region in the discharge profile, and further improving the high rate characteristics. It is intended to be provided. In particular, it is intended to provide a new active material capable of further improving cycle characteristics.
 本発明は、シリコンと、化学式MSi(ここで、x及びyは、0.1≦x/y≦7.0を満たし、Mは、Si以外の半金属元素及び金属元素のうちの1種又は2種以上である。)で表される化合物と、を含有する活物質粒子からなり、
 活物質中のSi元素の含有量は50wt%より多く、酸素原子(O)の含有量は30wt%未満であり、
 レーザー回折散乱式粒度分布測定法により測定して得られるD50及びDmax(それぞれ「D50」「Dmax」と称する)に関し、D50が4.0μm未満であり、Dmaxが25μm未満であり、
 CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=28.42°±1.25°に出現するピークAの半値全幅が0.25°以上であり、
 酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、タングステンカーバイド及びステンレス鋼のいずれか一種又は二種以上が、活物質粒子内部に存在することを特徴とする活物質を提案する。
The present invention relates to silicon and a chemical formula M x Si y (where x and y satisfy 0.1≦x/y≦7.0, and M is a metalloid element other than Si and a metal element). A compound represented by one or two or more types), and active material particles containing
The content of Si element in the active material is more than 50 wt%, the content of oxygen atom (O) is less than 30 wt%,
Regarding D 50 and D max (referred to as “D 50 ”and “D max ”, respectively) obtained by measurement by a laser diffraction scattering particle size distribution measurement method, D 50 is less than 4.0 μm and D max is less than 25 μm. Yes,
In the X-ray diffraction pattern measured by an X-ray diffractometer (XRD) using CuKα1 ray, the full width at half maximum of peak A appearing at 2θ=28.42°±1.25° is 0.25° or more,
We propose an active material characterized in that one or more of silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide and stainless steel are present inside the active material particles.
 本発明が提案する活物質は、負極活物質として用いることができる。また、本発明の活物質は、液系電池や固体電池等の電池に用いることができ、中でも固体電池に好適に用いることができる。特に本発明の活物質は、固体電解質として硫化物固体電解質を含む固体電池に用いられることが有利である。本発明の活物質を用いた固体電池は、サイクル特性を高めることができ、かつハイレート特性も向上することができる。特に本発明が提案する活物質は、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、タングステンカーバイド又はステンレス鋼が、粒子内部に存在する活物質粒子からなるものであるため、膨張収縮による割れの影響を低減することができ、サイクル特性をより高めることができる。
 また、本発明が提案する活物質は、放電プロファイルにおけるプラトー領域を低減若しくは無くすことができるから、単独使用において効果を発揮するだけでなく、例えば炭素材料(Graphite)と組み合わせて、電池、中でも固体電池、その中でも固体リチウム二次電池等の固体二次電池の負極活物質として好適に使用することができ、さらにはハイレート特性も向上することができる。
The active material proposed by the present invention can be used as a negative electrode active material. In addition, the active material of the present invention can be used in batteries such as liquid batteries and solid batteries, and can be preferably used in solid batteries. In particular, the active material of the present invention is advantageously used in a solid battery containing a sulfide solid electrolyte as the solid electrolyte. The solid-state battery using the active material of the present invention can have improved cycle characteristics and high rate characteristics. In particular, the active material proposed by the present invention is silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide or stainless steel, because the active material particles present inside the particles, due to expansion and contraction The effect of cracking can be reduced, and cycle characteristics can be further improved.
In addition, the active material proposed by the present invention can reduce or eliminate the plateau region in the discharge profile, so that it not only exhibits the effect when used alone, but also in combination with, for example, a carbon material (Graphite), a battery, especially a solid material. It can be suitably used as a negative electrode active material for a battery, especially a solid secondary battery such as a solid lithium secondary battery, and further, high rate characteristics can be improved.
実施例1で得られたサンプルを活物質として使用した非水電解液二次電池の放電プロファイルを示した図である。FIG. 3 is a diagram showing a discharge profile of a non-aqueous electrolyte secondary battery using the sample obtained in Example 1 as an active material. 比較例1で得られたサンプルを活物質として使用した非水電解液二次電池の放電プロファイルを示した図である。FIG. 5 is a diagram showing a discharge profile of a non-aqueous electrolyte secondary battery using the sample obtained in Comparative Example 1 as an active material. NIST製のX線回折用標準試料であるシリコン粉末材料の回折パターン図である。It is a diffraction pattern figure of the silicon powder material which is a standard sample for X-ray diffraction made from NIST. 参考例1で得られたサンプルの回折パターン、ICDDカード番号:00-005-0565(化学式:Si)と01-071-0187(化学式:TiSi2)のカードを比較、照合している図である。FIG. 7 is a diagram comparing and comparing the diffraction patterns of the sample obtained in Reference Example 1, ICDD card numbers: 00-005-0565 (chemical formula: Si) and 01-071-0187 (chemical formula: TiSi 2 ) cards. .. 本願活物質粒子(実施例2)の断面を図示したものである。1 is a diagram showing a cross section of an active material particle of the present invention (Example 2).
 次に、実施形態の一例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態の一例に限定されるものではない。 Next, the present invention will be described based on an example of the embodiment. However, the present invention is not limited to the example of the embodiment described below.
 <本活物質>
 本実施形態の一例に係る活物質(以下「本活物質」と称する)は、シリコンと、化学式MxSiy(ここで、x及びyは、0.1≦x/y≦7.0を満たし、Mは、Si以外の半金属元素及び金属元素のうちの1種又は2種以上である。)で表される化合物と、を含有する活物質粒子(以下「本活物質粒子」と称する)からなる活物質であり、当該活物質粒子の集合体である。
<Active material>
An active material according to an example of the present embodiment (hereinafter referred to as “main active material”) includes silicon and a chemical formula MxSiy (where x and y satisfy 0.1≦x/y≦7.0, M Is a compound represented by one or more of metalloid elements other than Si and metal elements), and active material particles containing the compound (hereinafter referred to as “main active material particles”). The active material is an aggregate of the active material particles.
 (シリコン)
 本活物質粒子において、シリコンは、リチウムイオンの挿入及び脱離をすることができるSiの意味でもある。すなわち、本活物質粒子は、シリコンを含むことにより、本活物質粒子としての機能を有する。
 ここで、シリコンは、主に純シリコンを指すが、Siに固溶する元素を含有して、Si固溶体を形成していてもよい。この場合、Si固溶体が活物質としての機能を有していてもよい。
(silicon)
In the active material particles, silicon also means Si capable of inserting and releasing lithium ions. That is, the main active material particles have a function as main active material particles by containing silicon.
Here, silicon mainly refers to pure silicon, but may contain an element that forms a solid solution with Si to form a Si solid solution. In this case, the Si solid solution may have a function as an active material.
 本活物質におけるシリコンの割合は、本活物質の30wt%以上であるのが好ましく、中でも40wt%以上、その中でも50wt%以上であるのがより好ましい。
 なお、本活物質において、シリコンの割合が充放電容量に影響して充放電容量を大きくするためには、シリコンが本活物質の主成分であることが好ましく、このような観点から、本活物質におけるシリコンの割合は、中でも50wt%より多いことが好ましく、特に60wt%以上であることが好ましい。
The proportion of silicon in the main active material is preferably 30 wt% or more of the main active material, more preferably 40 wt% or more, and even more preferably 50 wt% or more.
In the active material, silicon is preferably the main component of the active material in order for the proportion of silicon to affect the charge/discharge capacity and increase the charge/discharge capacity. Above all, the proportion of silicon in the substance is preferably more than 50 wt %, and particularly preferably 60 wt% or more.
 (化学式MSi
 本活物質粒子は、化学式MSi(ここで、x及びyは、0.1≦x/y≦7.0を満たし、Mは、Si以外の半金属元素及び金属元素のうちの1種又は2種以上である。)で表される化合物を含有する。
 本活物質粒子は、MSiで表される化合物を含有することで、サイクル特性をより一層高めることができ、しかも、放電プロファイルにおけるプラトー領域を低減若しくは無くすことができ、さらにはハイレート特性を向上することができる。
(Chemical formula M x Si y )
The active material particles have a chemical formula M x Si y (where x and y satisfy 0.1≦x/y≦7.0, and M is one of metalloid elements other than Si and metal elements). Or a compound represented by two or more kinds).
By containing the compound represented by M x Si y , the present active material particles can further improve the cycle characteristics, and can further reduce or eliminate the plateau region in the discharge profile, and further have high rate characteristics. Can be improved.
 化学式MSi(0.1≦x/y≦7.0)で表される化合物は、いわゆるシリサイドと称される。
 化学式MSiの「M」とは、Si以外の半金属元素及び金属元素のうちの1種又は2種以上である。すなわち、Mは、Si以外の、半金属元素であってもよく、金属元素であってもよく、半金属元素及び金属元素の中の2種以上の組合せであってもよい。
 当該半金属元素及び金属元素としては、例えばB、Ti、V、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Ta及びW等の元素を挙げることができ、中でもB、Ti、Mn、Fe、Co、Ni、Y、Zr、Nb、Mo、Ta及びWが好ましい。さらにその中でもB、Ti、Mn、Fe、Co、Niが好ましく、その中でも特に、B、Ti、Mn、Feが好ましい。
The compound represented by the chemical formula M x Si y (0.1≦x/y≦7.0) is called so-called silicide.
“M” in the chemical formula M x Si y is one or more of metalloid elements and metal elements other than Si. That is, M may be a metalloid element other than Si, a metal element, or a combination of two or more of metalloid elements and metal elements.
Examples of the metalloid element and the metal element include elements such as B, Ti, V, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Ta, and W, and among them, B, Ti, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Ta and W are preferable. Further, among them, B, Ti, Mn, Fe, Co and Ni are preferable, and among them, B, Ti, Mn and Fe are particularly preferable.
 化学式MSiにおける「x/y」は、0.1以上7.0以下であるのが好ましく、中でも0.2以上或いは4.0以下、その中でも0.3以上或いは3.0以下、その中でも0.4以上或いは2.0以下であるのがさらに好ましい。
 また、化学式MSiにおける「x」は、0.5以上15以下であるのが好ましく、中でも0.75以上或いは13以下、その中でも1以上或いは11以下であるのがさらに好ましい。
 他方、「y」は、0.5以上27以下であるのが好ましく、中でも0.75以上或いは23以下、その中でも1以上或いは19以下であるのがさらに好ましい。
“X/y” in the chemical formula M x Si y is preferably 0.1 or more and 7.0 or less, particularly 0.2 or more or 4.0 or less, and among them 0.3 or more or 3.0 or less, Among them, 0.4 or more or 2.0 or less is more preferable.
Further, “x” in the chemical formula M x Si y is preferably 0.5 or more and 15 or less, more preferably 0.75 or more or 13 or less, and further preferably 1 or more or 11 or less.
On the other hand, “y” is preferably 0.5 or more and 27 or less, more preferably 0.75 or more or 23 or less, and even more preferably 1 or more or 19 or less.
 上記シリサイドの具体例としては、チタンシリサイド(TiSi、TiSi、TiSi、TiSi)、コバルトシリサイド(CoSi2、CoSi、CoSi、CoSi、CoSi)、ニッケルシリサイド(NiSi2、NiSi、NiSi、NiSi、NiSi、NiSi)、マンガンシリサイド(Mn11Si19、MnSi、MnSi、MnSi、MnSi)、鉄シリサイド(FeSi、FeSi、FeSi、FeSi)、ニオブシリサイド(NbSi、NbSi、NbSi)、銅シリサイド(CuSi、CuSi、CuSi)、ホウ素シリサイド(BSi、BSi)ジルコニウムシリサイド(ZrSi、ZrSi、ZrSi、ZrSi、ZrSi、ZrSi、ZrSi)、バナジウムシリサイド(VSi、VSi、VSi、VSi)、タングステンシリサイド(WSi、WSi)、タンタルシリサイド(TaSi、TaSi、TaSi、TaSi)、イットリウムシリサイド(YSi、YSi、YSi、YSi)等を挙げることができる。但し、これらに限定するものではない。 Specific examples of the silicide include titanium silicide (TiSi 2 , TiSi, Ti 5 Si 4 , Ti 5 Si 3 ), cobalt silicide (CoSi 2 , CoSi, CoSi, Co 2 Si, Co 3 Si), nickel silicide (NiSi). 2 , NiSi, Ni 3 Si 2 , Ni 2 Si, Ni 5 Si 2 , Ni 3 Si), manganese silicide (Mn 11 Si 19 , MnSi, Mn 5 Si 3 , Mn 5 Si 2 , Mn 3 Si), iron silicide (FeSi 3 , FeSi, Fe 5 Si 3 , Fe 3 Si), niobium silicide (NbSi 2 , Nb 5 Si 3 , Nb 3 Si), copper silicide (Cu 3 Si, Cu 6 Si, Cu 7 Si), boron silicide (B 3 Si, B 6 Si) Zirconium silicide (ZrSi 2 , ZrSi, Zr 5 Si 4 , Zr 3 Si 2 , Zr 5 Si 3 , Zr 2 Si, Zr 4 Si), vanadium silicide (VSi 2 , V 6 Si) 5 , V 5 Si 3 , V 3 Si), tungsten silicide (WSi 2 , W 5 Si 3 ), tantalum silicide (TaSi 2 , Ta 5 Si 3 , Ta 2 Si, Ta 3 Si), yttrium silicide (Y 3 Si) 5 , YSi, Y 5 Si 4 , Y 5 Si 3 ) and the like. However, it is not limited to these.
 (化合物A)
 本活物質粒子は、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、タングステンカーバイド及びステンレス鋼のいずれか一種又は二種以上の化合物(「化合物A」とも称する)を含有し、且つ、当該化合物は本活物質粒子内部に存在するものである。
 このような化合物Aが本活物質粒子の粒子内部に存在することにより、本活物質を、例えば二次電池の活物質として使用して充放電を繰り返した際、本活物質粒子が膨張収縮を繰り返すことによる割れの影響を低減することができ、サイクル特性をより高めることができる。
(Compound A)
The active material particles contain one or more compounds (also referred to as “compound A”) of silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide and stainless steel, and The compound is present inside the active material particles.
Since such a compound A exists inside the particles of the present active material particles, when the present active material is used as, for example, an active material of a secondary battery and charging and discharging are repeated, the present active material particles expand and contract. The effect of cracking due to repetition can be reduced, and cycle characteristics can be further improved.
 なお、前記化合物Aが本活物質粒子内部に存在するか否かは、活物質粒子断面を観察して判定することができる。また、実施例において後述するように、電極断面における活物質粒子断面を、電界放出形走査電子顕微鏡(FE-SEM)とエネルギー分散型X線分析 (EDS)を用いて、観察することにより判定することができる。 Note that whether or not the compound A exists inside the active material particles can be determined by observing the cross section of the active material particles. In addition, as described later in Examples, it is determined by observing the cross section of the active material particles in the electrode cross section using a field emission scanning electron microscope (FE-SEM) and energy dispersive X-ray analysis (EDS). be able to.
 本活物質粒子内部に存在する上記化合物Aの含有量(二種類以上含有する場合は、それらの合計含有量)は、本活物質に対して0wt%より大きく、15wt%未満が好ましい。中でも、0.001wt%より大きいのがさらに好ましく、その中でも0.01wt%より大きく、その中でも0.10wt%より大きいのがさらに好ましい。他方、中でも9wt%未満であるのがさらに好ましく、その中でも7wt%未満、さらにその中でも2wt%未満、特に1wt%未満であるのがさらに好ましい。 The content of the above compound A present inside the particles of the active material (when two or more kinds are contained, the total content thereof) is more than 0 wt% and preferably less than 15 wt% with respect to the active material. Above all, more than 0.001 wt% is more preferable, above 0.01 wt% is more preferable, and above 0.10 wt% is still more preferable. On the other hand, it is more preferably less than 9 wt%, more preferably less than 7 wt%, still more preferably less than 2 wt%, especially less than 1 wt%.
 上記化合物Aの含有量は、ガス分析やICP分析の結果を元に算出できる。例えば、窒化ケイ素を含む場合は、ガス分析により、窒素元素の含有量(wt%)を測定し、この窒素を窒化ケイ素由来のものとして考えて、窒化ケイ素の含有量(wt%)を算出することができる。また、酸化ジルコニウムを含む場合は、ICP分析により、ジルコニウムの含有量(wt%)を測定し、このジルコニウムを酸化ジルコニウム由来のものとして考えて、酸化ジルコニウムの含有量(wt%)を算出することができる。 The content of compound A above can be calculated based on the results of gas analysis and ICP analysis. For example, in the case of containing silicon nitride, the content of nitrogen element (wt%) is measured by gas analysis, the nitrogen is considered to be derived from silicon nitride, and the content of silicon nitride (wt%) is calculated. be able to. When zirconium oxide is contained, the content (wt%) of zirconium should be calculated by measuring the content (wt%) of zirconium by ICP analysis and assuming that this zirconium is derived from zirconium oxide. You can
 本活物質粒子の粒子内部に化合物Aを存在させるようにするためには、後述するように化合物Aを添加するのが好ましい。但し、かかる方法に限定するものではない。 In order to allow the compound A to exist inside the particles of the active material particles, it is preferable to add the compound A as described later. However, the method is not limited to this.
 本活物質粒子は、必要に応じて「その他の成分」を含有していてもよい。
 「その他の成分」としては、例えばケイ素化合物といったケイ素含有物質を挙げることができる。ここで、当該ケイ素化合物としては、例えばSiやSiC等が挙げられる。
 また、「その他の成分」として、例えば、化学式MSiで表される化合物の構成元素としてではなく、Si以外の半金属元素及び金属元素のうちの1種又は2種以上の元素を有する金属、酸化物、炭化物及び窒化物等として含有していてもよい。具体的には、H、Li、B、C、O、N、F、Na、Mg、Al、P、K、Cu、Ca、Ga、Ge、Ag、In、Sn及びAuのうちの1種又は2種以上の元素を有する金属、酸化物、炭化物、窒化物等の化合物を挙げることができる。上記元素としては、中でも、H、Li、B、C、O、N、F、Na、Mg、Al、P、K、Ca、Ga、Ge、Ag、In、Sn及びAuのうちの1種又は2種以上の元素であることが好ましく、特に、H、Li、B、C、O、N、F、Al、P及びSnのうちの1種又は2種以上の元素であることが好ましい。この際、本活物質において、「その他成分」の含有量は、15at%未満であるのが好ましく、中でも0at%より多い或いは12at%未満、その中でも1at%より多い或いは10at%未満、さらにその中でも2at%より多い或いは7at%未満であるのが好ましい。
The active material particles may contain "other components" as necessary.
Examples of the "other components" include silicon-containing substances such as silicon compounds. Here, examples of the silicon compound include Si 3 N 4 and SiC.
Further, as the “other component”, for example, not one as a constituent element of the compound represented by the chemical formula M x Si y , but one or more elements out of a metalloid element and a metal element other than Si are included. It may be contained as a metal, an oxide, a carbide, a nitride or the like. Specifically, one of H, Li, B, C, O, N, F, Na, Mg, Al, P, K, Cu, Ca, Ga, Ge, Ag, In, Sn and Au, or Examples thereof include metals, oxides, carbides, nitrides, and other compounds having two or more elements. As the above-mentioned element, one or more of H, Li, B, C, O, N, F, Na, Mg, Al, P, K, Ca, Ga, Ge, Ag, In, Sn and Au, among others, or Two or more elements are preferable, and one or more elements selected from H, Li, B, C, O, N, F, Al, P and Sn are particularly preferable. At this time, in the present active material, the content of the “other component” is preferably less than 15 at %, more than 0 at% or less than 12 at %, among them more than 1 at% or less than 10 at %, and further among them. It is preferably more than 2 at% or less than 7 at %.
 本活物質粒子が「その他の成分」として炭素(C)元素を含むとき、その含有量は活物質量の5wt%未満、中でも4wt%未満、その中でも特に3wt%未満であるのが好ましい。本活物質中のC元素の含有量が上記上限を有することで、容量の低下を抑制することが可能となる。後述する実施例・比較例の評価において、充電容量の数値は本発明の根幹となるものであり、本発明はCを多く含む容量が低い活物質とは一線を画すものである。 When the active material particles contain a carbon (C) element as the “other component”, the content thereof is preferably less than 5 wt% of the amount of the active material, particularly less than 4 wt %, and particularly less than 3 wt %. When the content of C element in the active material has the above upper limit, it is possible to suppress the decrease in capacity. In the evaluation of Examples and Comparative Examples, which will be described later, the numerical value of the charge capacity is the basis of the present invention, and the present invention distinguishes itself from an active material containing a large amount of C and having a low capacity.
 (炭素成分種)
 本活物質が「その他の成分」として炭素(C)元素を含むとき、その炭素には、大きく分けて、有機物に由来する炭素と、無機物に該当する炭素とが包含される。
 ここで、無機物に該当する炭素として、ダイヤモンドや黒鉛などを挙げることができる。黒鉛などの整った層状構造を持つ炭素材料は、多くのLiを吸蔵するため(≧300mAh/g)、本活物質に含まれる無機物に該当する炭素としては好ましくない。本活物質に含まれる無機物に該当する炭素としては、Li吸蔵能力の低いもの(<300mAh/g)が好ましい。具体的な例としては、例えば活性炭、カーボンブラック、コークス、炭素繊維、アモルファスカーボンなどを挙げることができる。中でも活性炭、コークス、炭素繊維、アモルファスカーボンが好ましい。
 よって、本活物質に含まれる炭素成分種としては、有機物に由来する炭素、または、Li吸蔵能力の低い(<300mAh/g)無機物に該当する炭素(ex:活性炭、コークス、炭素繊維、アモルファスカーボン)が好ましい。
(Carbon component species)
When the active material contains a carbon (C) element as the “other component”, the carbon is roughly classified into carbon derived from an organic substance and carbon corresponding to an inorganic substance.
Here, examples of carbon that corresponds to the inorganic substance include diamond and graphite. A carbon material having a regular layered structure such as graphite occludes a large amount of Li (≧300 mAh/g), and is not preferable as carbon corresponding to the inorganic substance contained in the active material. As the carbon corresponding to the inorganic substance contained in the active material, one having a low Li occlusion capacity (<300 mAh/g) is preferable. Specific examples include activated carbon, carbon black, coke, carbon fiber, and amorphous carbon. Of these, activated carbon, coke, carbon fiber and amorphous carbon are preferable.
Therefore, as the carbon component species contained in the active material, carbon derived from an organic substance or carbon corresponding to an inorganic substance having a low Li storage capacity (<300 mAh/g) (ex: activated carbon, coke, carbon fiber, amorphous carbon) ) Is preferred.
 本活物質粒子は、原料由来の不回避不純物を含有していてもよい。
 但し、本活物質中の不回避不純物の含有量は、例えば2wt%未満であることが好ましく、中でも1wt%未満、その中でも0.5wt未満であることが好ましい。本活物質中の不回避不純物の含有量が上記上限を有することで、容量の低下を抑制することが可能となる。
The active material particles may contain inevitable impurities derived from the raw materials.
However, the content of unavoidable impurities in the active material is preferably, for example, less than 2 wt %, more preferably less than 1 wt %, and most preferably less than 0.5 wt. When the content of the unavoidable impurities in the active material has the above upper limit, it is possible to suppress the decrease in capacity.
 本活物質粒子は、Si元素を含むSi酸化物を含有していてもよい。上記Si酸化物としては、例えばSiO(0<a≦2)を挙げることができる。具体的には、SiO、SiO等を挙げることができる。 The active material particles may contain a Si oxide containing a Si element. Examples of the Si oxide include SiO a (0<a≦2). Specifically, SiO, SiO 2, etc. can be mentioned.
 (各成分の含有割合)
 本活物質中のSi元素の含有量は、50wt%より多いことが好ましい。中でも、52wt%より多いことが好ましく、特に60wt%より多いことが好ましく、さらに63wt%より多いことが好ましく、さらにその中でも、65wt%より多いことが好ましい。一方、本活物質中のSi元素の含有量は、例えば、98wt%未満であることが好ましく、中でも88wt%未満であることが好ましく、さらに82wt%未満であることが好ましく、さらにその中でも78wt%未満であることが好ましい。
 なお、ここでのSi元素の含有量は、本活物質中に含まれるSi元素の総量を指す。したがって、上記Si元素の含有量は、主に、シリコンに由来するSi元素、MSiで表される化合物に由来するSi元素の合計量とすることができる。
 本活物質において、Si元素の含有量が上記下限を有することで、容量の低下を抑制することができる。一方、Si元素の含有量が上記上限を有することで、活物質の膨張収縮を抑えることができ、サイクル特性を向上させることができる。
(Content ratio of each component)
The content of the Si element in the active material is preferably more than 50 wt %. Above all, it is preferably more than 52 wt %, particularly preferably more than 60 wt %, more preferably more than 63 wt %, and even more preferably more than 65 wt %. On the other hand, the content of the Si element in the active material is, for example, preferably less than 98 wt%, more preferably less than 88 wt%, further preferably less than 82 wt%, and even more preferably 78 wt%. It is preferably less than.
The content of the Si element here means the total amount of the Si element contained in the active material. Therefore, the content of the Si element can be the total amount of the Si element mainly derived from silicon and the Si element derived from the compound represented by M x Si y .
In the present active material, the content of Si element having the above lower limit can suppress the decrease in capacity. On the other hand, when the content of the Si element has the upper limit, expansion and contraction of the active material can be suppressed, and cycle characteristics can be improved.
 本活物質中の酸素(O)元素の含有量は、30wt%未満であるのが好ましい。中でも20wt%未満であることが好ましく、特に15wt%未満であることが好ましく、さらに10wt%未満であることが好ましく、さらにその中でも5wt%未満であることが好ましい。また、本活物質中の酸素(O)元素の含有量は、例えば、0wt%より多いことが好ましく、中でも0.1wt%より多いことが好ましく、特に0.2wt%より多いことが好ましく、さらにその中でも0.6wt%より多いことが好ましい。
 本活物質において、酸素(O)元素の含有量が上記上限を有することで、充放電に寄与しない酸素(O)元素の比率の上昇の抑え、容量や充放電効率の低下を抑制することができる。いわゆるSiO(一酸化ケイ素)は、ストイキ組成であれば酸素を36%程度含む物質であり、容量や充放電効率が低いため、本願発明とは異なるものである。一方、酸素(O)元素の含有量が上記下限を有することで、大気中の酸素と急激な反応を起こしにくくすることができる。
The oxygen (O) element content in the active material is preferably less than 30 wt %. Above all, it is preferably less than 20 wt%, particularly preferably less than 15 wt%, further preferably less than 10 wt%, and further preferably less than 5 wt%. Further, the content of oxygen (O) element in the active material is, for example, preferably more than 0 wt%, more preferably more than 0.1 wt%, and particularly preferably more than 0.2 wt%. Above all, it is preferably more than 0.6 wt %.
When the content of the oxygen (O) element in the present active material has the above upper limit, it is possible to suppress an increase in the ratio of the oxygen (O) element that does not contribute to charging and discharging, and suppress a decrease in capacity and charging/discharging efficiency. it can. So-called SiO (silicon monoxide) is a substance containing about 36% oxygen in the stoichiometric composition, and is different from the present invention in that it has low capacity and charge/discharge efficiency. On the other hand, when the content of the oxygen (O) element has the above lower limit, it is possible to prevent a rapid reaction with oxygen in the atmosphere.
 本活物質中のMの含有量は、38wt%未満であるのが好ましい。中でも35wt%未満であることがより好ましく、その中でも32wt%未満であることがより好ましく、特に29wt%未満であることがより好ましい。また、本活物質中のMの含有量は、2wt%より多いことが好ましく、その中でも5wt%より多いことがより好ましく、特に8wt%より多いことがより好ましく、さらに12wt%より多いことが好ましい。
 本活物質中のMの含有量が上記下限を有することで、活物質の膨張収縮を抑えることができ、サイクル特性を向上させることが可能となる。一方、本活物質中のMの含有量が上記上限を有することで、容量の低下を抑制することが可能となる。
The content of M in the active material is preferably less than 38 wt %. Above all, it is more preferably less than 35% by weight, more preferably less than 32% by weight, and particularly preferably less than 29% by weight. In addition, the content of M in the active material is preferably more than 2 wt%, more preferably more than 5 wt%, particularly preferably more than 8 wt%, and more preferably more than 12 wt%. ..
When the content of M in the active material has the above lower limit, expansion and contraction of the active material can be suppressed, and cycle characteristics can be improved. On the other hand, when the content of M in the active material has the above upper limit, it becomes possible to suppress the decrease in capacity.
 本活物質中の、Si元素の含有量(wt%)に対する、Mの含有量(wt%)の比率(M/Si)は、例えば、0.020より大きいことが好ましく、中でも0.052より大きいことが好ましく、特に0.078より大きいことが好ましく、その中でも特に0.183より大きいことが好ましい。
 一方、Si元素の含有量に対する、Mの含有量の比率(M/Si)は、例えば、0.961未満であることが好ましく、中でも0.767未満であることが好ましく、特に0.572未満であることが好ましく、その中でも特に0.414未満であることが好ましい。
 本活物質中のSi元素の含有量に対するMの含有量の比率が上記下限を有することで、活物質の膨張収縮を抑えることができ、サイクル特性を向上させることが可能となる。一方、本活物質中のSi元素の含有量に対するMの含有量の比率が上記上限を有することで、容量の低下を抑制することが可能となる。
The ratio (M/Si) of the content (wt%) of M to the content (wt%) of the Si element in the active material is, for example, preferably greater than 0.020, and more preferably 0.052. It is preferably large, particularly preferably larger than 0.078, and particularly preferably larger than 0.183.
On the other hand, the ratio of the content of M to the content of Si element (M/Si) is, for example, preferably less than 0.961, more preferably less than 0.767, and particularly less than 0.572. Is preferable, and particularly less than 0.414 is particularly preferable.
When the ratio of the content of M to the content of Si element in the active material has the above lower limit, expansion and contraction of the active material can be suppressed, and cycle characteristics can be improved. On the other hand, when the ratio of the content of M to the content of Si element in the present active material has the above upper limit, it becomes possible to suppress the decrease in capacity.
 前記各元素の含有量は、本活物質を全溶解して、誘導結合プラズマ(ICP)発光分光分析などの化学分析によって定量される元素量である。
 他方、酸素元素含有量については、酸素・窒素分析装置(例えばLECO社製)を用いて測定することができる。なお、酸化ジルコニウムなどの酸化物を含有する場合、それらに由来した酸素が含まれる数値となる。
The content of each element is the amount of element which is quantified by chemical analysis such as inductively coupled plasma (ICP) emission spectroscopic analysis in which the active material is completely dissolved.
On the other hand, the oxygen element content can be measured using an oxygen/nitrogen analyzer (for example, manufactured by LECO). In addition, when an oxide such as zirconium oxide is contained, it is a numerical value including oxygen derived from them.
 (X線回折パターンにおける特徴1)
 本活物質は、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=28.42°±1.25°に出現するピークAの半値全幅が0.25°以上であるのが好ましい。
 2θ=28.42°±1.25°に出現するピークAは、シリコンの、空間群Fd-3mの(111)面に相当するピークである。
(Feature 1 in X-ray diffraction pattern)
In the X-ray diffraction pattern measured by an X-ray diffractometer (XRD) using CuKα1 rays, this active material has a full width at half maximum of peak A appearing at 2θ=28.42°±1.25° of 0.25. It is preferably at least °.
The peak A appearing at 2θ=28.42°±1.25° is a peak corresponding to the (111) plane of the space group Fd-3m of silicon.
 なお、2θ=28.42°±1.25°の範囲に複数のピークが存在している場合は、その中でも、2θ=28.42°に最も近い位置にあるピークをピークAとする。
 また、2θ=28.42°±1.25°の範囲にピークAが出現しているか否かの判定基準すなわちノイズとの差別化の判定基準は、実施例において後述するため、ここでの記載は省略する。
When there are a plurality of peaks in the range of 2θ=28.42°±1.25°, the peak closest to 2θ=28.42° is defined as peak A among them.
Further, the criterion for determining whether or not the peak A appears in the range of 2θ=28.42°±1.25°, that is, the criterion for differentiating from noise will be described later in the embodiment, and therefore is described here. Is omitted.
 ピークAが出現する領域は、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=28.42°±1.25°の中でも2θ=28.42°±0.63°であってもよく、その中でも2θ=28.42°±0.31°であってもよく、さらにその中でも2θ=28.42°±0.21°であってもよい。 In the X-ray diffraction pattern measured by an X-ray diffractometer (XRD) using CuKα1 rays, the region where peak A appears is 2θ=28.42°±1.25°, and 2θ=28.42°± It may be 0.63°, in which 2θ=28.42°±0.31°, and in particular 2θ=28.42°±0.21°.
 ピークAの半値全幅は、0.25°以上であることが好ましく、中でも0.50°より大きいことが好ましく、その中でも0.60°より大きいことがさらに好ましく、特に0.70°より大きいことが好ましく、さらに0.75°より大きいことが好ましい。一方、ピークAの半値全幅は、例えば、2.0°未満であることが好ましく、中でも1.5°未満であることが好ましく、特に1.2°未満であることが好ましく、さらに1.0°未満であることが好ましい。
 本活物質は、ピークAの半値全幅が上記下限を有することで、サイクル特性が向上すると共に、放電プロファイルにおけるプラトー領域を低減若しくは無くすことができ、ハイレートでの放電特性を向上することができる。一方、ピークAの半値全幅が上記上限を有することで、充放電容量や充放電効率の低下を抑制することができる。
The full width at half maximum of peak A is preferably 0.25° or more, more preferably more than 0.50°, still more preferably more than 0.60°, and particularly more than 0.70°. Is preferred, and more preferably greater than 0.75°. On the other hand, the full width at half maximum of peak A is, for example, preferably less than 2.0°, more preferably less than 1.5°, particularly preferably less than 1.2°, and further 1.0 It is preferably less than °.
Since the full width at half maximum of the peak A has the above lower limit, the present active material can improve the cycle characteristics and can reduce or eliminate the plateau region in the discharge profile, and can improve the discharge characteristics at a high rate. On the other hand, when the full width at half maximum of peak A has the above upper limit, it is possible to suppress a decrease in charge/discharge capacity or charge/discharge efficiency.
 本活物質において、ピークAの半値全幅を上記範囲に調整するには、例えば、上記Mを所定量原料に添加して溶融し、鋳造し、さらに後述するような改質処理を行うようにすればよい。但し、かかる方法に限定するものではない。 In order to adjust the full width at half maximum of peak A in the present active material to fall within the above range, for example, the above M may be added to a raw material in a predetermined amount, melted, cast, and further modified as described below. Good. However, the method is not limited to this.
 さらに、本活物質は、化学式MSiで表される化合物に帰属するピークBのピーク強度をIとし、前記ピークAのピーク強度をIとしたとき、前記Iに対する前記Iの比(I/I)は1未満であるのが好ましい。 Further, the active material, the peak intensity of the peak B attributable to the compound represented by the chemical formula M x Si y and I B, when the peak intensity of the peak A was I A, wherein for the I B I A the ratio of (I a / I B) is preferably less than 1.
 ここで、「化学式MSiで表される化合物に帰属するピークB」とは、上記化合物が存在することで出現するピークであることを意味する。
 このような「ピークB」は、前記化学式MSiで表される化合物、いわゆるシリサイドに由来するピークの中で、ピーク強度が最大であるピークを指す。
 また、MSiが複数種類存在する場合は、それぞれの化合物に由来する最大ピークのピーク強度の合計値を「ピークB」の強度として取り扱うこととする。
Here, the “peak B belonging to the compound represented by the chemical formula M x Si y ” means a peak that appears when the above compound is present.
Such “peak B” refers to the peak having the maximum peak intensity among the peaks derived from the compound represented by the chemical formula M x Si y , so-called silicide.
Further, when there are a plurality of types of M x Si y, the total value of the peak intensities of the maximum peaks derived from each compound is treated as the intensity of “peak B”.
 CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、ピークBが出現する領域は、化学式MSiで表される化合物の種類に応じて異なる。具体例として、TiSiとMn11Si19の場合を記載する。TiSi(ICDDカード番号:01-071-0187)の場合は、2θ=39.11°に最大ピークを有し、Mn11Si19(ICDDカード番号:03-065-2862)の場合は、2θ=42.00°に最大ピークを有することがわかっている。ただし、これらのピーク位置はシフトする可能性があるため、回折パターン全体を見て、それぞれのピーク位置をベースに±1.25°の範囲を確認するのが好ましい。
 なお、ピークBが出現しているか否かの判断基準については、ピークAと同様であり、その詳細については実施例において後述するため、ここでの記載は省略する。
In the X-ray diffraction pattern measured by an X-ray diffractometer (XRD) using CuKα1 ray, the region where the peak B appears differs depending on the type of the compound represented by the chemical formula M x Si y . As a specific example, the case of TiSi 2 and Mn 11 Si 19 will be described. TiSi 2 (ICDD card number: 01-071-0187) has a maximum peak at 2θ=39.11°, and Mn 11 Si 19 (ICDD card number: 03-065-2862) has 2θ. It is known to have a maximum peak at =42.00°. However, since these peak positions may shift, it is preferable to confirm the range of ±1.25° based on each peak position by looking at the entire diffraction pattern.
The criteria for determining whether or not the peak B has appeared is the same as that for the peak A, and the details thereof will be described later in Examples, so description thereof will be omitted here.
 本活物質において、前記Iに対する前記Iの比(I/I)は、例えば、0.90未満であることがより好ましく、中でも0.80未満であることが好ましく、特に0.72未満であることが好ましく、さらに0.40未満であることが好ましい。
 また、充放電効率の低下を抑制するためには、前記Iに対する前記Iの比(I/I)は0.01より大きいことが好ましく、中でも0.05より大きいことが好ましく、特に0.10より大きいことが好ましい。
 本活物質は、前記Iに対する前記Iの比(I/I)が上記上限を有することで、放電プロファイルにおけるプラトー領域をより一層確実に低減若しくは無くすことができる。
In this active material, the ratio of the I A with respect to the I B (I A / I B ) , for example, more preferably less than 0.90, is preferably Among them less than 0.80, especially 0. It is preferably less than 72, more preferably less than 0.40.
In order to suppress the reduction in the charge-discharge efficiency, the I A ratio (I A / I B) for the I B is preferably greater than preferably greater than 0.01, among others 0.05, It is particularly preferable that it is greater than 0.10.
This active material, said that the ratio of the I A for I B (I A / I B ) has the above upper limit can be reduced or eliminated the plateau region more reliably in the discharge profile.
 本活物質において、前記Iに対する前記Iの比(I/I)を上記範囲に調整するには、例えば、上記Mを所定量原料に添加して溶融し、鋳造し、さらに後述するような改質処理を行うようにすればよい。但し、かかる方法に限定するものではない。 In the active material, to adjust the ratio of the I A with respect to the I B and (I A / I B) in the above range, for example, to melt and adding the M by a predetermined amount starting material, cast, described further below It suffices to carry out such a modification treatment. However, the method is not limited to this.
 (X線回折パターンにおける特徴2)
 本活物質は、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、前記ピークAのピーク強度Iは、例えば20000cps未満であることが好ましく、中でも7000cps未満であることが好ましく、特に4000cps未満であることが好ましく、さらに3000cps未満であることが好ましく、さらにその中でも2000cps未満であることが好ましい。一方、ピークAのピーク強度Iは、例えば100cpsより大きいことが好ましく、中でも200cpsより大きいことが好ましく、特に400cpsより大きいことが好ましい。
 ピーク強度Iが上記上限を有することで、放電プロファイルにおけるプラトー領域を低減若しくは無くすことができる。一方、ピーク強度Iが上記下限を有することで、充放電効率の低下を抑制することができる。
 本活物質において、ピークAのピーク強度Iを上記範囲に調整するには、例えば、上記Mを所定量原料に添加して溶融し、鋳造し、さらに後述するような改質処理を行うようにすればよい。但し、かかる方法に限定するものではない。
(Feature 2 in X-ray diffraction pattern)
In the X-ray diffraction pattern measured by an X-ray diffractometer (XRD) using CuKα1 ray, the active material preferably has a peak intensity I A of the peak A of, for example, less than 20,000 cps, and particularly less than 7,000 cps. It is preferable that it is, particularly preferably less than 4000 cps, more preferably less than 3000 cps, and even more preferably less than 2000 cps. On the other hand, the peak intensity I A of the peak A is preferably, for example, more than 100 cps, more preferably more than 200 cps, and particularly preferably more than 400 cps.
When the peak intensity I A has the upper limit, the plateau region in the discharge profile can be reduced or eliminated. On the other hand, when the peak intensity I A has the above lower limit, it is possible to suppress a decrease in charge/discharge efficiency.
In the active material, in order to adjust the peak intensity I A of the peak A within the above range, for example, a predetermined amount of the above M is added to the raw material, melted, cast, and further modified as described below. You can do this. However, the method is not limited to this.
 ところで、前記特許文献4において、シリコンのピークとシリサイドのピーク強度を比較し、シリサイドのピーク強度が高いものも開示されている。しかし、そのいずれも、シリサイドの量が、シリコンに対して比較的多く含まれているものであるため、負極活物質として得られる容量の点で劣るものであった。これに対し、本活物質は、シリサイドの量が一定以下、すなわち充放電に寄与できるシリコン量が多いものであるから、負極活物質として得られる容量が比較的高く、しかも、シリコンのピーク強度がシリサイドのピーク強度よりも低いものであるという特徴を有している。 By the way, in Patent Document 4, the peak intensity of silicon and the peak intensity of silicide are compared with each other, and the one having high peak intensity of silicide is disclosed. However, in each case, since the amount of silicide is relatively large relative to that of silicon, the capacity obtained as the negative electrode active material is inferior. On the other hand, in the present active material, since the amount of silicide is less than a certain amount, that is, the amount of silicon that can contribute to charge and discharge is large, the capacity obtained as the negative electrode active material is relatively high, and the peak intensity of silicon is It has a characteristic that it is lower than the peak intensity of silicide.
 (D50・Dmax
 本活物質のD50、すなわちレーザー回折散乱式粒度分布測定法により測定して得られる体積粒度分布測定によるD50は4.0μm未満であるのが好ましく、中でも3.9μm未満であることがより好ましく、特に3.4μm未満であることが好ましく、さらに3.2μm未満であることが好ましく、さらにその中でも3.0μm未満であることが好ましく、さらにまた2.8μm未満であることが好ましい。さらに、2.5μm未満であることが好ましい。一方、本活物質のD50は、0.01μmより大きいことが好ましく、中でも0.05μmより大きいことが好ましく、特に0.1μmより大きいことが好ましく、さらにその中でも0.5μmより大きいことが好ましく、さらにまた1.0μmより大きいことが好ましい。
 なお、本測定方法によるD50とは、50%体積累積粒径、すなわち体積基準粒度分布のチャートにおいて体積換算した粒径測定値の累積百分率表記の細かい方から累積50%の径を意味する。
 本活物質のD50は、上記上限を有することで、膨張・収縮の影響を小さくでき、固体電池電極中における固体電解質との接点が確保できる。一方、本活物質のD50は、上記下限を有することで、比表面積が大きくなることによる固体電解質との接点数の増加を抑制し、接触抵抗の上昇を抑えることができる。
 本活物質のD50は、解砕条件や粉砕条件を変えることにより調整することができる。但し、これらの調整方法に限定されるものではない。
(D 50 · D max)
D 50 of the active material, i.e. D 50 according to the volume particle size distribution measurement obtained by the measurement by a laser diffraction scattering particle size distribution measurement method is preferably less than 4.0 .mu.m, and more to be among them less than 3.9μm It is particularly preferably less than 3.4 μm, more preferably less than 3.2 μm, still more preferably less than 3.0 μm, still more preferably less than 2.8 μm. Further, it is preferably less than 2.5 μm. On the other hand, the D 50 of the active material is preferably larger than 0.01 μm, more preferably larger than 0.05 μm, particularly preferably larger than 0.1 μm, and further preferably larger than 0.5 μm. Furthermore, it is preferable that it is larger than 1.0 μm.
The D 50 according to this measuring method means a 50% volume cumulative particle diameter, that is, a cumulative 50% diameter from the finer of the cumulative percentage notation of the volume-converted particle diameter measured value in the volume-based particle size distribution chart.
When the D 50 of the present active material has the above upper limit, the influence of expansion and contraction can be reduced, and the contact with the solid electrolyte in the solid battery electrode can be secured. On the other hand, when the D 50 of the present active material has the above lower limit, an increase in the number of contacts with the solid electrolyte due to an increase in the specific surface area can be suppressed, and an increase in contact resistance can be suppressed.
The D 50 of the present active material can be adjusted by changing the crushing condition and the crushing condition. However, the adjustment method is not limited to these.
 本活物質のDmax、すなわちレーザー回折散乱式粒度分布測定法により測定して得られる体積粒度分布測定によるDmaxは25μm未満であるのが好ましく、中でも20μm未満であることがより好ましく、特に15μm未満であることが好ましく、さらに10μm未満であることが好ましい。一方、本活物質のDmaxは、例えば、0.5μmより大きいことが好ましく、中でも1.0μmより大きいことが好ましく、その中でも特に3.0μmより大きいことが好ましく、さらにその中でも5.0μmより大きいことが好ましい。
 その測定方法によるDmaxとは、100%体積累積粒径、すなわち体積基準粒度分布のチャートにおいて体積換算した粒径測定値の累積百分率表記の累積100%の径を意味する。
 本活物質のDmaxは、上記上限を有することで、固体電池電極中における固体電解質との間に隙間が生じることや、セパレータ層を突き破るリスクを低減できる。
D max, i.e. D max by volume particle size distribution measurement obtained by measuring by a laser diffraction scattering particle size distribution measuring method of the present active material is preferably less than 25 [mu] m, more preferably among them less than 20 [mu] m, in particular 15μm It is preferably less than 10 μm, and more preferably less than 10 μm. On the other hand, D max of the present active material is, for example, preferably larger than 0.5 μm, more preferably larger than 1.0 μm, particularly preferably larger than 3.0 μm, and further preferably 5.0 μm. It is preferably large.
The D max according to the measuring method means 100% volume cumulative particle diameter, that is, the cumulative 100% diameter in terms of cumulative percentage of the particle diameter measurement value converted into volume in the volume-based particle size distribution chart.
When the D max of the present active material has the above upper limit, it is possible to reduce a risk that a gap is formed between the active material and the solid electrolyte in the solid battery electrode, and the risk of breaking through the separator layer.
 (粒子形状)
 本活物質の粒子形状は、特に限定されるものではない。例えば球状、多面体状、紡錘状、板状、鱗片状若しくは不定形又はそれらの組み合わせを用いることができる。例えばガスアトマイズ法によれば球状となり、ジェットミルなどにより粉砕すると、粒界に沿って粒子が割れるために不定形状になることが確認されている。
(Particle shape)
The particle shape of the active material is not particularly limited. For example, a spherical shape, a polyhedral shape, a spindle shape, a plate shape, a scaly shape, an amorphous shape, or a combination thereof can be used. For example, it has been confirmed that the particles are spherical according to the gas atomizing method, and that when they are pulverized by a jet mill or the like, the particles are broken along the grain boundaries, resulting in an irregular shape.
 (真密度)
 本活物質の真密度は、例えば2.4g/cmより大きいことが好ましく、中でも、2.5g/cmより大きいことが好ましく、特に2.7g/cmより大きいことが好ましく、さらに2.9g/cmより大きいことが好ましい。一方、本活物質の真密度は、例えば3.9g/cm未満であることが好ましく、中でも3.8g/cm未満であることが好ましく、特に3.7g/cm未満であることが好ましい。
 本活物質の真密度は上記下限を有することで、電極密度を向上させることができ、エネルギー密度を向上させることができる。一方、本活物質の真密度は上記上限を有することで、活物質中のSi元素の含有量が減少し、容量が少なくなるといった不具合の発生を抑制することができる。
 本活物質の真密度は、例えば、Mの量により調整することができる。但し、かかる方法に限定するものではない。
(True density)
The true density of the present active material is, for example, preferably more than 2.4 g/cm 3, more preferably more than 2.5 g/cm 3 , particularly preferably more than 2.7 g/cm 3 , and further 2 It is preferably larger than 0.9 g/cm 3 . On the other hand, the true density of the active material, that for example, preferably less than 3.9 g / cm 3, preferably less than Above all 3.8 g / cm 3, in particular less than 3.7 g / cm 3 preferable.
When the true density of the present active material has the above lower limit, the electrode density can be improved and the energy density can be improved. On the other hand, since the true density of the present active material has the upper limit described above, it is possible to suppress the occurrence of the problem that the content of Si element in the active material decreases and the capacity decreases.
The true density of the present active material can be adjusted by the amount of M, for example. However, the method is not limited to this.
 (比表面積)
 本活物質の比表面積(SSA)は、例えば2.0m/gより大きいことが好ましく、中でも2.5m/gより大きいことが好ましく、特に3.0m/gより大きいことが好ましく、さらに3.3m/gより大きいことが好ましい。一方、本活物質の比表面積(SSA)は、例えば140.0m/g未満であることが好ましく、中でも60.0m/g未満であることが好ましく、その中でも50.0m/g未満であることが好ましく、特に30.0m/g未満であることが好ましく、さらに10.0m/g未満であることが好ましい。
 本活物質のSSAが上記下限を有することで、表面の改質が十分になされており、電極抵抗を低下させることができる。一方、本活物質SSAが上記上限を有することで、固体電解質との接点数の増加を抑制し、接触抵抗の上昇を抑えることができる。
 本活物質のSSAは、例えば粉砕条件や改質条件により調整することができる。但し、これらの調整方法に限定されるものではない。
(Specific surface area)
The specific surface area (SSA) of the present active material is, for example, preferably larger than 2.0 m 2 /g, more preferably larger than 2.5 m 2 /g, particularly preferably larger than 3.0 m 2 /g, Further, it is preferably larger than 3.3 m 2 /g. On the other hand, the specific surface area (SSA) of the active material is, for example, preferably less than 140.0 m 2 /g, more preferably less than 60.0 m 2 /g, and most preferably less than 50.0 m 2 /g. Is preferable, and particularly preferably less than 30.0 m 2 /g, and more preferably less than 10.0 m 2 /g.
When the SSA of the present active material has the above lower limit, the surface is sufficiently modified and the electrode resistance can be reduced. On the other hand, when the active material SSA has the above upper limit, it is possible to suppress an increase in the number of contacts with the solid electrolyte and suppress an increase in contact resistance.
The SSA of the active material can be adjusted by, for example, pulverizing conditions or modifying conditions. However, the adjustment method is not limited to these.
 <本活物質の製造方法>
 本活物質は、ケイ素又はケイ素(Si)含有物質と、M又はM含有物質と、化合物Aと、必要に応じてその他の原料物質とを混合して加熱溶融して合金化し、必要に応じて解砕乃至粉砕を行い、必要に応じて分級を行った後、強力な衝撃力を利用した改質装置を用いて改質処理して得ることができる。但し、このような方法に限定されるものではない。
 ここで、上記「ケイ素又はケイ素(Si)含有物質」とは、純シリコン及びケイ素酸化物のほか、SiやSiC等のケイ素化合物などのケイ素含有物質を包含する意味である。
<Method for producing active material>
This active material is obtained by mixing silicon or a silicon (Si)-containing substance, M or an M-containing substance, compound A and, if necessary, other raw material, heating and melting to alloy them, and if necessary, It can be obtained by crushing or crushing, classifying if necessary, and then reforming using a reformer utilizing a strong impact force. However, the method is not limited to this.
Here, the above-mentioned "silicon or silicon (Si)-containing substance" is meant to include pure silicon and silicon oxide, as well as silicon-containing substances such as silicon compounds such as Si 3 N 4 and SiC.
 上記化合物Aとしては、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、タングステンカーバイド、ステンレス鋼などを挙げることができ、これらのうちに一種であっても、二種以上の組合せであってもよい。
 添加化合物Aを添加するタイミングは、上記のように、他の原料と混合するようにしてもよいし、解砕乃至粉砕工程での混合、分級工程での混合でもよく、改質処理工程時、またはそれより前段階であればよい。中でも、改質処理工程時に添加するのが好ましい。
Examples of the compound A include silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide, and stainless steel. Among these, one kind may be a combination of two or more kinds. May be.
As described above, the addition compound A may be mixed with other raw materials, may be mixed in the crushing or pulverizing step, and may be mixed in the classifying step. Alternatively, it may be in a previous stage. Above all, it is preferable to add it during the modification treatment step.
 上記合金化方法としては、公知の方法を採用することができる。例えば本活物質は、ケイ素又はケイ素(Si)含有物質と、上記M又は上記M含有物質と、必要に応じてその他の原料物質とを混合して加熱して溶融液とした後、アトマイズ法などによって合金化させてもよいし、又、前記のように溶融液とした後、ロール鋳造法により鋳造し、さらに非酸素雰囲気下で粉砕を行って合金化させてもよい。
 その他の合金化方法を採用してもよい。
As the alloying method, a known method can be adopted. For example, this active material is obtained by mixing silicon or a silicon (Si)-containing substance, the above M or the above M-containing substance, and optionally other raw materials and heating them to obtain a molten liquid, and then an atomizing method. Alternatively, the alloy may be alloyed by the above method, or may be melted as described above, cast by a roll casting method, and further pulverized in a non-oxygen atmosphere to be alloyed.
Other alloying methods may be used.
 原料を上記のように加熱して溶融液とした場合、その溶融液が冷却した際にMSiが生成することになる。但し、本発明において金属を溶融させる方法として、特開2010-135336号公報に記載されるようなアーク溶解工程を行わないことが好ましい。これは、特開2011-518943号公報の段落[0029]及び、特開2014-513197号公報の段落[0011]に記載されるとおり、アーク溶解を行うと残留大気により酸化が起こる場合があるためである。一度、原料中に大量の酸素が取り込まれてしまうと、後の工程で取り除くことは難しい。 When the raw material is heated as described above to form a molten liquid, M x Si y is generated when the molten liquid is cooled. However, as the method of melting the metal in the present invention, it is preferable not to perform the arc melting step as described in JP-A-2010-135336. This is because, as described in paragraph [0029] of Japanese Patent Application Laid-Open No. 2011-518943 and paragraph [0011] of Japanese Patent Application Laid-Open No. 2014-513197, when arc melting is performed, oxidation may occur due to residual air. Is. Once a large amount of oxygen is taken into the raw material, it is difficult to remove it in a later step.
 上記のアトマイズ法としては、例えば、国際公開WO01/081033号パンフレットの図2に記載の装置を用いて、自発核生成による沸騰を起こさせて生じる圧力波を利用して、冷却媒中に滴下した溶融金属を合金化する方法(この合金化方法を本明細書では「水蒸気爆発アトマイズ法」と称する)を採用するのが好ましい。 As the above-mentioned atomization method, for example, the apparatus shown in FIG. 2 of WO 01/081033 pamphlet is used, and the pressure wave generated by causing boiling due to spontaneous nucleation is used and dropped into the cooling medium. It is preferable to employ a method of alloying molten metal (this alloying method is referred to as "steam explosion atomizing method" in the present specification).
 上記合金化した後、必要に応じて解砕乃至粉砕を行い、必要に応じて分級を行って粒度を調整するのが好ましい。 After the above alloying, it is preferable to crush or pulverize if necessary, and classify as necessary to adjust the particle size.
 強力な衝撃力を利用した改質装置を用いて行う改質処理は、条件設定によってメカニカルミリング或いはメカニカルアロイングなどを行うことができる装置を使用する改質処理であり、本活物質の比表面積(SSA)を大きくすることができ、且つ、上述のように前記Iに対する前記Iの比(I/I)を1未満にすることができる処理である。
 なお、例えば特開2010-135336号公報に記載されるような遊星ボールミルでは、上述した装置を用いた場合に比べて、Si元素量が多く、Mの量が少ないサンプルにおける、前記Iに対する前記Iの比(I/I)を1未満にすることは困難である。また、遊星ボールミル、振動ボールミル、アトライタ、ボールミルなどで処理を行った場合、特に本願のようにシリサイドの量が少ない活物質において、より強い凝集が起こってしまうため、本発明が規定するD50やDmaxの範囲よりも大きくなってしまう。これは固体電池向けに使用する負極活物質としては不向きである。
The reforming treatment using a reforming device that uses a strong impact force is a reforming treatment that uses a device that can perform mechanical milling or mechanical alloying depending on the condition settings. (SSA) can be increased, and a process for the ratio of the I a with respect to the I B as described above and (I a / I B) may be less than 1.
Incidentally, for example, JP-A-planetary ball mill as described in 2010-135336 JP, as compared with the case of using the above apparatus, Si element content is large and in a sample the amount of M is small, the relative said I B it is difficult to the ratio of I a and (I a / I B) to less than 1. Further, when the treatment is carried out by a planetary ball mill, a vibrating ball mill, an attritor, a ball mill or the like, stronger coagulation occurs particularly in an active material having a small amount of silicide as in the present application, so that D 50 or It becomes larger than the range of D max . This is not suitable as a negative electrode active material used for solid-state batteries.
 さらに、例えば、先行文献などでは、Si粉末と、Siとシリサイド形成する元素の粉末とをボールミルに入れて反応によりシリサイドを製造する方法が提案されている。しかし、その場合、反応が不均一に起きるため、原料元素がそのまま残留するリスクが高くなるため、本発明の目的物を得るための製造方法としては不向きである。 Further, for example, in the prior art documents, there is proposed a method of producing silicide by reacting Si powder and powder of an element forming a silicide with Si in a ball mill. However, in that case, since the reaction occurs nonuniformly, the risk of the raw material element remaining as it is becomes high, and it is not suitable as a production method for obtaining the object of the present invention.
 上記改質処理としては、例えば、反応槽内に回転羽根を備えた処理装置を使用し、回転する羽根の周速を、例えば3.0m/s以上20.0m/s以下とし、反応槽内に投入する媒体として、本活物質のD50に対して例えば1500倍以上4000倍以下程度の粒径のビーズを使用して処理するのが好ましい。
 上記回転羽根の周速は、ピンミルが例えば100m/s以上130m/s以下程度であることを考慮すると、微粉砕処理する際の周速に比べると遅いと言える。かかる観点から、回転羽根の周速は例えば4.0m/s以上或いは17.0m/s以下であることが好ましく、中でも4.5m/s以上或いは15.0m/s以下、その中でも5.0m/s以上或いは12.0m/s以下であることが好ましい。なお、撹拌羽根のサイズが変わった場合も、周速を合わせることで、同等の効果を得ることができる。
As the above-mentioned reforming treatment, for example, a treatment device having a rotary blade in the reaction tank is used, and the peripheral speed of the rotating blade is set to, for example, 3.0 m/s or more and 20.0 m/s or less, It is preferable to use beads having a particle size of, for example, 1500 times or more and 4000 times or less with respect to the D 50 of the active material as a medium to be charged in the above.
Considering that the pin mill is, for example, about 100 m/s or more and 130 m/s or less, it can be said that the peripheral speed of the rotary blade is slower than the peripheral speed at the time of fine pulverization processing. From this point of view, the peripheral speed of the rotary blade is preferably, for example, 4.0 m/s or more or 17.0 m/s or less, and particularly 4.5 m/s or more or 15.0 m/s or less, of which 5.0 m /S or more or 12.0 m/s or less is preferable. Even when the size of the stirring blade is changed, the same effect can be obtained by adjusting the peripheral speeds.
 また、上記改質処理は低酸素雰囲気中で行うのが好ましく、窒素やアルゴンなどの不活性雰囲気中で行うのが好ましい。 Also, the above-mentioned reforming treatment is preferably carried out in a low oxygen atmosphere, preferably in an inert atmosphere such as nitrogen or argon.
 また、ビーズミルやボールミルなどの粉砕機において、反応槽内に投入する媒体は、その大きさの1/1000程度まで粉砕できると言われている。よって、本活物質のD50に対して例えば1500倍以上4000倍以下程度の粒径のビーズを使用するということは、粉砕よりも表面改質が優先的に行われていることになる。
 かかる観点から、反応槽内に投入する媒体の粒径は、例えば4mmφ以上10mmφ以下であることが好ましく、中でも5mmφ以上或いは8mmφ以下、その中でも6mmφ以上或いは7mmφ以下であることがさらに好ましい。
 媒体の材質としては、例えばSiO、Al、ZrO、SiC、Si、WC等を挙げることができ、中でも、Al、ZrO、SiC、Siが好ましい。
In a crusher such as a bead mill or a ball mill, it is said that the medium put into the reaction tank can be crushed to about 1/1000 of its size. Therefore, the use of beads having a particle size of, for example, 1500 times or more and 4000 times or less with respect to D 50 of the present active material means that the surface modification is performed preferentially over the pulverization.
From this viewpoint, the particle size of the medium charged into the reaction vessel is preferably 4 mmφ or more and 10 mmφ or less, more preferably 5 mmφ or more or 8 mmφ or less, and further preferably 6 mmφ or more or 7 mmφ or less.
As the material of the medium, for example SiO 2, Al 2 O 3, ZrO 2, SiC, Si 3 N 4, WC , etc. can be cited, among others, Al 2 O 3, ZrO 2 , SiC, Si 3 N 4 is preferable.
 <本活物質の用途>
 本活物質は、電池、中でも固体電池、その中でも固体リチウム二次電池等の固体二次電池の負極活物質として好適に使用することができる。例えば固体電解質として硫化物固体電解質を含む固体電池の負極活物質として好適に用いることができる。
<Use of active material>
The present active material can be preferably used as a negative electrode active material for batteries, especially solid batteries, and solid secondary batteries such as solid lithium secondary batteries. For example, it can be suitably used as a negative electrode active material of a solid battery containing a sulfide solid electrolyte as the solid electrolyte.
 <本負極>
 本実施形態に係る負極(以下「本負極」と称する)は、本活物質を含有する。
 本負極は、負極合剤により構成される部材である。
 当該負極合剤は、例えば、本活物質と、必要に応じてバインダーと、必要に応じて導電材と、必要に応じて固体電解質と、必要に応じて別の負極活物質としてのグラファイトとを含有していてもよい。また、本負極は、負極集電体上に負極合剤を塗布して形成することができる。
 本負極は、例えば固体電池に用いることができる。より具体的には、リチウム固体電池に用いることができる。リチウム固体電池は、一次電池であってもよく、二次電池であってもよいが、中でもリチウム二次電池に用いることが好ましい。
<This negative electrode>
The negative electrode according to this embodiment (hereinafter, referred to as “main negative electrode”) contains the present active material.
The present negative electrode is a member composed of a negative electrode mixture.
The negative electrode mixture includes, for example, a main active material, a binder if necessary, a conductive material if necessary, a solid electrolyte if necessary, and graphite as another negative electrode active material if necessary. It may be contained. Further, the present negative electrode can be formed by applying a negative electrode mixture on a negative electrode current collector.
The present negative electrode can be used, for example, in a solid state battery. More specifically, it can be used for a lithium solid state battery. The lithium solid state battery may be a primary battery or a secondary battery, but among them, it is preferably used for a lithium secondary battery.
 ここで、「固体電池」とは、液状物質又はゲル状物質を電解質として一切含まない固体電池のほか、少量、例えば10wt%以下の液状物質又はゲル状物質を電解質として含む固体電池も包含する。 The term “solid state battery” as used herein includes not only a solid state battery that does not contain any liquid substance or gelled substance as an electrolyte, but also a solid state battery that contains a small amount, for example, 10 wt% or less of a liquid substance or gelled substance as an electrolyte.
 (バインダー)
 バインダーは、負極に用いることができる材料であれば特に限定されない。例えば、ポリイミド、ポリアミド及びポリアミドイミド等が挙げられる。これらは単独で用いてもよく、あるいは2種以上を組み合わせてもよい(以下、これらを総称して「ポリイミド等」とも言う。)。更にこれら以外のバインダーを更に併用してもよい。
 なお、バインダーの詳細については、公知のバインダーと同じとすることができるため、ここでの記載は省略する。
(binder)
The binder is not particularly limited as long as it is a material that can be used for the negative electrode. For example, polyimide, polyamide, polyamide imide, etc. may be mentioned. These may be used alone or in combination of two or more (hereinafter, these may be collectively referred to as "polyimide or the like"). Further, a binder other than these may be used in combination.
The details of the binder can be the same as those of known binders, and thus the description thereof is omitted here.
 (導電材)
 バインダーは、負極に用いることができる材料であれば特に限定されない。例えば、金属微粉や、アセチレンブラック等の導電性炭素材料の粉末等が挙げられる。導電材として金属微粉を用いる場合には、Sn、Zn、Ag及びIn等のリチウムイオン伝導性を有する金属又はこれらの金属の合金等の微粉を用いることが好ましい。
(Conductive material)
The binder is not particularly limited as long as it is a material that can be used for the negative electrode. Examples thereof include fine metal powder and powder of conductive carbon material such as acetylene black. When metal fine powder is used as the conductive material, it is preferable to use fine powder of a metal having lithium ion conductivity such as Sn, Zn, Ag and In, or an alloy of these metals.
 (固体電解質)
 固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、窒化物固体電解質、ハロゲン化物固体電解質等が挙げられるが、中でも硫黄(S)元素を含有する硫化物固体電解質であることが好ましい。
(Solid electrolyte)
Examples of the solid electrolyte include a sulfide solid electrolyte, an oxide solid electrolyte, a nitride solid electrolyte, a halide solid electrolyte, and the like. Among them, a sulfide solid electrolyte containing a sulfur (S) element is preferable. ..
 硫化物固体電解質は、結晶性材料、ガラスセラミックス、ガラスのいずれであってもよい。例えばLiPS、Li10GeP12、Li3.25Ge0.250.75、30LiS・26B・44LiI、63LiS・36SiS・LiPO、57LiS・38SiS・5LiSi、70LiS・30P、50LiS・50GeS、Li11、Li3.250.95、Li7-xPS6-xHa(0.2<x<1.8)などで表される化合物を挙げることができる(Haは1種類以上のハロゲン元素を指す)。但し、これらに限定するものではない。
 なお、酸化物固体電解質、窒化物固体電解質及びハロゲン化物固体電解質については、公知のものと同じとすることができるため、ここでの記載は省略する。
The sulfide solid electrolyte may be any of a crystalline material, glass ceramics and glass. For example Li 3 PS 4, Li 10 GeP 2 S 12, Li 3.25 Ge 0.25 P 0.75 S 4, 30Li 2 S · 26B 2 S 3 · 44LiI, 63Li 2 S · 36SiS 2 · Li 3 PO 4 , 57Li 2 S · 38SiS 2 · 5Li 4 Si 4, 70Li 2 S · 30P 2 S 5, 50Li 2 S · 50GeS 2, Li 7 P 3 S 11, Li 3.25 P 0.95 S 4, Li 7- Examples thereof include compounds represented by x PS 6-x Ha x (0.2<x<1.8) (Ha represents one or more kinds of halogen elements). However, it is not limited to these.
The oxide solid electrolyte, the nitride solid electrolyte, and the halide solid electrolyte can be the same as known ones, and thus the description thereof is omitted here.
 (グラファイト)
 前述のとおり、負極合材中に、本活物質と、負極活物質としてのグラファイトと共存させることで、ケイ素に起因する高容量化と、グラファイトに起因する良好なサイクル特性とを両方得ることができる。
 特に本活物質は、上述のように、放電プロファイルにおけるプラトー領域が無い若しくはプラトー領域が小さいため、炭素材料(Graphite)と組み合わせて使用した際、放電プロファイルに段部ができるのを防ぐことができ、黒鉛などの炭素材料(Graphite)と組み合わせて負極活物質として使用した際に制御し易く、好適である。
(Graphite)
As described above, by coexisting the present active material and graphite as the negative electrode active material in the negative electrode mixture, it is possible to obtain both high capacity due to silicon and good cycle characteristics due to graphite. it can.
In particular, since the active material does not have a plateau region or has a small plateau region in the discharge profile as described above, when used in combination with a carbon material (Graphite), it is possible to prevent the formation of a step in the discharge profile. It is preferable because it is easy to control when used as a negative electrode active material in combination with a carbon material (Graphite) such as graphite.
 (配合組成)
 本負極において、非水電解液電池に使用する場合のバインダー・導電材の配合組成について、一例を示す。
 バインダーの含有量は、本活物質100質量部に対して1~25質量部であるのが好ましく、中でも2質量部以上或いは20質量部以下であるのがさらに好ましい。
 また、導電材を配合する場合には、導電材の含有量は、本活物質100質量部に対して1~15質量部であるのが好ましく、中でも2質量部以上或いは10質量部以下であるのがさらに好ましい。
 また、負極活物質としてグラファイトを配合する場合には、グラファイトの含有量は、本活物質とグラファイトとの混合質量比は0.5:95~50:50、特に0.5:95~20:80であるのが好ましい。
(Compound composition)
An example of the compounding composition of the binder and the conductive material when the present negative electrode is used in a non-aqueous electrolyte battery is shown.
The content of the binder is preferably 1 to 25 parts by mass with respect to 100 parts by mass of the active material, and more preferably 2 parts by mass or more or 20 parts by mass or less.
When the conductive material is mixed, the content of the conductive material is preferably 1 to 15 parts by mass, and particularly 2 parts by mass or more or 10 parts by mass or less based on 100 parts by mass of the active material. Is more preferable.
When graphite is blended as the negative electrode active material, the content of graphite is 0.5:95 to 50:50, particularly 0.5:95 to 20:50 in terms of the mixing mass ratio of the main active material and graphite. It is preferably 80.
 (本負極の製造方法)
 本負極は、例えば、上記本活物質(粒子状)と、バインダーと、導電材と、必要に応じて前述した固体電解質と、溶媒と、必要に応じて炭素材料(Graphite)などの他の材料とを混合して負極合剤を調製し、この負極合剤をCu等からなる集電体の表面に塗布して乾燥させることで形成し、その後、必要に応じてプレスして形成することができる。あるいは、上記本活物質(粒子状)と、導電材と、固体電解質の粉末と、必要に応じて炭素材料(Graphite)を混合し、プレス成形した後、適宜加工して製造することもできる。
(Method for manufacturing this negative electrode)
The present negative electrode includes, for example, the above-mentioned main active material (particulate), a binder, a conductive material, the above-mentioned solid electrolyte as necessary, a solvent, and optionally other materials such as a carbon material (Graphite). It may be formed by mixing and to prepare a negative electrode mixture, coating the negative electrode mixture on the surface of a current collector made of Cu or the like, and drying the mixture, and then pressing it as necessary. it can. Alternatively, the main active material (in the form of particles), the conductive material, the powder of the solid electrolyte, and the carbon material (Graphite), if necessary, may be mixed, press-molded, and then appropriately processed to be manufactured.
 負極合剤を集電体の表面に塗布した後の乾燥は、非酸素雰囲気、例えば窒素雰囲気下やアルゴン雰囲気下において、1時間~10時間、特に1時間~7時間乾燥を行うのが好ましい。 Drying after applying the negative electrode mixture to the surface of the current collector is preferably performed for 1 hour to 10 hours, particularly 1 hour to 7 hours in a non-oxygen atmosphere such as a nitrogen atmosphere or an argon atmosphere.
 ここで、バインダーとしてポリイミドを用いた場合の本負極の製造方法について説明する。 Here, a method for producing the present negative electrode when polyimide is used as a binder will be described.
 先ず、本活物質(粒子状)と、ポリイミドの前駆体化合物と、N-メチル-2-ピロリドン等の有機溶媒、必要に応じて、金属微粉やアセチレンブラック等の導電材や炭素材料(Graphite)などとを混合して負極合剤を調製し、この負極合剤をCu等からなる集電体の表面に塗布する。
 この際、ポリイミドの前駆体化合物としては、ポリアミック酸(ポリアミド酸)を用いることができる。
First, the main active material (particulate), a polyimide precursor compound, an organic solvent such as N-methyl-2-pyrrolidone, and if necessary, a conductive material such as fine metal powder or acetylene black or a carbon material (Graphite) And the like are mixed to prepare a negative electrode mixture, and this negative electrode mixture is applied to the surface of a current collector made of Cu or the like.
At this time, a polyamic acid (polyamic acid) can be used as the polyimide precursor compound.
 負極合剤を集電体の表面に塗布したら、塗膜を加熱して有機溶剤を揮発させるとともに、ポリイミドの前駆体化合物を重合させてポリイミドとすることができる。
 この際、当該前駆体化合物の重合条件を調整することで、活物質粒子の表面にポリイミドを面状に固着させることができ、ポリイミドからなる連結部位を介して活物質を数珠状に連結することができる。
After the negative electrode mixture is applied to the surface of the current collector, the coating film can be heated to volatilize the organic solvent, and at the same time, the polyimide precursor compound can be polymerized to obtain a polyimide.
At this time, by adjusting the polymerization conditions of the precursor compound, the polyimide can be planarly adhered to the surface of the active material particles, and the active materials can be connected in a beaded shape via the connection site made of the polyimide. You can
 前駆体化合物の重合条件として、多段階の加熱を行うことが有利であることが、本発明者らの検討の結果判明した。特に、少なくとも2段階、好適には少なくとも3段階、さらに好ましくは4段階の加熱を行うことが有利である。例えば、2段階の加熱を行う場合には、1段階目の加熱を100~150℃で行うことが好ましく、2段階目の加熱を200~400℃で行うことが好ましい。
 加熱時間に関しては、1段階目の加熱時間を2段階目の加熱時間と同じか又はそれよりも長くすることが好ましい。例えば、1段階目の加熱時間を120~300分、特に180分以上或いは240分以下に設定し、2段階目の加熱時間を30~120分、特に30~60分に設定することが好ましい。
As a result of studies conducted by the present inventors, it was found that it is advantageous to carry out multi-step heating as a polymerization condition for the precursor compound. In particular, it is advantageous to carry out heating in at least two stages, preferably at least three stages, more preferably four stages. For example, in the case of performing the two-step heating, the first-step heating is preferably performed at 100 to 150°C, and the second-step heating is preferably performed at 200 to 400°C.
Regarding the heating time, it is preferable that the heating time of the first step is the same as or longer than the heating time of the second step. For example, it is preferable to set the heating time for the first step to 120 to 300 minutes, particularly 180 minutes or more or 240 minutes or less, and the heating time for the second step to 30 to 120 minutes, especially 30 to 60 minutes.
 3段階の加熱を行う場合には、上述した2段階の加熱において、1段階目と2段階目の中間の加熱温度を採用することが好ましい。
 この中間の加熱は、150~190℃で行うことが好ましい。加熱時間は、1段階目及び2段階目の時間と同じか又は1段階目と2段階目の中間の時間とすることが好ましい。つまり、3段階の加熱を行う場合には、各段階で加熱時間を同じにするか、又は段階が進むにつれて加熱時間を短くすることが好ましい。
 さらに4段階の加熱を行う場合には、3段階目よりも高い加熱温度を採用することが好ましい。
When performing heating in three stages, it is preferable to adopt an intermediate heating temperature between the first stage and the second stage in the above-described two-stage heating.
This intermediate heating is preferably performed at 150 to 190°C. The heating time is preferably the same as the time of the first step and the second step or an intermediate time between the first step and the second step. That is, when performing heating in three stages, it is preferable that the heating time be the same in each stage, or that the heating time be shortened as the stages progress.
Further, when performing heating in four stages, it is preferable to adopt a heating temperature higher than that in the third stage.
 加熱を何段階で行うかにかかわらず、加熱は、窒素やアルゴン等の不活性雰囲気中で行うことが好ましい。
 また、加熱処理のときには、活物質層をガラス板等の押さえ部材で押さえることも好ましい。こうすることで、有機溶媒が潤沢な状態で、つまりポリアミック酸が有機溶媒中にあたかも飽和したような状態で、該ポリアミック酸を重合させることができるので、生成するポリイミドの分子鎖どうしが絡まりやすくなるからである。
Regardless of how many stages the heating is performed, the heating is preferably performed in an inert atmosphere such as nitrogen or argon.
Further, during the heat treatment, it is also preferable to press the active material layer with a pressing member such as a glass plate. By doing so, in a state where the organic solvent is abundant, that is, in a state in which the polyamic acid is saturated in the organic solvent, it is possible to polymerize the polyamic acid, so that the molecular chains of the polyimide to be produced are easily entangled. It will be.
 以上の多段階加熱を行うことで、負極合剤に含まれている有機溶媒を徐々に揮発させることができ、それによってポリイミドの前駆体化合物を十分に高分子量化させることができるとともに、活物質粒子の表面の広い範囲にわたりポリイミドを固着させることができ、活物質層中にはその厚み方向全域にわたる三次元網目状の空隙を形成することができる。 By performing the above multi-step heating, it is possible to gradually volatilize the organic solvent contained in the negative electrode mixture, thereby making it possible to sufficiently increase the molecular weight of the polyimide precursor compound, and at the same time, to make the active material. Polyimide can be fixed on a wide range of the surface of the particle, and three-dimensional mesh-like voids can be formed in the active material layer over the entire thickness direction.
 <本非水電解液電池>
 本実施形態に係る非水電解液電池(「本非水電解液電池」と称する)として、本負極と、正極と、セパレータと、非水電解液等とから構成することができる電池を挙げることができる。
<This non-aqueous electrolyte battery>
Examples of the non-aqueous electrolyte battery according to the present embodiment (hereinafter referred to as “the non-aqueous electrolyte battery”) include a battery that can be composed of the present negative electrode, a positive electrode, a separator, a non-aqueous electrolyte solution, and the like. You can
 (正極)
 本非水電解液電池における正極は、例えば集電体の少なくとも一面に正極活物質層が形成されてなるものである。正極活物質層には正極活物質が含まれている。正極活物質としては、当該技術分野において従来知られているものを特に制限なく用いることができる。例えば各種のリチウム遷移金属複合酸化物を用いることができる。そのような物質としては、例えばLiCoO2、LiNiO2、LiMnO2、LiMn24、LiCo1/3Ni1/3Mn1/32、LiCo0.5Ni0.52、LiNi0.7Co0.2Mn0.12、Li(LixMn2xCo1-3x)O2(式中、0<x<1/3である)、LiFePO4、LiMn1-zzPO4 (式中、0<z≦0.1であり、MはCo、Ni、Fe、Mg、Zn及びCuからなる群から選ばれる少なくとも1種の金属元素である。)などを挙げることができる。
(Positive electrode)
The positive electrode in the present non-aqueous electrolyte battery has, for example, a positive electrode active material layer formed on at least one surface of a current collector. The positive electrode active material layer contains a positive electrode active material. As the positive electrode active material, those known in the art can be used without particular limitation. For example, various lithium transition metal composite oxides can be used. Examples of such substances include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1. O 2 , Li(Li x Mn 2x Co 1-3x )O 2 (in the formula, 0<x<1/3), LiFePO 4 , LiMn 1-z M z PO 4 (in the formula, 0<z≦ 0.1, and M is at least one metal element selected from the group consisting of Co, Ni, Fe, Mg, Zn, and Cu).
 (セパレータ)
 本非水電解液電池において、本負極及び正極とともに用いられるセパレータとしては、合成樹脂製不織布、ポリエチレンやポリプロピレン等のポリオレフィン、又はポリテトラフルオロエチレンの多孔質フィルム等が好ましく用いられる。
(Separator)
In the present non-aqueous electrolyte battery, as the separator used together with the present negative electrode and the positive electrode, a synthetic resin non-woven fabric, a polyolefin such as polyethylene or polypropylene, or a porous film of polytetrafluoroethylene is preferably used.
 (非水電解液)
 本非水電解液電池における非水電解液は、支持電解質であるリチウム塩を有機溶媒に溶解した溶液からなる。有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等のカーボネート系有機溶媒、フルオロエチレンカーボネート等の前記カーボネート系有機溶媒の一部をフッ素化したフッ素系有機溶媒等の1種又は2種以上の組み合わせが用いられる。具体的には、フルオロエチレンカーボネート、ジエチルフルオロカーボネート、ジメチルフルオロカーボネート等を用いることができる。
 リチウム塩としては、CF3SO3Li、(CF3SO2)NLi、(C25SO22NLi、LiClO4、LiA1Cl4、LiPF6、LiAsF6、LiSbF6、LiCl、LiBr、LiI、LiC49SO3等を例示することができる。これらは単独で又は2種以上を組み合わせて用いることができる。
(Non-aqueous electrolyte)
The non-aqueous electrolytic solution in the present non-aqueous electrolytic solution battery is composed of a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent. Examples of the organic solvent include carbonate-based organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, and fluorine-based organic solvents obtained by fluorinating a part of the carbonate-based organic solvent such as fluoroethylene carbonate. Or a combination of two or more thereof is used. Specifically, fluoroethylene carbonate, diethyl fluorocarbonate, dimethyl fluorocarbonate or the like can be used.
The lithium salt, CF 3 SO 3 Li, ( CF 3 SO 2) NLi, (C 2 F 5 SO 2) 2 NLi, LiClO 4, LiA1Cl 4, LiPF 6, LiAsF 6, LiSbF 6, LiCl, LiBr, LiI , LiC 4 F 9 SO 3 and the like. These may be used alone or in combination of two or more.
 <本固体電池>
 本実施形態に係る固体電池(「本固体電池」と称する)は、正極と、前記本負極と、当該正極および負極の間に設けられた固体電解質層とを有するものを挙げることができる。すなわち、本活物質は、負極に含まれる負極活物質として使用することができる。換言すると、本活物質は、固体電池に用いることができる。より具体的には、リチウム全固体電池に用いることができる。リチウム全固体電池は、一次電池であってもよく、二次電池であってもよいが、中でもリチウム二次電池に用いることが好ましい。
 本固体電池の形状としては、例えば、ラミネート型、円筒型及び角型等が挙げられる。
<This solid battery>
The solid-state battery according to the present embodiment (referred to as “present solid-state battery”) may include a positive electrode, the present negative electrode, and a solid electrolyte layer provided between the positive electrode and the negative electrode. That is, the present active material can be used as a negative electrode active material included in the negative electrode. In other words, the active material can be used in a solid state battery. More specifically, it can be used for a lithium all-solid-state battery. The lithium all-solid-state battery may be a primary battery or a secondary battery, but among them, it is preferably used for the lithium secondary battery.
Examples of the shape of the present solid state battery include a laminate type, a cylindrical type and a square type.
 (固体電解質層)
 前記固体電解質層は、例えば、固体電解質、バインダー及び溶剤を含むスラリーを基体上に滴下し、ドクターブレードなどで擦り切る方法、基体とスラリーを接触させた後にエアーナイフで切る方法、スクリーン印刷法等で塗膜を形成し、その後加熱乾燥を経て溶剤を除去する方法等で製造することができる。あるいは、固体電解質の粉末をプレス成形した後、適宜加工して製造することもできる。
 固体電解質としては、前述したものを使用することができる。
(Solid electrolyte layer)
The solid electrolyte layer is, for example, a method of dropping a slurry containing a solid electrolyte, a binder and a solvent onto a substrate and scraping it off with a doctor blade, a method of cutting the substrate with the slurry and then cutting with an air knife, a screen printing method, etc. It can be manufactured by a method in which a coating film is formed by, followed by heating and drying to remove the solvent. Alternatively, the solid electrolyte powder may be press-molded and then appropriately processed to be manufactured.
What was mentioned above can be used as a solid electrolyte.
 (正極)
 正極は、正極活物質(粒子状)と、バインダーと、導電材と、固体電解質、溶媒とを混合して正極合剤を調製し、この正極合剤を集電体の表面に塗布して乾燥させることで形成し、その後、必要に応じてプレスして形成することができる。あるいは、正極活物質(粒子状)と、導電材と、固体電解質の粉末を混合し、プレス成形した後、適宜加工して製造することもできる。
 正極活物質としては、当該技術分野において従来知られているものを特に制限なく用いることができる。例えば各種のリチウム遷移金属複合酸化物を用いることができる。そのような物質としては、例えばLiCoO2、LiNiO2、LiMnO2、LiMn24、LiMn1.5Ni0.54、LiCo1/3Ni1/3Mn1/32、LiCo0.5Ni0.52、LiNi0.7Co0.2Mn0.12、Li(LixMn2xCo1-3x)O2(式中、0<x<1/3である)、LiFePO4、LiMn1-zzPO4(式中、0<z≦0.1であり、MはCo、Ni、Fe、Mg、Zn及びCuからなる群から選ばれる少なくとも1種の金属元素である。)などが挙げられる。
(Positive electrode)
For the positive electrode, a positive electrode active material (particulate), a binder, a conductive material, a solid electrolyte, and a solvent are mixed to prepare a positive electrode mixture, and this positive electrode mixture is applied to the surface of a current collector and dried. It can be formed by pressing and then pressing if necessary. Alternatively, the positive electrode active material (particulate), the conductive material, and the powder of the solid electrolyte may be mixed, press-molded, and then appropriately processed to be manufactured.
As the positive electrode active material, those known in the art can be used without particular limitation. For example, various lithium transition metal composite oxides can be used. Examples of such a substance include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiMn 1.5 Ni 0.5 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1 O 2 , Li(Li x Mn 2x Co 1-3x )O 2 (where 0<x<1/3), LiFePO 4 , LiMn 1-z M z PO 4 ( In the formula, 0<z≦0.1, and M is at least one metal element selected from the group consisting of Co, Ni, Fe, Mg, Zn, and Cu.) and the like.
 <語句の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of terms>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), “preferably larger than X” or “preferably Y” is included together with “meaning X or more and Y or less” unless otherwise specified. It also means "less than".
Further, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it means “preferably greater than X” or “less than Y”. It also includes intent.
 以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。但し、本発明が以下に示す実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on the following examples and comparative examples. However, the present invention is not limited to the examples shown below.
 <実施例1>
 ケイ素(Si)のインゴットとチタン(Ti)のインゴットを混合して加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて粒度調整を行い、合金粉末とした。
<Example 1>
A silicon (Si) ingot and a titanium (Ti) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy. Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
 得られた合金粉末を、ナノ粒子表面改質装置(製品名「シモロイヤー」、反応装置内に回転羽根を装備)を用いて改質処理を行った。すなわち、容量2Lの容器内に、メディアとなるビーズ2kgと前記合金粉末50gと、窒化ケイ素粉末を投入し、雰囲気調整を行った後、1500rpmで3時間処理を行った。
 処理後の合金粉末を、乾式粉砕機を用いて解砕乃至粉砕して粒度調整を行った後、目開き75μmの篩で分級し、負極活物質としての合金粉末(サンプル)を得た。
 得られた合金粉末(サンプル)の化学分析を実施したところ、Si:68wt%、Ti:23wt%であった。また、炭素(C)元素量は1.2wt%であった。
The obtained alloy powder was subjected to a reforming treatment by using a nanoparticle surface reforming device (product name “Simroyer”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and silicon nitride powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
The alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 μm to obtain an alloy powder (sample) as a negative electrode active material.
When chemical analysis of the obtained alloy powder (sample) was performed, Si: 68 wt% and Ti: 23 wt% were found. The amount of carbon (C) element was 1.2 wt %.
 <実施例2>
 ケイ素(Si)のインゴットとチタン(Ti)のインゴットを混合して加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて粒度調整を行い、合金粉末とした。
<Example 2>
A silicon (Si) ingot and a titanium (Ti) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy. Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
 得られた合金粉末を、ナノ粒子表面改質装置(製品名「シモロイヤ―」、反応装置内に回転羽根を装備)を用いて改質処理を行った。すなわち、容量2Lの容器内に、メディアとなるビーズ2kgと前記合金粉末50g、酸化ジルコニウム粉末を投入し、雰囲気調整を行った後、1500rpmで3時間処理を行った。
 処理後の合金粉末を、乾式粉砕機を用いて解砕乃至粉砕して粒度調整を行った後、目開き75μmの篩で分級し、負極活物質としての合金粉末(サンプル)を得た。
 得られた合金粉末(サンプル)の化学分析を実施したところ、Si:64wt%、Ti:25wt%であった。また、炭素(C)元素量は0.8wt%であった。
The obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and zirconium oxide powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
The alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 μm to obtain an alloy powder (sample) as a negative electrode active material.
When chemical analysis of the obtained alloy powder (sample) was performed, Si: 64 wt% and Ti: 25 wt% were found. The amount of carbon (C) element was 0.8 wt %.
 <実施例3>
 ケイ素(Si)のインゴットとチタン(Ti)のインゴットを混合して加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて、粒度調整を行い、合金粉末とした。
<Example 3>
A silicon (Si) ingot and a titanium (Ti) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy. Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted by using to obtain an alloy powder.
 得られた合金粉末を、ナノ粒子表面改質装置(製品名「シモロイヤ―」、反応装置内に回転羽根を装備)を用いて改質処理を行った。すなわち、容量2Lの容器内に、メディアとなるビーズ2kgと前記合金粉末50g、酸化ジルコニウム粉末を投入し、雰囲気調整を行った後、1500rpmで3時間処理を行った。
 処理後の合金粉末を、乾式粉砕機を用いて解砕乃至粉砕して粒度調整を行った後、目開き75μmの篩で分級し、負極活物質としての合金粉末(サンプル)を得た。
 得られた合金粉末(サンプル)の化学分析を実施したところ、Si:70wt%、Ti:20wt%であった。また、炭素(C)元素量は0.6wt%であった。
The obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and zirconium oxide powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
The alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 μm to obtain an alloy powder (sample) as a negative electrode active material.
When chemical analysis of the obtained alloy powder (sample) was performed, it was Si: 70 wt% and Ti: 20 wt %. The amount of carbon (C) element was 0.6 wt %.
 <実施例4>
 ケイ素(Si)のインゴットとチタン(Ti)のインゴットを混合して加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて粒度調整を行い、合金粉末とした。
<Example 4>
A silicon (Si) ingot and a titanium (Ti) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy. Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
 得られた合金粉末を、ナノ粒子表面改質装置(製品名「シモロイヤー」、反応装置内に回転羽根を装備)を用いて改質処理を行った。すなわち、容量2Lの容器内に、メディアとなるビーズ2kgと前記合金粉末50gと、酸化ジルコニウムを投入し、雰囲気調整を行った後、1500rpmで3時間処理を行った。
 処理後の合金粉末を、乾式粉砕機を用いて解砕乃至粉砕して粒度調整を行った後、目開き75μmの篩で分級し、負極活物質としての合金粉末(サンプル)を得た。
 得られた合金粉末(サンプル)の化学分析を実施したところ、Si:76wt%、Ti:17wt%であった。また、炭素(C)元素量は0.9wt%であった。
The obtained alloy powder was subjected to a reforming treatment by using a nanoparticle surface reforming device (product name “Simroyer”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and zirconium oxide were charged into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
The alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 μm to obtain an alloy powder (sample) as a negative electrode active material.
When chemical analysis of the obtained alloy powder (sample) was performed, it was Si: 76 wt% and Ti: 17 wt %. The amount of carbon (C) element was 0.9 wt %.
 <実施例5>
 ケイ素(Si)のインゴットとチタン(Ti)のインゴットとアルミニウム(Al)のインゴットを混合して加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて粒度調整を行い、合金粉末とした。
<Example 5>
A silicon (Si) ingot, a titanium (Ti) ingot, and an aluminum (Al) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled by a liquid rapid solidification device (single roll type). After cooling, a quenched ribbon alloy was obtained. The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
 得られた合金粉末を、ナノ粒子表面改質装置(製品名「シモロイヤ―」、反応装置内に回転羽根を装備)を用いて改質処理を行った。すなわち、容量2Lの容器内に、メディアとなるビーズ2kgと前記合金粉末50g、酸化ジルコニウム粉末を投入し、雰囲気調整を行った後、1500rpmで3時間処理を行った。
 処理後の合金粉末を、乾式粉砕機を用いて解砕乃至粉砕して粒度調整を行った後、目開き75μmの篩で分級し、負極活物質としての合金粉末(サンプル)を得た。
 得られた合金粉末(サンプル)の化学分析を実施したところ、Si:69wt%、Ti:26wt%、Al:0.10wt%であった。また、炭素(C)元素量は0.7wt%であった。
The obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and zirconium oxide powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
The alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 μm to obtain an alloy powder (sample) as a negative electrode active material.
When the chemical analysis of the obtained alloy powder (sample) was performed, it was Si:69 wt%, Ti:26 wt%, and Al:0.10 wt%. The amount of carbon (C) element was 0.7 wt %.
 <実施例6>
 ケイ素(Si)のインゴットとチタン(Ti)のインゴットとボロン(B)のインゴットとアルミニウム(Al)のインゴットを混合して加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて粒度調整を行い、合金粉末とした。
<Example 6>
A silicon (Si) ingot, a titanium (Ti) ingot, a boron (B) ingot, and an aluminum (Al) ingot are mixed and melted by heating, and the molten liquid heated to 1700° C. Roll type) was used for rapid cooling to obtain a quenched ribbon alloy. The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
 得られた合金粉末を、ナノ粒子表面改質装置(製品名「シモロイヤ―」、反応装置内に回転羽根を装備)を用いて改質処理を行った。すなわち、容量2Lの容器内に、メディアとなるビーズ2kgと前記合金粉末50g、酸化ジルコニウム粉末を投入し、雰囲気調整を行った後、1500rpmで3時間処理を行った。
 処理後の合金粉末を、乾式粉砕機を用いて解砕乃至粉砕して粒度調整を行った後、目開き75μmの篩で分級し、負極活物質としての合金粉末(サンプル)を得た。
 得られた合金粉末(サンプル)の化学分析を実施したところ、Si:65wt%、Ti:24wt%、B:0.01wt%、Al:0.09wt%であった。また、炭素(C)元素量は0.4wt%であった。
The obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and zirconium oxide powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
The alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 μm to obtain an alloy powder (sample) as a negative electrode active material.
When the chemical analysis of the obtained alloy powder (sample) was performed, it was Si:65 wt%, Ti:24 wt%, B:0.01 wt%, and Al:0.09 wt%. The amount of carbon (C) element was 0.4 wt %.
 <実施例7>
 ケイ素(Si)のインゴットとチタン(Ti)のインゴットを混合して加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて粒度調整を行い、合金粉末とした。
<Example 7>
A silicon (Si) ingot and a titanium (Ti) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy. Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
 得られた合金粉末を、ナノ粒子表面改質装置(製品名「シモロイヤ―」、反応装置内に回転羽根を装備)を用いて改質処理を行った。すなわち、容量2Lの容器内に、メディアとなるビーズ2kgと前記合金粉末50g、酸化アルミニウム粉末を投入し、雰囲気調整を行った後、1500rpmで3時間処理を行った。
 処理後の合金粉末を、乾式粉砕機を用いて解砕乃至粉砕して粒度調整を行った後、目開き75μmの篩で分級し、負極活物質としての合金粉末(サンプル)を得た。
 得られた合金粉末(サンプル)の化学分析を実施したところ、Si:66wt%、Ti:25wt%であった。また、炭素(C)元素量は0.9wt%であった。
The obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and aluminum oxide powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
The alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 μm to obtain an alloy powder (sample) as a negative electrode active material.
When chemical analysis of the obtained alloy powder (sample) was performed, Si: 66 wt% and Ti: 25 wt% were found. The amount of carbon (C) element was 0.9 wt %.
 <実施例8>
 ケイ素(Si)のインゴットとチタン(Ti)のインゴットを混合して加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて粒度調整を行い、合金粉末とした。
<Example 8>
A silicon (Si) ingot and a titanium (Ti) ingot are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy. Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
 得られた合金粉末を、ナノ粒子表面改質装置(製品名「シモロイヤ―」、反応装置内に回転羽根を装備)を用いて改質処理を行った。すなわち、容量2Lの容器内に、メディアとなるビーズ2kgと前記合金粉末50g、酸化アルミニウム粉末を投入し、雰囲気調整を行った後、1500rpmで3時間処理を行った。
 処理後の合金粉末を、乾式粉砕機を用いて解砕乃至粉砕して粒度調整を行った後、目開き75μmの篩で分級し、負極活物質としての合金粉末(サンプル)を得た。
 得られた合金粉末(サンプル)の化学分析を実施したところ、Si:66wt%、Ti:24wt%であった。また、炭素(C)元素量は0.9wt%であった。
The obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of beads as a medium, 50 g of the alloy powder, and aluminum oxide powder were put into a container having a capacity of 2 L, the atmosphere was adjusted, and then the treatment was performed at 1500 rpm for 3 hours.
The alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 μm to obtain an alloy powder (sample) as a negative electrode active material.
When chemical analysis of the obtained alloy powder (sample) was performed, it was Si: 66 wt% and Ti: 24 wt %. The amount of carbon (C) element was 0.9 wt %.
 <比較例1>
 ケイ素(Si)のインゴットを加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯金属を得た。得られた急冷薄帯金属を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて、粒度調整を行い、金属粉末(サンプル)とした。
 得られた金属粉末(サンプル)の化学分析を実施したところ、Si:99wt%であった。
<Comparative Example 1>
A silicon (Si) ingot was heated and melted, and the molten liquid heated to 1700° C. was rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched thin strip metal. The obtained quenched thin strip metal is roughly crushed by using a dry ball mill, and then further dry crusher under a nitrogen atmosphere (atmosphere less than 1%, and the balance being vaporized nitrogen from liquid nitrogen (purity 99.999% or more)). The particle size was adjusted using to obtain a metal powder (sample).
When a chemical analysis of the obtained metal powder (sample) was performed, it was Si: 99 wt %.
 <比較例2>
 ケイ素(Si)のインゴットと塊状チタンを原子比85:15(重量比76.8:23.2)で混合し、液体急冷凝固装置(単ロール型)を用いて溶解し、溶湯をアルゴンガスで、回転する銅製のロールに吹き付けて急冷し、Si-Ti合金を作製した。次いで、Si-Ti合金を遊星ボールミル装置にてアルゴンガス雰囲気中窒化シリコン製ボールを使用し、2時間粉砕して合金粉末(サンプル)の電極材料を得た。
<Comparative example 2>
Silicon (Si) ingot and massive titanium are mixed at an atomic ratio of 85:15 (weight ratio of 76.8:23.2) and melted using a liquid rapid solidification device (single roll type), and the molten metal is argon gas. Then, it was sprayed on a rotating copper roll and rapidly cooled to produce a Si—Ti alloy. Next, the Si—Ti alloy was pulverized for 2 hours in a planetary ball mill using a silicon nitride ball in an argon gas atmosphere to obtain an alloy powder (sample) electrode material.
 <比較例3>
 固相Aには、SiとBを用い、これらを重量比19.9:0.1の混合物とした。この混合物を高周波溶解槽に投入して溶解させ、得られた合金溶湯を、単ロール法により急冷凝固させて、第一の合金塊を得た。また、固相Bには、TiとSiを用い、これらの原子比1:2の混合物とした。この混合物を高周波溶解槽に投入して溶解させ、得られた合金溶湯を、単ロール法により急冷凝固させて、組成式TiSiで表される金属間化合物からなる第二の合金塊を得た。次いで、第一の合金塊と第二の合金塊とを重量比20:80で混合した混合物を遊星ボールミルの容器内に投入し、1時間粉砕を行い、合金粉末(サンプル)の電極材料を得た。
<Comparative example 3>
Si and B were used for the solid phase A, and these were made into a mixture with a weight ratio of 19.9:0.1. This mixture was put into a high-frequency melting tank and melted, and the resulting molten alloy was rapidly solidified by a single roll method to obtain a first alloy ingot. Further, Ti and Si were used for the solid phase B, and a mixture of these with an atomic ratio of 1:2 was used. This mixture was put into a high-frequency melting tank and melted, and the obtained alloy melt was rapidly solidified by a single roll method to obtain a second alloy ingot composed of an intermetallic compound represented by a composition formula TiSi 2 . .. Next, the mixture of the first alloy ingot and the second alloy ingot at a weight ratio of 20:80 was put into a container of a planetary ball mill and pulverized for 1 hour to obtain an alloy powder (sample) electrode material. It was
 <比較例4>
 Si及びTiを仕込み、高周波誘導溶解を用いてAr雰囲気中で溶融し、得た溶融物からガスアトマイズ法により合金粉末(サンプル)を得た。得られた合金粉末(サンプル)の化学分析を実施したところ、Si:70wt%、Ti:26wt%であった。
<Comparative example 4>
Si and Ti were charged and melted in an Ar atmosphere using high frequency induction melting, and an alloy powder (sample) was obtained from the obtained melt by a gas atomization method. When chemical analysis of the obtained alloy powder (sample) was carried out, it was Si: 70 wt% and Ti: 26 wt %.
 <参考例1>
 ケイ素(Si)のインゴットと塊状チタンを原子比85:15で混合し、液体急冷凝固装置(単ロール型)を用いて溶解し、溶湯をアルゴンガスで、回転する銅製のロールに吹き付けて急冷し、Si-Ti合金を作製した。次いで、Si-Ti合金を、乾式ボールミルを用いて粗粉砕し、合金粉末(サンプル)を得た。
<Reference example 1>
A silicon (Si) ingot and massive titanium are mixed at an atomic ratio of 85:15, melted using a liquid rapid solidification device (single roll type), and the molten metal is sprayed with argon gas onto a rotating copper roll to quench it. , Si-Ti alloy was prepared. Next, the Si—Ti alloy was roughly pulverized using a dry ball mill to obtain an alloy powder (sample).
 <参考例2>
 まず、SiとTiを、81at%Si-19at%Tiの比率で仕込み、高周波誘導溶解を用いてAr雰囲気中で溶融し、得た溶融物をガスアトマイズ法により合金粒子を得た。この合金粒子のD50は29μmであった。
 次いで、合金粒子および天然黒鉛を質量基準で、合金粒子/天然黒鉛=95/5の比率で仕込み、さらに前記合金粒子と前記天然黒鉛の総重量に対して、導電性向上剤としてニッケル(Ni)を5質量%になるように添加して混合粉を調整した。この混合粉を、遊星ボールミル(ジルコニアからなる球状メディア)を用いて、30時間のメカニカルアロイング処理を行い、負極材料(サンプル)を得た。
<Reference example 2>
First, Si and Ti were charged at a ratio of 81 at% Si-19 at% Ti and were melted in an Ar atmosphere by using high frequency induction melting, and the obtained melt was obtained as an alloy particle by a gas atomizing method. The D50 of the alloy particles was 29 μm.
Next, the alloy particles and the natural graphite are charged in a ratio of alloy particles/natural graphite=95/5 on a mass basis, and nickel (Ni) is added as a conductivity improver to the total weight of the alloy particles and the natural graphite. Was added in an amount of 5% by mass to prepare a mixed powder. This mixed powder was subjected to mechanical alloying treatment for 30 hours using a planetary ball mill (spherical medium made of zirconia) to obtain a negative electrode material (sample).
 <各種物性値の測定方法>
 実施例及び比較例で得られた合金粉末(サンプル)(以下では、金属粉末(サンプル)を含む)の各種物性値を次のように測定した。
<Measurement method of various physical properties>
Various physical properties of the alloy powder (sample) (including metal powder (sample) below) obtained in Examples and Comparative Examples were measured as follows.
 (組成分析)
 実施例及び比較例で得られた合金粉末(サンプル)について、誘導結合プラズマ(ICP)発光分光分析により、各元素の含有量を測定した。但し、酸素については、酸素・窒素分析装置(LECO社製)を用いて、含有量を測定した。また、炭素については、炭素・硫黄分析装置(株式会社堀場製作所製)を用いて、含有量を測定した。
(Composition analysis)
With respect to the alloy powders (samples) obtained in Examples and Comparative Examples, the content of each element was measured by inductively coupled plasma (ICP) emission spectroscopy. However, regarding oxygen, the content was measured using an oxygen/nitrogen analyzer (manufactured by LECO). Regarding carbon, the content was measured using a carbon/sulfur analyzer (manufactured by Horiba, Ltd.).
 (D50・Dmax
 50mlのビーカーに、実施例及び比較例で得られた合金粉末(サンプル)0.5gと、エタノールを20vol%添加したイオン交換水50mlを入れて、超音波ホモジナイザー(株式会社日本精機製作所製超音波ホモジナイザーUS-150E、チップは20φを使用)にセットし、AMPLITUDEが80%になるようにダイヤルレベルを調整し、5分間超音波をあてて、サンプルを液中に分散させて、分散液を得た。
 次に、レーザー回折粒子径分布測定装置用自動試料供給機(マイクロトラック・ベル株式会社製「Microtorac SDC」)を用い、当該分散液を水溶性溶媒(エタノールを20vol%添加したイオン交換水)に投入した。70mL/secの流速中、マイクロトラック・ベル株式会社製レーザー回折粒度分布測定機「MT3300II」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートからD50及びDmaxを求めた。
 なお、測定の際の水溶性溶媒は60μmのフィルターを通し、溶媒屈折率を1.33、粒子透過性条件を反射とし、測定レンジを0.021~2000μm、測定時間10秒とし、1回測定により、得られた値をそれぞれの測定値とした。
(D 50 · D max)
In a 50 ml beaker, 0.5 g of the alloy powder (sample) obtained in Examples and Comparative Examples and 50 ml of ion-exchanged water containing 20 vol% of ethanol were added, and an ultrasonic homogenizer (Ultrasonic wave manufactured by Nippon Seiki Seisakusho Co., Ltd. was used. Homogenizer US-150E, 20φ tip is used), adjust the dial level so that AMPLITUDE is 80%, apply ultrasonic waves for 5 minutes to disperse the sample in the liquid, and obtain a dispersion liquid. It was
Next, using an automatic sample feeder for a laser diffraction particle size distribution measuring device (“Microtorac SDC” manufactured by Microtrac Bell Co., Ltd.), the dispersion liquid was used as a water-soluble solvent (ion-exchanged water containing 20 vol% of ethanol added). I put it in. The particle size distribution was measured using a laser diffraction particle size distribution analyzer “MT3300II” manufactured by Microtrac Bell Co., Ltd. at a flow rate of 70 mL/sec, and D 50 and D max were determined from the obtained volume-based particle size distribution chart. ..
The water-soluble solvent used in the measurement was passed through a 60 μm filter, the solvent refractive index was 1.33, the particle permeability condition was reflection, the measurement range was 0.021 to 2000 μm, and the measurement time was 10 seconds. The obtained values were defined as the respective measured values.
 (比表面積:SSA)
 実施例及び比較例で得られた合金粉末(サンプル)の比表面積(SSA)を次のようにして測定した。
 先ず、サンプル(粉体)1.0gを全自動比表面積測定装置Macsorb(株式会社マウンテック製)用のガラスセル(標準セル)に秤量し、オートサンプラーにセットした。窒素ガスでガラス内を置換した後、前記窒素ガス雰囲気中で250℃、15分間熱処理した。その後、窒素・ヘリウム混合ガスを流しながら4分間冷却を行った。冷却後、サンプルをBET一点法にて測定した。
 なお、冷却時及び測定時の吸着ガスは、窒素30vol%:ヘリウム70vol%の混合ガスを用いた。
(Specific surface area: SSA)
The specific surface area (SSA) of the alloy powders (samples) obtained in Examples and Comparative Examples was measured as follows.
First, 1.0 g of a sample (powder) was weighed in a glass cell (standard cell) for a fully automatic specific surface area measuring apparatus Macsorb (manufactured by Mountech Co., Ltd.) and set in an auto sampler. After replacing the inside of the glass with nitrogen gas, heat treatment was performed at 250° C. for 15 minutes in the nitrogen gas atmosphere. Then, the mixture was cooled for 4 minutes while flowing a mixed gas of nitrogen and helium. After cooling, the sample was measured by the BET single point method.
A mixed gas of 30 vol% nitrogen and 70 vol% helium was used as the adsorption gas during cooling and measurement.
 (真密度)
 実施例及び比較例で得られた合金粉末(サンプル)の真密度を次のようにして測定した。
 先ず、サンプル(粉体)をサンプルバスケット10cmの7分目まで入れて、投入したサンプル量を測定した。次に真密度測定装置BELPycno(株式会社マウンテック製)内に、サンプル入れたサンプルバスケットをセットして、装置のフタを閉め、測定を開始した。
 なお、測定には、ヘリウムガスを使用し、測定部の温度は25℃±0.1℃で管理した。
(True density)
The true densities of the alloy powders (samples) obtained in Examples and Comparative Examples were measured as follows.
First, the sample (powder) was put into a sample basket of 10 cm 3 until the 7th minute, and the amount of the put sample was measured. Next, the sample basket containing the sample was set in the true density measuring device BELPycno (manufactured by Mountech Co., Ltd.), the lid of the device was closed, and the measurement was started.
Helium gas was used for the measurement, and the temperature of the measurement part was controlled at 25° C.±0.1° C.
 (活物質断面の観察)
 実施例及び比較例で得られた合金粉末(サンプル)を用いて、後述するように作製した電極の負極を、イオンミリングにより加工して断面を出した後、FE-SEM(装置名「SU8220」日立ハイテクノロジーズ製)とEDS(装置名「QUANTAX200」検出器「XFlash5060F」ブルカー製)を用いて、負極断面の観察を行った。上記装置を用いて、加速電圧6kV、エミッション電流30μAの条件にて元素マッピングを行った。マッピングは、D50相当の活物質粒子を1つ選択し、視野の半分以上を選択した活物質粒子が占めるように拡大し、活物質粒子断面に該当する部分のみを範囲指定して測定を行った(一例として、D50が2~3μmの粒子に対してマッピングする場合、30000倍とした)。積算時間は90秒とした。なお、積算時間は十分な強度が得られるように設定することが重要であり、前述の積算時間は一例である。
 マッピング画像から酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、タングステンカーバイド、ステンレス鋼に含まれる特有の元素の濃縮部を確認した。
 活物質断面において、前記濃縮部とそれ以外の部分をそれぞれ点分析測定したところ、濃縮部において、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、タングステンカーバイド、ステンレス鋼に含まれる特有の元素の強度が高いことを確認した。このことは本活物質粒子内部に酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、タングステンカーバイド、ステンレス鋼が存在することを示している。
 一例として、窒化ケイ素を含む場合は窒素にて濃縮部の判定、酸化ジルコニウムを含む場合はジルコニウムにて濃縮部の判定を行った。
(Observation of cross section of active material)
Using the alloy powders (samples) obtained in the examples and comparative examples, the negative electrode of the electrode prepared as described below was processed by ion milling to give a cross section, and then FE-SEM (device name "SU8220") was used. The cross section of the negative electrode was observed by using Hitachi High Technologies) and EDS (device name “QUANTAX200” detector “XFlash5060F” made by Bruker). Elemental mapping was performed using the above apparatus under the conditions of an acceleration voltage of 6 kV and an emission current of 30 μA. The mapping is performed by selecting one active material particle corresponding to D 50 , enlarging it so that more than half of the field of view is occupied by the selected active material particle, and performing measurement by designating only the area corresponding to the active material particle cross section. (As an example, when mapping to a particle having a D 50 of 2 to 3 μm, it was set to 30,000 times). The integration time was 90 seconds. Note that it is important to set the integrated time so that sufficient strength can be obtained, and the integrated time described above is an example.
From the mapping image, silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide, and a concentrated portion of a specific element contained in stainless steel were confirmed.
In the cross section of the active material, the concentrated portion and the portion other than the concentrated portion were measured by point analysis. It was confirmed that the strength of the element was high. This indicates that silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide, and stainless steel exist inside the active material particles.
As an example, when silicon nitride is included, the concentration part is determined by nitrogen, and when zirconium oxide is included, the concentration part is determined by zirconium.
 (活物質粒子内存在物質の含有量)
 前述のとおり、FE-SEMとEDSを使うことで、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、タングステンカーバイド及びステンレス鋼のうちの何れかの存在を確認した。
 そして、これらの物質の含有量は、ガス分析又はICP分析の結果を元に算出した。例えば、窒化ケイ素を含む場合は、ガス分析により、窒素元素の含有量(wt%)を測定し、この窒素を窒化ケイ素由来のものとして考えて、窒化ケイ素の含有量(wt%)を算出した。また、酸化ジルコニウムを含む場合は、ICP分析により、ジルコニウムの含有量(wt%)を測定し、このジルコニウムを酸化ジルコニウム由来のものとして考えて、酸化ジルコニウムの含有量(wt%)を算出した。
 例えば実施例1では、ガス分析結果より、窒素元素が2.3wt%であったため、窒化ケイ素(Si)に換算すると、5.8wt%となる。また、実施例2~4はそれぞれ、ジルコニウムが6.3wt%、4.7wt%、0.9wt%であったため、酸化ジルコニウムに換算すると、8.5wt%、6.3wt%、1.2wt%となる。
 また、酸化アルミニウムを含む場合は、ICP分析によりアルミニウムの含有量(wt%)を測定し、このアルミニウムを酸化アルミニウム由来のものとして考えて、酸化アルミニウムの含有量(wt%)を算出した。例えば、実施例6~7はそれぞれ、アルミニウムが2.6wt%、2.9wt%であったため、酸化アルミニウムに換算すると、4.9wt%、5.5wt%となる。
(Content of substances present in active material particles)
As described above, the presence of any one of silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide and stainless steel was confirmed by using FE-SEM and EDS.
Then, the contents of these substances were calculated based on the results of gas analysis or ICP analysis. For example, in the case of containing silicon nitride, the content of nitrogen element (wt%) was measured by gas analysis, and the content of nitrogen nitride (wt%) was calculated by considering this nitrogen as derived from silicon nitride. .. When zirconium oxide was contained, the zirconium content (wt %) was measured by ICP analysis, and the zirconium oxide content (wt %) was calculated by considering this zirconium as being derived from zirconium oxide.
For example, in Example 1, since the nitrogen element was 2.3 wt% from the gas analysis result, when converted to silicon nitride (Si 3 N 4 ), it was 5.8 wt %. Further, in Examples 2 to 4, zirconium was 6.3 wt%, 4.7 wt%, and 0.9 wt%, respectively. Therefore, when converted to zirconium oxide, 8.5 wt%, 6.3 wt%, and 1.2 wt%. Becomes
When aluminum oxide was included, the content (wt%) of aluminum was measured by ICP analysis, and the content (wt%) of aluminum oxide was calculated by considering this aluminum as derived from aluminum oxide. For example, in Examples 6 to 7, aluminum was 2.6 wt% and 2.9 wt%, respectively, so that when converted to aluminum oxide, it becomes 4.9 wt% and 5.5 wt%.
 (X線回折)
 CuKα1線を用いたX線回折装置(XRD、装置名「UltimaIV、(株)リガク製」)を用いて、下記測定条件1で測定してX線回折パターン(「XRDパターン」とも称する)を得た。
(X-ray diffraction)
An X-ray diffraction pattern (also referred to as “XRD pattern”) was obtained by measurement under the following measurement condition 1 using an X-ray diffraction device (XRD, device name “Ultima IV, manufactured by Rigaku Corporation”) using CuKα1 rays. It was
 =XRD測定条件1=
 線源:CuKα(線焦点)、波長:1.541836Å
 操作軸:2θ/θ、測定方法:連続、計数単位:cps
 開始角度:15.0°、終了角度:120.0°、積算回数:1回
 サンプリング幅:0.01°、スキャンスピード:1.0°/min
 電圧:40kV、電流:40mA
 発散スリット:0.2mm、発散縦制限スリット:10mm
 散乱スリット:開放、受光スリット:開放
 オフセット角度:0°
 ゴニオメーター半径:285mm、光学系:集中法
 アタッチメント:ASC-48
 スリット:D/teX Ultra用スリット
 検出器:D/teX Ultra
 インシデントモノクロ:CBO
 Ni-Kβフィルター:無
 回転速度:50rpm
= XRD measurement condition 1 =
Radiation source: CuKα (line focus), wavelength: 1.541836Å
Operation axis: 2θ/θ, measurement method: continuous, counting unit: cps
Start angle: 15.0°, End angle: 120.0°, Number of integrations: 1 Sampling width: 0.01°, Scan speed: 1.0°/min
Voltage: 40kV, Current: 40mA
Divergence slit: 0.2mm, Divergence vertical restriction slit: 10mm
Scattering slit: open, light receiving slit: open Offset angle: 0°
Goniometer radius: 285 mm, optical system: focusing method Attachment: ASC-48
Slit: Slit for D/teX Ultra Detector: D/teX Ultra
Incident Monochrome: CBO
Ni-Kβ filter: No rotation speed: 50 rpm
 XRD測定条件を設定し、NIST製のX線回折用標準試料であるシリコン粉末材料(ex:SRM640e)を測定した。図3として、NIST製のX線回折用標準試料であるシリコン粉末材料(ex:SRM640e)のXRDパターンを記す。ICDDカード番号:00-005-0565(化学式:Si)のカード情報と照らし合わせて、回折ピーク位置とピーク本数を確認した。そして、回折ピーク位置とピーク本数がカード情報と同等であり、かつ、2θ=28.42°±1.25°に出現したピークについて、そのピーク強度Iが120000cps~130000cps程度であるか否かを指標として、XRD測定条件が正しく設定されていることを確認した。 The XRD measurement conditions were set and the silicon powder material (ex:SRM640e), which is a standard sample for X-ray diffraction manufactured by NIST, was measured. FIG. 3 shows an XRD pattern of a silicon powder material (ex: SRM640e) which is a standard sample for X-ray diffraction manufactured by NIST. The diffraction peak position and the number of peaks were confirmed by comparing with the card information of ICDD card number: 00-005-0565 (chemical formula: Si). Whether the peak intensity I is about 120,000 cps to 130000 cps for the peak that appears at 2θ=28.42°±1.25°, where the diffraction peak position and the number of peaks are the same as the card information. As an index, it was confirmed that the XRD measurement conditions were set correctly.
 得られたXRDパターンにおいて、2θ=16.5°±1.5°に明確なピークがないことを確認し、この範囲のcpsの平均値をバックグラウンド(BG)の強度IBGとした。
 なお、上記範囲にピークが存在する場合は、バックグラウンド(BG)の強度IBGを規定するのに適した2θ範囲を選択した。
 次に、ICDDカード番号:00-005-0565(化学式:Si)のカード情報をもとに、ピークAのピーク強度Iとバックグラウンド(BG)の強度IBGとの差を、ピークAのピーク強度Iの値とした。なお、ピークAは空間群Fd-3mの結晶構造を有するSiの(111)面に相当するピークであった。
 次いで、ピークAの半値全幅(FWHM)を求め、空間群Fd-3mのSiの(111)面のピークの半値全幅として表に示した。
In the obtained XRD pattern, it was confirmed that there was no clear peak at 2θ=16.5°±1.5°, and the average value of cps in this range was taken as the intensity I BG of the background (BG).
When a peak exists in the above range, a 2θ range suitable for defining the intensity I BG of the background (BG) was selected.
Next, based on the card information of ICDD card number: 00-005-0565 (chemical formula: Si), the difference between the peak intensity I A of peak A and the intensity I BG of background (BG) is calculated as follows. The value of the peak intensity I A was used. The peak A was a peak corresponding to the (111) plane of Si having the crystal structure of the space group Fd-3m.
Next, the full width at half maximum (FWHM) of peak A was determined and shown in the table as the full width at half maximum of the (111) plane peak of Si in space group Fd-3m.
 ここで、MSiで表される化合物の同定方法について記載する。
 化学分析の結果から、上記化合物におけるMを推定し、当該M及びSi元素を含む化合物(MSi)が形成されると想定して同定を行った。解析用ソフトウエア(製品名「PDXL」)を用いて、解析するためのXRDパターンデータを読み込んだ。その後、自動検索を選択して同定を行った。自動検索対象として全サブファイルを選択し、元素フィルターとして、M及びSi元素が含まれるように設定して自動検索を実行した。
 自動検索を行うと結晶相検索結果としていくつかのカード番号がピックアップされ、その中からピークの一致性が高い結晶相候補が選択された。その後、解析するためのXRDパターンデータのピーク位置と選択された結晶相候補のピークの位置の一致性を確認した。図4は、参考例1に対して、ICDDカード番号:00-005-0565(化学式:Si)と01-071-0187(化学式:TiSi2)のカードを照合している図である。このように、それぞれの化合物に帰属できるピークが確認できれば、そのまま使用し、ピーク位置やピーク本数にズレが生じている場合は、結晶相検索結果としてピックアップされているカード番号の中から手動で再選択を行う。再選択の際は、ICDDカードに設定されているカードの信頼性(Quality)を参考にし、Qualityの高い順(S→I→B)でカードを再選択してピーク位置の確認を行った。
 なお、例えば、シリコンや化合物の含有量が少ない場合など、全体的にピーク強度が下がるような要因がある場合、ICDDカードに記載のピークのうち、相対的に強度の大きいピークのみが観測され、相対的に強度の小さいピークは観測できないことがあるので、注意が必要となる。
Here, a method for identifying a compound represented by M x Si y will be described.
From the result of the chemical analysis, M in the above compound was estimated, and identification was performed assuming that a compound (M x Si y ) containing the M and the Si element is formed. XRD pattern data for analysis was read by using analysis software (product name “PDXL”). After that, automatic search was selected for identification. All subfiles were selected as targets for automatic search, and the element filters were set to include M and Si elements, and the automatic search was performed.
When automatic search was performed, several card numbers were picked up as the crystal phase search results, and crystal phase candidates with high peak coincidence were selected from them. Then, the coincidence between the peak position of the XRD pattern data for analysis and the peak position of the selected crystal phase candidate was confirmed. FIG. 4 is a diagram in which ICDD card numbers: 00-005-0565 (chemical formula: Si) and 01-071-0187 (chemical formula: TiSi 2 ) cards are collated with the reference example 1. In this way, if you can confirm the peaks that can be assigned to each compound, use them as they are.If there is a deviation in the peak position or the number of peaks, manually re-select from the card numbers picked up as the crystal phase search results. Make a choice. At the time of reselection, the reliability (Quality) of the card set in the ICDD card was used as a reference, and the peak position was confirmed by reselecting the cards in descending order of Quality (S→I→B).
Note that, for example, when there is a factor such that the peak intensity is lowered as a whole, such as when the content of silicon or compound is low, among the peaks described in the ICDD card, only the peak having a relatively high intensity is observed. Care must be taken because peaks with relatively low intensity may not be observed.
 上記によって、選択されたM及びSi元素を含む化合物(MSi)のICDDカード番号を読み、上記化合物に帰属するメインピークが出現する領域(例えば、ICDDカード番号01-071-0187のTiSi2の場合は2θ=39.11°付近)において、強度が最大値となるピークBのピーク強度Iとしたときに、ピーク強度Iとバックグラウンド(BG)の強度IBGとの差を上記化合物(MSi)のピーク強度Iとした。そして、上記化合物(MSi)に帰属するピークBのピーク強度Iに対するピークAのピーク強度Iの比を、表1に示した。 By the above, the ICDD card number of the selected compound containing M and Si elements (M x Si y ) is read, and the region where the main peak attributed to the compound appears (for example, TiSi of ICDD card number 01-071-0187). In the case of 2, in the case of 2θ=39.11°), the difference between the peak intensity I B and the intensity of the background (BG) I BG is defined as the peak intensity I B of the peak B having the maximum intensity. The peak intensity I B of the compound (M x Si y ) was used. Then, the ratio of the peak intensity I A of the peak A to the peak intensity I B of a peak B attributable to the compound (M x Si y), shown in Table 1.
 <非水電解液二次電池特性の評価>
 (電極の作製)
 実施例及び比較例で得られた合金粉末(サンプル):導電材:結着剤=85:5:10(重量%)の混合比となるようにこれらを混合し、これらをN-メチルピロリドンに分散させて負極合剤を得た。導電材としてはアセチレンブラックを用いた。結着剤としてはポリイミドを用いた。この負極合剤を、厚み15μmの電解銅箔上に塗布した。塗膜を乾燥して負極活物質層を形成し負極を得た。
 この際、塗布量は面容量(mAh/cm)を考慮して決定した。一例として面容量を2.8mAh/cmで揃えて評価することとした。例えばPure-Siの場合、充電容量を4200mAh/gと設定すると、負極活物質中に85wt%のサンプルが含まれるため、負極活物質層は0.78mg/cmが塗布量となる。充電容量が4200mAh/gよりも低いサンプルであれば、同じ面容量を得るためには塗布量を増やして調整することになる。
<Evaluation of characteristics of non-aqueous electrolyte secondary battery>
(Preparation of electrode)
The alloy powders (samples) obtained in Examples and Comparative Examples: conductive material: binder = 85:5:10 (wt%) were mixed so as to have a mixing ratio, and these were mixed with N-methylpyrrolidone. It was dispersed to obtain a negative electrode mixture. Acetylene black was used as the conductive material. Polyimide was used as the binder. This negative electrode mixture was applied on an electrolytic copper foil having a thickness of 15 μm. The coating film was dried to form a negative electrode active material layer to obtain a negative electrode.
At this time, the coating amount was determined in consideration of the surface capacity (mAh/cm 2 ). As an example, the surface capacity was set to 2.8 mAh/cm 2 for evaluation. For example, in the case of Pure-Si, when the charge capacity is set to 4200 mAh/g, 85 wt% of the sample is contained in the negative electrode active material, so the negative electrode active material layer has a coating amount of 0.78 mg/cm 2 . If the charge capacity of the sample is lower than 4200 mAh/g, the coating amount is increased to adjust the same surface capacity.
 (電池の作製)
 上記のようにして得られた負極を直径14mmφの円形に打ち抜き、160℃で6時間真空乾燥を施した。そして、アルゴン雰囲気下のグローブボックス内で、電気化学評価用セルTOMCEL(登録商標)を組み立てた。対極としては金属リチウムを用いた。電解液としては、カーボネート系の混合溶媒にLiPFを1mol/lになるように溶解させた電解液を用いた。セパレータとしては、ポリプロピレン製多孔質フィルムを用いた。
(Preparation of battery)
The negative electrode obtained as described above was punched into a circle having a diameter of 14 mmφ, and vacuum dried at 160° C. for 6 hours. Then, the electrochemical evaluation cell TOMCEL (registered trademark) was assembled in a glove box under an argon atmosphere. Metal lithium was used as the counter electrode. As the electrolytic solution, an electrolytic solution prepared by dissolving LiPF 6 in a carbonate-based mixed solvent so as to be 1 mol/l was used. A polypropylene porous film was used as the separator.
 (電池性能評価試験)
 上記のようにして準備した電気化学評価用セルTOMCEL(登録商標)を用いて次に記述する方法で初期活性を行った。作製した電気化学評価用セルTOMCEL(登録商標)を6時間静置した後、25℃にて0.1Cで0.01Vまで定電流定電位充電した後(電流値が0.01Cになった時点で充電終了)、0.1Cで1.0Vまで定電流放電した。
 充放電時の記録間隔は、300秒毎、もしくは5.0mV変化毎のいずれかを満たした際に記録されるように設定した。このような設定にすることで、電圧変動が小さい領域では300秒毎に記録され、電圧変動が大きい領域では5.0mV変化毎に記録されることになる。これを3サイクル繰り返した。なお、実際に設定した電流値は負極中の負極活物質の含有量から算出した。
 実施例5~8及び、比較例3については初回充電容量が3000mAh/gより大きいサンプルを「A」、1200mAh/g以上3000mAh/g以下のサンプル「B」、1200mAh/g未満のサンプルを「C」として表4に示した。なお、Cに分類したものは、容量不足であるので、評価に値しないため、それ以降の測定を中止した。
(Battery performance evaluation test)
Initial activity was performed by the method described below using the electrochemical evaluation cell TOMCEL (registered trademark) prepared as described above. After the prepared cell for electrochemical evaluation TOMCEL (registered trademark) was allowed to stand for 6 hours, it was charged with a constant current and constant potential at 0.1 C at 25° C. to 0.01 V (when the current value reached 0.01 C). Charging was completed), and constant current discharge was performed at 0.1 C to 1.0 V.
The recording interval during charging/discharging was set so that recording was performed when either 300 seconds or 5.0 mV change was satisfied. With such a setting, recording is performed every 300 seconds in the area where the voltage fluctuation is small, and is recorded every 5.0 mV change in the area where the voltage fluctuation is large. This was repeated 3 cycles. The current value actually set was calculated from the content of the negative electrode active material in the negative electrode.
For Examples 5 to 8 and Comparative Example 3, a sample having an initial charge capacity of more than 3000 mAh/g is “A”, a sample of 1200 mAh/g or more and 3000 mAh/g or less is “B”, and a sample of less than 1200 mAh/g is “C”. Is shown in Table 4. In addition, since the materials classified into C do not have sufficient capacity because of insufficient capacity, the subsequent measurements were stopped.
 (放電プロファイル形状評価)
 前述で得た1サイクル目の放電曲線をもとにして、「放電プロファイル形状」の判定を行った。すなわち、得られた放電曲線を線形近似して、相関係数の高さを比較し、「放電プロファイル形状」の指数とした。
 なお、表2、4には、比較例3の数値を100とした場合の指数として示した。
 この際、放電初期から放電末期までの区間で連続的に電位が変化していく、つまり直線性が高ければ、線形近似した際の相関係数は高くなり、プラトー領域が無い若しくはプラトー領域が小さいことを示すことになる。
(Evaluation of discharge profile shape)
The "discharge profile shape" was determined based on the discharge curve of the first cycle obtained above. That is, the obtained discharge curves were linearly approximated, the heights of the correlation coefficients were compared, and they were used as an index of the “discharge profile shape”.
In Tables 2 and 4, the indices are shown when the numerical value of Comparative Example 3 is 100.
At this time, if the potential changes continuously in the section from the initial stage of discharge to the final stage of discharge, that is, if the linearity is high, the correlation coefficient at the time of linear approximation becomes high, and there is no plateau region or the plateau region is small. Will show that.
 (ハイレート特性評価)
 前述の方法で、初期活性を行った電気化学評価用セルTOMCELを用いて、放電レート特性評価を行った。まず、25℃にて0.1Cで0.01Vまで定電流定電位充電した後(電流値が0.01Cになった時点で充電終了)、5Cで1.0Vまで定電流放電した。
 充放電時の記録間隔は、300秒毎、もしくは5.0mV変化毎のいずれかを満たした際に記録されるように設定した。このような設定にすることで、電圧変動が小さい領域では300秒毎に記録され、電圧変動が大きい領域では5.0mV変化毎に記録されることになる。
 5C時の放電曲線から、前述のように「放電プロファイル形状」の判定を行い、5Cでの「放電プロファイル形状」の指数とした。前述の0.1Cでの「放電プロファイル形状」指数に対する5Cでの「放電プロファイル形状」指数の比を「ハイレート特性」とした。
 なお、表2、4には、比較例3の数値を100とした場合の指数として示した。
(High-rate characteristic evaluation)
The discharge rate characteristics were evaluated using the electrochemically evaluated cell TOMCEL which was initially activated by the method described above. First, after constant-current constant-potential charging was performed at 25C at 0.1C to 0.01V (charging was completed when the current value reached 0.01C), constant-current discharging was performed at 5C to 1.0V.
The recording interval during charging/discharging was set so that recording was performed when either 300 seconds or 5.0 mV change was satisfied. With such a setting, recording is performed every 300 seconds in the area where the voltage fluctuation is small, and is recorded every 5.0 mV change in the area where the voltage fluctuation is large.
From the discharge curve at 5C, the "discharge profile shape" was determined as described above and used as the index of the "discharge profile shape" at 5C. The ratio of the "discharge profile shape" index at 5C to the above-mentioned "discharge profile shape" index at 0.1C was defined as "high rate characteristic".
In Tables 2 and 4, the indices are shown when the numerical value of Comparative Example 3 is 100.
 (サイクル特性評価)
 前述と同様に、電気化学評価用セルTOMCELを作製した。作製した電気化学評価用セルTOMCEL(登録商標)を6時間静置した後、25℃にて0.1Cで0.01Vまで定電流定電位充電した後(電流値が0.01Cになった時点で充電終了)、0.1Cで1.0Vまで定電流放電した。これを3サイクル繰り返した。なお、実際に設定した電流値は負極中の負極活物質の含有量から算出した。
 上記のようにして、初期活性を行った後の電気化学評価用セルTOMCELを用いて、下記に記述する方法で充放電試験し、45℃サイクル特性を評価した。
 電池を充放電する環境温度を45℃となるようにセットした環境試験機内にセルを入れて、充放電できるように準備し、セル温度が環境温度になるように、5時間静置した。その後、充放電範囲を0.01V-1.0Vとし、充電は0.1C定電流定電位、放電は0.1C定電流で1サイクル充放電行った後に、1Cにて充放電サイクルを98回行い、その後、0.1Cにて充放電サイクルを1サイクル、その後、1Cにて充放電サイクルを50回行った。行った。Cレートは初期活性時の25℃、3サイクル目の放電容量を元に計算した。
 150サイクル目の放電容量を2サイクル目の放電容量で割り算して求めた数値の百分率(%)を45℃サイクル特性値として求めた。
 なお、表2、4には、比較例3の数値を100とした場合の指数で示した。
(Cycle characteristic evaluation)
A cell TOMCEL for electrochemical evaluation was prepared in the same manner as described above. After the prepared cell for electrochemical evaluation TOMCEL (registered trademark) was allowed to stand for 6 hours, it was charged with a constant current and constant potential at 0.1 C at 25° C. to 0.01 V (when the current value reached 0.01 C). Charging was completed), and constant current discharge was performed at 0.1 C to 1.0 V. This was repeated 3 cycles. The current value actually set was calculated from the content of the negative electrode active material in the negative electrode.
Using the electrochemical evaluation cell TOMCEL after the initial activation as described above, a charge/discharge test was performed by the method described below to evaluate the 45° C. cycle characteristics.
The cell was placed in an environmental tester set so that the environmental temperature for charging/discharging the battery was 45° C., the battery was prepared for charging/discharging, and the cell was allowed to stand for 5 hours so as to reach the environmental temperature. After that, the charging/discharging range was set to 0.01V-1.0V, charging was performed at 0.1C constant current and constant potential and discharging was performed at 0.1C constant current for 1 cycle, and then 1C was performed for 98 charging/discharging cycles. After that, one charge/discharge cycle was performed at 0.1 C, and then 50 charge/discharge cycles were performed at 1 C. went. The C rate was calculated based on the discharge capacity at 25° C. at the time of initial activation and the third cycle.
The percentage (%) of the numerical value obtained by dividing the discharge capacity at the 150th cycle by the discharge capacity at the second cycle was determined as the 45°C cycle characteristic value.
It should be noted that Tables 2 and 4 are shown as indices when the numerical value of Comparative Example 3 is 100.
 <固体電池特性の評価>
 (電池の作製)
 実施例及び比較例で得られた合金粉末(サンプル)を負極活物質として用いて電極合剤を調整し、硫化物系全固体電池を作製して、電池特性評価を行った。対極としては、InLi箔、固体電解質粉末として組成式:Li5.8PS4.8Cl1.2で示される粉末を用いた。
<Evaluation of solid-state battery characteristics>
(Preparation of battery)
The alloy powders (samples) obtained in the examples and comparative examples were used as the negative electrode active material to prepare an electrode mixture, to prepare a sulfide-based all-solid-state battery, and to evaluate the battery characteristics. An InLi foil was used as the counter electrode, and a powder represented by the composition formula: Li 5.8 PS 4.8 Cl 1.2 was used as the solid electrolyte powder.
 (合剤調整)
 電極合材粉末は、活物質粉末、固体電解質粉末及び導電剤(VGCF(登録商標))粉末を、質量比で4.5:86.2:9.3の割合で乳鉢混合することで調製し、10MPaで1軸プレス成型して合剤ペレットを得た。
(Mixture adjustment)
The electrode mixture powder is prepared by mixing the active material powder, the solid electrolyte powder, and the conductive agent (VGCF (registered trademark)) powder in a mortar in a mass ratio of 4.5:86.2:9.3. Uniaxial press molding was performed at 10 MPa to obtain a mixture pellet.
 (固体電池セルの作製)
 上下を開口したセラミック製の円筒(開口径10mm)の下側開口部を電極(SUS製)で閉塞し、0.10g固体電解質を注ぎ、上側開口部を電極で挟み、10MPaで1軸プレス成型し、電解質層を作製した。上側の電極を一度取り外し、シリコン活物質からなる電極合剤ペレットを挿入し、上側の電極を再度装着し、42MPaで1軸プレス成型し、合剤ペレットと電解質層を圧着した。下側の電極を一度取り外し、In・Liの箔を挿入し、下側の電極を再度装着し、上側電極と下側電極間を6N・mのトルク圧で4か所ねじ止めし、1.6mAh相当の全固体電池を作製した。この際、上記全固体電池セルの作製においては、平均露点-45℃の乾燥空気で置換されたグローブボックス内で行った。
(Preparation of solid-state battery cell)
The lower opening of a ceramic cylinder (opening diameter 10 mm) with upper and lower openings was closed with an electrode (made of SUS), 0.10 g of solid electrolyte was poured, the upper opening was sandwiched by the electrodes, and uniaxial press molding was performed at 10 MPa. Then, the electrolyte layer was produced. The upper electrode was once removed, an electrode mixture pellet made of a silicon active material was inserted, the upper electrode was mounted again, and uniaxial press molding was performed at 42 MPa, and the mixture pellet and the electrolyte layer were pressure bonded. Remove the lower electrode once, insert the In·Li foil, reattach the lower electrode, and screw between the upper electrode and the lower electrode at a torque pressure of 6 N·m at four locations. An all-solid-state battery equivalent to 6 mAh was produced. At this time, the production of the all-solid-state battery cell was performed in a glove box which was replaced with dry air having an average dew point of −45° C.
 (充電容量の評価)
 電池特性評価における容量確認は、25℃に保たれた環境試験機内に全固体電池を入れて充放電測定装置に接続して評価した。セル容量が1.6mAhであるため、1Cは1.6mAとなる。電池の充放電は0.1C、CCCV方式で-0.62Vまで充電(電流値が0.01Cになった時点で充電終了)し、初回充電容量を得た。放電は0.1C、CC方式で0.88Vまで放電した。
 なお、充放電時の記録間隔は、10秒毎、もしくは1mV変化毎のいずれかを満たした際に1点記録されるように設定した。このような設定にすることで、電圧変動が小さい領域では10秒毎に記録され、電圧変動が大きい領域では1mV変化毎に記録されることになる。
 初回充電容量が3000mAh/gより大きいサンプルを「A」、1200mAh/g以上3000mAh/g以下のサンプル「B」、1200mAh/g未満のサンプルを「C」として表3に示した。なお、Cに分類したものは、容量不足であるので、評価に値しないため、それ以降の測定を中止した。
(Evaluation of charge capacity)
The capacity confirmation in the battery characteristic evaluation was evaluated by putting the all-solid-state battery in an environmental tester kept at 25° C. and connecting it to a charge/discharge measuring device. Since the cell capacity is 1.6 mAh, 1 C is 1.6 mA. The charge/discharge of the battery was 0.1 C, and the CCCV system was charged to -0.62 V (charging was completed when the current value reached 0.01 C) to obtain the initial charge capacity. The discharge was 0.1 C, and CC discharge was performed up to 0.88 V.
The recording interval during charging/discharging was set so that one point was recorded when either 10 seconds or 1 mV change was satisfied. With such a setting, recording is performed every 10 seconds in the area where the voltage fluctuation is small, and is recorded every 1 mV change in the area where the voltage fluctuation is large.
A sample having an initial charge capacity of more than 3000 mAh/g is shown in Table 3 as “A”, a sample “B” of 1200 mAh/g or more and 3000 mAh/g or less, and a sample “C” of less than 1200 mAh/g. In addition, since the materials classified into C do not have sufficient capacity because of insufficient capacity, the subsequent measurements were stopped.
 (放電プロファイル形状評価)
 前述で得た放電曲線をもとにして、「放電プロファイル形状」の判定を行った。すなわち、得られた放電曲線を線形近似して、相関係数の高さを比較し、「放電プロファイル形状」の指数とした。なお、表3には、比較例2の数値を100とした場合の指数として示した。この際、放電初期から放電末期までの区間で連続的に電位が変化していく、つまり直線性が高ければ、線形近似した際の相関係数は高くなり、プラトーが無いもしくは小さいことを示すことになる。
(Evaluation of discharge profile shape)
The "discharge profile shape" was determined based on the discharge curve obtained above. That is, the obtained discharge curves were linearly approximated, the heights of the correlation coefficients were compared, and they were used as an index of the “discharge profile shape”. In addition, in Table 3, it is shown as an index when the numerical value of Comparative Example 2 is 100. At this time, if the potential changes continuously in the section from the initial stage of discharge to the final stage of discharge, that is, if the linearity is high, the correlation coefficient in the linear approximation becomes high, indicating that there is no or small plateau. become.
 (ハイレート特性評価)
 前述の充放電後のセルを用いて、ハイレート特性評価を行った。評価は引き続き、25℃に保たれた環境試験機内に入れたまま行った。前述の充電容量を元にして、電池容量を算出し、Cレートを決定した。
 次に、0.1C、CCCV方式で、-0.62Vまで充電(電流値が0.01Cになった時点で充電終了)したのち、0.1C、CC方式で0.88Vまで放電を行った。このときの放電容量を0.1C放電容量(A)とした。
 続いて、0.1C、CCCV方式で、-0.62Vまで充電(電流値が0.01Cになった時点で充電終了)したのち、5C、CC方式で0.88Vまで放電した。このときの放電容量を5C放電容量とした。
 「5C放電容量/0.1C放電容量(A)×100」を算出し、ハイレート特性値として評価した。なお、表3には、比較例2の数値を100とした場合の指数として示した。
(High-rate characteristic evaluation)
High-rate characteristic evaluation was performed using the above-mentioned charged and discharged cells. The evaluation was carried out continuously in the environmental tester kept at 25°C. The battery capacity was calculated based on the above-mentioned charge capacity, and the C rate was determined.
Next, after charging to -0.62V by the 0.1C, CCCV method (charging ends when the current value reaches 0.01C), discharging is performed to 0.88V by the 0.1C, CC method. .. The discharge capacity at this time was set to 0.1 C discharge capacity (A).
Subsequently, the battery was charged to −0.62V by the 0.1C CCCV method (charging was completed when the current value reached 0.01C), and then discharged to 0.88V by the 5C CC method. The discharge capacity at this time was defined as 5C discharge capacity.
“5 C discharge capacity/0.1 C discharge capacity (A)×100” was calculated and evaluated as a high rate characteristic value. In addition, in Table 3, it is shown as an index when the numerical value of Comparative Example 2 is 100.
 (サイクル特性評価)
 前述のハイレート特性評価を行ったセルを用いて、サイクル評価を行った。評価は引き続き、25℃に保たれた環境試験機内に入れたまま行った。
 まず、事前準備として、前述のセルの残放電を行うため、初期電流値を5Cして、CV方式で、0.88Vで放電(電流値が0.01Cになった時点で放電終了)を行った。
 次に、0.1C、CCCV方式で、-0.62Vまで充電(電流値が0.01Cになった時点で充電終了)したのち、0.1C、CC方式で0.88Vまで放電を行った。このときの放電容量を0.1C放電容量(B)とした。
 「0.1C放電容量(B)/0.1C放電容量(A)×100」を算出し、サイクル特性値として評価した。なお、表3には比較例2の数値を100とした指数として示した。
(Cycle characteristic evaluation)
Cycle evaluation was performed using the cell that underwent the high rate characteristic evaluation described above. The evaluation was carried out continuously in the environmental tester kept at 25°C.
First, as a preliminary preparation, in order to perform the above-mentioned residual discharge of the cell, the initial current value is set to 5 C, and the CV method is used to perform discharge at 0.88 V (discharge is completed when the current value reaches 0.01 C). It was
Next, after charging to -0.62V by the 0.1C, CCCV method (charging ends when the current value reaches 0.01C), discharging is performed to 0.88V by the 0.1C, CC method. .. The discharge capacity at this time was set to 0.1 C discharge capacity (B).
“0.1 C discharge capacity (B)/0.1 C discharge capacity (A)×100” was calculated and evaluated as a cycle characteristic value. In Table 3, the index of Comparative Example 2 is set as 100 and shown as an index.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記実施例及びこれまで発明者が行ってきた試験結果から、シリコンと、化学式MSi(ここで、x及びyは、0.1≦x/y≦7.0を満たし、Mは、Si以外の半金属元素及び金属元素のうちの1種又は2種以上である。)で表される化合物と、を含有する活物質粒子からなる活物質に関しては、活物質中のSi元素の含有量は50wt%より多く、酸素原子(O)の含有量は30wt%未満であり、レーザー回折散乱式粒度分布測定法により測定して得られるD50及びDmax(それぞれ「D50」「Dmax」と称する)に関し、D50が4.0μm未満であり、Dmaxが25μm未満であり、CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=28.42°±1.25°に出現するピークAの半値全幅が0.25°以上であり、活物質粒子断面を観察した際、酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、タングステンカーバイド及びステンレス鋼のいずれか一種又は二種以上が、活物質粒子内部に存在することを特徴とする活物質であれば、サイクル特性を高めることができ、放電プロファイルにおけるプラトー領域を低減若しくは無くすことができ、さらにはハイレート特性を向上できることが分かった。 From the above examples and the test results conducted by the inventors so far, silicon and the chemical formula M x Si y (where x and y satisfy 0.1≦x/y≦7.0, and M is A compound represented by one or more of semimetal elements and metal elements other than Si), and an active material comprising active material particles, the content of the Si element in the active material The amount is more than 50 wt%, the content of oxygen atoms (O) is less than 30 wt%, and D 50 and D max (“D 50 ”and “D max, respectively) obtained by measurement by a laser diffraction scattering type particle size distribution measurement method are obtained. relates "referred to), D 50 of less than 4.0 .mu.m, D max of less than 25 [mu] m, in X-ray diffraction pattern measured by X-ray diffraction apparatus using CuKα1 line (XRD), 2θ = 28. The full width at half maximum of peak A appearing at 42°±1.25° is 0.25° or more, and when observing the cross section of the active material particles, silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide And, if any one or more of stainless steel is an active material characterized by being present inside the active material particles, the cycle characteristics can be enhanced, and the plateau region in the discharge profile can be reduced or eliminated. It has been found that the high rate characteristics can be improved.
 また、参考例2についても表4に記載の充電容量の評価を行った。
 参考例2のようなSiと天然黒鉛と導電性向上剤を複合化させたサンプルを評価したところ、初回充電容量は1200mAh/g未満であった。これは、それぞれの重量%から想定されるLiの吸蔵放出に寄与するSi量と、Siの理論容量との関係から期待される充電容量に比べて、非常に少ない容量になっていることがわかった。
 この原因は定かではないが、一因として、Siと天然黒鉛のLi吸蔵の電位が異なることが挙げられる。比率としてSi>天然黒鉛であり、かつ、炭素量が5質量%以上である場合、比較的多量にあるSiへのLi吸蔵が完了する前に、並行して天然黒鉛へのLi吸蔵が始まる。すると、電位が下がってしまうため、充電終始条件が満たされやすくなってしまうことで、充電容量が低下すると考えられる。
 
 
 
Further, with respect to Reference Example 2 as well, the charge capacity described in Table 4 was evaluated.
When a sample such as Reference Example 2 in which Si, natural graphite and a conductivity improver were composited was evaluated, the initial charge capacity was less than 1200 mAh/g. It can be seen that this is a much smaller capacity than the charging capacity expected from the relationship between the Si amount that contributes to the storage and release of Li estimated from each weight% and the theoretical capacity of Si. It was
The reason for this is not clear, but one reason is that the Si occlusion potentials of natural graphite are different. When the ratio Si>natural graphite and the carbon amount is 5% by mass or more, the Li absorption in the natural graphite starts in parallel before the Li absorption in the relatively large amount of Si is completed. Then, the potential drops, and it is considered that the charge end condition is likely to be satisfied, and the charge capacity decreases.


Claims (14)

  1.  シリコンと、化学式MSi(ここで、x及びyは、0.1≦x/y≦7.0を満たし、Mは、Si以外の半金属元素及び金属元素のうちの1種又は2種以上である。)で表される化合物と、を含有する活物質粒子からなり、
     活物質中のSi元素の含有量は50wt%より多く、酸素原子(O)の含有量は30wt%未満であり、
     レーザー回折散乱式粒度分布測定法により測定して得られるD50及びDmax(それぞれ「D50」「Dmax」と称する)に関し、D50が4.0μm未満であり、Dmaxが25μm未満であり、
     CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、θ=28.42°±1.25°に出現するピークAの半値全幅が0.25°以上であり、
     酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、タングステンカーバイド及びステンレス鋼のいずれか一種又は二種以上が、前記活物質粒子内部に存在することを特徴とする活物質。
    Silicon and a chemical formula M x Si y (where x and y satisfy 0.1≦x/y≦7.0, and M is one or two of metalloid elements and metal elements other than Si. And a compound represented by the formula (1) or more.
    The content of Si element in the active material is more than 50 wt%, the content of oxygen atom (O) is less than 30 wt%,
    Regarding D 50 and D max (referred to as “D 50 ”and “D max ”, respectively) obtained by measurement by a laser diffraction scattering particle size distribution measurement method, D 50 is less than 4.0 μm and D max is less than 25 μm. Yes,
    In the X-ray diffraction pattern measured by an X-ray diffraction device (XRD) using CuKα1 ray, the full width at half maximum of the peak A appearing at θ=28.42°±1.25° is 0.25° or more,
    An active material characterized in that one or more of silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide and stainless steel is present inside the active material particles.
  2.  前記活物質粒子内部に存在する酸化ケイ素、酸化アルミニウム、酸化ジルコニウム、炭化ケイ素、窒化ケイ素、タングステンカーバイド及びステンレス鋼のいずれか一種又は二種以上の含有量は、前記活物質に対して0wt%より大きく、15wt%未満である、請求項1に記載の活物質。 The content of one kind or two or more kinds of silicon oxide, aluminum oxide, zirconium oxide, silicon carbide, silicon nitride, tungsten carbide, and stainless steel existing inside the active material particles is 0 wt% to the active material. The active material according to claim 1, which is large and less than 15 wt %.
  3.  CuKα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、前記化学式MSiで表される化合物に帰属するピークBのピーク強度をIとし、前記ピークAのピーク強度をIとしたとき、前記Iに対する前記Iの比(I/I)は1未満である、請求項1又は2に記載の活物質。 In X-ray diffraction pattern measured by X-ray diffractometer (XRD) using CuKα1 line, the peak intensity of the peak B attributable to the compound represented by Formula M x Si y and I B, the peak A when the peak intensity was I a, the ratio of the I a with respect to the I B (I a / I B ) is less than 1, the active material according to claim 1 or 2.
  4.  前記Mは、B、Ti、V、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Ta及びWのうちの1種又は2種以上の元素である請求項1~3の何れかに記載の活物質。 The M is one or more elements selected from the group consisting of B, Ti, V, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Ta and W. The active material according to any of the above.
  5.  前記Mは、B、Ti、Mn及びFeのうちの1種又は2種以上の元素である請求項1~4の何れかに記載の活物質。 The active material according to any one of claims 1 to 4, wherein the M is one or more elements selected from B, Ti, Mn and Fe.
  6.  前記活物質中の前記Mの含有量は38wt%未満である、請求項1~5の何れかに記載の活物質。 The active material according to any one of claims 1 to 5, wherein the content of M in the active material is less than 38 wt%.
  7.  炭素(C)元素の含有量が5wt%未満である請求項1~6の何れかに記載の活物質。 The active material according to any one of claims 1 to 6, wherein the content of the carbon (C) element is less than 5 wt%.
  8.  真密度が2.4g/cmより大きい請求項1~7の何れかに記載の活物質。 The active material according to any one of claims 1 to 7, which has a true density of more than 2.4 g/cm 3 .
  9.  比表面積(SSA)が2.0m/gより大きい請求項1~8の何れかに記載の活物質。 The active material according to any one of claims 1 to 8, which has a specific surface area (SSA) of more than 2.0 m 2 /g.
  10.  比表面積(SSA)が60.0m/gより小さい請求項1~9の何れかに記載の活物質。 The active material according to any one of claims 1 to 9, which has a specific surface area (SSA) of less than 60.0 m 2 /g.
  11.  リチウム二次電池用の負極活物質として使用される請求項1~10の何れかに記載の活物質。 The active material according to any one of claims 1 to 10, which is used as a negative electrode active material for a lithium secondary battery.
  12.  固体リチウム二次電池用の負極活物質として使用される請求項1~10の何れかに記載の活物質。 The active material according to any one of claims 1 to 10, which is used as a negative electrode active material for a solid lithium secondary battery.
  13.  請求項1から請求項10までの何れかの請求項に記載の活物質を含有する負極。 A negative electrode containing the active material according to any one of claims 1 to 10.
  14.  正極と、負極と、前記正極および前記負極の間に設けられた固体電解質層とを有する固体電池であって、
     前記負極が、請求項1から請求項10までの何れかの請求項に記載の活物質を含有する固体電池。
     
    A solid battery having a positive electrode, a negative electrode, and a solid electrolyte layer provided between the positive electrode and the negative electrode,
    A solid-state battery in which the negative electrode contains the active material according to any one of claims 1 to 10.
PCT/JP2020/005518 2019-02-13 2020-02-13 Active material WO2020166658A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020572306A JPWO2020166658A1 (en) 2019-02-13 2020-02-13 Active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-023489 2019-02-13
JP2019023489 2019-02-13

Publications (1)

Publication Number Publication Date
WO2020166658A1 true WO2020166658A1 (en) 2020-08-20

Family

ID=72045601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005518 WO2020166658A1 (en) 2019-02-13 2020-02-13 Active material

Country Status (2)

Country Link
JP (1) JPWO2020166658A1 (en)
WO (1) WO2020166658A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008098A1 (en) * 2021-07-30 2023-02-02 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019233A (en) * 2007-07-11 2009-01-29 Mitsubishi Chemicals Corp Method for manufacturing thin film or powder, apparatus for manufacturing thin film or powder, method for manufacturing electrode material for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2013253012A (en) * 2012-05-07 2013-12-19 Furukawa Electric Co Ltd:The Silicide combined silicon material and nonaqueous electrolyte secondary battery using the same
WO2016042728A1 (en) * 2014-09-19 2016-03-24 株式会社豊田自動織機 Msix (m is at least one element selected from group 3-9 elements, provided that 1/3≤x≤3)-containing silicon material and method for manufacturing same
JP2017091820A (en) * 2015-11-10 2017-05-25 日産自動車株式会社 Negative electrode active material for electric device, and electric device arranged by use thereof
JP2017224537A (en) * 2016-06-16 2017-12-21 日産自動車株式会社 Negative electrode active material for electric device and electric device arranged by use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019233A (en) * 2007-07-11 2009-01-29 Mitsubishi Chemicals Corp Method for manufacturing thin film or powder, apparatus for manufacturing thin film or powder, method for manufacturing electrode material for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2013253012A (en) * 2012-05-07 2013-12-19 Furukawa Electric Co Ltd:The Silicide combined silicon material and nonaqueous electrolyte secondary battery using the same
WO2016042728A1 (en) * 2014-09-19 2016-03-24 株式会社豊田自動織機 Msix (m is at least one element selected from group 3-9 elements, provided that 1/3≤x≤3)-containing silicon material and method for manufacturing same
JP2017091820A (en) * 2015-11-10 2017-05-25 日産自動車株式会社 Negative electrode active material for electric device, and electric device arranged by use thereof
JP2017224537A (en) * 2016-06-16 2017-12-21 日産自動車株式会社 Negative electrode active material for electric device and electric device arranged by use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008098A1 (en) * 2021-07-30 2023-02-02 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary batteries, and secondary battery

Also Published As

Publication number Publication date
JPWO2020166658A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP4865556B2 (en) Multiphase silicon-containing electrodes for lithium ion batteries
KR101884476B1 (en) Negative electrode material for lithium ion battery
KR101375455B1 (en) Electrode active material for rechargeable battery
TWI635645B (en) Si-based eutectic alloy for negative electrode active material of power storage device and method for producing same
MX2015002323A (en) Negative electrode active substance material.
WO2013002163A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries
JP6601937B2 (en) Negative electrode active material, negative electrode employing the same, lithium battery, and method for producing the negative electrode active material
JP2014107132A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery
JP2002170560A (en) Negative electrode material for nonaqueous system secondary battery and method for manufacturing the same
WO2017200046A1 (en) Negative electrode active substance material, negative electrode, and battery
WO2020166658A1 (en) Active material
WO2020166655A1 (en) Active material
JP5718734B2 (en) Secondary battery electrode material and manufacturing method thereof
JP6978563B2 (en) Si-based negative electrode active material
JP6515363B1 (en) Negative electrode active material, negative electrode and battery
WO2020166601A1 (en) Active material
JP4763970B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2020166599A1 (en) Active material
JP2018098018A (en) Negative electrode active material for lithium ion secondary battery and manufacturing method thereof, negative electrode, and battery
WO2020067480A1 (en) Composite particle group, negative electrode active material particle group, negative electrode, battery, and composite particles with exposed convex parts contained in composite particle group
WO2015163398A1 (en) Negative electrode active substance for non-aqueous electrolyte secondary batteries
WO2022202357A1 (en) Active material and method for producing same
CN113316559B (en) Negative electrode active material, negative electrode, and battery
JP4844503B2 (en) Anode material for lithium ion secondary battery
KR20210033936A (en) Cathode material for power storage devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572306

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755683

Country of ref document: EP

Kind code of ref document: A1