JP2000149951A - Lithium secondary battery, and negative active material for the lithium secondary battery - Google Patents

Lithium secondary battery, and negative active material for the lithium secondary battery

Info

Publication number
JP2000149951A
JP2000149951A JP11254359A JP25435999A JP2000149951A JP 2000149951 A JP2000149951 A JP 2000149951A JP 11254359 A JP11254359 A JP 11254359A JP 25435999 A JP25435999 A JP 25435999A JP 2000149951 A JP2000149951 A JP 2000149951A
Authority
JP
Japan
Prior art keywords
boron
active material
powder
silicon
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11254359A
Other languages
Japanese (ja)
Other versions
JP4081211B2 (en
Inventor
Kimihito Suzuki
公仁 鈴木
Takeshi Hamada
健 濱田
Taro Kono
太郎 河野
Tsutomu Sugiura
勉 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25435999A priority Critical patent/JP4081211B2/en
Priority to US09/393,885 priority patent/US6555272B2/en
Publication of JP2000149951A publication Critical patent/JP2000149951A/en
Application granted granted Critical
Publication of JP4081211B2 publication Critical patent/JP4081211B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery having high initial efficiency and a cycle characteristic, and a negative active material used for it. SOLUTION: A negative active material comprising powder of a silicon material containing boron and having 0.1-50 wt.% of boron content in the silicon material is used as a negative active material, in a lithium secondary battery containing a positive active material, the negative active material and a nonaqueous electrolyte. A 50%-cumulative size of the negative active material powder is 1-100 μm, and a peak intensity ratio (SiB4;021)/I(Si;111) of peak intensity of a diffracted ray from a (021) plane of SiB4 to peak intensity of diffracted ray from a (111) plane of Si in an X-ray wide angle diffraction method for the negative active material powder is preferably 1 or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
およびこれに用いられる負極活物質に関するものであ
る。さらに詳しくは、本発明は高い電圧を有し、放電容
量が大きく、且つ、充放電時の容量ロスの少ない高性能
なリチウム二次電池およびこれに用いられる負極活物質
に関するものである。
TECHNICAL FIELD The present invention relates to a lithium secondary battery and a negative electrode active material used for the same. More specifically, the present invention relates to a high-performance lithium secondary battery having a high voltage, a large discharge capacity, and a small capacity loss during charge and discharge, and a negative electrode active material used for the same.

【0002】[0002]

【従来の技術】リチウム二次電池は高エネルギー密度を
有するため、移動体通信、携帯用情報端末用電源として
利用され、端末の普及とともにその市場が急速に伸びて
いる。それに伴い端末機器の特徴である小型、軽量をさ
らに追及するため、機器の中で大きな容積を占める電池
に対し更なる小型、軽量化の性能改善が求められてい
る。
2. Description of the Related Art Since lithium secondary batteries have a high energy density, they are used as power sources for mobile communication and portable information terminals, and the market is rapidly expanding with the spread of terminals. Along with this, in order to further pursue the small size and light weight, which are the characteristics of the terminal device, there is a demand for a battery occupying a large volume in the device to further improve the performance of the size and weight reduction.

【0003】現在その二次電池に使用されている負極活
物質は主に黒鉛系炭素質材料であり、電池性能を左右す
るキーマテリアルとなっている。しかしながら、その材
料中にリチウムを可逆的に挿入・脱離できる量は炭素6
原子に対してリチウム1原子が限界であり、電気容量に
して372mAh/gが炭素材料の充放電に対する理論
的な限界容量である。現行の二次電池はこの限界容量に
近いレベルで使用されているため、今後の飛躍的な性能
改善は期待できない。
The negative electrode active material currently used for the secondary battery is mainly a graphite-based carbonaceous material, and is a key material that affects battery performance. However, the amount of lithium that can be inserted and removed reversibly in the material is carbon 6
One atom of lithium is the limit to the atom, and 372 mAh / g in terms of electric capacity is a theoretical limit capacity for charging and discharging of the carbon material. Since current secondary batteries are used at a level close to this limit capacity, a dramatic improvement in performance in the future cannot be expected.

【0004】このような状況の下、炭素以外の材料、例
えば合金や無機化合物で372mAh/gを大きく上回
る容量を有する材料の探索が徐々に行われつつある。そ
の中でも特に、錫、珪素を含んだ結晶質、非晶質酸化物
材料で1000mAh/gに近い放電容量を発揮するこ
とが見い出された(例えば、特開平7−220721号
公報、特開平7−249409号公報、等)。また、最
近珪素単体を負極活物質に用いた場合、3000mAh
/g前後の初期放電容量を示し(第38回電池討論会、
3A16(1997))、珪素酸化物を負極活物質に用
いた場合、1500mAh/g前後の初期放電容量を示
して(第38回電池討論会、3A17(1997))、
黒鉛系炭素質材料の限界容量をはるかに超える放電容量
を有することが報告された。しかしながら、いずれの材
料もその初期放電容量に対して初期充電容量が大きい、
すなわち、充放電時の容量ロスが非常に大きく(両材料
ともに1000mAh/g程度)、サイクル特性が低い
(充放電開始後数サイクルで容量が半減)ことが大きな
問題であった。
Under such circumstances, search for materials other than carbon, for example, alloys and inorganic compounds having a capacity much larger than 372 mAh / g is gradually being conducted. Among them, it has been found that a crystalline or amorphous oxide material containing tin and silicon exerts a discharge capacity close to 1000 mAh / g (for example, JP-A-7-220721, JP-A-7-20771). 249409, etc.). In addition, when silicon has recently been used as a negative electrode active material, it is 3000 mAh.
/ G initial discharge capacity (about 38th Battery Symposium,
3A16 (1997)), when silicon oxide was used as the negative electrode active material, an initial discharge capacity of around 1500 mAh / g was shown (38th Battery Symposium, 3A17 (1997)).
It has been reported to have a discharge capacity that far exceeds the critical capacity of graphite-based carbonaceous materials. However, any material has a large initial charge capacity relative to its initial discharge capacity,
That is, there was a serious problem that the capacity loss during charge / discharge was very large (about 1000 mAh / g for both materials) and the cycle characteristics were low (the capacity was reduced by half in several cycles after the start of charge / discharge).

【0005】一方、珪素にホウ素を含有せしめた材料と
して、一般式SiBn において、nが0.1から3であ
るホウ素化珪素合金構造物(特開昭53−136630
号公報)、nが3.2から6.6の範囲のSiB4 を主
とする珪素のホウ素化合物粉末(特開平8−13874
4号公報)がそれぞれ開示されている。前記合金構造物
では珪素本来の黒鉛系炭素質材料をはるかに超える大き
な放電容量を示すものの、合金浴中に集電マトリックス
を含浸して成型する電極であるため、近年実用化されて
いるリチウムイオン電池にみられるような集電箔上に活
物質粉末をバインダーと共にスラリーにしたものを塗布
して成型する電極と比較して量産化が困難であった。ま
た本合金構造物は膜厚を薄くすることが困難であること
から、大きな電流密度の下では電極内でのリチウムの拡
散が十分に行われずに大きな分極抵抗を引き起こし、吸
蔵したリチウムを十分に引き出すことができないため、
充放電時の容量ロスが大きくなってしまうなど可逆性に
大きな問題を有していた。一方、後者のSiB4 等を主
体とする珪素のホウ素化合物粉末では、黒鉛系炭素質材
料よりも高い放電容量を得ることが困難であった。
On the other hand, as a material containing boron in silicon, a silicon boride alloy structure in which n is 0.1 to 3 in general formula SiB n (Japanese Patent Application Laid-Open No. 53-136630).
JP), n is a boron compound of silicon which mainly SiB 4 ranging from 3.2 6.6 powder (JP-A-8-13874
No. 4) is disclosed. Although the above-mentioned alloy structure shows a large discharge capacity far exceeding that of the graphite-based carbonaceous material inherent to silicon, since the electrode is formed by impregnating a current collecting matrix in an alloy bath, the lithium ion has recently been put into practical use. It was difficult to mass-produce compared to an electrode formed by applying a slurry of an active material powder together with a binder on a current collector foil as seen in a battery and forming the slurry. In addition, since it is difficult to reduce the film thickness of this alloy structure, at a large current density, lithium is not sufficiently diffused in the electrode, causing a large polarization resistance, and the absorbed lithium is not sufficiently absorbed. Because you can not withdraw
There has been a major problem in reversibility, such as an increase in capacity loss during charging and discharging. On the other hand, in the latter case, it is difficult to obtain a discharge capacity higher than that of the graphite-based carbonaceous material with the silicon boron compound powder mainly composed of SiB 4 or the like.

【0006】[0006]

【発明が解決しようとする課題】本発明は、新規なリチ
ウム二次電池用負極活物質およびこれを用いてなるリチ
ウム二次電池を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel negative electrode active material for a lithium secondary battery and a lithium secondary battery using the same.

【0007】本発明はまた、高い放電容量を実現しなが
ら、高い初期効率とサイクル特性を有するリチウム二次
電池およびこれに用いる負極活物質を提供することを目
的とする。
Another object of the present invention is to provide a lithium secondary battery having high initial efficiency and cycle characteristics while realizing a high discharge capacity, and a negative electrode active material used for the same.

【0008】本発明はさらに、ホウ素を含有する珪素材
料をリチウム二次電池用負極活物質として用いた場合に
発生する上記の問題点、すなわち、量産化に不適である
こと、充放電時に大きな容量ロスを生じ可逆性が低いこ
と、及び、黒鉛系炭素質材料よりも低い放電容量しか得
られないという問題点を解決してなるリチウム二次電池
用負極活物質およびこれを用いてなるリチウム二次電池
を提供することを目的とする。
The present invention further provides the above-mentioned problems that occur when a boron-containing silicon material is used as a negative electrode active material for a lithium secondary battery, that is, it is unsuitable for mass production and has a large capacity during charging and discharging. A negative active material for a lithium secondary battery, which solves the problems of causing loss and low reversibility and obtaining a discharge capacity lower than that of a graphite-based carbonaceous material, and a lithium secondary battery using the same. It is intended to provide a battery.

【0009】[0009]

【課題を解決するための手段】本発明者らは、珪素材料
粉末自体の電気化学特性を基に、ホウ素を含有させた珪
素材料粉末を鋭意検討した結果、ある適度な粒度を有す
る珪素材料粉末に低濃度のホウ素を混合し、ある条件で
熱処理することにより、含有するホウ素量から熱力学的
に推定されるホウ化珪素(SiB4 )の量よりかなり少
ない量のホウ化珪素しか存在しない実質的に過冷却状態
にあるホウ素含有珪素材料粉末を得ることができ、それ
を用いることにより珪素が本来保有する黒鉛系炭素質材
料をはるかに超える大きな放電容量を保持したまま容量
ロスが大幅に改善され、サイクル特性の良好な優れた電
極特性を発揮することを見い出した。本発明はかかる知
見に基づいて完成されたものである。
Means for Solving the Problems The present inventors diligently studied a silicon material powder containing boron based on the electrochemical characteristics of the silicon material powder itself. As a result, the silicon material powder having a certain appropriate particle size was obtained. Is mixed with low-concentration boron and heat-treated under a certain condition, whereby substantially less silicon boride is present than the amount of silicon boride (SiB 4 ) thermodynamically estimated from the contained boron amount. It is possible to obtain a boron-containing silicon material powder in a supercooled state, and by using it, the capacity loss is greatly improved while maintaining a large discharge capacity far exceeding the graphite-based carbonaceous material that silicon originally possesses As a result, it has been found that excellent electrode characteristics with good cycle characteristics are exhibited. The present invention has been completed based on such findings.

【0010】本発明のリチウム二次電池用負極活物質
は、ホウ素を含有する珪素材料の粉末からなり、該珪素
材料におけるホウ素含有量が0.1〜50重量%である
ことを特徴とするものである。
[0010] The negative electrode active material for a lithium secondary battery of the present invention comprises a boron-containing silicon material powder, wherein the silicon material has a boron content of 0.1 to 50% by weight. It is.

【0011】さらに本発明の好ましい実施態様において
は、その負極活物質粉末の50%累積径(d50)が1〜
100μmである負極活物質が示される。本発明の別の
好ましい実施態様においては、その負極活物質粉末のX
線広角回折法におけるSiの(111)面からの回折線
のピーク強度I(Si;111)に対するSiB4 の(021)
面からの回折線のピーク強度I(SiB4;021)の比I(SiB4;02
1)/I(Si;111)が1以下である負極活物質が示される。
Furthermore, in a preferred embodiment of the present invention, the 50% cumulative diameter (d 50 ) of the negative electrode active material powder is 1 to 5.
A negative electrode active material that is 100 μm is shown. In another preferred embodiment of the present invention, the negative electrode active material powder X
(021) of SiB 4 with respect to the peak intensity I (Si; 111) of the diffraction line from the (111) plane of Si in the line wide angle diffraction method
The ratio I of; (021 SiB 4) (SiB 4; peak intensity of the diffraction line from the plane I 02
1) A negative electrode active material in which / I (Si; 111) is 1 or less is shown.

【0012】上記諸目的を達成する本発明はまた、正極
活物質、負極活物質および非水系電解質を含有するリチ
ウム二次電池において、該負極活物質として少なくとも
ホウ素を0.1〜50重量%含有する珪素材料粉末を用
いてなることを特徴とするリチウム二次電池である。
According to the present invention, which achieves the above objects, a lithium secondary battery containing a positive electrode active material, a negative electrode active material and a non-aqueous electrolyte contains at least 0.1 to 50% by weight of boron as the negative electrode active material. A lithium secondary battery characterized by using a silicon material powder.

【0013】[0013]

【発明の実施の形態】以下に本発明の具体的な内容につ
いて述べる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The specific contents of the present invention will be described below.

【0014】本発明に係るリチウム二次電池用負極活物
質は、珪素材料にホウ素を低濃度に含有させたものの粉
末からなるものである。
The negative electrode active material for a lithium secondary battery according to the present invention comprises a powder of a silicon material containing a low concentration of boron.

【0015】このようなホウ素含有珪素材料粉末は、例
えば、珪素材料にホウ素を低濃度で混合、熱処理し、必
要に応じて粉砕、分級して得られ、SiB4 等のホウ化
珪素の量が少ない実質的に過冷却状態にあるホウ素含有
珪素材料粉末である。このように、粒度、比表面積、及
び、共存相として生成するホウ化珪素の量を制御した材
料を用いることにより、電極としての大量製造を可能に
するだけでなく、黒鉛系炭素質材料よりもはるかに大き
な放電容量を有し、且つ、充放電時の容量ロスを劇的に
低減しサイクル特性を飛躍的に改善することに成功した
ものである。
Such a boron-containing silicon material powder is obtained, for example, by mixing boron in a silicon material at a low concentration, heat-treating and, if necessary, pulverizing and classifying the silicon material. The amount of silicon boride such as SiB 4 is reduced. Less boron-containing silicon material powder in a substantially supercooled state. As described above, by using a material in which the particle size, the specific surface area, and the amount of silicon boride generated as a coexisting phase are controlled, not only a large-scale production as an electrode is enabled, but also a graphite-based carbonaceous material is used. It has a much larger discharge capacity, has dramatically reduced the capacity loss during charge and discharge, and has succeeded in dramatically improving the cycle characteristics.

【0016】この珪素単体の電極特性を改善するのに大
きな役割を果たしたホウ素の効果について以下のように
考察する。
The effect of boron which has played a major role in improving the electrode characteristics of silicon alone will be considered as follows.

【0017】珪素単体及び珪素酸化物とリチウムの反応
は、本系と類似の反応が進行すると予想される錫金属、
酸化物に関する報告(J.Electrochem.Soc.,144,6,2045
(1997))に基づけば、以下のように推察される。すなわ
ち、この反応は、基本的にホストである珪素とリチウム
との合金化・脱合金化反応と考えられる。珪素が充電時
に多量のリチウムと合金化反応した場合、リチウムの濃
度変化に伴って数々の相変化を起こすと共に大きな体積
膨張が生じる。逆に放電の場合には、リチウムとの合金
相からリチウムが脱離するに伴い、相変化と共に大きな
体積収縮が起こる。珪素単体及び珪素酸化物で起こる不
可逆容量の発生原因に関しては明らかではないが、充放
電時に起こる大きな相変化や体積変化のために、電極の
形態が崩壊して集電効率が低下することが充放電時の大
きな容量ロスや可逆性の低下の原因になり得る。
The reaction of lithium with simple silicon or silicon oxide is tin metal, which is expected to undergo a similar reaction to the present system.
Report on oxides (J. Electrochem. Soc., 144, 6, 2045
(1997)), the following can be inferred. That is, this reaction is basically considered to be an alloying / dealloying reaction between silicon and lithium as hosts. When silicon undergoes an alloying reaction with a large amount of lithium at the time of charging, a number of phase changes occur along with a change in lithium concentration, and a large volume expansion occurs. Conversely, in the case of discharge, a large volume shrinkage occurs with a phase change as lithium is desorbed from the alloy phase with lithium. Although the cause of the irreversible capacity that occurs in silicon alone and silicon oxide is not clear, it is not sufficient that the shape of the electrode collapses due to a large phase change or volume change that occurs during charging and discharging, resulting in a decrease in current collection efficiency. This may cause a large capacity loss at the time of discharging and a decrease in reversibility.

【0018】本発明に係るホウ素化合物の量が少ない実
質的に過冷却状態にあるホウ素含有珪素材料粉末を用い
ることにより上記不可逆容量が低減する理由についても
今のところ明らかではないが、例えば、珪素単体と比べ
て本発明のホウ素含有珪素材料粉末の方が、リチウムと
の最大合金組成が小さい場合には、充電深度が浅くなっ
て結晶構造の膨張が抑えられるために、集電効率の低下
が抑制されて不可逆容量が低減することや、ホウ素を含
有することでリチウムの拡散に適した結晶構造となる場
合には、純粋な珪素中よりもリチウムの拡散が速くなっ
て不可逆容量が低減すること、ホウ素のドープによるア
クセプターレベルの形成で材料自体の電気伝導性が向上
するために不可逆容量が低減すること、等が考えられ
る。
The reason why the irreversible capacity is reduced by using a boron-containing silicon material powder in a substantially supercooled state with a small amount of the boron compound according to the present invention is not yet clear. When the boron-containing silicon material powder of the present invention has a smaller maximum alloy composition with lithium than the simple substance, the charging depth becomes shallow and the expansion of the crystal structure is suppressed. Suppressed to reduce the irreversible capacity, or when boron contains a crystal structure suitable for lithium diffusion, the diffusion of lithium is faster than in pure silicon and the irreversible capacity is reduced. It is conceivable that the irreversible capacity decreases because the electrical conductivity of the material itself is improved by forming the acceptor level by doping with boron.

【0019】珪素にホウ素を含有させた材料の形態を適
度な粒度を有する粉末状とし、これをリチウム二次電池
の負極活物質に用いることにより、近年実用化されてい
る黒鉛系炭素質粉末を搭載したリチウムイオン電池の電
極製造ラインを改造することなく使用できるため、現行
設備での電池の量産化が可能となる。さらに、粉末を塗
布成型した電極では従来の合金構造物と比較して電極内
でのリチウムの拡散に有利な薄膜化が可能となり、大き
な電流密度下での分極抵抗が低く抑えられるため、充放
電時の電気量効率が改善されて容量ロスを低減すること
が可能である。
The material containing boron in silicon is formed into a powder having an appropriate particle size, and is used as a negative electrode active material of a lithium secondary battery. Since it can be used without modifying the electrode production line of the installed lithium-ion battery, it is possible to mass-produce the battery with existing facilities. Furthermore, compared to conventional alloy structures, electrodes coated with powder can form a thin film that is more advantageous for lithium diffusion in the electrodes, and the polarization resistance at high current densities can be kept low. It is possible to improve the efficiency of electricity at the time and reduce the capacity loss.

【0020】本発明に係るホウ素含有珪素材料粉末に関
しては、当該珪素材料粉末におけるホウ素濃度として重
量換算で0.1〜50%を満たすことが必要である。ホ
ウ素濃度が0.1重量%未満の場合にはホウ素を含むこ
とによる効果が十分に発揮されず、珪素単体と同様充放
電時に大きな容量ロスを示すため好ましくない。一方、
ホウ素濃度が0.1重量%以上の材料でホウ素を含むこ
とによる電極特性の劇的な改善が見られた。また、ホウ
素濃度が50重量%を超える場合には、多量に生成する
SiB4 等のホウ化珪素がリチウムの吸蔵(合金化)反
応に寄与しないため、重量あたりの放電容量、エネルギ
ー密度が極度に低下してしまうため好ましくない。さら
に好ましくは、ホウ素濃度が10重量%〜50重量%であ
ることが望ましく、20重量%〜40重量%が更に望ま
しい。該珪素材料粉末中に含まれるホウ素量含有量が1
0重量%以上となると、該珪素材料粉末はより高いサイ
クル特性を示すことが可能となる。これは、本発明の検
討の中で見出されたホウ素添加によって充放電に伴う珪
素材料粉末の膨張収縮が抑制されるという現象におい
て、ホウ素含有量が10重量%以上にはその効果が顕著
に高くなるためであろうと考えている。
With respect to the boron-containing silicon material powder according to the present invention, it is necessary that the boron concentration in the silicon material powder satisfy 0.1 to 50% in terms of weight. When the boron concentration is less than 0.1% by weight, the effect of containing boron is not sufficiently exerted, and a large capacity loss is exhibited during charge and discharge as in the case of silicon alone, which is not preferable. on the other hand,
A dramatic improvement in electrode properties was seen by including boron in materials with boron concentrations of 0.1% by weight or more. On the other hand, when the boron concentration exceeds 50% by weight, a large amount of silicon boride such as SiB 4 does not contribute to the occlusion (alloying) reaction of lithium, so that the discharge capacity per unit weight and energy density are extremely low. It is not preferable because it is lowered. More preferably, the boron concentration is preferably from 10% by weight to 50% by weight, and more preferably from 20% by weight to 40% by weight. When the content of boron contained in the silicon material powder is 1
When the content is 0% by weight or more, the silicon material powder can exhibit higher cycle characteristics. This is due to the phenomenon that expansion and shrinkage of the silicon material powder due to charging and discharging are suppressed by boron addition found in the study of the present invention, and the effect is remarkable when the boron content is 10% by weight or more. I think it will be higher.

【0021】また、本発明に係るホウ素含有珪素材料粉
末の粒度に関しては、その粉末の50%累積径(d50
が1〜100μm、より好ましくは5〜50μmを満た
すことが望ましい。d50が1μm未満の場合には、小さ
な粒径の粉体が多く含まれるためハンドリング性が悪く
なる傾向が認められることや、バインダーや導電剤が多
く必要となり単位体積あたりのエネルギー密度が低下す
る可能性があるため好ましくない。一方、d50が100
μmを超える場合には、リチウムが活物質粉末の内部ま
で拡散することが困難となる可能性や、現行のリチウム
イオン電池の電極厚みが200μm以下程度であり電極
作成が困難となる可能性があるため好ましくない。
Regarding the particle size of the boron-containing silicon material powder according to the present invention, the 50% cumulative diameter (d 50 ) of the powder is
Satisfies 1 to 100 μm, more preferably 5 to 50 μm. If d 50 of less than 1μm, the powder of a small particle size often and that handling properties is observed a tendency that deteriorate because it contains the energy density per unit volume required many binders and conductive agent is reduced It is not preferable because there is a possibility. On the other hand, d 50 is 100
If it exceeds μm, it may be difficult for lithium to diffuse into the active material powder, or the electrode thickness of the current lithium ion battery may be about 200 μm or less, making it difficult to prepare an electrode. Therefore, it is not preferable.

【0022】ホウ素含有珪素材料粉末の粒度比表面積に
関しては、100m2 /g以下であることが望ましい。
この比表面積が100m2 /gを超える場合には、表面
積が大きいために初期充電の際に電解質との反応を起こ
して容量ロスを大きくする可能性や、充放電サイクルの
際に材料中に吸蔵したリチウムと電解質中の溶媒との反
応性が高くなって安全性が低下する可能性があるため好
ましくない。一方比表面積の下限値としては、特に限定
されるものではないが、リチウムが活物質粉末の内部ま
で拡散することが困難となる可能性や、薄肉な電極作成
が困難となる可能性から、0.01m2 /g程度であ
る。
The particle size specific surface area of the boron-containing silicon material powder is desirably 100 m 2 / g or less.
If the specific surface area exceeds 100 m 2 / g, the surface area is large, which may cause a reaction with the electrolyte at the time of initial charging to increase the capacity loss or occlusion in the material during the charge / discharge cycle. The reactivity between the lithium and the solvent in the electrolyte may increase, and the safety may decrease. On the other hand, the lower limit of the specific surface area is not particularly limited. However, it is difficult to diffuse lithium into the inside of the active material powder, and it is difficult to prepare a thin electrode. It is about 0.01 m 2 / g.

【0023】さらに、本発明においては、ホウ素含有珪
素材料粉末の広角X線回折パターン測定で観測される回
折ピークの内、Siの(111)面からの回折線とSiB4の(021)
面からの回折線の各々のピーク強度I(Si;111)とI(SiB4;
021)が、 I(SiB4;021)/I(Si;111) ≦ 1 なる関係を満たすことが望ましい。
Furthermore, in the present invention, among the diffraction peaks observed in the wide angle X-ray diffraction pattern measurement of the boron-containing silicon material powder, the Si (111) from surface of the diffraction line and SiB 4 (021)
Peak intensities I (Si; 111) and I (SiB 4 ;
021) preferably satisfies the relationship of I (SiB 4 ; 021) / I (Si; 111) ≦ 1.

【0024】このピーク強度比が1を超える場合には、
共存するSiB4 が材料中に相当量存在することを意味
し、SiB4 自体はリチウムの吸蔵(合金化)反応に寄
与しないため、重量あたりの放電容量、エネルギー密度
が極度に低下してしまい、サイクル特性も低くなる恐れ
があるためである。
When this peak intensity ratio exceeds 1,
It means that coexisting SiB 4 is present in a considerable amount in the material, and since SiB 4 itself does not contribute to the occlusion (alloying) reaction of lithium, the discharge capacity per unit weight and energy density are extremely reduced, This is because the cycle characteristics may be lowered.

【0025】ここで、本発明のリチウムイオン二次電池
用負極活物質中のホウ素を含有する珪素材料粉末由来の
広角X線回折パターンは主にはSiとSiB4由来のピークに
帰属される。しかし、上記のホウ素を含有する珪素材料
粉末は単なるSiとSiB4の単純な混合物では無い。透過電
子顕微鏡による観察からは、ホウ素を含有する珪素材料
粉末の各粒子中に微細なホウ素化珪素(SiB4)が多数析出
していること、もしくは析出初期の段階にあることが、
また、該珪素材料粉末の各粒子には非常に複雑な局所歪
みが数多く存在していることが認められる。詳しいメカ
ニズムは明らかでは無いが、本発明者等は、この様な析
出SiB4のサイズや析出形態や該珪素材料粉末中に固溶し
ているホウ素や多くの局所歪み等が、本発明の活物質の
優れた性能発現に寄与しているものと考えている。
Here, the wide-angle X-ray diffraction pattern derived from the boron-containing silicon material powder in the negative electrode active material for a lithium ion secondary battery of the present invention mainly belongs to peaks derived from Si and SiB 4 . However, silicon material powder containing the above-described boron is not a simple mixture of mere Si and SiB 4. From observation by a transmission electron microscope, that a large number of fine silicon boride (SiB 4 ) is precipitated in each particle of the silicon material powder containing boron, or that it is in the early stage of precipitation,
Further, it is recognized that each particle of the silicon material powder has many very complicated local strains. Although the detailed mechanism is not clear, the present inventors consider that the size and the form of the precipitated SiB 4 , boron dissolved in the silicon material powder and many local strains, etc., are the activities of the present invention. We believe that it contributes to the excellent performance of the material.

【0026】また、該ピーク強度比が意味するところの
SiB4 の存在割合は、平衡論的には添加するホウ素量
と反応温度で決定される(ホウ素と珪素の相図について
は、例えば、J.Less-Common Met.,71,195(1980)で報告
されている。)が、原料の珪素の形態や焼成パターンに
より、材料中に共存するSiB4 等のホウ化珪素の量が
大きく左右される。特に、原料の珪素が粉末であり、熱
処理工程での降温過程が早い場合には、材料中のSiB
4 の存在割合が小さく、従って、ホウ化珪素の量が少な
い実質的に過冷却状態にあるホウ素含有珪素材料を調製
することが可能である。
The proportion of SiB 4 present in the peak intensity ratio is equilibriumly determined by the amount of boron to be added and the reaction temperature (for the phase diagram of boron and silicon, for example, J .Less-Common Met., 71, 195 (1980)), the amount of silicon boride such as SiB 4 coexisting in the material greatly depends on the form and firing pattern of silicon as a raw material. In particular, when silicon as a raw material is a powder and the temperature drop process in the heat treatment step is fast, the SiB in the material is
It is possible to prepare a substantially supercooled boron-containing silicon material in which the proportion of 4 is small and therefore the amount of silicon boride is small.

【0027】なお、本発明に係るホウ素含有珪素材料粉
末に関し、該ピーク強度比I(SiB4;021)/I(Si;111)の下
限値としては、特に限定されるものではないが、以下に
示すような理由の下に、ゼロという値を含み得る。すな
わち、本発明に係るホウ素含有珪素材料粉末は、上記し
たように0.1重量%という少量のホウ素含有によって
も、珪素材料単独の場合と比較して電極特性における劇
的な改善性を発揮するものであり、このような少量を添
加した態様においてはホウ素が完全に珪素と固溶してS
iB4のピークが観測されないためである。また現在の
広角X線回折法の測定精度においては、当該ピーク強度
比の検出限界値が0.01程度であり、これよりも低い
値においては、SiB4由来の回折ピークが存在していても
バックグラウンドにおけるノイズと判別することが困難
な場合がある。このため、当該ピーク強度比が0.01
以下である場合、SiB4由来の回折ピークが存在していた
か否か明らかに判別することは困難であるが、いずれに
しても、ホウ素が珪素材料粒子中に含有されていること
が明らかである限りにおいては、ホウ素が完全に珪素に
固溶した状態にあるか、あるいは一部がホウ化珪素とし
て析出しているかは別として、本発明の実施態様となる
ものである。なお、該ピーク強度比が0.01以上1以
下である場合は、もちろん、本発明に、好ましい実施態
様として含まれる。
With respect to the boron-containing silicon material powder according to the present invention, the lower limit of the peak intensity ratio I (SiB 4 ; 021) / I (Si; 111) is not particularly limited. May include a value of zero for reasons such as shown in That is, the boron-containing silicon material powder according to the present invention exerts a dramatic improvement in electrode characteristics as compared with the case of using a silicon material alone, even with a small amount of boron of 0.1% by weight as described above. In the embodiment in which such a small amount is added, boron completely dissolves in silicon and forms S
This is because the peak of iB 4 is not observed. In the measurement accuracy of the current wide-angle X-ray diffraction method, a detection limit of the peak intensity ratio of about 0.01, in the value lower than this, even in the presence of a diffraction peak derived from SiB 4 In some cases, it is difficult to distinguish the noise from the background. Therefore, the peak intensity ratio is 0.01
In the following cases, it is difficult to clearly determine whether or not a diffraction peak derived from SiB 4 was present, but in any case, it is clear that boron is contained in the silicon material particles. As far as possible, the embodiment of the present invention is irrespective of whether boron is completely dissolved in silicon or partly precipitated as silicon boride. The case where the peak intensity ratio is 0.01 or more and 1 or less is, of course, included in the present invention as a preferred embodiment.

【0028】また、ホウ素を含有する該珪素材料粉末の
結晶化度については特に規定はされないが、ホウ素を含
有する該珪素材料粉末の結晶化度が極端に低い場合(例
えばX線回折で評価される結晶子サイズが10nm以下であ
る場合)には、その充放電時に電位が充放電量に対して
フラットな依存性を示さなくなり電池に用いたときの放
電量に依存しない安定した電圧の確保という観点から望
ましくない。
The crystallinity of the boron-containing silicon material powder is not particularly limited. However, when the crystallinity of the boron-containing silicon material powder is extremely low (for example, the crystallinity is evaluated by X-ray diffraction. When the crystallite size is 10 nm or less), the potential does not show a flat dependence on the charge / discharge amount at the time of charge / discharge, and a stable voltage independent of the discharge amount when used in a battery is to be ensured. Not desirable from a point of view.

【0029】本発明のリチウム二次電池用負極活物質で
あるホウ素含有珪素材料粉末は、特に限定されるわけで
はないが、例えば、以下の方法によって調製され得る。
すなわち、d50が1〜100μmの珪素粉末に対して、
ホウ素換算で0.1〜50重量%のホウ素化合物粉末を
混合したものをアルゴン雰囲気下1350℃〜1400
℃まで昇温後、1〜10時間保持し、その後15℃/分
程度の速度で600℃まで急冷した後、5℃/分程度の
速度で室温付近まで冷却する。焼成により得られた粉末
は、必要に応じて解砕、分級により粒度を調整する。こ
こでの焼成雰囲気は非酸化性雰囲気であればよく、例え
ばアルゴン以外に窒素等を用いることも可能である。
The boron-containing silicon material powder as the negative electrode active material for a lithium secondary battery of the present invention is not particularly limited, but can be prepared, for example, by the following method.
That, d 50 is against 1~100μm of silicon powder,
A mixture of a boron compound powder of 0.1 to 50% by weight in terms of boron is mixed at 1350 ° C. to 1400 under an argon atmosphere.
After the temperature is raised to 0 ° C, the temperature is maintained for 1 to 10 hours, then rapidly cooled to 600 ° C at a rate of about 15 ° C / min, and then cooled to about room temperature at a rate of about 5 ° C / min. The particle size of the powder obtained by firing is adjusted by crushing and classification as needed. The firing atmosphere here may be a non-oxidizing atmosphere, and for example, nitrogen or the like may be used instead of argon.

【0030】ここで原料として用いた珪素粉末は、Si
以外に種々の元素を含んでいても良い。例えば、炭素、
酸素、水素、窒素、硫黄、リン、ハロゲン、アルカリ金
属、アルカリ土類金属、遷移金属、Al、Ga、In、
Ge、Sn、Pb,Sb、Biなどを少なくとも1種類
含んでも良い。これら元素の総含量は0〜10重量%が
好ましい。さらに0〜5重量%がより好ましい。
The silicon powder used as a raw material here is Si powder.
In addition, various elements may be included. For example, carbon,
Oxygen, hydrogen, nitrogen, sulfur, phosphorus, halogen, alkali metal, alkaline earth metal, transition metal, Al, Ga, In,
At least one of Ge, Sn, Pb, Sb, Bi, and the like may be included. The total content of these elements is preferably from 0 to 10% by weight. Further, 0 to 5% by weight is more preferable.

【0031】また、もう一方の原料であるホウ素化合物
粉末は、最終的に本発明の規定範囲内のホウ素濃度で珪
素中にホウ素の形で固溶し得るものであればよく、ホウ
素化合物として、例えば、ホウ素単体、酸化ホウ素、ホ
ウ酸、炭化ホウ素、窒化ホウ素などの1種または複数を
好適に用いることが可能である。
The boron compound powder, which is the other raw material, may be any as long as it can be finally dissolved in silicon in the form of boron in silicon at a boron concentration within the range specified in the present invention. For example, one or more of boron alone, boron oxide, boric acid, boron carbide, boron nitride, and the like can be suitably used.

【0032】混合方法についても試料同士が十分均一に
混ざりあっていればよく、例えば、V−ブレンダー、ニ
ーダー、ボールミルなどを好適に用いることができる
が、特にこれらに限定されるものではない。また焼成後
のホウ素含有珪素材料粉末の粒度、比表面積の調整には
工業的に通常用いられる方法を用いることが可能であ
る。例えば、粉砕にはボールミル、ピンミル、ディスク
ミル、インペラーミル、ジェットミル、ローラーミル、
スタンプミル、カッティングミル等が、分級には空気分
級機、ふるい等が好適に用いられるが、特にこれらに限
定されるものではない。
As for the mixing method, it is sufficient that the samples are sufficiently uniformly mixed. For example, a V-blender, a kneader, a ball mill, etc. can be suitably used, but it is not particularly limited thereto. In addition, for adjusting the particle size and specific surface area of the boron-containing silicon material powder after firing, it is possible to use a method generally used in industry. For example, ball mill, pin mill, disk mill, impeller mill, jet mill, roller mill,
A stamp mill, a cutting mill and the like are preferably used for classification, but an air classifier, a sieve and the like are preferably used, but not particularly limited thereto.

【0033】以上、本発明のリチウム二次電池用負極活
物質の調製方法を例示的に述べたが、本発明のリチウム
二次電池用負極活物質は上記の調製方法によって限定さ
れるものではない。本発明のリチウム二次電池用負極活
物質の他の調整方法の例は、シランガスとジボランガス
の所定比の混合ガスをArガスをキャリアーガスとしてプ
ラズマ処理してホウ素含有珪素材料粉末を得、これを約
1380℃程度で約1時間熱処理することで本発明のリチウ
ム二次電池用負極活物質に使用可能なホウ素を含有する
珪素材料粉末を得ることもできる。別な例では、珪素粉
末とホウ素金属を所定比で混合してボールミルを用いて
約20時間十分にメカニカルアロイングし、得られたもの
を約1380℃で約1時間熱処理して、適度な粉砕分級を行
って本発明のリチウム二次電池用負極活物質に使用可能
なホウ素を含有する珪素材料粉末を得ることもできる。
Although the method for preparing the negative electrode active material for a lithium secondary battery of the present invention has been described above by way of example, the negative electrode active material for a lithium secondary battery of the present invention is not limited by the above-described preparation method. . An example of another method for preparing the negative electrode active material for a lithium secondary battery of the present invention is to obtain a boron-containing silicon material powder by performing a plasma treatment using a mixed gas of a predetermined ratio of a silane gas and a diborane gas using an Ar gas as a carrier gas. about
By performing a heat treatment at about 1380 ° C. for about 1 hour, a silicon material powder containing boron that can be used for the negative electrode active material for a lithium secondary battery of the present invention can also be obtained. In another example, silicon powder and boron metal are mixed at a predetermined ratio, mechanically alloyed sufficiently using a ball mill for about 20 hours, and the obtained product is heat-treated at about 1380 ° C for about 1 hour, and is appropriately pulverized. By performing classification, a boron-containing silicon material powder that can be used for the negative electrode active material for a lithium secondary battery of the present invention can also be obtained.

【0034】さらに、本発明に係るリチウム二次電池用
負極活物質は、上記したようなホウ素含有珪素材料粉末
に、他の負極活物質、例えば、炭素材料粉末をさらに添
加して、これらの混合粉末とすることも可能である。
Further, the negative electrode active material for a lithium secondary battery according to the present invention is obtained by further adding another negative electrode active material, for example, a carbon material powder to the above-mentioned boron-containing silicon material powder and mixing them. It can also be a powder.

【0035】このような混合粉末とした場合、本発明に
係る負極活物質は、高い放電容量を有するにもかかわら
ず、サイクル特性と充放電時の膨張収縮率に関して特に
優れた性能を有するものとなる。その原因は明らかにな
ってはいないが、混合粉末中には炭素材料粉末、代表的
には高黒鉛化度の炭素材料粉末が含有されており、一般
にこの様な炭素材料粉末は容易に変形可能であるため
に、ホウ素を含有する珪素材料粉末の充放電に伴う比較
的大きな膨張収縮を緩衝させる事がその重要な原因の一
つであると考えている。
When such a mixed powder is used, the negative electrode active material according to the present invention has a particularly excellent performance in terms of cycle characteristics and expansion / shrinkage rate during charge / discharge despite having a high discharge capacity. Become. Although the cause is not clear, the mixed powder contains a carbon material powder, typically a carbon material powder with a high degree of graphitization, and such a carbon material powder is generally easily deformable. Therefore, it is considered that buffering a relatively large expansion and contraction caused by charging and discharging of the silicon material powder containing boron is one of the important causes.

【0036】本発明において用いられる炭素材料粉末
は、実質的にホウ素を含有していなくても、ホウ素を含
有していても良い。
The carbon material powder used in the present invention may not substantially contain boron, or may contain boron.

【0037】ここで、炭素材料粉末としては、結晶化度
の高いもの(いわゆる高黒鉛化度)を有する炭素材料粉
末であることが放電容量の観点から望ましい。高い結晶
化度はX線回折等で確認可能である。この場合、炭素材
料粉末は導電材としても働くと共に約300mAh/g
の放電容量を有する負極活物質としても働く。
Here, as the carbon material powder, a carbon material powder having a high crystallinity (a so-called high graphitization degree) is desirable from the viewpoint of discharge capacity. High crystallinity can be confirmed by X-ray diffraction or the like. In this case, the carbon material powder also functions as a conductive material and has a capacity of about 300 mAh / g.
It also works as a negative electrode active material having a discharge capacity of.

【0038】該炭素材料粉末は、例えば以下の方法によ
って調製され得る。まず、ホウ素を含有しない炭素材料
粉末の場合、コールタール系のピッチコークス(炭化品)
を粉砕分級し、325meshアンダーで10μm以下の粒子が体
積で10%以下になるように調製して得られる炭素材料粉
末をアルゴン雰囲気下等の非酸化性雰囲気下約2900℃ま
で昇温後、約1時間保持し、その後室温付近まで放冷す
る。熱処理により得られた粉末は、簡単な解砕によって
本発明のリチウム二次電池用負極活物質に用いることが
可能な炭素材料粉末を得る。また、ホウ素を含有する炭
素材料粉末の場合、コールタール系のピッチコークス
(炭化品)を粉砕分級し、325meshアンダーで10μm以下の
粒子が体積で10%以下になるように調製して得られる炭
素材料粉末に対して325meshアンダーのホウ素単体、酸
化ホウ素、ホウ酸、炭化ホウ素、窒化ホウ素などの1種
または複数のホウ素化合物粉末をホウ素換算で約0.5wt%
〜約10wt%添加混合した上でアルゴン雰囲気下約2900℃
まで昇温後、約1時間保持し、その後室温付近まで放冷
する。この場合通常熱処理後の粉砕・分級が必要となる
のでこれを行って、本発明のリチウム二次電池用負極活
物質に用いることが可能な炭素材料粉末を得る。
The carbon material powder can be prepared, for example, by the following method. First, in the case of carbon material powder containing no boron, coal tar pitch coke (carbonized product)
After pulverizing and classifying, the carbon material powder obtained by preparing particles of 10 μm or less by volume under 325 mesh to be 10% or less under a non-oxidizing atmosphere such as an argon atmosphere is heated to about 2900 ° C. Hold for 1 hour, then cool to near room temperature. The powder obtained by the heat treatment obtains a carbon material powder that can be used for the negative electrode active material for a lithium secondary battery of the present invention by simple crushing. In the case of carbon material powder containing boron, coal tar pitch coke is used.
(Carbonized product) is pulverized and classified, and the carbon material powder obtained by preparing particles having a particle size of 10 μm or less under 325 mesh under 10% by volume is 325mesh under boron alone, boron oxide, boric acid, carbonized. Boron, boron nitride, etc., one or more boron compound powder about 0.5 wt% in terms of boron
About 2900 ° C under argon atmosphere after adding about 10 wt% and mixing
After the temperature rises, the temperature is maintained for about 1 hour, and then it is allowed to cool to around room temperature. In this case, pulverization and classification after heat treatment are usually required, so that this is performed to obtain a carbon material powder that can be used as the negative electrode active material for a lithium secondary battery of the present invention.

【0039】本発明に用いられ得る炭素材料粉末として
は、特に限定されるものではなく、上記したようなコー
ルタール由来の人造黒鉛の他に、石油タール由来の人造
黒鉛、天然黒鉛、キッシュ黒鉛等であり得、またはこれ
らに熱処理等でホウ素を含有させたものを用いることも
できる。
The carbon material powder that can be used in the present invention is not particularly limited. In addition to the above-described artificial graphite derived from coal tar, artificial graphite derived from petroleum tar, natural graphite, quiche graphite, etc. Or those containing boron by heat treatment or the like can also be used.

【0040】ホウ素を実質的に含有しない炭素材料粉末
に関しては、広角X線回折パターンで測定される回折ピ
ークの内、該炭素材料粉末由来の内の二つの回折線即ち
炭素の(101)面からの回折線と炭素の(100)面からの回折
線の各々のピーク強度I(C;101)とI(C;100)が、 I(C;101)/I(C;100) ≧ 1 を満足することが望ましい。この時、炭素材料粉末自身
の結晶化度(黒鉛化度)が高いために放電容量が大きく
なるので、ホウ素を含有する該珪素材料粉末の混合量を
低下させることが可能となり、そのために負極材全体の
充電による膨張率を低く抑えることが可能となる。
With respect to the carbon material powder containing substantially no boron, of the diffraction peaks measured by the wide-angle X-ray diffraction pattern, two diffraction lines derived from the carbon material powder, that is, from the (101) plane of carbon The peak intensities I (C; 101) and I (C; 100) of the diffraction line from the (100) plane and the diffraction line from the carbon (100) plane, respectively, satisfy I (C; 101) / I (C; 100) ≧ 1. It is desirable to be satisfied. At this time, since the carbon material powder itself has a high crystallinity (degree of graphitization), the discharge capacity becomes large, so that the mixing amount of the boron-containing silicon material powder can be reduced. The expansion rate due to the entire charge can be suppressed to a low level.

【0041】該ピーク強度比I(C;101)/I(C;100)が1よ
り小さい場合には、炭素材料粉末自身の放電容量が小さ
く、黒鉛の理論容量を超える放電容量を実現するために
はホウ素を含有する該珪素材料粉末を多量に混合する必
要が生じ、負極材としての充電による膨張率が大きくな
り、該混合粉末が十分なサイクル特性を発揮することが
難しくなってくる虞れがある。
When the peak intensity ratio I (C; 101) / I (C; 100) is smaller than 1, the discharge capacity of the carbon material powder itself is small, so that the discharge capacity exceeds the theoretical capacity of graphite. In such a case, it is necessary to mix a large amount of the boron-containing silicon material powder, and the expansion rate due to charging as a negative electrode material increases, which may make it difficult for the mixed powder to exhibit sufficient cycle characteristics. There is.

【0042】また、一般にホウ素を含有する炭素材料粉
末の結晶化度は高くその放電容量が大きいために、そも
そも該炭素材料粉末がホウ素を含有していること自体が
好ましい。特に、該炭素材料粉末中に対する該炭素材料
粉末中に含有されるホウ素の重量含有量は0.5%以上10%
以下であることが望ましい。10%以上のホウ素の含有量
は、広角X線回折パターン測定でも明らかな様に該炭素
材料粉末の結晶化度向上に殆ど寄与せず電気化学的に不
活性なB4Cを生成するだけであり、容量向上には何等寄
与しないばかりかB4C生成の分だけ単位重量当りの容量
を減少させる結果となる。また、上記のホウ素を含有す
る炭素材料粉末は広角X線回折パターンで測定される回
折ピークの内、炭素の(101)面からの回折線と炭素の(10
0)面からの回折線の各々のピーク強度I(C;101)とI(C;10
0)が、 I(C;101)/I(C;100) ≧ 2 を満足することが望ましい。この時、炭素材料粉末の結
晶化度がより向上するため、黒鉛の理論容量に近い容量
を発現しやすくなる。
In addition, since the carbon material powder containing boron generally has a high crystallinity and a large discharge capacity, it is preferable that the carbon material powder itself contains boron in the first place. In particular, the weight content of boron contained in the carbon material powder relative to the carbon material powder is 0.5% or more and 10%
It is desirable that: The boron content of 10% or more hardly contributes to the improvement of the crystallinity of the carbon material powder as is apparent from the wide-angle X-ray diffraction pattern measurement, and only generates electrochemically inactive B 4 C. In addition, the capacity per unit weight is reduced by the amount of B 4 C generation, as well as not contributing to the capacity improvement at all. In addition, the boron-containing carbon material powder has a diffraction peak from the (101) plane of carbon and (10
The peak intensities I (C; 101) and I (C; 10) of each of the diffraction lines from the (0) plane
0) preferably satisfies I (C; 101) / I (C; 100) ≧ 2. At this time, the crystallinity of the carbon material powder is further improved, so that a capacity close to the theoretical capacity of graphite is easily exhibited.

【0043】本発明のリチウム二次電池用負極活物質を
用いて負極を形成する方法としては、本発明のリチウム
二次電池用負極活物質の性能を十分に引き出し且つ、賦
型性が高く、化学的、電気化学的に安定であれば何らこ
れに制限されるものではない。例示すれば、珪素材料粉
末にカーボンブラック等の導電剤、ポリテトラフルオロ
エチレン等フッ素系樹脂の粉末あるいはディスパージョ
ン溶液を添加後、混合、混練する方法がある。また、珪
素材料粉末にカーボンブラック等の導電剤およびポリエ
チレン、ポリビニルアルコール等の樹脂粉末を添加した
後、乾式混合物を金型に挿入し、ホットプレスにより成
型する方法もある。さらに、珪素材料粉末にカーボンブ
ラック等の導電剤、ポリフッ化ビニリデン(PVdF)等のフ
ッ素系樹脂粉末あるいはカルボキシメチルセルロース等
の水溶性粘結剤をバインダーにして、N−メチルピロリ
ドン(NMP)、ジメチルホルムアミドあるいは水、アルコ
ール等の溶媒を用いて混合することによりスラリーを作
成し、集電体上に塗布、乾燥することにより成型するこ
ともできる。
As a method for forming a negative electrode using the negative electrode active material for a lithium secondary battery of the present invention, the performance of the negative electrode active material for a lithium secondary battery of the present invention is sufficiently obtained, and the shapeability is high. It is not limited to this as long as it is chemically and electrochemically stable. For example, there is a method in which a conductive agent such as carbon black, a powder of a fluororesin such as polytetrafluoroethylene or a dispersion solution is added to a silicon material powder, followed by mixing and kneading. There is also a method in which a conductive material such as carbon black and a resin powder such as polyethylene and polyvinyl alcohol are added to a silicon material powder, and then a dry mixture is inserted into a mold and molded by hot pressing. Further, a conductive agent such as carbon black, a fluororesin powder such as polyvinylidene fluoride (PVdF) or a water-soluble binder such as carboxymethyl cellulose as a binder is used as a binder for silicon material powder, and N-methylpyrrolidone (NMP) and dimethylformamide are used. Alternatively, a slurry can be prepared by mixing with a solvent such as water or alcohol, and applied to a current collector and dried to form a slurry.

【0044】なお、本発明のリチウムイオン二次電池用
負極活物質が、炭素材料粉末とホウ素含有材料粉末との
混合粉末である態様においては、共存している炭素材料
粉末又はホウ素を含有している炭素材料粉末が導電材と
しての機能を十分果たすために、負極を形成する上で、
更にカーボンブラック等の導電材を添加する必要は特に
ない。
In the embodiment in which the negative electrode active material for a lithium ion secondary battery of the present invention is a mixed powder of a carbon material powder and a boron-containing material powder, the negative electrode active material contains a coexisting carbon material powder or boron. In order to form a negative electrode in order for the carbon material powder to function sufficiently as a conductive material,
Further, it is not particularly necessary to add a conductive material such as carbon black.

【0045】本発明の負極活物質は、正極活物質と非水
系電解質(例えば、有機溶媒系電解質)と適宜に組み合
わせて用いることができるが、これらの非水系電解質
(例えば、有機溶媒系電解質)や正極活物質は、リチウ
ム二次電池に通常用いることのできるものであれば、特
にこれを制限するものではない。
The negative electrode active material of the present invention can be appropriately used in combination with a positive electrode active material and a non-aqueous electrolyte (for example, an organic solvent-based electrolyte). These non-aqueous electrolytes (for example, an organic solvent-based electrolyte) can be used. The positive electrode active material is not particularly limited as long as it can be generally used for a lithium secondary battery.

【0046】正極活物質としては、例えば、リチウム含
有遷移金属酸化物LiM(1)x 2 (式中、xは0≦
x≦1の範囲の数値であり、式中、M(1)は遷移金属
を表し、Co、Ni、Mn、Cr、Ti、V、Fe、Z
n、Al、In、Snの少なくとも一種類からなる)或
いはLiM(1)y M(2)2-y 4 (式中、yは0≦
y≦1の範囲の数値であり、式中、M(1)、M(2)
は遷移金属を表し、Co、Ni、Mn、Cr、Ti、
V、Fe、Zn、B、Al、In、Snの少なくとも一
種類からなる)、遷移金属カルコゲン化物(TiS2
NbSe3 、等)、バナジウム酸化物(V2 5 、V6
13、V2 4 、V3 8 、等)及びそのLi化合物、
一般式Mx Mo6 Ch8-y (式中、xは0≦x≦4、y
は0≦y≦1の範囲の数値であり、式中、Mは遷移金属
をはじめとする金属、Chはカルコゲン元素を表す)で
表されるシェブレル相化合物、或いは活性炭、活性炭素
繊維等を用いることができる。
As the positive electrode active material, for example, lithium-containing
Transition metal oxide LiM (1)xO Two(Where x is 0 ≦
A numerical value in the range of x ≦ 1, where M (1) is a transition metal
And Co, Ni, Mn, Cr, Ti, V, Fe, Z
n, Al, In, Sn)
Or LiM (1)yM (2)2-yOFour(Where y is 0 ≦
A numerical value in the range of y ≦ 1, where M (1), M (2)
Represents a transition metal, Co, Ni, Mn, Cr, Ti,
At least one of V, Fe, Zn, B, Al, In, and Sn
Types), transition metal chalcogenides (TiSTwo,
NbSeThree, Etc.), vanadium oxide (VTwoOFive, V6
O13, VTwoOFour, VThreeO8, Etc.) and its Li compound,
General formula MxMo6Ch8-y(Where x is 0 ≦ x ≦ 4, y
Is a numerical value in the range of 0 ≦ y ≦ 1, where M is a transition metal
And other metals, Ch stands for chalcogen element)
Chevrel phase compound represented, or activated carbon, activated carbon
Fiber or the like can be used.

【0047】非水系電解質(例えば、有機溶媒系電解
質)における有機溶媒としては、特に制限されるもので
はないが、例えば、プロピレンカーボネート、エチレン
カーボネート、ブチレンカーボネート、クロロエチレン
カーボネート、ジメチルカーボネート、ジエチルカーボ
ネート、1,1−ジメトキシエタン、1,2−ジメトキ
シエタン、1,2−ジエトキシエタン、γ−ブチロラク
トン、テトラヒドロフラン、2−メチルテトラヒドロフ
ラン、1,3−ジオキソラン、4−メチル−1,3−ジ
オキソラン、アニソール、ジエチルエーテル、スルホラ
ン、メチルスルホラン、アセトニトリル、クロロニトリ
ル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テト
ラメチル、ニトロメタン、ジメチルホルムアミド、N−
メチルピロリドン、酢酸エチル、トリメチルオルトホル
メート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾ
イル、テトラヒドロチオフェン、ジメチルスルホキシ
ド、3−メチル−2−オキサゾリドン、エチレングリコ
ール、サルファイト、ジメチルサルファイト等の単独も
しくは2種類以上の混合溶媒が使用できる。
The organic solvent in the non-aqueous electrolyte (for example, an organic solvent-based electrolyte) is not particularly limited. For example, propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, diethyl carbonate, 1,1-dimethoxyethane, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, 4-methyl-1,3-dioxolan, anisole , Diethyl ether, sulfolane, methylsulfolane, acetonitrile, chloronitrile, propionitrile, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-
Methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzoyl chloride, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, sulfite, dimethyl sulfite, etc., alone or in combination of two or more Can be used.

【0048】電解質としては、従来より公知のものを何
れも使用することができ、例えば、LiClO4 、Li
BF4 、LiPF6 、LiAsF6 、LiB(C
6 5 )、LiCl、LiBr、LiCF3 SO3 、L
iCH3 SO3 、Li(CF3 SO 2 2 N、Li(C
3 SO2 3 C、Li(CF3 CH2 OSO2
2 N、Li(CF3 CF2 CH2 OSO2 2 N、Li
(HCF2 CF2 CH2 OSO22 N、Li((CF
3 2 CHOSO2 2 N、LiB[C6 3 (C
3 2 4 等の一種または二種以上の混合物を挙げる
ことができる。
What is conventionally known as the electrolyte
These can also be used, for example, LiClOFour, Li
BFFour, LiPF6, LiAsF6, LiB (C
6HFive), LiCl, LiBr, LiCFThreeSOThree, L
iCHThreeSOThree, Li (CFThreeSO Two)TwoN, Li (C
FThreeSOTwo)ThreeC, Li (CFThreeCHTwoOSOTwo)
TwoN, Li (CFThreeCFTwoCHTwoOSOTwo)TwoN, Li
(HCFTwoCFTwoCHTwoOSOTwo)TwoN, Li ((CF
Three)TwoCHOSOTwo)TwoN, LiB [C6HThree(C
FThree) Two]FourEtc. or a mixture of two or more
be able to.

【0049】以下に本発明のリチウム二次電池用負極活
物質の規定に用いた種々の物性値の表現方法、及び、測
定方法を示す。
Hereinafter, methods for expressing and measuring various physical values used for defining the negative electrode active material for a lithium secondary battery of the present invention will be described.

【0050】(1) ホウ素量 ICP法(誘導結合高周波プラズマ分光分析法)により
定量した。
(1) Boron Amount Boron was determined by ICP (inductively coupled high frequency plasma spectroscopy).

【0051】(2) 50%累積径(d50) 分散された粒子に平行光線を照射した際の回折パターン
を演算することにより粒度分布を解析し(フランホーフ
ァ回折)、重量の累積が50%となったところの粒径を
50%累積径(d50)として求めた。通常、各試料約
0.2gを分散媒としての水20ccに入れ、さらに市
販の界面活性剤を2〜3滴加えたものを用いてセイシン
企業社製粒度分布測定装置LMS−24により測定し
た。
(2) 50% cumulative diameter (d 50 ) The particle size distribution is analyzed by calculating the diffraction pattern when the dispersed particles are irradiated with parallel rays (Franhofer diffraction), and the cumulative weight is 50%. The particle size at the point where it turned out was determined as a 50% cumulative diameter (d 50 ). Usually, about 0.2 g of each sample was placed in 20 cc of water as a dispersion medium, and a drop of a commercially available surfactant was added thereto, and the particle size was measured by a particle size distribution analyzer LMS-24 manufactured by Seishin Enterprise Co., Ltd.

【0052】(3) 比表面積 試料へ窒素を吸着させた際の各窒素分圧に対する吸着量
曲線を基にBET法を用いて解析することにより比表面
積を求めた。通常、各試料1〜2gを用いて、日本ベル
株式会社製BELSORP−36により測定した。
(3) Specific Surface Area The specific surface area was determined by analyzing using the BET method based on the adsorption curve for each partial pressure of nitrogen when nitrogen was adsorbed on the sample. Usually, it measured by BELSORP-36 made from Japan Bell Co., Ltd. using 1-2 g of each sample.

【0053】(4) I(SiB4;021)/I(Si;111) 単色のX線を平行ビームにコリメートし、試料粉末に照
射してSiの(111)面、及び、SiB4の(021)面に対応するピ
ークを測定する。バックグラウンドを除外したそれぞれ
のピーク強度からピーク強度比I(SiB4;021)/I(Si;111)
を算出した。
[0053] (4) I (SiB 4; 021) / I (Si; 111) collimates the monochromatic X-ray parallel beam of Si is irradiated to the sample powder (111) plane, and, of SiB 4 ( 021) Measure the peak corresponding to the plane. Peak intensity ratio I (SiB 4 ; 021) / I (Si; 111) from each peak intensity excluding background
Was calculated.

【0054】(5) I(C;101)/I(C;100) 単色のX線を平行ビームにコリメートし試料粉末に照射
して炭素の(101)面からの回折線と炭素の(100)面からの
回折線の各々のピークを測定する。バックグラウンドを
除外したそれぞれのピーク強度からピーク強度比I(C;10
1)/I(C;100)を算出した。
(5) I (C; 101) / I (C; 100) A monochromatic X-ray is collimated into a parallel beam and irradiated to the sample powder, and the diffraction line from the (101) plane of carbon and the (100) ) Measure each peak of the diffraction line from the plane. From each peak intensity excluding the background, the peak intensity ratio I (C; 10
1) / I (C; 100) was calculated.

【0055】[0055]

【実施例】以下、実施例で本発明を具体的に説明する。The present invention will be specifically described below with reference to examples.

【0056】実施例1 珪素粉末(純度99.9%、d50=10μm)にホウ素
粉末(純度99.9%)を重量換算で1%添加してニー
ダーを用いて十分混合した後、この混合物をアルゴン気
流中1400℃まで昇温しこの温度で5時間保持し、室
温まで約3時間で冷却することによりリチウム二次電池
負極用珪素材料粉末を得た。このようにして調製した珪
素材料粉末に含まれるホウ素量は重量比で0.5%であ
った。得られたホウ素含有珪素材料粉末をインペラーミ
ルによって解砕後、空気分級機を用いて粒度調整するこ
とにより、50%累積径(d50)が15μmの粉末を得
た。その粉末の比表面積は5.1m2 /gであった。こ
の材料をX線回折測定した結果、SiB4 のピークは観
測されずピーク強度比I(SiB4;021)/I(Si;111)は0とな
り、材料中のホウ素はすべて珪素と固溶していた。
Example 1 1% by weight of boron powder (purity 99.9%) was added to silicon powder (purity 99.9%, d 50 = 10 μm) and thoroughly mixed using a kneader. Was heated to 1400 ° C. in an argon stream, kept at this temperature for 5 hours, and cooled to room temperature in about 3 hours to obtain a silicon material powder for a negative electrode of a lithium secondary battery. The amount of boron contained in the silicon material powder thus prepared was 0.5% by weight. The obtained boron-containing silicon material powder was crushed by an impeller mill, and the particle size was adjusted using an air classifier to obtain a powder having a 50% cumulative diameter (d 50 ) of 15 μm. The specific surface area of the powder was 5.1 m 2 / g. As a result of X-ray diffraction measurement of this material, the peak of SiB 4 was not observed, and the peak intensity ratio I (SiB 4 ; 021) / I (Si; 111) became 0, and all boron in the material was dissolved in silicon. I was

【0057】このホウ素含有珪素材料粉末70重量%に
対して、導電剤としてカーボンブラックを20重量%、
バインダーとしてポリテトラフルオロエチレン粉末を1
0重量%加えて混練し、約0.1mm厚の電極シートを
作成し、1cm角(重量で約21mg)に切り出し(珪
素材料に換算して約15mg)、集電体であるCuメッ
シュに圧着することにより負極電極を作成した。
With respect to 70% by weight of the boron-containing silicon material powder, 20% by weight of carbon black was used as a conductive agent.
1 polytetrafluoroethylene powder as binder
0% by weight was added and kneaded to form an electrode sheet having a thickness of about 0.1 mm, cut into 1 cm squares (about 21 mg in weight) (about 15 mg in terms of silicon material), and pressed on a Cu mesh as a current collector. Thus, a negative electrode was prepared.

【0058】上記成型電極の単極での電極特性を評価す
るために、対極、参照極にリチウム金属を用いた三極式
セルを用いた。電解液には、エチレンカーボネートとジ
エチルカーボネートの混合溶媒(体積比で1:1混合)
にLiPF6 を1mol/lの割合で溶解したものを用
いた。充放電試験に関しては、電位規制の下、充電、放
電共に定電流(0.5mA/cm2 )で行なった。電位
範囲は0Vから2.0V(リチウム金属基準)とした。
このような条件で評価した結果、このホウ素含有珪素材
料粉末は初回充電容量が2500mAh/g、初回放電
容量が2000mAh/gで初期容量ロスは500mA
h/gと小さく、2回目以後は容量ロスがほとんどみら
れなかった。また2回目以後の充放電においても放電容
量はほとんど変わらず優れたサイクル特性を示すなど、
非常に高い電極性能を有していた。
In order to evaluate the monopolar electrode characteristics of the molded electrode, a three-electrode cell using lithium metal for the counter electrode and the reference electrode was used. In the electrolyte, a mixed solvent of ethylene carbonate and diethyl carbonate (1: 1 mixture by volume ratio)
Was used in which LiPF 6 was dissolved at a rate of 1 mol / l. Regarding the charge / discharge test, both charging and discharging were performed at a constant current (0.5 mA / cm 2 ) under regulation of potential. The potential range was 0 V to 2.0 V (based on lithium metal).
As a result of the evaluation under these conditions, the boron-containing silicon material powder has an initial charge capacity of 2500 mAh / g, an initial discharge capacity of 2000 mAh / g, and an initial capacity loss of 500 mA.
h / g, and the capacity loss was hardly observed after the second time. In addition, even in the second and subsequent charging and discharging, the discharge capacity hardly changes and shows excellent cycle characteristics.
It had very high electrode performance.

【0059】実施例2 ホウ素を重量換算で10%添加したほかは実施例1と同
様の条件で材料の調製を行った。得られた材料中に含ま
れるホウ素量は重量比で9.0%であった。得られたホ
ウ素含有珪素材料粉末をジェットミルによって解砕後、
空気分級機を用いて粒度調整することにより、50%累
積径(d50)が20μmの粉末を得た。その粉末の比表
面積は3.5m2 /gであった。またこの材料をX線回
折測定した結果、SiB4 に対応する非常に小さなピー
クが珪素に対応するピークとともに観測され、ピーク強
度比I(SiB4;021)/I(Si;111)は0.05となり、材料中
のホウ素のほとんどが珪素と固溶していた。
Example 2 A material was prepared under the same conditions as in Example 1 except that 10% by weight of boron was added. The amount of boron contained in the obtained material was 9.0% by weight. After crushing the obtained boron-containing silicon material powder by a jet mill,
By adjusting the particle size using an air classifier, a powder having a 50% cumulative diameter (d 50 ) of 20 μm was obtained. The specific surface area of the powder was 3.5 m 2 / g. As a result of X-ray diffraction measurement of this material, a very small peak corresponding to SiB 4 was observed together with a peak corresponding to silicon, and the peak intensity ratio I (SiB 4 ; 021) / I (Si; 111) was 0. 05, indicating that most of the boron in the material was in solid solution with silicon.

【0060】このようにして調製したホウ素含有珪素材
料粉末を実施例1と同様の条件で電極評価を行った。そ
の結果、このホウ素含有珪素材料粉末は初回充電容量が
2400mAh/g、初回放電容量が2000mAh/
gで初期容量ロスは400mAh/gと小さく、2回目
以後は容量ロスがほとんどみられなかった。また2回目
以後の充放電においても放電容量はほとんど変わらず優
れたサイクル特性を示すなど、非常に高い電極性能を有
していた。
The electrode of the boron-containing silicon material powder thus prepared was evaluated under the same conditions as in Example 1. As a result, this boron-containing silicon material powder has an initial charge capacity of 2400 mAh / g and an initial discharge capacity of 2000 mAh / g.
g, the initial capacity loss was as small as 400 mAh / g, and almost no capacity loss was observed after the second time. Also, in the second and subsequent charging and discharging, the discharge capacity was hardly changed, and excellent cycle characteristics were exhibited.

【0061】実施例3 ホウ素を重量換算で50%添加したほかは実施例1と同
様の条件で材料の調製を行った。得られた材料中に含ま
れるホウ素量は重量比で48.9%であった。得られた
ホウ素含有珪素材料粉末をピンミルによって解砕後、空
気分級機を用いて粒度調整することにより、50%累積
径(d50)が5μmの粉末を得た。その粉末の比表面積
は25.3m2 /gであった。またこの材料をX線回折
測定した結果、SiB4 に対応するピークが珪素に対応
するピークとともに観測され、ピーク強度比I(SiB4;02
1)/I(Si;111)は0.88となり、ホウ素の一部が珪素と
固溶していると共に一部SiB4 が生成していた。
Example 3 A material was prepared under the same conditions as in Example 1 except that 50% by weight of boron was added. The amount of boron contained in the obtained material was 48.9% by weight. The obtained boron-containing silicon material powder was crushed by a pin mill, and the particle size was adjusted using an air classifier to obtain a powder having a 50% cumulative diameter (d 50 ) of 5 μm. The specific surface area of the powder was 25.3 m 2 / g. As a result of X-ray diffraction measurement of this material, a peak corresponding to SiB 4 was observed together with a peak corresponding to silicon, and a peak intensity ratio I (SiB 4 ; 02
1) / I (Si; 111) was 0.88, indicating that a part of boron was dissolved in silicon and a part of SiB 4 was formed.

【0062】このようにして調製したホウ素含有珪素材
料粉末を実施例1と同様の条件で電極評価を行った。そ
の結果、このホウ素含有珪素材料粉末は初回充電容量が
800mAh/g、初回放電容量が500mAh/gで
初期容量ロスは300mAh/gと小さく、2回目以後
は容量ロスがほとんどみられなかった。また2回目以後
の充放電においても放電容量はほとんど変わらず優れた
サイクル特性を示すなど、非常に高い電極性能を有して
いた。
The electrode of the thus prepared boron-containing silicon material powder was evaluated under the same conditions as in Example 1. As a result, the boron-containing silicon material powder had an initial charge capacity of 800 mAh / g, an initial discharge capacity of 500 mAh / g, an initial capacity loss of 300 mAh / g, and a small capacity loss after the second time. Also, in the second and subsequent charging and discharging, the discharge capacity was hardly changed, and excellent cycle characteristics were exhibited.

【0063】比較例1 珪素粉末(純度99.9%)をリチウム二次電池用負極
活物質に用いた。その粉末の50%累積径(d50)は1
0μmであり、比表面積は8.7m2 /gであった。こ
の材料を実施例1と同様の条件で電極評価を行った。そ
の結果、この負極活物質は初回放電容量は2000mA
h/gで大きいものの、初回充電容量が3300mAh
/gで初期容量ロスは1300mAh/gと非常に大き
かった。さらなる充放電の繰り返しにより、容量ロスは
2回目でも800mAh/gと大きく、その後徐々に低
下して7回目でようやく0mAh/gになった。このた
めトータルの容量ロスが非常に大きかった。またサイク
ルの進行とともに放電容量は急激に低下して10回目で
200mAh/gにまで落ち込むなど、リチウム二次電
池用として実用に耐えないものであった。
Comparative Example 1 Silicon powder (purity 99.9%) was used as a negative electrode active material for a lithium secondary battery. The 50% cumulative diameter (d 50 ) of the powder is 1
0 μm, and the specific surface area was 8.7 m 2 / g. This material was subjected to electrode evaluation under the same conditions as in Example 1. As a result, the initial discharge capacity of this negative electrode active material was 2000 mA.
h / g, but the initial charge capacity is 3300 mAh
/ G, the initial capacity loss was as large as 1300 mAh / g. With further repetition of charging and discharging, the capacity loss was as large as 800 mAh / g even in the second time, and then gradually decreased to 0 mAh / g at the seventh time. For this reason, the total capacity loss was very large. In addition, the discharge capacity rapidly decreased with the progress of the cycle and dropped to 200 mAh / g at the tenth time, and was not practical for lithium secondary batteries.

【0064】比較例2 ホウ素を重量換算で56%添加したほかは実施例1と同
様の条件で材料の調製を行った。また得られたホウ素化
珪素材料粉末をインペラーミルによって解砕することに
より、50%累積径(d50)が20μmの粉末を得た。
その粉末の比表面積は2.1m2 /gであった。得られ
た材料中に含まれるホウ素量は重量比で54.5%であ
った。またこの材料をX線回折測定した結果、SiB4
やSiB 6 に対応するピークが珪素に対応するピークと
ともに観測され、ピーク強度比I(SiB4;021)/I(Si;111)
は0.96となり、ホウ素が高濃度に固溶したホウ素−
珪素の固溶体相が生成すると共に、固溶量を超えたホウ
素がSiB4 を生成して共存し、さらにより高いホウ素
濃度のホウ化珪素(SiB6 )が若干量生成していた。
Comparative Example 2 Same as Example 1 except that 56% by weight of boron was added.
The materials were prepared under the same conditions. Boronation also obtained
To disintegrate silicon material powder with impeller mill
From the 50% cumulative diameter (d50) Was obtained with a powder of 20 μm.
The specific surface area of the powder is 2.1 mTwo/ G. Obtained
The amount of boron contained in the mixed material is 54.5% by weight.
Was. X-ray diffraction measurement of this material showed that SiBFour
And SiB 6Peak corresponding to silicon and peak corresponding to silicon
The peak intensity ratio I (SiBFour; 021) / I (Si; 111)
Is 0.96, and boron having a high concentration of boron
When a solid solution phase of silicon is formed,
Element is SiBFourCoexist and produce even higher boron
Silicon boride (SiB)6) Was produced in a small amount.

【0065】このようにして調製したホウ素含有珪素材
料粉末を実施例1と同様の条件で電極評価を行った。そ
の結果、このホウ素含有珪素材料粉末は初回充電容量が
370mAh/gと低く抑えられ、SiB4 に加えてさ
らに高濃度のホウ化珪素(SiB6 )が共存するため初
回放電容量が170mAh/gと非常に小さかった。ま
た充放電の繰り返しにより、2回目以後もさらに放電容
量が低下し10回目で140mAh/gになるなど、リ
チウム二次電池として実用に耐えないものであった。
The electrode evaluation was performed on the boron-containing silicon material powder thus prepared under the same conditions as in Example 1. As a result, the initial charge capacity of the boron-containing silicon material powder is suppressed to a low level of 370 mAh / g, and the initial discharge capacity is 170 mAh / g because silicon boride (SiB 6 ) having a higher concentration coexists in addition to SiB 4. It was very small. In addition, the charge / discharge was repeated, and the discharge capacity was further reduced after the second time, and became 140 mAh / g at the tenth time. Thus, the battery was not practical for a lithium secondary battery.

【0066】実施例4 コールタールピッチから得たピッチコークス粉末をボー
ルミルを用いて粉砕後、325メッシュによりふるい、
ふるい下を取り出した。これに、ホウ素粉末(純度9
9.9%、325メッシュアンダー)をホウ素濃度で2
wt%加えて良く混合したものを円筒形の黒鉛製坩堝中
に封入し、ネジのついたふたで密閉した。この密閉坩堝
を電気炉によってArガスを10リットル/分流しなが
ら、約12℃/分の昇温速度で2900℃まで昇温しこ
の温度で1時間保持した後に室温まで降温した。円筒径
の黒鉛製坩堝から取り出した炭素材料粉末をインペラー
ミルを用いて粉砕分級し黒鉛化炭素材料粉末を得た。こ
の黒鉛化粉末のX線回折パターンから炭素の(101)面か
らの回折線のピーク強度I(C;101)と炭素の(100)面から
の回折線のピークI(C;100)との比I(C;101)/I(C;100)を
測定した結果、I(C;101)/I(C;100)=2.6であった。
また、ホウ素含有量は1.2wt%であった。
Example 4 A pitch coke powder obtained from coal tar pitch was pulverized using a ball mill and then sieved with 325 mesh.
I took out the bottom of the sieve. Add boron powder (purity 9
9.9%, 325 mesh under) with boron concentration of 2
The mixture obtained by adding wt% and mixing well was sealed in a cylindrical graphite crucible, and sealed with a lid with a screw. The temperature of the sealed crucible was raised to 2900 ° C. at a rate of about 12 ° C./min while flowing Ar gas at 10 liter / min by an electric furnace, and maintained at this temperature for 1 hour, followed by cooling to room temperature. The carbon material powder taken out of the cylindrical graphite crucible was pulverized and classified using an impeller mill to obtain a graphitized carbon material powder. From the X-ray diffraction pattern of this graphitized powder, the peak intensity I (C; 101) of the diffraction line from the (101) plane of carbon and the peak I (C; 100) of the diffraction line from the (100) plane of carbon were obtained. As a result of measuring the ratio I (C; 101) / I (C; 100), I (C; 101) / I (C; 100) = 2.6.
Further, the boron content was 1.2% by weight.

【0067】このようにして得た黒鉛化炭素材料粉末と
実施例2で得たホウ素含有珪素材料粉末の混合物(黒鉛
化炭素材料粉末:ホウ素含有珪素材料粉末=80:20
(重量比))500gとエタノール約1kgとを大型ビ
ーカーに装入し、室温で約1時間撹拌した後に、濾紙を
用いて吸引濾過して残った濾紙上の粉末を100℃で2
4時間真空乾燥を行って混合粉末を得た。
A mixture of the graphitized carbon material powder thus obtained and the boron-containing silicon material powder obtained in Example 2 (graphitized carbon material powder: boron-containing silicon material powder = 80: 20)
(Weight ratio)) 500 g and about 1 kg of ethanol were charged into a large beaker, stirred at room temperature for about 1 hour, and then suction-filtered using a filter paper.
Vacuum drying was performed for 4 hours to obtain a mixed powder.

【0068】このようにして調製した混合粉末の50%
累積径(d50)は28μm、比表面積は3.2m2
g、X線回折測定で求めたピーク強度比I(SiB4;021)/I
(Si;111)は0.05であった。
50% of the mixed powder thus prepared
The cumulative diameter (d 50 ) is 28 μm, and the specific surface area is 3.2 m 2 /
g, peak intensity ratio I (SiB 4 ; 021) / I determined by X-ray diffraction measurement
(Si; 111) was 0.05.

【0069】このようにして得られた混合粉末に結着剤
としてポリふっ化ビニリデン(PVdF)を用い、1−
メチルピロリドン(NMP)を溶剤として塗工液を作製
し、これをCuシート上に塗布し、プレスにより約0.
1mm厚の電極シートを作成し、1cm×1cm角に切
り出し負極電極を作成した。塗布密度は約1.3g/c
3にした。
Using polyvinylidene fluoride (PVdF) as a binder for the mixed powder thus obtained, 1-
A coating solution was prepared using methylpyrrolidone (NMP) as a solvent, applied to a Cu sheet, and pressed to a pressure of about 0.1 μm.
An electrode sheet having a thickness of 1 mm was prepared and cut into 1 cm × 1 cm squares to prepare a negative electrode. Application density is about 1.3g / c
It was in m 3.

【0070】上記負極電極の単極での電極特性を評価す
るために、対極、参照極にリチウム金属を用いた三極式
セルを用いた。電解液には、エチレンカーボネートとジ
エチルカーボネートの混合溶媒(体積比で1:1混合)
にLiCl4 を1mol/lの割合で溶解したものを用
いた。充放電試験に関しては、電位規制の下、充電、放
電共に定電流(0.5mA/cm2 )で行なった。電位
範囲は0Vから2.0V(リチウム金属基準)とし、充
放電を100回繰り返した。
In order to evaluate the electrode characteristics of a single electrode of the above-mentioned negative electrode, a three-electrode cell using lithium metal as a counter electrode and a reference electrode was used. In the electrolyte, a mixed solvent of ethylene carbonate and diethyl carbonate (1: 1 mixture by volume ratio)
Was used in which LiCl 4 was dissolved at a rate of 1 mol / l. Regarding the charge / discharge test, both charging and discharging were performed at a constant current (0.5 mA / cm 2 ) under regulation of potential. The potential range was 0 V to 2.0 V (based on lithium metal), and charging and discharging were repeated 100 times.

【0071】この電極評価試験によって、放電容量とし
て評価している混合粉末1g当たりの最大の放電容量、
1回目の充放電での充放電効率いわゆる初期効率、混合
粉末1g当たりの最大の放電容量に対する100回目の
混合粉末1g当たりの放電容量の割合(サイクル特性)
を測定した。その結果、最大の放電容量はこ744mA
h/g、初期効率は90.5%、サイクル特性は86%
と、非常に高い電極能を有していた。
According to this electrode evaluation test, the maximum discharge capacity per gram of the mixed powder evaluated as the discharge capacity,
Charge / discharge efficiency in the first charge / discharge, so-called initial efficiency, ratio of discharge capacity per 100 g of mixed powder to maximum discharge capacity per 1 g of mixed powder (cycle characteristics)
Was measured. As a result, the maximum discharge capacity is 744 mA.
h / g, initial efficiency 90.5%, cycle characteristics 86%
And had a very high electrode capability.

【0072】[0072]

【発明の効果】以上の説明からも明白なように、本発明
のリチウム二次電池用負極活物質は、珪素金属、酸化物
が有する高い放電容量を保持したまま容量ロスを飛躍的
に低減することができ、可逆性に優れた高いエネルギー
密度のリチウム二次電池を提供することができる。
As is clear from the above description, the negative electrode active material for a lithium secondary battery of the present invention dramatically reduces the capacity loss while maintaining the high discharge capacity of silicon metal and oxide. Accordingly, a high energy density lithium secondary battery having excellent reversibility can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 太郎 東京都千代田区大手町2−6−3 新日本 製鐵株式会社内 (72)発明者 杉浦 勉 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Taro Kono 2-6-3 Otemachi, Chiyoda-ku, Tokyo Inside Nippon Steel Corporation (72) Inventor Tsutomu Sugiura 20-1 Shintomi, Futtsu-shi, Chiba Japan-made Inside the Technology Development Division, Steel Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ホウ素を含有する珪素材料粉末からな
り、その珪素材料粉末におけるホウ素含有量が0.1〜
50重量%であることを特徴とするリチウム二次電池用
負極活物質。
1. A silicon material powder containing boron, wherein the silicon material powder has a boron content of 0.1 to 1.0.
50% by weight of a negative electrode active material for a lithium secondary battery.
【請求項2】 該負極活物質の50%累積径(d50)が
1〜100μmであることを特徴とする請求項1に記載
のリチウム二次電池用負極活物質。
2. The negative electrode active material for a lithium secondary battery according to claim 1, wherein the 50% cumulative diameter (d 50 ) of the negative electrode active material is 1 to 100 μm.
【請求項3】 該負極活物質が、X線広角回折法におけ
るSiの(111)面からの回折線のピーク強度I(Si;1
11)に対するSiB4 の(021)面からの回折線のピ
ーク強度I(SiB4;021)の比I(SiB4;021)/I(Si;111)が1以
下であることを特徴とする請求項1または2に記載のリ
チウム二次電池用負極活物質。
3. The method according to claim 1, wherein the negative electrode active material has a peak intensity I (Si; 1) of a diffraction line from a (111) plane of Si in an X-ray wide angle diffraction method.
The ratio I (SiB 4 ; 021) / I (Si; 111) of the peak intensity I (SiB 4 ; 021) of the diffraction line from the (021) plane of SiB 4 to 11) is 1 or less. The negative electrode active material for a lithium secondary battery according to claim 1.
【請求項4】 正極活物質、負極活物質および非水系電
解質を含有するリチウム二次電池において、該負極活物
質として請求項1〜3のいずれかに記載の負極活物質を
少なくとも用いてなることを特徴とするリチウム二次電
池。
4. A lithium secondary battery containing a positive electrode active material, a negative electrode active material and a non-aqueous electrolyte, wherein at least the negative electrode active material according to claim 1 is used as the negative electrode active material. A rechargeable lithium battery.
JP25435999A 1998-09-11 1999-09-08 Lithium secondary battery and negative electrode active material for lithium secondary battery Expired - Fee Related JP4081211B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25435999A JP4081211B2 (en) 1998-09-11 1999-09-08 Lithium secondary battery and negative electrode active material for lithium secondary battery
US09/393,885 US6555272B2 (en) 1998-09-11 1999-09-10 Lithium secondary battery and active material for negative electrode in lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-258673 1998-09-11
JP25867398 1998-09-11
JP25435999A JP4081211B2 (en) 1998-09-11 1999-09-08 Lithium secondary battery and negative electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2000149951A true JP2000149951A (en) 2000-05-30
JP4081211B2 JP4081211B2 (en) 2008-04-23

Family

ID=26541652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25435999A Expired - Fee Related JP4081211B2 (en) 1998-09-11 1999-09-08 Lithium secondary battery and negative electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4081211B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005124897A1 (en) * 2004-06-15 2005-12-29 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery and negative electrode thereof
JP2006128067A (en) * 2004-06-15 2006-05-18 Mitsubishi Chemicals Corp Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
US7609029B2 (en) 2006-03-09 2009-10-27 Nissan Motor Co., Ltd. Battery, assembled battery unit, vehicle equipped with battery, and battery voltage adjusting method
US7754382B2 (en) 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
US8119287B2 (en) 2005-05-16 2012-02-21 Mitsubishi Chemical Corporation Nonaqueous electrolyte rechargeable battery, and negative electrode and material thereof
JP4940381B2 (en) * 2010-03-09 2012-05-30 三井金属鉱業株式会社 Anode active material for non-aqueous electrolyte secondary battery
US8388922B2 (en) 2004-01-05 2013-03-05 Showa Denko K.K. Negative electrode material for lithium battery, and lithium battery
JP2014179202A (en) * 2013-03-14 2014-09-25 Seiko Instruments Inc Electrochemical cell
WO2022202357A1 (en) * 2021-03-23 2022-09-29 三井金属鉱業株式会社 Active material and method for producing same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754382B2 (en) 2003-07-30 2010-07-13 Tdk Corporation Electrochemical capacitor having at least one electrode including composite particles
US8388922B2 (en) 2004-01-05 2013-03-05 Showa Denko K.K. Negative electrode material for lithium battery, and lithium battery
JP2006128067A (en) * 2004-06-15 2006-05-18 Mitsubishi Chemicals Corp Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
KR100860341B1 (en) * 2004-06-15 2008-09-26 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte secondary battery and negative electrode thereof
WO2005124897A1 (en) * 2004-06-15 2005-12-29 Mitsubishi Chemical Corporation Nonaqueous electrolyte secondary battery and negative electrode thereof
US8119287B2 (en) 2005-05-16 2012-02-21 Mitsubishi Chemical Corporation Nonaqueous electrolyte rechargeable battery, and negative electrode and material thereof
US7609029B2 (en) 2006-03-09 2009-10-27 Nissan Motor Co., Ltd. Battery, assembled battery unit, vehicle equipped with battery, and battery voltage adjusting method
CN102782907A (en) * 2010-03-09 2012-11-14 三井金属矿业株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery
EP2557618A1 (en) * 2010-03-09 2013-02-13 Mitsui Mining and Smelting Co., Ltd. Negative electrode active material for nonaqueous electrolyte secondary battery
JP4940381B2 (en) * 2010-03-09 2012-05-30 三井金属鉱業株式会社 Anode active material for non-aqueous electrolyte secondary battery
EP2557618A4 (en) * 2010-03-09 2013-08-21 Mitsui Mining & Smelting Co Negative electrode active material for nonaqueous electrolyte secondary battery
US8632695B2 (en) 2010-03-09 2014-01-21 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous secondary battery
JP2014179202A (en) * 2013-03-14 2014-09-25 Seiko Instruments Inc Electrochemical cell
WO2022202357A1 (en) * 2021-03-23 2022-09-29 三井金属鉱業株式会社 Active material and method for producing same

Also Published As

Publication number Publication date
JP4081211B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
US6555272B2 (en) Lithium secondary battery and active material for negative electrode in lithium secondary battery
KR100816272B1 (en) Cathode active material, method for preparation thereof, non-aqueous electrolyte cell and method for preparation thereof
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
US7771876B2 (en) Anode active material method of manufacturing the same and nonaqueous electrolyte secondary battery using the same
KR100951328B1 (en) A method for forming a cathode active material
US6814764B2 (en) Method for producing cathode active material and method for producing non-aqueous electrolyte cell
CN111403693B (en) Negative active material, and negative electrode sheet, electrochemical device, and electronic device using same
US20120045696A1 (en) Negative electrode materials for non-aqueous electrolyte secondary battery
CN111048770B (en) Ternary doped silicon-based composite material and preparation method and application thereof
JP7461476B2 (en) Negative electrode active material, its manufacturing method, secondary battery, and device including secondary battery
Cho et al. Physical and electrochemical properties of La-doped LiFePO 4/C composites as cathode materials for lithium-ion batteries
JP2013222641A (en) Negative electrode material for lithium ion battery and application thereof
JP2024523294A (en) Uniformly modified silicon-based composite material and its preparation method and application
EP2966712A1 (en) Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
KR20230162124A (en) Electrochemical devices and electronic devices
JP2004323284A (en) Silicon composite and method of manufacturing the same, and negative electrode material for non-aqueous electrolyte secondary battery
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
EP4207385A2 (en) Electrochemical apparatus and electronic apparatus including same
JP2006318926A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP2001266866A (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery
JP2001143698A (en) Negative electrode material for non-aqueous lithium secondary cell and non-aqueous secondary cell using the same
JP4081211B2 (en) Lithium secondary battery and negative electrode active material for lithium secondary battery
JP2012079470A (en) Nonaqueous electrolyte secondary battery
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
JPH0896852A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees