WO2022202357A1 - Active material and method for producing same - Google Patents

Active material and method for producing same Download PDF

Info

Publication number
WO2022202357A1
WO2022202357A1 PCT/JP2022/010555 JP2022010555W WO2022202357A1 WO 2022202357 A1 WO2022202357 A1 WO 2022202357A1 JP 2022010555 W JP2022010555 W JP 2022010555W WO 2022202357 A1 WO2022202357 A1 WO 2022202357A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
less
silicon
negative electrode
boron
Prior art date
Application number
PCT/JP2022/010555
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 鷲田
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2023508984A priority Critical patent/JPWO2022202357A1/ja
Publication of WO2022202357A1 publication Critical patent/WO2022202357A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material that can be used for a negative electrode and a method for producing the same.
  • the present invention also relates to a battery containing the active material.
  • Carbonaceous materials are mainly used as negative electrode active materials for lithium-ion secondary batteries.
  • the carbonaceous material has a low theoretical discharge capacity, it is difficult to cope with the increase in power consumption due to the multi-functionalization of small electric and electronic devices, and the use as a vehicle battery. Therefore, as a negative electrode active material to replace the carbonaceous material, a material containing silicon, which has a higher capacity than the carbonaceous material, has been proposed.
  • Patent Document 1 described below is known as a conventional technology related to silicon-containing active materials.
  • This document proposes an electrode material composed of solid-state alloy particles in which microcrystalline or amorphous elements other than silicon are dispersed in microcrystalline silicon or amorphous silicon. there is The document describes that this electrode material has low resistance, high charge-discharge efficiency, and high capacity.
  • an object of the present invention is to provide an active material having good battery performance.
  • the present invention provides an active material made of a silicon-based material containing silicon (Si) element and boron (B) element,
  • the ratio P2/P1 of the intensity P2 of the diffraction peaks observed in the range of 45° or less is 0.1 or less, Having a cubic crystal structure with a lattice constant of 0.5390 nm or more and 0.5420 nm or less
  • An active material having a ratio D 50 /CS of a volume cumulative particle size D 50 in a cumulative volume of 50% by volume measured by a laser diffraction scattering particle size distribution measurement method to a crystallite size CS calculated from the X-ray diffraction pattern is 8 or more. It provides
  • the present invention also provides a method for producing an active material made of a silicon-based material containing silicon (Si) element and boron (B) element, A step of applying an external force to the raw material powder, which is an aggregate of particles containing the silicon (Si) element and the boron (B) element, In the above step, an external force is applied to the raw material powder so that the particles are pulverized and the fine particles generated by the pulverization are simultaneously bonded.
  • FIG. 1 is a diagram showing an X-ray diffraction pattern of the negative electrode active material obtained in Example 1.
  • FIG. 2 is a diagram showing an X-ray diffraction pattern of the negative electrode active material obtained in Comparative Example 1.
  • FIG. 3 is a diagram showing a Raman spectrum of the negative electrode active material obtained in Example 1.
  • FIG. 4 is a diagram showing the Raman spectrum of the negative electrode active material obtained in Example 2.
  • FIG. 5 is a diagram showing the Raman spectrum of the negative electrode active material obtained in Example 3.
  • FIG. 6 is a diagram showing a Raman spectrum of the negative electrode active material obtained in Comparative Example 2.
  • FIG. 7 is a diagram showing a Raman spectrum of the negative electrode active material obtained in Comparative Example 3.
  • FIG. 8 is a diagram showing a Raman spectrum of the negative electrode active material obtained in Comparative Example 4.
  • the present invention relates to active materials.
  • the active material of the present invention consists of a silicon-based material. "Composed of a silicon-based material” means that the active material of the present invention is a single-phase material containing silicon (Si) and other elements. As another element, boron (B) element is used in the present invention.
  • the active material of the present invention is preferably a single-phase material containing silicon and boron elements. Silicon-containing alloys containing titanium and iron (such as TiSi 2 and FeSi), which are conventionally known active materials, and active materials containing pure silicon do not have a single phase. different. Similarly, a mixture of pure silicon and pure boron, for example, is not a single phase, and thus differs from the active material of the present invention.
  • XRD X-ray diffraction device
  • the fact that the diffraction peak observed in this angle range is derived from a boron-silicon alloy, which is a compound of silicon and boron, can suppress the volume change of the active material caused by the absorption and release of lithium ions.
  • a boron-silicon alloy which is a compound of silicon and boron
  • boron-silicon alloys have electronic conductivity, they have better reactivity with lithium ions than pure silicon. As a result, unlike other silicon-containing alloys, the boron-silicon alloy can absorb and release lithium ions, and the boron-silicon alloy can be used alone as an active material. Boron-silicon alloys have better reactivity with lithium ions than pure silicon, so lithium occlusion and desorption tend to occur uniformly within the particles, and expansion due to lithium ions occlusion is uniform. likely to occur. As a result, when the active material of the present invention is used together with, for example, a solid electrolyte, the stress generated in the electrode can be made uniform, and as a result, there is the advantage that the life of the electrode is extended. Further, when the active material of the present invention is used together with an electrolytic solution, there is an advantage that the active material itself is suppressed from pulverizing, and the reaction with the electrolytic solution caused by the generation of a highly reactive new surface can be suppressed.
  • silicon-containing alloys other than boron-silicon alloys do not absorb and release lithium ions, so they cannot be used alone as active materials and must be used together with pure silicon. Even if a silicon-containing alloy other than a boron-silicon alloy is used in combination with pure silicon, the expansion of pure silicon itself is not alleviated at all. Moreover, when the proportion of pure silicon in the entire active material is relatively low, the charge/discharge capacity tends to be small.
  • the above problem can be solved by setting P2/P1 to 0.1 or less. Specifically, it is possible to suppress the volume change of the active material caused by the intercalation and deintercalation of lithium ions. From the viewpoint of making the volume change suppressing effect even more remarkable, the P2/P1 is, for example, more preferably 0.05 or less, and even more preferably 0.02 or less.
  • silicon-containing alloys other than boron-silicon alloys include titanium silicide (TiSi 2 ), manganese silicide (MnSi 2 ), niobium silicide (NbSi 2 ), aluminum silicide, tin silicide, and carbon silicide.
  • the active material of the present invention has a crystal structure similar to that of pure silicon.
  • the stable phase of pure silicon at room temperature and pressure is cubic, and the active material of the present invention also has a stable phase of cubic at room temperature and pressure. Since the active material of the present invention contains boron in addition to silicon, its lattice constant is smaller than that of pure silicon (0.543 nm).
  • the lattice constant of the active material of the present invention is, for example, preferably 0.5390 nm or more, more preferably 0.5395 nm or more, and even more preferably 0.5400 nm or more. preferable.
  • the lattice constant is, for example, preferably 0.5420 nm or less, more preferably 0.5415 nm or less, and even more preferably 0.5410 nm or less.
  • the content of element B in the active material of the present invention is preferably, for example, 1 atomic % or more.
  • the content is, for example, preferably 5 at % or less, more preferably 4 at % or less, and even more preferably 3 at % or less.
  • the above P2/P1 can be set within the desired range, and the lattice constant can be set within the desired range.
  • the active material of the present invention may contain a carbon (C) element.
  • the content of C element in the active material is, for example, preferably less than 5% by mass, particularly preferably less than 3% by mass. This is because the decrease in capacity can be suppressed.
  • the content of Si element in the active material of the present invention is, for example, preferably 80% by mass or more, more preferably 85% by mass or more, and even more preferably 90% by mass or more.
  • the active material of the present invention is preferably a single phase composed of Si element, B element and the balance of unavoidable impurities.
  • the unavoidable impurities are, for example, unavoidable impurities derived from raw materials. Examples of unavoidable impurities derived from raw materials include metalloid elements and metal elements other than Si element and B element.
  • the content of the remaining unavoidable impurities in the active material of the present invention is, for example, preferably less than 2% by mass, more preferably less than 1% by mass, and more preferably less than 0.5% by mass. This is because the decrease in capacity can be suppressed.
  • the stable phase at normal temperature and pressure is a cubic crystal, and it has the property of easily absorbing and releasing lithium from a certain orientation in the cubic crystal. Due to this, pure silicon tends to expand anisotropically due to absorption of lithium ions, which is one of the factors that deteriorate the cycle characteristics of the battery.
  • low crystallization of the active material of the present invention made of a silicon-based material containing silicon and boron is effective from the viewpoint of suppressing anisotropic expansion. did. Specifically, the low crystallization of the active material of the present invention makes it difficult for lithium to be absorbed from a specific crystal orientation.
  • the active material of the present invention preferably has low crystallinity from the viewpoint of isotropically causing expansion due to absorption of lithium ions.
  • the degree of crystallinity of the active material can be evaluated based on the relationship between crystallite size and particle size.
  • the crystallite size CS of the active material calculated from the X-ray diffraction pattern measured by XRD using CuK ⁇ 1 rays is measured by a laser diffraction scattering particle size distribution measurement method, and the active material at a cumulative volume of 50% by volume
  • the ratio D 50 /CS of the volume cumulative particle size D 50 of is 8 or more, for example, 9 or more is more preferable, and 10 or more is even more preferable.
  • D 50 /CS is preferably 30 or less.
  • D 50 /CS When D 50 /CS is within the above range, for example, in the case of a battery using an electrolytic solution, many new surfaces are likely to occur on the particles, resulting in a resistance layer that hinders smooth exchange of lithium ions. However, it is possible to suppress the occurrence of the problem that the particles are likely to be formed at the interface between the particles and the electrolytic solution. Further, in the case of a battery using a solid electrolyte, by reducing the particle size of the active material particles, the degree of contact between the particles and the solid electrolyte particles is reduced, thereby hindering the conduction of lithium ions. It is possible to suppress the occurrence of problems such as In order to make the D 50 /CS value of the active material equal to or higher than the above value, the active material may be produced, for example, by the method described later. However, it is not limited to this manufacturing method.
  • the particle diameter D50 of the active material particles is, for example, preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the particle size D50 is, for example, preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.3 ⁇ m or more, and 0.4 ⁇ m or more. is even more preferred.
  • the crystallite size CS of the silicon-based material in the active material is preferably, for example, 10 nm or more from the viewpoint of reducing the crystallinity of the silicon-based material.
  • the crystallite size CS is, for example, preferably 100 nm or less, more preferably 80 nm or less, even more preferably 70 nm or less, and even more preferably 60 nm or less. The method for measuring the particle size D50 of the active material and the crystallite size CS of the silicon-based material will be described in the examples below.
  • the active material of the present invention has a peak in a wavenumber range of 450 cm -1 to 500 cm -1 in a Raman spectrum obtained by measuring a wavenumber range of 400 cm -1 to 600 cm -1 by Raman spectroscopy. Observation is preferred.
  • An active material having a peak in this wavenumber range has the advantage that the silicon-based material has low crystallinity, and expansion due to absorption of lithium ions tends to occur isotropically.
  • the active material of the present invention has a peak observed in the wave number range of 455 cm ⁇ 1 to 500 cm ⁇ 1 in the Raman spectrum, and 455 cm ⁇ 1 to 495 cm It is more preferable that a peak is observed in the wavenumber range of -1 or less.
  • a plurality of peaks may be observed when the wave number range of 400 cm ⁇ 1 to 600 cm ⁇ 1 is measured by Raman spectroscopy. In that case, the highest intensity peak is preferably observed in the wavenumber range of 450 cm ⁇ 1 to 500 cm ⁇ 1 .
  • it is not prevented that a plurality of peaks are observed in the wave number range of 450 cm ⁇ 1 to 500 cm ⁇ 1 .
  • a method for measuring the Raman spectrum will be described later in Examples.
  • controlling the degree of oxidation on the surface of the particles also contributes to improving the performance of batteries containing the active material.
  • the active material of the present invention has a ratio of the content of oxygen (O) element to the specific surface area SSA of the particle, O/SSA is, for example, 0.1 (mass%/(m 2 /g)) or more.
  • O/SSA is, for example, preferably 0.3 (mass%/(m 2 /g)) or less, more preferably 0.2 (mass%/(m 2 /g)) or less.
  • the active material may be produced by, for example, the above method. However, it is not limited to this manufacturing method.
  • the value of the specific surface area SSA in the active material is preferably, for example, 3 m 2 /g or more, more preferably 8 m 2 /g or more, from the viewpoint of setting the particle size of the active material particles within an appropriate range. , 15 m 2 /g or more.
  • the specific surface area SSA is preferably 50 m 2 /g or less, for example.
  • the content of oxygen element in the active material is preferably 7 mass% or less, for example, from the viewpoint of suppressing deterioration of charge-discharge capacity and charge-discharge efficiency and improving battery performance including the active material, and 6 mass%. is more preferably 5 mass % or less. The smaller the oxygen element content, the better.
  • a method for measuring the specific surface area SSA of the active material and the content of the oxygen element will be described in Examples described later.
  • silicon and boron which are raw materials for the active material, are prepared.
  • a molten metal is obtained by melting silicon and boron in a crucible.
  • a silicon solid solution that is, raw material powder, which is an aggregate of particles of a silicon-based material containing elemental silicon and elemental boron, is produced.
  • an atomizing method can be used.
  • a method of pulverizing a ribbon obtained using a roll casting method can be used.
  • the silicon-based material has high crystallinity. Therefore, an operation is performed to reduce the crystallinity of the silicon-based material in this raw material powder.
  • Such an operation includes, for example, an operation of applying a high-energy external force to pulverize the particles constituting the raw material powder of the silicon-based material.
  • a high-energy external force to pulverize the particles constituting the raw material powder of the silicon-based material.
  • the crystallinity of the silicon-based material is lowered, but the particle size of the particles is also reduced. Therefore, in the present production method, it is advantageous to apply an external force to the raw material powder so that the pulverization of the particles and the bonding of the fine particles generated by the pulverization occur simultaneously.
  • the crystallite size and grain size of the silicon-based material can be set within desired ranges.
  • the grinding media to be introduced into the reaction vessel include, for example, grains of the raw material powder. It is preferable to use those having a particle size of 1500 to 4000 times the diameter D50 .
  • the diameter of the grinding media is, for example, preferably 4 mm or more and 10 mm or less, more preferably 5 mm or more and 8 mm or less, and even more preferably 5 mm or more and 7 mm or less.
  • Materials for the grinding media include, for example, alumina, zirconia, silicon nitride, and tungsten carbide.
  • the ratio of the grinding media to the raw material powder is 2 parts by mass or more and 15 parts by mass or less, particularly 5 parts by mass or more and 10 parts by mass or less, especially 6 parts by mass or more and 8 parts by mass or less for 100 parts by mass of the grinding media. Setting is preferable from the viewpoint of efficiently reducing the crystallization of the silicon-based material.
  • non-oxidizing atmospheres include inert gas atmospheres such as argon and nitrogen, and reducing atmospheres containing hydrogen below the explosive concentration limit.
  • the powder obtained by pulverization is brought into contact with the atmosphere gradually from the viewpoint of suppressing excessive oxidation of the active material particles. Since the oxidation reaction caused by the contact of the powder obtained by pulverization with oxygen is an exothermic reaction, when the powder is brought into contact with the air for a very short time, the oxidation reaction rapidly generates heat, and the heat generated causes the oxidation reaction. is further accelerated, and the powder is excessively oxidized. Therefore, in the present production method, the powder obtained by pulverization is brought into contact with the atmosphere gradually to suppress the rapid oxidation reaction and to prevent the powder surface from being oxidized as much as possible. By performing such an operation, it becomes possible to keep the oxygen content per specific surface area SSA in the particles of the active material at a low level.
  • Gradually bringing the powder obtained by pulverization into contact with the atmosphere means that when the non-oxidizing atmosphere is returned to the atmosphere, the amount of air introduced is limited, and the atmosphere is returned to the atmosphere in several steps. , refers to contacting both by limiting the amount of air introduced per unit time. Specifically, it is preferable that the obtained powder is brought into contact with the air while maintaining a temperature of 60° C. or less. Oxidation can be suppressed by setting the temperature of the obtained powder to 60° C. or lower when returning to the air atmosphere.
  • the dew point of the atmosphere is preferably ⁇ 20° C. or less, more preferably ⁇ 40° C. or less.
  • the active material of the present invention thus obtained can be used alone.
  • the active material of the present invention can be used in combination with other active materials or substances other than active materials.
  • the active material of the present invention can be used in combination with Si oxide.
  • Si oxide examples include SiOA (0 ⁇ a ⁇ 2). Specifically, SiO, SiO 2 and the like can be mentioned.
  • the active material of the present invention can be used, for example, in the form of an electrode mixture containing the active material and a solid electrolyte.
  • the active material of the present invention can be suitably used as a negative electrode active material for batteries, particularly solid batteries, especially solid lithium batteries.
  • the battery has a positive electrode layer, a negative electrode layer, and an electrolyte layer positioned between the positive electrode layer and the negative electrode layer, the negative electrode layer containing the active material of the present invention.
  • the battery may be a primary battery or a secondary battery, preferably a secondary battery, especially a solid lithium secondary battery.
  • the active material of the present invention can be suitably used as a negative electrode active material of a solid battery containing a sulfide solid electrolyte as the solid electrolyte.
  • a solid battery containing a sulfide solid electrolyte as the solid electrolyte examples include laminate type, cylindrical type, square type, coin type, and the like.
  • a solid battery preferably has a positive electrode layer, a negative electrode layer, and a solid electrolyte layer positioned therebetween, and the negative electrode layer preferably contains the active material of the present invention described above.
  • a solid battery can be produced, for example, by laminating a positive electrode layer, a solid electrolyte layer, and a negative electrode layer in this order and then press-molding them.
  • Solid battery means a solid battery that does not contain any liquid or gel material as an electrolyte, or a solid battery that contains, for example, 50% by mass or less, 30% by mass or less, or 10% by mass or less of liquid or gel material as an electrolyte. Aspects are also included.
  • the solid electrolyte can be similar to solid electrolytes used in general solid batteries. Examples include sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, halide solid electrolytes, etc. Among them, sulfide solid electrolytes containing sulfur (S) are preferred.
  • S sulfur
  • the sulfide solid electrolyte may contain, for example, Li and S and have lithium ion conductivity.
  • the sulfide solid electrolyte may be any of crystalline material, glass ceramics, and glass.
  • the sulfide solid electrolyte may have an aldirodite crystal structure.
  • Examples of such sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiX ("X" represents one or more halogen elements), Li 2 S- P2S5 - P2O5 , Li2S - Li3PO4 - P2S5 , Li3PS4 , Li4P2S6 , Li10GeP2S12 , Li3.25Ge0 .
  • LiaPSbXc ( X is at least one halogen element, a is 3.0 or more and 6 represents a number of 0.0 or less, b represents a number of 3.5 or more and 4.8 or less, and c represents a number of 0.1 or more and 3.0 or less.
  • sulfide solid electrolytes described in International Publication No. 2013/099834 and International Publication No. 2015/001818 are included.
  • Example 1 A silicon ingot and a boron ingot were heated and melted so that the composition was B 0.02 Si 0.98 , and the melt heated to 1700° C. was rapidly cooled using a liquid rapid solidification apparatus (single roll type). , a quenched ribbon alloy was obtained. The obtained quenched ribbon alloy is further subjected to particle size adjustment using a dry pulverizer under a nitrogen atmosphere (less than 1 vol% of air, the remainder being vaporized nitrogen from liquid nitrogen (purity of 99.999 vol% or more)) to obtain an alloy powder. got
  • the obtained raw material powder was subjected to a low crystallization treatment using a nanoparticle surface modification device (product name: “Nanomec Reactor CMJ-20SS” manufactured by Techno-I Co., Ltd.). Specifically, 20 kg of stabilized zirconia beads and 1,500 g of the raw material powder were placed in a container having a capacity of 22.4 L, and the treatment was performed at 800 rpm for 135 minutes and at 400 rpm for 45 minutes. At this time, the inside of the surface modification apparatus was set to an argon atmosphere. After the low crystallization treatment, air having a dew point of ⁇ 60° C. was gradually introduced into the surface modification apparatus, and the pulverized powder was gradually oxidized while maintaining the temperature at 60° C.
  • a nanoparticle surface modification device product name: “Nanomec Reactor CMJ-20SS” manufactured by Techno-I Co., Ltd.
  • the powder obtained by classification was pulverized using a wet pulverizer to adjust the particle size, and then classified with a sieve having an opening of 45 ⁇ m. Chemical analysis of the obtained powder revealed that the boron content was 0.66% by mass.
  • Example 2 In Example 1, D50 was adjusted by shortening the pulverization time when pulverizing using a wet pulverizer. A negative electrode active material was obtained in the same manner as in Example 1 except for this.
  • Example 3 The pulverization time when pulverizing using a wet pulverizer was made shorter than in Example 2.
  • a negative electrode active material was obtained in the same manner as in Example 1 except for this.
  • Comparative Example 2 In this comparative example, an active material composed of pure silicon that is not low-crystallized was manufactured. In Comparative Example 1, instead of the pulverization by the jet mill pulverizer, the particle size was adjusted using a wet pulverizer. A negative electrode active material composed of pure silicon was obtained in the same manner as in Comparative Example 1 except for this.
  • Comparative Example 3 an active material composed of low-crystallized pure silicon was produced.
  • Comparative Example 2 after low crystallization treatment was performed using a nanoparticle surface modification device (product name “Nanomek Reactor CMJ-20SS” Chuko Seiki Co., Ltd.), the particle size was adjusted using a wet pulverizer.
  • a negative electrode active material composed of pure silicon was obtained in the same manner as in Example 2. Specifically, in the low crystallization treatment, 20 kg of stabilized zirconia beads and 1500 g of raw material powder were placed in a container with a capacity of 22.4 L, and treated at 800 rpm for 135 minutes and 400 rpm for 45 minutes.
  • the inside of the surface modification apparatus was set to an argon atmosphere. After the low crystallization treatment, air having a dew point of ⁇ 60° C. was gradually introduced into the surface modification apparatus, and the pulverized powder was slowly oxidized and taken out.
  • Example 4 an active material made of a silicon-based material with low crystallinity was produced.
  • a silicon ingot and a boron ingot were heated and melted so as to have a composition of B 0.02 Si 0.98 , and rapidly cooled using the same apparatus as in Example 1 to obtain a quenched ribbon alloy.
  • the particle size was adjusted using a dry pulverizer under a nitrogen atmosphere (less than 1 vol% in air, the remainder being vaporized nitrogen from liquid nitrogen (purity of 99.999 vol% or more)) to obtain a raw material powder.
  • This raw material powder was not subjected to a low crystallization treatment, but was subjected to particle size adjustment using a wet pulverizer and classified with a 45 ⁇ m mesh screen to obtain a negative electrode active material containing silicon and boron.
  • the negative electrode active materials obtained in Examples and Comparative Examples were subjected to XRD measurement by the following method to measure peak intensities P1 and P2, lattice constants, and crystallite sizes CS.
  • XRD patterns of the negative electrode active materials obtained in Example 1 and Comparative Example 1 are shown in FIGS.
  • the particle size D 50 , the specific surface area SSA and the oxygen element content were measured by the following methods.
  • the Raman spectrum was measured by the following method, and the peak position was identified.
  • Raman spectra of the negative electrode active materials obtained in Examples 1-3 and Comparative Examples 2-4 are shown in FIGS. 3-8.
  • batteries were produced using the negative electrode active materials obtained in Examples and Comparative Examples, and the charge capacity, discharge capacity, efficiency and cycle characteristics (capacity retention rate) of the batteries were measured by the following methods. These results are shown in Table 1 below.
  • the particle size distribution was measured using a laser diffraction particle size distribution measuring machine "MT3000II” manufactured by Microtrack Bell Co., Ltd., and the volume cumulative particle size D50 was measured from the obtained volume-based particle size distribution chart.
  • the water-soluble solvent at the time of measurement is passed through a 60 ⁇ m filter, the “solvent refractive index” is 1.33, the particle permeability condition is “reflection”, the measurement range is 0.221 ⁇ m or more and 2000 ⁇ m or less, and the measurement time is 10 seconds. and
  • the specific surface area SSA of the negative electrode active material powder was measured using a fully automatic specific surface area measuring device Macsorb (manufactured by Mountec Co., Ltd.). 1.0 g of a sample (powder) was weighed into a glass cell (standard cell), and after replacing the inside of the glass with nitrogen gas, heat treatment was performed at 250° C. for 15 minutes in the nitrogen gas atmosphere. After that, cooling was performed for 4 minutes while flowing a nitrogen/helium mixed gas. After cooling, the samples were measured by the BET single point method. A mixed gas of 30 vol % nitrogen and 70 vol % helium was used as the adsorbed gas during cooling and measurement.
  • the oxygen element content was measured using an oxygen/nitrogen analyzer manufactured by LECO.
  • the Raman spectrum measurement conditions are as follows. The Raman spectrum was obtained by averaging all spectra obtained by mapping measurements and calculating the average spectrum for each sample.
  • ⁇ Apparatus NRS5200 (manufactured by JASCO Corporation)
  • ⁇ Excitation wavelength 532 nm
  • ⁇ Excitation power 0.9 mW
  • ⁇ Detector DU970P-FI
  • ⁇ Attenuation filter 10%
  • ⁇ Aperture diameter 4000 ⁇ m
  • Exposure time 20 sec
  • Objective lens MPLFLN ⁇ 20
  • Mapping area 10 ⁇ m ⁇ 10 ⁇ m
  • ⁇ Measurement interval 10 ⁇ m ⁇ Accumulation count: 1
  • Wavenumber calibration was performed by measuring Si, which is a standard sample, and adjusting the main peak to 520.0 cm ⁇ 1 .
  • a laser excitation wavelength of 532 nm was adopted.
  • a circle having a diameter of 16 mm ⁇ was punched from the negative electrode obtained as described above, and vacuum-dried at 160° C. for 6 hours. Then, an electrochemical evaluation cell TOMCEL (registered trademark) was assembled in a glove box under an argon atmosphere. Metallic lithium was used as the counter electrode.
  • As the electrolytic solution an electrolytic solution obtained by dissolving LiPF 6 in a carbonate-based mixed solvent so as to have a concentration of 1 mol/L was used.
  • a polypropylene porous film was used as the separator.
  • electrochemical evaluation cell TOMCEL registered trademark
  • initial activation was performed by the method described below.
  • the prepared electrochemical evaluation cell TOMCEL registered trademark
  • the actually set current value was calculated from the content of the negative electrode active material in the negative electrode. After that, the cell was placed in a constant temperature bath at 45° C. and allowed to stand for 5 hours until the cell reached the ambient temperature.
  • one charge/discharge cycle was performed at 0.1C, and then 50 charge/discharge cycles were performed at 1C. After that, one charge/discharge cycle was performed at 0.1C.
  • the capacity retention rate was calculated by dividing the discharge capacity at the 52nd charge/discharge at 45° C. by the initial discharge capacity in the above charge/discharge cycles, and this value was used as a measure of the cycle characteristics.
  • the batteries comprising the negative electrode active materials obtained in Examples exhibit better cycle characteristics than the batteries comprising the negative electrode active materials obtained in Comparative Examples. .
  • the active material of the present invention a battery with good performance can be obtained. Moreover, according to the method of the present invention, such an active material can be easily produced.

Abstract

This active material comprises a silicon-based material containing Si and B. The ratio P2/P1 of the intensity P2 of the diffraction peak observed in the range of 2θ = 30º-45º with respect to the intensity P1 of the diffraction peak observed in the range 2θ = 27.5º-29.5º in an XRD pattern is 0.1 or less. The active material has a cubic crystal structure with a lattice constant of 0.5390-0.5420 nm. The ratio D50/CS of the volume-cumulative particle size D50 to the crystallite size CS in the active material is 8 or more.

Description

活物質及びその製造方法Active material and manufacturing method thereof
 本発明は負極に用いることが可能な活物質及びその製造方法に関する。また本発明は当該活物質を含む電池に関する。 The present invention relates to an active material that can be used for a negative electrode and a method for producing the same. The present invention also relates to a battery containing the active material.
 リチウムイオン二次電池の負極活物質としては、炭素質材料を用いることが主流である。しかし、炭素質材料は理論放電容量が低いので、小型電気・電子機器の多機能化による消費電力の増大や、車載用電池としての使用への対応が困難である。そこで、炭素質材料に代わる負極活物質として、炭素質材料よりも高容量の材料であるケイ素を含む材料が提案されている。 Carbonaceous materials are mainly used as negative electrode active materials for lithium-ion secondary batteries. However, since the carbonaceous material has a low theoretical discharge capacity, it is difficult to cope with the increase in power consumption due to the multi-functionalization of small electric and electronic devices, and the use as a vehicle battery. Therefore, as a negative electrode active material to replace the carbonaceous material, a material containing silicon, which has a higher capacity than the carbonaceous material, has been proposed.
 ケイ素を含む活物質に関する従来の技術としては例えば下記の特許文献1に記載のものが知られている。同文献においては、微結晶ケイ素又は非晶質化ケイ素の中に、ケイ素以外の元素からなる微結晶又は非晶質が分散している、固体状態の合金の粒子からなる電極材料が提案されている。この電極材料は、低抵抗で充放電効率が高く、高容量であると同文献には記載されている。 For example, Patent Document 1 described below is known as a conventional technology related to silicon-containing active materials. This document proposes an electrode material composed of solid-state alloy particles in which microcrystalline or amorphous elements other than silicon are dispersed in microcrystalline silicon or amorphous silicon. there is The document describes that this electrode material has low resistance, high charge-discharge efficiency, and high capacity.
US2006/040182A1US2006/040182A1
 しかし電池性能の向上には、充放電効率や容量だけでなく、サイクル特性など様々な要因が関係しており、特許文献1に記載の電極材料では十分に満足すべき電池性能が得られない。したがって本発明の課題は、良好な電池性能を有する活物質を提供することにある。 However, the improvement of battery performance is related not only to charge/discharge efficiency and capacity, but also to various factors such as cycle characteristics, and the electrode material described in Patent Document 1 cannot provide sufficiently satisfactory battery performance. Accordingly, an object of the present invention is to provide an active material having good battery performance.
 本発明は、ケイ素(Si)元素及びホウ素(B)元素を含有するケイ素系材料からなる活物質であって、
 Cukα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=27.5°以上29.5°以下の範囲に観察される回折ピークの強度P1に対する、2θ=30°以上45°以下の範囲に観察される回折ピークの強度P2の比P2/P1が0.1以下であり、
 格子定数が0.5390nm以上0.5420nm以下である立方晶の結晶構造を有し、
 前記X線回折パターンから算出される結晶子サイズCSに対する、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50の比D50/CSが8以上である、活物質を提供するものである。
The present invention provides an active material made of a silicon-based material containing silicon (Si) element and boron (B) element,
In the X-ray diffraction pattern measured by an X-ray diffraction device (XRD) using Cukα1 rays, the diffraction peak intensity P1 observed in the range of 2θ = 27.5 ° or more and 29.5 ° or less is 2θ = 30 The ratio P2/P1 of the intensity P2 of the diffraction peaks observed in the range of 45° or less is 0.1 or less,
Having a cubic crystal structure with a lattice constant of 0.5390 nm or more and 0.5420 nm or less,
An active material having a ratio D 50 /CS of a volume cumulative particle size D 50 in a cumulative volume of 50% by volume measured by a laser diffraction scattering particle size distribution measurement method to a crystallite size CS calculated from the X-ray diffraction pattern is 8 or more. It provides
 また本発明は、ケイ素(Si)元素及びホウ素(B)元素を含有するケイ素系材料からなる活物質の製造方法であって、
 前記ケイ素(Si)元素及び前記ホウ素(B)元素を含有する粒子の集合体である原料粉に外力を加える工程を有し、
 前記工程においては、前記粒子の粉砕と、粉砕によって生じた微粒子どうしの結合とが同時に生じるように前記原料粉に外力を加える、活物質の製造方法を提供するものである。
The present invention also provides a method for producing an active material made of a silicon-based material containing silicon (Si) element and boron (B) element,
A step of applying an external force to the raw material powder, which is an aggregate of particles containing the silicon (Si) element and the boron (B) element,
In the above step, an external force is applied to the raw material powder so that the particles are pulverized and the fine particles generated by the pulverization are simultaneously bonded.
図1は、実施例1で得られた負極活物質のX線回折パターンを示す図である。1 is a diagram showing an X-ray diffraction pattern of the negative electrode active material obtained in Example 1. FIG. 図2は、比較例1で得られた負極活物質のX線回折パターンを示す図である。2 is a diagram showing an X-ray diffraction pattern of the negative electrode active material obtained in Comparative Example 1. FIG. 図3は、実施例1で得られた負極活物質のラマンスペクトルを示す図である。3 is a diagram showing a Raman spectrum of the negative electrode active material obtained in Example 1. FIG. 図4は、実施例2で得られた負極活物質のラマンスペクトルを示す図である。4 is a diagram showing the Raman spectrum of the negative electrode active material obtained in Example 2. FIG. 図5は、実施例3で得られた負極活物質のラマンスペクトルを示す図である。5 is a diagram showing the Raman spectrum of the negative electrode active material obtained in Example 3. FIG. 図6は、比較例2で得られた負極活物質のラマンスペクトルを示す図である。6 is a diagram showing a Raman spectrum of the negative electrode active material obtained in Comparative Example 2. FIG. 図7は、比較例3で得られた負極活物質のラマンスペクトルを示す図である。7 is a diagram showing a Raman spectrum of the negative electrode active material obtained in Comparative Example 3. FIG. 図8は、比較例4で得られた負極活物質のラマンスペクトルを示す図である。8 is a diagram showing a Raman spectrum of the negative electrode active material obtained in Comparative Example 4. FIG.
 以下本発明を、その好ましい実施形態に基づき説明する。本発明は活物質に係るものである。本発明の活物質はケイ素系材料からなる。「ケイ素系材料からなる」とは、本発明の活物質が、ケイ素(Si)元素及びそれ以外の元素を含む単一相の物質であることを意味する。それ以外の元素として、本発明においてはホウ素(B)元素を用いている。本発明の活物質は、ケイ素元素及びホウ素元素を含む単一相の物質であることが好ましい。従来知られている活物質であるチタンや鉄を含むケイ素含有合金(例えばTiSiやFeSiなど)と、純ケイ素とを含有する活物質は、単一相ではないので、本発明の活物質と異なる。同様に、例えば純ケイ素と純ホウ素との混合物も単一相ではないので、本発明の活物質と異なる。 The present invention will be described below based on its preferred embodiments. The present invention relates to active materials. The active material of the present invention consists of a silicon-based material. "Composed of a silicon-based material" means that the active material of the present invention is a single-phase material containing silicon (Si) and other elements. As another element, boron (B) element is used in the present invention. The active material of the present invention is preferably a single-phase material containing silicon and boron elements. Silicon-containing alloys containing titanium and iron (such as TiSi 2 and FeSi), which are conventionally known active materials, and active materials containing pure silicon do not have a single phase. different. Similarly, a mixture of pure silicon and pure boron, for example, is not a single phase, and thus differs from the active material of the present invention.
 本発明の活物質は、Cukα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=27.5°以上29.5°以下の範囲に回折ピークが観察されることが好ましい。特に、この角度範囲に観察される回折ピークがケイ素とホウ素との化合物であるボロンシリコン合金に由来するものであることが、リチウムイオンの吸蔵放出に起因する活物質の体積変化を抑制し得る点から好ましい。 In the active material of the present invention, diffraction peaks are observed in the range of 2θ = 27.5° or more and 29.5° or less in an X-ray diffraction pattern measured by an X-ray diffraction device (XRD) using Cukα1 rays. is preferred. In particular, the fact that the diffraction peak observed in this angle range is derived from a boron-silicon alloy, which is a compound of silicon and boron, can suppress the volume change of the active material caused by the absorption and release of lithium ions. preferred from
 ボロンシリコン合金は電子伝導性を有することから、純ケイ素に比べてリチウムイオンとの反応性が良好である。その結果、ボロンシリコン合金は、他のケイ素含有合金と異なり、リチウムイオンの吸蔵放出が可能であり、ボロンシリコン合金をそれ単独で活物質として用いることが可能である。ボロンシリコン合金は、純ケイ素に比べてリチウムイオンとの反応性が良好であることに起因して、リチウムの吸蔵放出が粒子内で均一に起こりやすく、リチウムイオンの吸蔵に起因する膨張が均一に起こりやすい。その結果、本発明の活物質を例えば固体電解質とともに用いた場合には、電極内で生じる応力の均一化を図ることができ、その結果、電極の寿命が延びるという利点がある。また、本発明の活物質を電解液とともに用いた場合には、活物質自身の微粉化が抑制され、反応性の高い新生面の発生に起因する電解液との反応を抑制できるという利点がある。 Because boron-silicon alloys have electronic conductivity, they have better reactivity with lithium ions than pure silicon. As a result, unlike other silicon-containing alloys, the boron-silicon alloy can absorb and release lithium ions, and the boron-silicon alloy can be used alone as an active material. Boron-silicon alloys have better reactivity with lithium ions than pure silicon, so lithium occlusion and desorption tend to occur uniformly within the particles, and expansion due to lithium ions occlusion is uniform. likely to occur. As a result, when the active material of the present invention is used together with, for example, a solid electrolyte, the stress generated in the electrode can be made uniform, and as a result, there is the advantage that the life of the electrode is extended. Further, when the active material of the present invention is used together with an electrolytic solution, there is an advantage that the active material itself is suppressed from pulverizing, and the reaction with the electrolytic solution caused by the generation of a highly reactive new surface can be suppressed.
 ところで、ボロンシリコン合金以外のシリコン含有合金(例えばTiSiやFeSiなど)は、リチウムイオンを吸蔵放出しないので、それ単独で活物質として使用できず、純ケイ素と併用する必要がある。ボロンシリコン合金以外のシリコン含有合金と純ケイ素とを併用しても、純ケイ素の膨張自体は全く緩和されない。しかも、活物質全体に占める純ケイ素の割合が相対的に低くなると、充放電容量が小さくなる傾向にある。
 これに対し、本発明の活物質は、Cukα1線を用いたXRDにより測定されるX線回折パターンにおいて、2θ=27.5°以上29.5°以下の範囲に観察される回折ピークの強度P1に対する、2θ=30°以上45°以下の範囲に観察される回折ピークの強度P2の比P2/P1は、0.1以下であるという特徴を有する。ここで、2θ=30°以上45°以下の範囲に観察される回折ピークは、ボロンシリコン合金以外のシリコン含有合金に由来する回折ピークであると推測される。本発明においては、P2/P1が0.1以下であることで、上述した課題を解決することができる。具体的には、リチウムイオンの吸蔵放出に起因する活物質の体積変化を抑制することができる。前記体積変化の抑制効果をより一層顕著なものとする観点から、前記P2/P1は、例えば、0.05以下であることが更に好ましく、0.02以下であることが一層好ましい。
By the way, silicon-containing alloys other than boron-silicon alloys (such as TiSi 2 and FeSi) do not absorb and release lithium ions, so they cannot be used alone as active materials and must be used together with pure silicon. Even if a silicon-containing alloy other than a boron-silicon alloy is used in combination with pure silicon, the expansion of pure silicon itself is not alleviated at all. Moreover, when the proportion of pure silicon in the entire active material is relatively low, the charge/discharge capacity tends to be small.
On the other hand, the active material of the present invention has an X-ray diffraction pattern measured by XRD using Cukα1 rays, in which the diffraction peak intensity P1 , the ratio P2/P1 of the intensity P2 of the diffraction peak observed in the range of 2θ=30° to 45° is 0.1 or less. Here, the diffraction peaks observed in the range of 2θ=30° or more and 45° or less are presumed to be derived from silicon-containing alloys other than boron-silicon alloys. In the present invention, the above problem can be solved by setting P2/P1 to 0.1 or less. Specifically, it is possible to suppress the volume change of the active material caused by the intercalation and deintercalation of lithium ions. From the viewpoint of making the volume change suppressing effect even more remarkable, the P2/P1 is, for example, more preferably 0.05 or less, and even more preferably 0.02 or less.
 ボロンシリコン合金以外のシリコン含有合金としては、例えばチタンシリサイド(TiSi)、マンガンシリサイド(MnSi)、ニオブシリサイド(NbSi)、アルミニウムシリサイド、スズシリサイド、カーボンシリサイドなどが挙げられる。 Examples of silicon-containing alloys other than boron-silicon alloys include titanium silicide (TiSi 2 ), manganese silicide (MnSi 2 ), niobium silicide (NbSi 2 ), aluminum silicide, tin silicide, and carbon silicide.
 本発明の活物質は、その結晶構造が純ケイ素の結晶構造と類似のものである。常温・常圧における純ケイ素の安定相は立方晶であり、本発明の活物質もまた常温・常圧における安定相は立方晶である。そして、本発明の活物質はケイ素に加えてホウ素を含有していることから、その格子定数が、純ケイ素の格子定数(0.543nm)よりも小さくなる。本発明者の検討の結果、本発明の活物質の格子定数は、例えば、0.5390nm以上であることが好ましく、0.5395nm以上であることが更に好ましく、0.5400nm以上であることが一層好ましい。一方、前記格子定数は、例えば、0.5420nm以下であることが好ましく、0.5415nm以下であることが更に好ましく、0.5410nm以下であることが一層好ましい。これによって、純ケイ素と同等の充放電容量を示しつつ、リチウムイオンの吸蔵放出に起因する活物質の体積変化が効果的に抑制することができる。 The active material of the present invention has a crystal structure similar to that of pure silicon. The stable phase of pure silicon at room temperature and pressure is cubic, and the active material of the present invention also has a stable phase of cubic at room temperature and pressure. Since the active material of the present invention contains boron in addition to silicon, its lattice constant is smaller than that of pure silicon (0.543 nm). As a result of studies by the present inventors, the lattice constant of the active material of the present invention is, for example, preferably 0.5390 nm or more, more preferably 0.5395 nm or more, and even more preferably 0.5400 nm or more. preferable. On the other hand, the lattice constant is, for example, preferably 0.5420 nm or less, more preferably 0.5415 nm or less, and even more preferably 0.5410 nm or less. As a result, it is possible to effectively suppress the volume change of the active material caused by the absorption and release of lithium ions while exhibiting charge/discharge capacity equivalent to that of pure silicon.
 本発明の活物質におけるB元素の含有量は、例えば、1at%以上であることが好ましい。一方、前記含有量は、例えば、5at%以下であることが好ましく、4at%以下であることが更に好ましく、3at%以下であることが一層好ましい。B元素の含有量が前記範囲内であることにより、上述したP2/P1を所望の範囲とすることができ、また、格子定数を所望の範囲とすることができる。 The content of element B in the active material of the present invention is preferably, for example, 1 atomic % or more. On the other hand, the content is, for example, preferably 5 at % or less, more preferably 4 at % or less, and even more preferably 3 at % or less. When the content of the B element is within the above range, the above P2/P1 can be set within the desired range, and the lattice constant can be set within the desired range.
 本発明の活物質は、炭素(C)元素を含んでいてもよい。活物質中のC元素の含有量は、例えば5質量%未満であることが好ましく、特に3質量%未満であることが好ましい。容量の低下を抑制できるからである。 The active material of the present invention may contain a carbon (C) element. The content of C element in the active material is, for example, preferably less than 5% by mass, particularly preferably less than 3% by mass. This is because the decrease in capacity can be suppressed.
 本発明の活物質におけるSi元素の含有量は、例えば、80質量%以上であることが好ましく、85質量%以上であることが更に好ましく、90質量%以上であることが一層好ましい。また、本発明の活物質は、Si元素、B元素及び残部不可避不純物からなる単一相であることが好ましい。ここで、不可避不純物とは、例えば原料由来の不可避不純物である。原料由来の不可避不純物としては、例えば、Si元素及びB元素以外の半金属元素及び金属元素が挙げられる。本発明の活物質中での残部不可避不純物の含有量は、例えば2質量%未満であることが好ましく、中でも1質量%未満、その中でも0.5質量%未満であることが好ましい。容量の低下を抑制できるからである。 The content of Si element in the active material of the present invention is, for example, preferably 80% by mass or more, more preferably 85% by mass or more, and even more preferably 90% by mass or more. Moreover, the active material of the present invention is preferably a single phase composed of Si element, B element and the balance of unavoidable impurities. Here, the unavoidable impurities are, for example, unavoidable impurities derived from raw materials. Examples of unavoidable impurities derived from raw materials include metalloid elements and metal elements other than Si element and B element. The content of the remaining unavoidable impurities in the active material of the present invention is, for example, preferably less than 2% by mass, more preferably less than 1% by mass, and more preferably less than 0.5% by mass. This is because the decrease in capacity can be suppressed.
 上述したとおり、純ケイ素は、常温・常圧における安定相が立方晶であり、該立方晶における一定の方位からリチウムを吸蔵放出しやすい性質がある。このことに起因して、純ケイ素はリチウムイオンの吸蔵に起因する膨張が異方的に生じやすく、このことが電池のサイクル特性を低下させる一因となる。この観点から本発明者が検討した結果、ケイ素及びホウ素を含むケイ素系材料からなる本発明の活物質を低結晶化させることが、異方的な膨張の抑制の観点から有効であることが判明した。詳細には、本発明の活物質を低結晶化させることで、特定の結晶方位からのリチウムの吸蔵が生じにくくなる。換言すれば、リチウムイオンの吸蔵が等方的に生じやすくなる。その結果、リチウムイオンの吸蔵に起因する膨張も等方的に生じやすくなる。その結果、電池のサイクル特性が低下しづらくなる。このように、本発明の活物質は低結晶性のものであることが、リチウムイオンの吸蔵に起因する膨張を等方的に生じさせる観点から好ましい。 As described above, in pure silicon, the stable phase at normal temperature and pressure is a cubic crystal, and it has the property of easily absorbing and releasing lithium from a certain orientation in the cubic crystal. Due to this, pure silicon tends to expand anisotropically due to absorption of lithium ions, which is one of the factors that deteriorate the cycle characteristics of the battery. As a result of investigations by the present inventors from this point of view, it was found that low crystallization of the active material of the present invention made of a silicon-based material containing silicon and boron is effective from the viewpoint of suppressing anisotropic expansion. did. Specifically, the low crystallization of the active material of the present invention makes it difficult for lithium to be absorbed from a specific crystal orientation. In other words, the absorption of lithium ions tends to occur isotropically. As a result, the expansion caused by the absorption of lithium ions also tends to occur isotropically. As a result, the cycle characteristics of the battery are less likely to deteriorate. As described above, the active material of the present invention preferably has low crystallinity from the viewpoint of isotropically causing expansion due to absorption of lithium ions.
 活物質の結晶性の程度は、結晶子サイズと粒径との関係に基づき評価できる。本発明においては、CuKα1線を用いたXRDにより測定されるX線回折パターンから算出される活物質の結晶子サイズCSに対する、レーザー回折散乱式粒度分布測定法による累積体積50容量%における該活物質の体積累積粒径D50の比D50/CSは8以上であり、例えば9以上であることが更に好ましく、10以上であることが一層好ましい。一方、D50/CSは、30以下であることが好ましい。D50/CSが前記範囲内であることにより、例えば電解液を用いた電池の場合には、該粒子に多くの新生面が生じやすくなることに起因する、リチウムイオンの円滑な授受を妨げる抵抗層が、該粒子と該電解液との界面に形成されやすくなるといった問題の発生を抑制することができる。また、固体電解質を用いた電池の場合には、活物質の粒子の粒径を小さくすることで、該粒子と該固体電解質の粒子との接触の程度が低下し、リチウムイオンの伝導が妨げられるといった問題の発生を抑制することができる。
 活物質におけるD50/CSの値を上述の値以上にするためには、例えば後述する方法によって活物質を製造すればよい。尤も、当該製造方法に限定されない。
The degree of crystallinity of the active material can be evaluated based on the relationship between crystallite size and particle size. In the present invention, the crystallite size CS of the active material calculated from the X-ray diffraction pattern measured by XRD using CuKα1 rays is measured by a laser diffraction scattering particle size distribution measurement method, and the active material at a cumulative volume of 50% by volume The ratio D 50 /CS of the volume cumulative particle size D 50 of is 8 or more, for example, 9 or more is more preferable, and 10 or more is even more preferable. On the other hand, D 50 /CS is preferably 30 or less. When D 50 /CS is within the above range, for example, in the case of a battery using an electrolytic solution, many new surfaces are likely to occur on the particles, resulting in a resistance layer that hinders smooth exchange of lithium ions. However, it is possible to suppress the occurrence of the problem that the particles are likely to be formed at the interface between the particles and the electrolytic solution. Further, in the case of a battery using a solid electrolyte, by reducing the particle size of the active material particles, the degree of contact between the particles and the solid electrolyte particles is reduced, thereby hindering the conduction of lithium ions. It is possible to suppress the occurrence of problems such as
In order to make the D 50 /CS value of the active material equal to or higher than the above value, the active material may be produced, for example, by the method described later. However, it is not limited to this manufacturing method.
 活物質の粒子の粒径D50は、例えば、5μm以下であることが好ましく、4μm以下であることが更に好ましく、3μm以下であることが一層好ましい。粒径D50をこのように設定することで、活物質がリチウムイオンを吸蔵放出したときの体積変化の影響を小さくすることができる。また、活物質と電解液との反応性を高め、固体電解質との十分な接触を確保できる。
 また、活物質の粒径D50は、例えば0.1μm以上であることが好ましく、0.2μm以上であることが更に好ましく、0.3μm以上であることが一層好ましく、0.4μm以上であることが更に一層好ましい。活物質の粒径D50をこのように設定することで、活物質の比表面積が過度に大きくなることに起因する固体電解質との接触点数の過度の増加を抑制でき、それによって接触抵抗の上昇を抑制できる。
 活物質におけるケイ素系材料の結晶子サイズCSは、該ケイ素系材料の結晶性を低下させる観点から、例えば10nm以上であることが好ましい。一方、結晶子サイズCSは、例えば、100nm以下であることが好ましく、80nm以下であることが更に好ましく、70nm以下であることが一層好ましく、60nm以下であることが更に一層好ましい。
 活物質の粒径D50及びケイ素系材料の結晶子サイズCSの測定方法は、後述する実施例で説明する。
The particle diameter D50 of the active material particles is, for example, preferably 5 μm or less, more preferably 4 μm or less, and even more preferably 3 μm or less. By setting the particle size D50 in this manner, the effect of volume change when the active material absorbs and releases lithium ions can be reduced. Moreover, the reactivity between the active material and the electrolytic solution can be enhanced, and sufficient contact with the solid electrolyte can be ensured.
Further, the particle diameter D50 of the active material is, for example, preferably 0.1 μm or more, more preferably 0.2 μm or more, still more preferably 0.3 μm or more, and 0.4 μm or more. is even more preferred. By setting the particle size D50 of the active material in this way, it is possible to suppress an excessive increase in the number of contact points with the solid electrolyte due to an excessive increase in the specific surface area of the active material, thereby increasing the contact resistance. can be suppressed.
The crystallite size CS of the silicon-based material in the active material is preferably, for example, 10 nm or more from the viewpoint of reducing the crystallinity of the silicon-based material. On the other hand, the crystallite size CS is, for example, preferably 100 nm or less, more preferably 80 nm or less, even more preferably 70 nm or less, and even more preferably 60 nm or less.
The method for measuring the particle size D50 of the active material and the crystallite size CS of the silicon-based material will be described in the examples below.
 本発明においては、活物質におけるケイ素系材料の結晶性を低くすることに起因して、該活物質を対象としてラマン分光分析を行うと、特徴的なピークが観察されることが本発明者の検討の結果判明した。詳細には、本発明の活物質は、ラマン分光法によって400cm-1以上600cm-1以下の波数範囲を測定して得られるラマンスペクトルにおいて、450cm-1以上500cm-1以下の波数範囲にピークが観察されることが好ましい。この波数範囲にピークが観察される活物質は、ケイ素系材料が低結晶性のものとなり、リチウムイオンの吸蔵に起因する膨張が等方的に起こりやすくなるという利点を有する。この利点を一層顕著なものする観点から、本発明の活物質は、前記ラマンスペクトルにおいて、455cm-1以上500cm-1以下の波数範囲にピークが観察されることが更に好ましく、455cm-1以上495cm-1以下の波数範囲にピークが観察されることが一層好ましい。
 なお、活物質の種類によっては、ラマン分光法によって400cm-1以上600cm-1以下の波数範囲を測定したときに複数のピークが観察される場合がある。その場合には、最も高強度のピークが450cm-1以上500cm-1以下の波数範囲に観察されることが好ましい。
 また、450cm-1以上500cm-1以下の波数範囲に複数のピークが観察されることは妨げられない。
 ラマンスペクトルの測定方法は、後述する実施例で説明する。
In the present invention, due to the low crystallinity of the silicon-based material in the active material, when Raman spectroscopic analysis is performed on the active material, a characteristic peak is observed. As a result of examination, it became clear. Specifically, the active material of the present invention has a peak in a wavenumber range of 450 cm -1 to 500 cm -1 in a Raman spectrum obtained by measuring a wavenumber range of 400 cm -1 to 600 cm -1 by Raman spectroscopy. Observation is preferred. An active material having a peak in this wavenumber range has the advantage that the silicon-based material has low crystallinity, and expansion due to absorption of lithium ions tends to occur isotropically. From the viewpoint of making this advantage even more remarkable, it is more preferable that the active material of the present invention has a peak observed in the wave number range of 455 cm −1 to 500 cm −1 in the Raman spectrum, and 455 cm −1 to 495 cm It is more preferable that a peak is observed in the wavenumber range of -1 or less.
Depending on the type of active material, a plurality of peaks may be observed when the wave number range of 400 cm −1 to 600 cm −1 is measured by Raman spectroscopy. In that case, the highest intensity peak is preferably observed in the wavenumber range of 450 cm −1 to 500 cm −1 .
Moreover, it is not prevented that a plurality of peaks are observed in the wave number range of 450 cm −1 to 500 cm −1 .
A method for measuring the Raman spectrum will be described later in Examples.
 本発明の活物質においては、粒子の表面における酸化の程度を制御することも、該活物質を含む電池の性能向上に寄与する。詳細には、活物質の粒子の表面における酸化の程度を低くすることが有利である。粒子の表面における酸化の程度を、粒子の比表面積で規格化した値で表現した場合、本発明の活物質は、粒子の比表面積SSAに対する、酸素(O)元素の含有量の比O/SSAの値が、例えば0.1(mass%/(m/g))以上であることが好ましい。一方、O/SSAは、例えば0.3(mass%/(m/g))以下であることが好ましく、0.2(mass%/(m/g))以下であることが一層好ましい。
 活物質におけるO/SSAの値を上述の範囲内に設定するためには、例えば上述する方法によって活物質を製造すればよい。尤も、当該製造方法に限定されない。
In the active material of the present invention, controlling the degree of oxidation on the surface of the particles also contributes to improving the performance of batteries containing the active material. In particular, it is advantageous to reduce the degree of oxidation on the surface of the particles of active material. When the degree of oxidation on the surface of a particle is expressed as a value normalized by the specific surface area of the particle, the active material of the present invention has a ratio of the content of oxygen (O) element to the specific surface area SSA of the particle, O/SSA is, for example, 0.1 (mass%/(m 2 /g)) or more. On the other hand, O/SSA is, for example, preferably 0.3 (mass%/(m 2 /g)) or less, more preferably 0.2 (mass%/(m 2 /g)) or less. .
In order to set the value of O/SSA in the active material within the above range, the active material may be produced by, for example, the above method. However, it is not limited to this manufacturing method.
 活物質における比表面積SSAの値は、活物質の粒子の粒径を適切な範囲に設定する観点から、例えば3m/g以上であることが好ましく、8m/g以上であることが更に好ましく、15m/g以上であることが一層好ましい。一方、比表面積SSAは、例えば50m/g以下であることが好ましい。
 また、活物質における酸素元素の含有量は、充放電容量や充放電効率の低下を抑制し、該活物質を含む電池性能を向上させる観点から、例えば7mass%以下であることが好ましく、6mass%以下であることが更に好ましく、5mass%以下であることが一層好ましい。酸素元素の含有量はその値が小さければ小さいほど好ましい。
 活物質の比表面積SSA及び酸素元素の含有量の測定方法は、後述する実施例で説明する。
The value of the specific surface area SSA in the active material is preferably, for example, 3 m 2 /g or more, more preferably 8 m 2 /g or more, from the viewpoint of setting the particle size of the active material particles within an appropriate range. , 15 m 2 /g or more. On the other hand, the specific surface area SSA is preferably 50 m 2 /g or less, for example.
In addition, the content of oxygen element in the active material is preferably 7 mass% or less, for example, from the viewpoint of suppressing deterioration of charge-discharge capacity and charge-discharge efficiency and improving battery performance including the active material, and 6 mass%. is more preferably 5 mass % or less. The smaller the oxygen element content, the better.
A method for measuring the specific surface area SSA of the active material and the content of the oxygen element will be described in Examples described later.
 次に、本発明の活物質の好適な製造方法を説明する。尤も以下に述べる方法は、本発明の活物質を製造するための方法の一例であり、本発明の活物質の製造方法は以下に述べる方法に制限されない。 Next, a suitable method for producing the active material of the present invention will be described. However, the method described below is an example of the method for producing the active material of the present invention, and the method for producing the active material of the present invention is not limited to the method described below.
 先ず、活物質の原料となるケイ素及びホウ素を用意する。坩堝内でケイ素及びホウ素を溶融させて溶湯を得る。この溶湯からケイ素固溶体、すなわちケイ素元素及びホウ素元素を含有するケイ素系材料の粒子の集合体である原料粉を製造する。この工程において原料粉を製造するには、例えばアトマイズ法を用いることができる。あるいはロール鋳造法を用いて得られた薄帯を粉砕する方法を用いることができる。
 このようにして得られた原料粉においては、ケイ素系材料の結晶性が高い状態になっている。そこで、この原料粉におけるケイ素系材料の結晶性を低下させる操作を行う。そのような操作としては、例えば高エネルギーの外力を加えて、ケイ素系材料の原料粉を構成する粒子を粉砕する操作が挙げられる。尤も、単に粉砕を行うと、ケイ素系材料の結晶性は低下するが、それとともに粒子の粒径が小さくなってしまう。そこで本製造方法においては、粒子の粉砕と、粉砕によって生じた微粒子どうしの結合とが同時に生じるように原料粉に外力を加えることが有利である。このような外力の加え方によって、ケイ素系材料の結晶子サイズ及び粒径を所望の範囲内とすることができる。
First, silicon and boron, which are raw materials for the active material, are prepared. A molten metal is obtained by melting silicon and boron in a crucible. From this molten metal, a silicon solid solution, that is, raw material powder, which is an aggregate of particles of a silicon-based material containing elemental silicon and elemental boron, is produced. In order to produce raw material powder in this step, for example, an atomizing method can be used. Alternatively, a method of pulverizing a ribbon obtained using a roll casting method can be used.
In the raw material powder thus obtained, the silicon-based material has high crystallinity. Therefore, an operation is performed to reduce the crystallinity of the silicon-based material in this raw material powder. Such an operation includes, for example, an operation of applying a high-energy external force to pulverize the particles constituting the raw material powder of the silicon-based material. Of course, if the silicon-based material is simply pulverized, the crystallinity of the silicon-based material is lowered, but the particle size of the particles is also reduced. Therefore, in the present production method, it is advantageous to apply an external force to the raw material powder so that the pulverization of the particles and the bonding of the fine particles generated by the pulverization occur simultaneously. By applying such an external force, the crystallite size and grain size of the silicon-based material can be set within desired ranges.
 上述した外力を原料粉に加える目的で、本製造方法においては、例えば反応槽内に回転羽根を備えた粉砕装置を使用し、反応槽内に投入する粉砕メディアとしては、例えば、原料粉の粒径D50に対して1500倍以上4000倍以下の粒径を有するものを使用すること好ましい。粉砕メディアの直径は、例えば4mm以上10mm以下であることが好ましく、5mm以上8mm以下であることが更に好ましく、5mm以上7mm以下であることが一層好ましい。
 粉砕メディアの材質としては、例えばアルミナ、ジルコニア、窒化ケイ素、タングステンカーバイドなどを挙げることができる。
 粉砕メディアと原料粉との比は、粉砕メディア100質量部に対して原料粉を2質量部以上15質量部以下、特に5質量部以上10質量部以下、とりわけ6質量部以上8質量部以下に設定することが、ケイ素系材料の低結晶化を効率的に行う観点から好ましい。
For the purpose of applying the above-described external force to the raw material powder, in the present production method, for example, a pulverizer equipped with rotating blades is used in the reaction vessel, and the grinding media to be introduced into the reaction vessel include, for example, grains of the raw material powder. It is preferable to use those having a particle size of 1500 to 4000 times the diameter D50 . The diameter of the grinding media is, for example, preferably 4 mm or more and 10 mm or less, more preferably 5 mm or more and 8 mm or less, and even more preferably 5 mm or more and 7 mm or less.
Materials for the grinding media include, for example, alumina, zirconia, silicon nitride, and tungsten carbide.
The ratio of the grinding media to the raw material powder is 2 parts by mass or more and 15 parts by mass or less, particularly 5 parts by mass or more and 10 parts by mass or less, especially 6 parts by mass or more and 8 parts by mass or less for 100 parts by mass of the grinding media. Setting is preferable from the viewpoint of efficiently reducing the crystallization of the silicon-based material.
 前記粉砕装置を用いた原料粉の粉砕は非酸化性雰囲気下で行うことが、電池性能の向上の観点から好ましい。非酸化性雰囲気としては、例えばアルゴンや窒素などの不活性ガス雰囲気、及び爆発濃度限界以下の水素を含む還元性雰囲気などが挙げられる。 From the viewpoint of improving battery performance, it is preferable to perform the pulverization of the raw material powder using the pulverizer in a non-oxidizing atmosphere. Examples of non-oxidizing atmospheres include inert gas atmospheres such as argon and nitrogen, and reducing atmospheres containing hydrogen below the explosive concentration limit.
 上述の手順によって原料粉の粉砕が完了したら、粉砕によって得られた粉末を大気と徐々に接触させることが、活物質の粒子が過度に酸化することを抑制する観点から好ましい。粉砕によって得られた粉末と酸素との接触によって生じる酸化反応は発熱反応であることから、該粉末を極めて短時間で大気と接触させると、酸化反応による発熱が急激に生じ、その発熱によって酸化反応が一層促進され、該粉末が過度に酸化されてしまうという不都合がある。そこで本製造方法においては、粉砕によって得られた粉末を大気と徐々に接触させることで、急激な酸化反応が生じることを抑制し、該粉末表面が極力酸化されないようにしている。このような操作を行うことで、活物質の粒子における比表面積SSA当たりの酸素含有量を低レベルにとどめることが可能となる。 After the pulverization of the raw material powder is completed by the above procedure, it is preferable to bring the powder obtained by pulverization into contact with the atmosphere gradually from the viewpoint of suppressing excessive oxidation of the active material particles. Since the oxidation reaction caused by the contact of the powder obtained by pulverization with oxygen is an exothermic reaction, when the powder is brought into contact with the air for a very short time, the oxidation reaction rapidly generates heat, and the heat generated causes the oxidation reaction. is further accelerated, and the powder is excessively oxidized. Therefore, in the present production method, the powder obtained by pulverization is brought into contact with the atmosphere gradually to suppress the rapid oxidation reaction and to prevent the powder surface from being oxidized as much as possible. By performing such an operation, it becomes possible to keep the oxygen content per specific surface area SSA in the particles of the active material at a low level.
 粉砕によって得られた粉末と大気との接触を徐々に行うとは、非酸化性雰囲気から大気雰囲気に戻す際に、導入する大気の量を制限して、数回に分けて大気雰囲気に戻したり、単位時間当たりに導入する大気の量を制限するようにしたりして両者を接触させることをいう。具体的には、得られた粉末が60℃以下の温度を維持したまま大気と接触させることが好ましい。大気雰囲気に戻す際の得られた粉末の温度を60℃以下にすることで酸化を抑えることができる。 Gradually bringing the powder obtained by pulverization into contact with the atmosphere means that when the non-oxidizing atmosphere is returned to the atmosphere, the amount of air introduced is limited, and the atmosphere is returned to the atmosphere in several steps. , refers to contacting both by limiting the amount of air introduced per unit time. Specifically, it is preferable that the obtained powder is brought into contact with the air while maintaining a temperature of 60° C. or less. Oxidation can be suppressed by setting the temperature of the obtained powder to 60° C. or lower when returning to the air atmosphere.
 粉砕によって得られた粉末と大気とを接触させるときには、露点が好ましくは-10℃以下である大気と接触させることが、該粉末表面が極力酸化されないようにする観点から好ましい。この観点から、大気の露点は-20℃以下であることが好ましく、-40℃以下であることが一層好ましい。 When the powder obtained by pulverization is brought into contact with the air, it is preferable to contact the air with a dew point of preferably -10°C or less from the viewpoint of minimizing oxidation of the powder surface. From this point of view, the dew point of the atmosphere is preferably −20° C. or less, more preferably −40° C. or less.
 このようにして得られた本発明の活物質は、それ単独で用いることができる。あるいは本発明の活物質を、他の活物質又は活物質以外の物質と併用することもできる。例えば本発明の活物質を、Si酸化物と併用できる。Si酸化物としては、例えばSiOa(0<a≦2)を挙げることができる。具体的には、SiO、SiO等を挙げることができる。 The active material of the present invention thus obtained can be used alone. Alternatively, the active material of the present invention can be used in combination with other active materials or substances other than active materials. For example, the active material of the present invention can be used in combination with Si oxide. Examples of Si oxide include SiOA (0<a≦2). Specifically, SiO, SiO 2 and the like can be mentioned.
 本発明の活物質は、例えば、該活物質と固体電解質とを含有する電極合剤の形態で用いることができる。本発明の活物質は、電池、特に固体電池、とりわけ固体リチウム電池などの負極活物質として好適に使用することができる。尤も、電解液を有する電池に本発明の活物質を適用することは何ら妨げられない。
 前記電池は、正極層と、負極層と、該正極層と該負極層との間に位置する電解質層とを有し、該負極層が本発明の活物質を含んでいることが好ましい。前記電池は一次電池であってもよく、二次電池であってもよいが、中でも二次電池、とりわけ固体リチウム二次電池であることが好ましい。例えば固体電解質として硫化物固体電解質を含む固体電池の負極活物質として本発明の活物質を好適に用いることができる。電池の形状としては、例えばラミネート型、円筒型、角形及びコイン型などが挙げられる。
The active material of the present invention can be used, for example, in the form of an electrode mixture containing the active material and a solid electrolyte. The active material of the present invention can be suitably used as a negative electrode active material for batteries, particularly solid batteries, especially solid lithium batteries. However, there is nothing to prevent the application of the active material of the present invention to a battery having an electrolytic solution.
Preferably, the battery has a positive electrode layer, a negative electrode layer, and an electrolyte layer positioned between the positive electrode layer and the negative electrode layer, the negative electrode layer containing the active material of the present invention. The battery may be a primary battery or a secondary battery, preferably a secondary battery, especially a solid lithium secondary battery. For example, the active material of the present invention can be suitably used as a negative electrode active material of a solid battery containing a sulfide solid electrolyte as the solid electrolyte. Examples of the shape of the battery include laminate type, cylindrical type, square type, coin type, and the like.
 固体電池は、正極層と、負極層と、これらの間に位置する固体電解質層とを有し、負極層が、上述した本発明の活物質を含むことが好ましい。固体電池は、例えば、正極層、固体電解質層、及び負極層をこの順で重ねて加圧成型することによって作製できる。「固体電池」とは、液状物質又はゲル状物質を電解質として一切含まない固体電池の他、例えば50質量%以下、30質量%以下、10質量%以下の液状物質又はゲル状物質を電解質として含む態様も包含する。 A solid battery preferably has a positive electrode layer, a negative electrode layer, and a solid electrolyte layer positioned therebetween, and the negative electrode layer preferably contains the active material of the present invention described above. A solid battery can be produced, for example, by laminating a positive electrode layer, a solid electrolyte layer, and a negative electrode layer in this order and then press-molding them. "Solid battery" means a solid battery that does not contain any liquid or gel material as an electrolyte, or a solid battery that contains, for example, 50% by mass or less, 30% by mass or less, or 10% by mass or less of liquid or gel material as an electrolyte. Aspects are also included.
 固体電解質は、一般的な固体電池に用いられる固体電解質と同様とすることができる。例えば、硫化物固体電解質、酸化物固体電解質、窒化物固体電解質、ハロゲン化物固体電解質等が挙げられるが、中でも硫黄(S)元素を含有する硫化物固体電解質であることが好ましい。硫化物固体電解質は、例えば、Li及びSを含みリチウムイオン伝導性を有するものであってもよい。硫化物固体電解質は、結晶性材料、ガラスセラミックス、ガラスのいずれであってもよい。硫化物固体電解質は、アルジロダイト型結晶構造を有していてもよい。このような硫化物固体電解質としては、例えば、LiS-P、LiS-P-LiX(「X」は一種以上のハロゲン元素を示す。)、LiS-P-P、LiS-LiPO-P、LiPS、Li、Li10GeP12、Li3.25Ge0.250.75、Li11、Li3.250.95、LiPS(Xは少なくとも一種のハロゲン元素である。aは3.0以上6.0以下の数を表す。bは3.5以上4.8以下の数を表す。cは0.1以上3.0以下の数を表す。)で表される化合物などが挙げられる。この他にも、例えば、国際公開第2013/099834号パンフレット、国際公開第2015/001818号パンフレットに記載の硫化物固体電解質が挙げられる。 The solid electrolyte can be similar to solid electrolytes used in general solid batteries. Examples include sulfide solid electrolytes, oxide solid electrolytes, nitride solid electrolytes, halide solid electrolytes, etc. Among them, sulfide solid electrolytes containing sulfur (S) are preferred. The sulfide solid electrolyte may contain, for example, Li and S and have lithium ion conductivity. The sulfide solid electrolyte may be any of crystalline material, glass ceramics, and glass. The sulfide solid electrolyte may have an aldirodite crystal structure. Examples of such sulfide solid electrolytes include Li 2 SP 2 S 5 , Li 2 SP 2 S 5 -LiX ("X" represents one or more halogen elements), Li 2 S- P2S5 - P2O5 , Li2S - Li3PO4 - P2S5 , Li3PS4 , Li4P2S6 , Li10GeP2S12 , Li3.25Ge0 . _ 25P0.75S4 , Li7P3S11 , Li3.25P0.95S4 , LiaPSbXc ( X is at least one halogen element, a is 3.0 or more and 6 represents a number of 0.0 or less, b represents a number of 3.5 or more and 4.8 or less, and c represents a number of 0.1 or more and 3.0 or less. In addition, for example, sulfide solid electrolytes described in International Publication No. 2013/099834 and International Publication No. 2015/001818 are included.
 以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲は、かかる実施例に制限されない。 The present invention will be described in more detail below with reference to examples. However, the scope of the invention is not limited to such examples.
  〔実施例1〕
 組成がB0.02Si0.98となるようにケイ素のインゴットとホウ素のインゴットを加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、更に窒素雰囲気(大気1vol%未満、残部は液体窒素からの気化窒素(純度99.999vol%以上))下で乾式粉砕機を用いて粒度調整を行い、合金粉末を得た。
[Example 1]
A silicon ingot and a boron ingot were heated and melted so that the composition was B 0.02 Si 0.98 , and the melt heated to 1700° C. was rapidly cooled using a liquid rapid solidification apparatus (single roll type). , a quenched ribbon alloy was obtained. The obtained quenched ribbon alloy is further subjected to particle size adjustment using a dry pulverizer under a nitrogen atmosphere (less than 1 vol% of air, the remainder being vaporized nitrogen from liquid nitrogen (purity of 99.999 vol% or more)) to obtain an alloy powder. got
 得られた原料粉を、ナノ粒子表面改質装置(製品名「ナノメックリアクター CMJ-20SS」株式会社テクノ・アイ製)を用いて低結晶化処理した。具体的には、容量22.4Lの容器内に、安定化ジルコニアビーズ20kgと、前記原料粉1500gとを入れて、800rpmで135分、400rpmで45分処理を行った。このとき、前記表面改質装置内はアルゴン雰囲気とした。低結晶化処理後、前記表面改質装置内に、露点が-60℃である大気を徐々に導入し、粉砕された粉末を、60℃以下の温度を維持したまま徐酸化した後に取り出した。次いでこの粉末を目開き75μmの箭で分級した。
 分級して得られた粉末を湿式粉砕機を用いて粉砕して粒度調整を行った後、目開き45μmの篩で分級した。得られた粉末を化学分析したところ、ホウ素の含有量は0.66質量%であった。
The obtained raw material powder was subjected to a low crystallization treatment using a nanoparticle surface modification device (product name: “Nanomec Reactor CMJ-20SS” manufactured by Techno-I Co., Ltd.). Specifically, 20 kg of stabilized zirconia beads and 1,500 g of the raw material powder were placed in a container having a capacity of 22.4 L, and the treatment was performed at 800 rpm for 135 minutes and at 400 rpm for 45 minutes. At this time, the inside of the surface modification apparatus was set to an argon atmosphere. After the low crystallization treatment, air having a dew point of −60° C. was gradually introduced into the surface modification apparatus, and the pulverized powder was gradually oxidized while maintaining the temperature at 60° C. or less, and then taken out. This powder was then classified with a 75 μm mesh screen.
The powder obtained by classification was pulverized using a wet pulverizer to adjust the particle size, and then classified with a sieve having an opening of 45 μm. Chemical analysis of the obtained powder revealed that the boron content was 0.66% by mass.
  〔実施例2〕
 実施例1において、湿式粉砕機を用いて粉砕する際の粉砕時間を短くしてD50を調整した。これ以外は実施例1と同様にして負極活物質を得た。
[Example 2]
In Example 1, D50 was adjusted by shortening the pulverization time when pulverizing using a wet pulverizer. A negative electrode active material was obtained in the same manner as in Example 1 except for this.
  〔実施例3〕
 湿式粉砕機を用いて粉砕する際の粉砕時間を実施例2よりも更に短くした。これ以外は実施例1と同様にして負極活物質を得た。
[Example 3]
The pulverization time when pulverizing using a wet pulverizer was made shorter than in Example 2. A negative electrode active material was obtained in the same manner as in Example 1 except for this.
  〔比較例1〕
 本比較例では、低結晶化されていない純ケイ素からなる活物質を製造した。
 ケイ素のインゴットを加熱溶融させて得た1700℃の溶湯を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、窒素雰囲気(大気1体積%未満、残部は液体窒素からの気化窒素(純度99.999体積%以上))下で乾式粉砕機を用いて粒度調整し、更にジェットミル粉砕機を用いて粒度調整しケイ素粉末とした。このケイ素粉末に対して低結晶化処理を行わず、目開き25μmの箭で分級し、純ケイ素からなる負極活物質を得た。
[Comparative Example 1]
In this comparative example, an active material made of pure silicon that is not low-crystallized was manufactured.
A molten metal of 1700° C. obtained by heating and melting a silicon ingot was rapidly cooled using a liquid rapid cooling and solidification apparatus (single roll type) to obtain a rapidly solidified ribbon alloy. The obtained quenched ribbon alloy is subjected to particle size adjustment using a dry pulverizer under a nitrogen atmosphere (less than 1% by volume of air, the remainder being vaporized nitrogen from liquid nitrogen (purity of 99.999% by volume or more)), and then jetted. The particle size was adjusted using a mill pulverizer to obtain a silicon powder. This silicon powder was classified with a 25 μm mesh screen without being subjected to a low crystallization treatment to obtain a negative electrode active material composed of pure silicon.
  〔比較例2〕
 本比較例では、低結晶化されていな純ケイ素からなる活物質を製造した。
 比較例1において、ジェットミル粉砕機による粉砕の代わりに、湿式粉砕機を用いた粒度調整に変更した。これ以外は比較例1と同様にして純ケイ素からなる負極活物質を得た。
[Comparative Example 2]
In this comparative example, an active material composed of pure silicon that is not low-crystallized was manufactured.
In Comparative Example 1, instead of the pulverization by the jet mill pulverizer, the particle size was adjusted using a wet pulverizer. A negative electrode active material composed of pure silicon was obtained in the same manner as in Comparative Example 1 except for this.
  〔比較例3〕
 本比較例では、低結晶化された純ケイ素からなる活物質を製造した。
 比較例2において、ナノ粒子表面改質装置(製品名「ナノメックリアクター CMJ-20SS」中工精機株式会社)を用いて低結晶化処理した後、湿式粉砕機を用いて粒度調整した以外は比較例2と同様にして、純ケイ素からなる負極活物質を得た。低結晶化処理は、具体的には、容量22.4Lの容器内に、安定化ジルコニアビーズ20kgと、原料粉1500gとを入れて、800rpmで135分、400rpmで45分処理を行った。このとき、前記表面改質装置内はアルゴン雰囲気とした。低結晶化処理後、前記表面改質装置内に、露点が-60℃である大気を徐々に導入し、粉砕された粉末を徐酸化して取り出した。
[Comparative Example 3]
In this comparative example, an active material composed of low-crystallized pure silicon was produced.
In Comparative Example 2, after low crystallization treatment was performed using a nanoparticle surface modification device (product name “Nanomek Reactor CMJ-20SS” Chuko Seiki Co., Ltd.), the particle size was adjusted using a wet pulverizer. A negative electrode active material composed of pure silicon was obtained in the same manner as in Example 2. Specifically, in the low crystallization treatment, 20 kg of stabilized zirconia beads and 1500 g of raw material powder were placed in a container with a capacity of 22.4 L, and treated at 800 rpm for 135 minutes and 400 rpm for 45 minutes. At this time, the inside of the surface modification apparatus was set to an argon atmosphere. After the low crystallization treatment, air having a dew point of −60° C. was gradually introduced into the surface modification apparatus, and the pulverized powder was slowly oxidized and taken out.
  〔比較例4〕
 本比較例では、低結晶化されていなケイ素系材料からなる活物質を製造した。
 組成がB0.02Si0.98となるようにケイ素のインゴットとホウ素のインゴットを加熱溶融させ、実施例1と同様の装置を用いて急速冷却し、急冷薄帯合金を得た。更に窒素雰囲気(大気1vol%未満、残部は液体窒素からの気化窒素(純度99.999vol%以上))下で乾式粉砕機を用いて粒度調整を行い、原料粉を得た。この原料粉に対して低結晶化処理を行わず、湿式粉砕機を用いて粒度調整して、目開き45μmの箭で分級し、ケイ素及びホウ素を含む負極活物質を得た。
[Comparative Example 4]
In this comparative example, an active material made of a silicon-based material with low crystallinity was produced.
A silicon ingot and a boron ingot were heated and melted so as to have a composition of B 0.02 Si 0.98 , and rapidly cooled using the same apparatus as in Example 1 to obtain a quenched ribbon alloy. Further, the particle size was adjusted using a dry pulverizer under a nitrogen atmosphere (less than 1 vol% in air, the remainder being vaporized nitrogen from liquid nitrogen (purity of 99.999 vol% or more)) to obtain a raw material powder. This raw material powder was not subjected to a low crystallization treatment, but was subjected to particle size adjustment using a wet pulverizer and classified with a 45 μm mesh screen to obtain a negative electrode active material containing silicon and boron.
  〔評価〕
 実施例及び比較例で得られた負極活物質について、以下の方法でXRD測定を行いピーク強度P1及びP2、格子定数並びに結晶子サイズCSを測定した。実施例1及び比較例1で得られた負極活物質のXRDパターンを図1及び図2に示す。
 また、以下の方法で粒径D50、比表面積SSA及び酸素元素の含有量を測定した。
 更に、以下の方法でラマンスペクトルを測定し、ピーク位置を特定した。実施例1ないし3及び比較例2ないし4で得られた負極活物質のラマンスペクトルを図3ないし図8に示す。
 更に、実施例及び比較例で得られた負極活物質を用いて電池を作製し、該電池の充電容量、放電容量、効率及びサイクル特性(容量維持率)を以下の方法で測定した。
 これらの結果を以下の表1に示す。
〔evaluation〕
The negative electrode active materials obtained in Examples and Comparative Examples were subjected to XRD measurement by the following method to measure peak intensities P1 and P2, lattice constants, and crystallite sizes CS. XRD patterns of the negative electrode active materials obtained in Example 1 and Comparative Example 1 are shown in FIGS.
Also, the particle size D 50 , the specific surface area SSA and the oxygen element content were measured by the following methods.
Furthermore, the Raman spectrum was measured by the following method, and the peak position was identified. Raman spectra of the negative electrode active materials obtained in Examples 1-3 and Comparative Examples 2-4 are shown in FIGS. 3-8.
Further, batteries were produced using the negative electrode active materials obtained in Examples and Comparative Examples, and the charge capacity, discharge capacity, efficiency and cycle characteristics (capacity retention rate) of the batteries were measured by the following methods.
These results are shown in Table 1 below.
  〔XRD測定〕
 株式会社リガク製の「UltimaIV」を用い、下記の条件で測定を行いXRDパターンを得た。得られたXRDパターンに基づき、ピークリストに表示されたものをピークとし、ピーク強度比P2/P1を算出した。結晶子サイズCS及び格子定数はICDDカード番号:00-005-0565(化学式:Si)のカード情報と照らし合わせて、回折ピーク位置と本数を確認して求めた。結晶子サイズはHall法を用いて解析を行い算出した。
・線源:CuKα1(線焦点)
・操作軸:2θ/θ、測定方法:連続、計数単位:cps
・開始角度:15.0°、終了角度:120.0°、積算回数:1回
・サンプリング幅:0.01°、スキャンスピード:1.0°/min
・電圧:40kV、電流:40mA
・発散スリット:0.2mm、発散縦制限スリット:10mm
・散乱スリット:開放、受光スリット:開放
・オフセット角度:0°
・ゴニオメーター半径:285mm、光学系:集中法
・アタッチメント:ASC-48
・スリット:D/teX Ultra用スリット
・検出器:D/teX Ultra
・インシデントモノクロ:CBO
・Ni-Kβフィルタ:無
・回転速度:50rpm
[XRD measurement]
Using "Ultima IV" manufactured by Rigaku Corporation, measurement was performed under the following conditions to obtain an XRD pattern. Based on the obtained XRD pattern, the peak intensity ratio P2/P1 was calculated using those displayed in the peak list as peaks. The crystallite size CS and the lattice constant were determined by checking the diffraction peak position and the number of diffraction peaks in comparison with the card information of ICDD card number: 00-005-0565 (chemical formula: Si). The crystallite size was calculated by analyzing using the Hall method.
・ Radiation source: CuKα1 (line focus)
・Operation axis: 2θ/θ, measurement method: continuous, counting unit: cps
・Start angle: 15.0°, End angle: 120.0°, Number of times of accumulation: 1 ・Sampling width: 0.01°, Scan speed: 1.0°/min
・Voltage: 40 kV, current: 40 mA
・Divergence slit: 0.2 mm, vertical divergence limiting slit: 10 mm
・Scattering slit: open, light receiving slit: open ・Offset angle: 0°
・Goniometer radius: 285mm, optical system: focusing method ・Attachment: ASC-48
・Slit: D/teX Ultra slit ・Detector: D/teX Ultra
・Incident Monochrome: CBO
・Ni-Kβ filter: None ・Rotational speed: 50 rpm
  〔粒径D50
 レーザー回折粒子径分布測定装置用自動試料供給機(マイクロトラック・ベル株式会社製「Microtrac SDC」)を用い、負極活物質の粉体をエタノールを20vol%添加したイオン交換水に投入し、超音波ホモジナイザー(株式会社日本精機製作所製ホモジナイザーUS-150E、チップは20φを使用)にセットし、AMPLITUDEが80%になるようにダイヤルレベルを調整し、5分間超音波を照射して、サンプルを液中に分散させて分散液を得た。次に、マイクロトラック・ベル株式会社製レーザー回折粒度分布測定機「MT3000II」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートから体積累積粒径D50を測定した。
 なお、測定の際の水溶性溶媒は60μmのフィルタを通し、「溶媒屈折率」を1.33、粒子透過性条件を「反射」、測定レンジを0.221μm以上2000μm以下、測定時間を10秒とした。
[Particle size D 50 ]
Using an automatic sample feeder for a laser diffraction particle size distribution measuring device ("Microtrac SDC" manufactured by Microtrac Bell Co., Ltd.), powder of the negative electrode active material was put into ion-exchanged water to which 20 vol% ethanol was added, and ultrasonic wave was applied. Set it in a homogenizer (Homogenizer US-150E manufactured by Nippon Seiki Seisakusho Co., Ltd., using a tip of φ20), adjust the dial level so that AMPLITUDE is 80%, irradiate ultrasonic waves for 5 minutes, and immerse the sample in the liquid. to obtain a dispersion. Next, the particle size distribution was measured using a laser diffraction particle size distribution measuring machine "MT3000II" manufactured by Microtrack Bell Co., Ltd., and the volume cumulative particle size D50 was measured from the obtained volume-based particle size distribution chart.
In addition, the water-soluble solvent at the time of measurement is passed through a 60 μm filter, the “solvent refractive index” is 1.33, the particle permeability condition is “reflection”, the measurement range is 0.221 μm or more and 2000 μm or less, and the measurement time is 10 seconds. and
  〔比表面積SSA〕
 負極活物質の粉体の比表面積SSAは全自動比表面積測定装置Macsorb(株式会社マウンテック製)を用いて測定した。サンプル(粉体)1.0gをガラスセル(標準セル)に秤量し、窒素ガスでガラス内を置換した後、前記窒素ガス雰囲気中で250℃、15分間熱処理した。その後、窒素・ヘリウム混合ガスを流しながら4分間冷却を行った。冷却後、サンプルをBET一点法にて測定した。なお、冷却時及び測定時の吸着ガスは窒素30vol%:ヘリウム70vol%の混合ガスを用いた。
[Specific surface area SSA]
The specific surface area SSA of the negative electrode active material powder was measured using a fully automatic specific surface area measuring device Macsorb (manufactured by Mountec Co., Ltd.). 1.0 g of a sample (powder) was weighed into a glass cell (standard cell), and after replacing the inside of the glass with nitrogen gas, heat treatment was performed at 250° C. for 15 minutes in the nitrogen gas atmosphere. After that, cooling was performed for 4 minutes while flowing a nitrogen/helium mixed gas. After cooling, the samples were measured by the BET single point method. A mixed gas of 30 vol % nitrogen and 70 vol % helium was used as the adsorbed gas during cooling and measurement.
  〔酸素元素の含有量〕
 LECO社製の酸素・窒素分析装置を用いて酸素元素の含有量を測定した。
[Content of oxygen element]
The oxygen element content was measured using an oxygen/nitrogen analyzer manufactured by LECO.
  〔ラマンスペクトル〕
 ラマンスペクトルを測定するときは、試料表面の凹凸が少なく粒子の密度が高いほど、励起光及びラマン散乱光の焦点が合った空間に、より多くの粒子が存在し、より低いレーザーの励起パワーで高いラマン光強度を得ることができる。そこで、Specac社製のミニ油圧プレス及びφ7mmのペレット成型用ダイスを用いて、実施例及び比較例で得られた負極活物質の粉末をそれぞれ1ton加圧することでペレット状に成型した。
[Raman spectrum]
When measuring the Raman spectrum, the less uneven the sample surface and the higher the particle density, the more particles are present in the space where the excitation light and Raman scattered light are focused, and the lower the excitation power of the laser. High Raman light intensity can be obtained. Therefore, using a Specac mini hydraulic press and a φ7 mm pellet forming die, 1 ton of pressure was applied to each of the negative electrode active material powders obtained in Examples and Comparative Examples to form pellets.
 ラマンスペクトルの測定条件は以下のとおりである。ラマンスペクトルはマッピング測定で得られた全スペクトルを平均化し、各試料で平均スペクトルを算出した。
・装置:NRS5200(日本分光社製)
・励起波長:532nm
・励起パワー:0.9mW
・検出器:DU970P-FI
・減衰フィルタ:10%
・グレーティング:1800gr/mm
・アパーチャー径:4000μm
・露光時間:20sec
・対物レンズ:MPLFLN ×20
・マッピングエリア:10μm×10μm
・測定間隔:10μm
・積算回数:1
The Raman spectrum measurement conditions are as follows. The Raman spectrum was obtained by averaging all spectra obtained by mapping measurements and calculating the average spectrum for each sample.
・ Apparatus: NRS5200 (manufactured by JASCO Corporation)
・Excitation wavelength: 532 nm
・Excitation power: 0.9 mW
・Detector: DU970P-FI
・Attenuation filter: 10%
・Grating: 1800gr/mm
・Aperture diameter: 4000 μm
・Exposure time: 20 sec
・Objective lens: MPLFLN × 20
・Mapping area: 10 μm×10 μm
・Measurement interval: 10 μm
・Accumulation count: 1
 波数校正は標準試料であるSiを測定し、メインピークが520.0cm-1になるようにした。レーザーの励起波長は532nmを採用した。 Wavenumber calibration was performed by measuring Si, which is a standard sample, and adjusting the main peak to 520.0 cm −1 . A laser excitation wavelength of 532 nm was adopted.
  〔電池の作製、並びに充電容量、放電容量、効率及びサイクル特性の測定〕
 実施例及び比較例で得られた負極活物質を用いてリチウム二次電池を作製した。電池の作製手順の詳細は以下に述べるとおりである。
 負極活物質粉末:導電材:結着剤=80:10:10(質量%)の混合比となるようにこれらを混合し、これらをN-メチルピロリドンに懸濁させて負極合剤を得た。導電材としてはアセチレンブラックを用いた。結着剤としてはポリイミドを用いた。この負極合剤を、厚み16μmの電解銅箔上に塗布した。塗膜を乾燥後、窒素雰囲気下350℃で1時間熱処理して負極活物質層を形成し負極を得た。
 前記のようにして得られた負極を直径16mmφの円形に打ち抜き、160℃で6時間真空乾燥を施した。そして、アルゴン雰囲気下のグローブボックス内で電気化学評価用セルTOMCEL(登録商標)を組み立てた。対極は金属リチウムを用いた。電解液として、カーボネート系の混合溶媒にLiPFを1mol/Lになるように溶解させた電解液を用いた。セパレーターはポリプロピレン製多孔質フィルムを用いた。
[Production of battery and measurement of charge capacity, discharge capacity, efficiency and cycle characteristics]
Lithium secondary batteries were produced using the negative electrode active materials obtained in Examples and Comparative Examples. The details of the procedure for producing the battery are as described below.
Negative electrode active material powder: conductive material: binder = 80: 10: 10 (% by mass), and these were mixed to obtain a negative electrode mixture by suspending them in N-methylpyrrolidone. . Acetylene black was used as the conductive material. Polyimide was used as the binder. This negative electrode mixture was applied onto an electrolytic copper foil having a thickness of 16 μm. After the coating film was dried, it was heat-treated at 350° C. for 1 hour in a nitrogen atmosphere to form a negative electrode active material layer to obtain a negative electrode.
A circle having a diameter of 16 mmφ was punched from the negative electrode obtained as described above, and vacuum-dried at 160° C. for 6 hours. Then, an electrochemical evaluation cell TOMCEL (registered trademark) was assembled in a glove box under an argon atmosphere. Metallic lithium was used as the counter electrode. As the electrolytic solution, an electrolytic solution obtained by dissolving LiPF 6 in a carbonate-based mixed solvent so as to have a concentration of 1 mol/L was used. A polypropylene porous film was used as the separator.
 前記のようにして準備した電気化学評価用セルTOMCEL(登録商標)を用いて次に記述する方法で初期活性を行った。作製した電気化学評価用セルTOMCEL(登録商標)を6時間静置した後、25℃において0.1Cで0.001V定電流定電位充電した後(電流値が0.01Cになった時点で充電終了)、0.1Cで1.0Vまで定電流放電した。これを3サイクル繰り返した。なお、実際に設定した電流値は負極中の負極活物質の含有量から算出した。その後、セルを45℃の恒温槽に入れて、セルが環境温度になるまで、5時間静置した。その後、0.001-1Vの電圧範囲で、0.1Cで充放電を1サイクル行った後、1Cで50サイクル充放電を行った。更にその後、0.1Cで充放電を1サイクル行った。
 また、前記の充放電サイクルにおいて、45℃で充放電した際の52回目の放電容量を初回放電容量で除すことで容量維持率を算出し、この値をサイクル特性の尺度とした。
Using the electrochemical evaluation cell TOMCEL (registered trademark) prepared as described above, initial activation was performed by the method described below. The prepared electrochemical evaluation cell TOMCEL (registered trademark) was left to stand for 6 hours, and then charged at 0.1 C at 25° C. with a constant current of 0.001 V (charged when the current value reached 0.01 C). end), and discharged at a constant current of 0.1C to 1.0V. This was repeated for 3 cycles. Incidentally, the actually set current value was calculated from the content of the negative electrode active material in the negative electrode. After that, the cell was placed in a constant temperature bath at 45° C. and allowed to stand for 5 hours until the cell reached the ambient temperature. After that, in a voltage range of 0.001 to 1 V, one charge/discharge cycle was performed at 0.1C, and then 50 charge/discharge cycles were performed at 1C. After that, one charge/discharge cycle was performed at 0.1C.
In addition, the capacity retention rate was calculated by dividing the discharge capacity at the 52nd charge/discharge at 45° C. by the initial discharge capacity in the above charge/discharge cycles, and this value was used as a measure of the cycle characteristics.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から明らかなとおり、実施例で得られた負極活物質を備えた電池は、比較例で得られた負極活物質を備えた電池に比べて良好なサイクル特性を示すことが分かる。 As is clear from the results shown in Table 1, the batteries comprising the negative electrode active materials obtained in Examples exhibit better cycle characteristics than the batteries comprising the negative electrode active materials obtained in Comparative Examples. .
 本発明の活物質によれば、良好な性能を有する電池を得ることができる。また本発明の方法によれば、そのような活物質を容易に製造できる。 According to the active material of the present invention, a battery with good performance can be obtained. Moreover, according to the method of the present invention, such an active material can be easily produced.

Claims (13)

  1.  ケイ素(Si)元素及びホウ素(B)元素を含有するケイ素系材料からなる活物質であって、
     Cukα1線を用いたX線回折装置(XRD)により測定されるX線回折パターンにおいて、2θ=27.5°以上29.5°以下の範囲に観察される回折ピークの強度P1に対する、2θ=30°以上45°以下の範囲に観察される回折ピークの強度P2の比P2/P1が0.1以下であり、
     格子定数が0.5390nm以上0.5420nm以下である立方晶の結晶構造を有し、
     前記X線回折パターンから算出される結晶子サイズCSに対する、レーザー回折散乱式粒度分布測定法による累積体積50容量%における体積累積粒径D50の比D50/CSが8以上である、活物質。
    An active material made of a silicon-based material containing a silicon (Si) element and a boron (B) element,
    In the X-ray diffraction pattern measured by an X-ray diffraction device (XRD) using Cukα1 rays, the diffraction peak intensity P1 observed in the range of 2θ = 27.5 ° or more and 29.5 ° or less is 2θ = 30 The ratio P2/P1 of the intensity P2 of the diffraction peaks observed in the range of 45° or less is 0.1 or less,
    Having a cubic crystal structure with a lattice constant of 0.5390 nm or more and 0.5420 nm or less,
    An active material having a ratio D 50 /CS of a volume cumulative particle size D 50 in a cumulative volume of 50% by volume measured by a laser diffraction scattering particle size distribution measurement method to a crystallite size CS calculated from the X-ray diffraction pattern is 8 or more. .
  2.  前記ホウ素(B)元素の含有量が1at%以上5at%以下である、請求項1に記載の活物質。 The active material according to claim 1, wherein the content of the boron (B) element is 1 at% or more and 5 at% or less.
  3.  ラマン分光法によって400cm-1以上600cm-1以下の波数範囲を測定して得られるラマンスペクトルにおいて、450cm-1以上500cm-1以下の波数範囲にピークが観察される、請求項1又は2に記載の活物質。 The Raman spectrum obtained by measuring a wavenumber range of 400 cm -1 or more and 600 cm -1 or less by Raman spectroscopy, wherein a peak is observed in a wavenumber range of 450 cm -1 or more and 500 cm -1 or less. active material.
  4.  比表面積SSAに対する、酸素(O)元素の含有量の比O/SSAが0.1(mass%/(m/g))以上0.3(mass%/(m/g))以下である、請求項1ないし3のいずれか一項に記載の活物質。 The ratio O/SSA of the oxygen (O) element content to the specific surface area SSA is 0.1 (mass%/(m 2 /g)) or more and 0.3 (mass%/(m 2 /g)) or less 4. The active material according to any one of claims 1 to 3.
  5.  前記体積累積粒径D50が0.1μm以上5μm以下である、請求項1ないし4のいずれか一項に記載の活物質。 The active material according to any one of claims 1 to 4, wherein the volume cumulative particle size D50 is 0.1 µm or more and 5 µm or less.
  6.  前記結晶子サイズCSが10nm以上100nm以下である、請求項1ないし5のいずれか一項に記載の活物質。 The active material according to any one of claims 1 to 5, wherein the crystallite size CS is 10 nm or more and 100 nm or less.
  7.  前記ケイ素(Si)元素、前記ホウ素(B)元素及び残部不可避不純物からなる単一相である、請求項1ないし6のいずれか一項に記載の活物質。 7. The active material according to any one of claims 1 to 6, which is a single phase composed of the silicon (Si) element, the boron (B) element, and the balance of inevitable impurities.
  8.  ケイ素(Si)元素及びホウ素(B)元素を含有するケイ素系材料からなる活物質の製造方法であって、
     前記ケイ素(Si)元素及び前記ホウ素(B)元素を含有する粒子の集合体である原料粉に外力を加える工程を有し、
     前記工程においては、前記粒子の粉砕と、粉砕によって生じた微粒子どうしの結合とが同時に生じるように前記原料粉に外力を加える、活物質の製造方法。
    A method for producing an active material made of a silicon-based material containing silicon (Si) element and boron (B) element,
    A step of applying an external force to the raw material powder, which is an aggregate of particles containing the silicon (Si) element and the boron (B) element,
    In the above step, an external force is applied to the raw material powder so that the particles are pulverized and the fine particles generated by the pulverization are bonded together.
  9.  前記工程を非酸化性雰囲気下で行う、請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein the steps are performed in a non-oxidizing atmosphere.
  10.  前記工程によって得られた粉末を大気と接触させる、請求項9に記載の製造方法。 The manufacturing method according to claim 9, wherein the powder obtained by the process is brought into contact with the atmosphere.
  11.  露点が―10℃以下の前記大気と接触させる、請求項10に記載の製造方法。 The manufacturing method according to claim 10, wherein the contact is made with the atmosphere having a dew point of -10°C or less.
  12.  請求項1ないし7のいずれか一項に記載の活物質を含む負極。 A negative electrode comprising the active material according to any one of claims 1 to 7.
  13.  正極層と、負極層と、前記正極層と前記負極層との間に位置する電解質層とを有し、前記負極層が請求項1ないし7のいずれか一項に記載の活物質を含む、電池。 A positive electrode layer, a negative electrode layer, and an electrolyte layer positioned between the positive electrode layer and the negative electrode layer, wherein the negative electrode layer comprises the active material according to any one of claims 1 to 7, battery.
PCT/JP2022/010555 2021-03-23 2022-03-10 Active material and method for producing same WO2022202357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508984A JPWO2022202357A1 (en) 2021-03-23 2022-03-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021048903 2021-03-23
JP2021-048903 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022202357A1 true WO2022202357A1 (en) 2022-09-29

Family

ID=83395598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010555 WO2022202357A1 (en) 2021-03-23 2022-03-10 Active material and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2022202357A1 (en)
WO (1) WO2022202357A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149951A (en) * 1998-09-11 2000-05-30 Nippon Steel Corp Lithium secondary battery, and negative active material for the lithium secondary battery
WO2011111709A1 (en) * 2010-03-09 2011-09-15 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery
JP2013206535A (en) * 2012-03-27 2013-10-07 Shin Etsu Chem Co Ltd Method for producing nonaqueous electrolyte secondary battery negative electrode active material
WO2020166655A1 (en) * 2019-02-13 2020-08-20 三井金属鉱業株式会社 Active material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000149951A (en) * 1998-09-11 2000-05-30 Nippon Steel Corp Lithium secondary battery, and negative active material for the lithium secondary battery
WO2011111709A1 (en) * 2010-03-09 2011-09-15 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery
JP2013206535A (en) * 2012-03-27 2013-10-07 Shin Etsu Chem Co Ltd Method for producing nonaqueous electrolyte secondary battery negative electrode active material
WO2020166655A1 (en) * 2019-02-13 2020-08-20 三井金属鉱業株式会社 Active material

Also Published As

Publication number Publication date
JPWO2022202357A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP5440099B2 (en) Anode material for non-aqueous secondary batteries
KR101884476B1 (en) Negative electrode material for lithium ion battery
JP4752992B2 (en) Anode material for non-aqueous electrolyte secondary battery
WO2013141230A1 (en) Porous silicon particles and porous silicon-composite particles
TWI623138B (en) Composite powder for use in an anode of a lithium ion battery, method for manufacturing a composite powder and lithium ion battery
US20220352500A1 (en) Electrode Mixture and Electrode Layer and Solid-State Battery Employing Same
JP2004323284A (en) Silicon composite and method of manufacturing the same, and negative electrode material for non-aqueous electrolyte secondary battery
JP4379971B2 (en) Electrical energy storage element
CN109155404B (en) Negative electrode active material, negative electrode, and battery
JP2000038606A (en) Hydrogen storage alloy powder, its production and alkali secondary battery
JP2001266866A (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP4081211B2 (en) Lithium secondary battery and negative electrode active material for lithium secondary battery
WO2022202357A1 (en) Active material and method for producing same
CN110915038B (en) Negative electrode active material, negative electrode, and battery
WO2020166655A1 (en) Active material
JP6735660B2 (en) Negative electrode active material for lithium ion secondary battery, method for producing the same, negative electrode and battery
WO2020166658A1 (en) Active material
JP6978563B2 (en) Si-based negative electrode active material
WO2020067480A1 (en) Composite particle group, negative electrode active material particle group, negative electrode, battery, and composite particles with exposed convex parts contained in composite particle group
WO2020166599A1 (en) Active material
WO2020166601A1 (en) Active material
JP2001266878A (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
TW201818590A (en) Rechargeable electrochemical cell and battery
WO2011049158A1 (en) Negative electrode active material for electricity storage device, and method for producing same
JP2022161719A (en) Negative electrode active material particle, negative electrode, and, battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508984

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775149

Country of ref document: EP

Kind code of ref document: A1