WO2020166599A1 - Active material - Google Patents

Active material Download PDF

Info

Publication number
WO2020166599A1
WO2020166599A1 PCT/JP2020/005305 JP2020005305W WO2020166599A1 WO 2020166599 A1 WO2020166599 A1 WO 2020166599A1 JP 2020005305 W JP2020005305 W JP 2020005305W WO 2020166599 A1 WO2020166599 A1 WO 2020166599A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
negative electrode
peak
less
silicon
Prior art date
Application number
PCT/JP2020/005305
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 甲斐
秀雄 上杉
徹也 光本
仁彦 井手
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2020572269A priority Critical patent/JPWO2020166599A1/ja
Publication of WO2020166599A1 publication Critical patent/WO2020166599A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material, a negative electrode using the same, and a solid-state battery.
  • the Si-containing active material has a potential that the capacity per mass is 5 to 10 times that of graphite.
  • it has a problem that the electron conductivity is not higher than that of graphite. Therefore, in order to increase the electron conductivity of the Si-containing active material, it has been proposed to add a conductive auxiliary agent, for example, for the purpose of imparting electron conductivity between the current collector and the active material.
  • Patent Document 1 discloses that the periphery of a core particle containing silicon is coated with a silicon solid solution such as Mg 2 Si, CoSi, or NiSi, and the surface thereof is further coated with a conductive material such as graphite or acetylene black. There is.
  • the Si-containing active material also undergoes a large volume change due to the insertion and desorption of lithium ions, and repeats expansion and contraction during charge and discharge cycles, so separation with the conductive auxiliary agent tends to occur as charge and discharge are repeated, and as a result, cycle
  • the battery performance is deteriorated and the safety of the battery is deteriorated by causing deterioration of the battery and a decrease in energy density.
  • Patent Document 2 discloses active material particles containing silicon and having an average particle diameter of 5 ⁇ m or more and 25 ⁇ m or less. By setting the average particle diameter of the active material particles to 5 ⁇ m or more, the specific surface area of the original active material can be reduced, and thus the contact area between the electrolyte and the new surface of the active material can be reduced. It is described that the suppression effect of is increased.
  • an electrode material for a lithium secondary battery which comprises particles of a solid-state alloy containing silicon as a main component, is used as an electrode material having a high efficiency of lithium insertion/desorption.
  • an electrode material for a lithium secondary battery characterized in that particles are microcrystalline silicon or amorphized silicon, in which microcrystalline or amorphous particles composed of elements other than silicon are dispersed. ..
  • Patent Document 4 a negative electrode active material for a lithium secondary battery containing silicon, copper and oxygen as main constituent elements, wherein Cu 3 Si and an average crystallite diameter (Dx) measured by an X-ray diffraction method are used.
  • a negative electrode active material for a lithium secondary battery which contains silicon particles of 50 nm or less and has a peak intensity ratio (Cu 3 Si/Si) of 0.05 to 1.5 calculated from XRD measurement results. ..
  • charge/discharge characteristics in a high current range are also required. That is, it is important that the battery has a high rate characteristic, and improvement of the rate characteristic is required.
  • the present invention can improve the cycle characteristics of the active material containing silicon, reduce or eliminate the plateau region in the discharge profile, and discharge at a high rate while maintaining the profile. It aims to provide a new active material that can.
  • the present invention relates to silicon and a chemical formula M x Si y (where x and y satisfy 0.1 ⁇ x/y ⁇ 7.0, and M is a metalloid element other than Si and a metal element).
  • a compound represented by one or two or more kinds) and a content of the M in the active material is more than 5 wt% and less than 38 wt%, and Raman spectroscopic measurement in the Raman spectrum obtained by measuring by law, the wave number 200 cm -1 ⁇ has at least one or more peaks P a to 420 cm -1, at least one peak P at a wavenumber 450 cm -1 ⁇ 490 cm -1 has a B, and the wave number 500 cm -1 peak PC to ⁇ 525 cm -1 appears at least one, the active material of the peak area ratio of the PB and PC I PB / I PC is 0.5 or more suggest.
  • the active material proposed by the present invention can be used as a negative electrode active material.
  • the active material of the present invention can be used in batteries such as liquid batteries and solid batteries, and can be preferably used in solid batteries.
  • the active material of the present invention is advantageously used in a solid battery containing a sulfide solid electrolyte as the solid electrolyte.
  • the solid-state battery using the active material of the present invention can have improved cycle characteristics and high rate characteristics. Moreover, the plateau region in the discharge profile can be reduced or eliminated.
  • the active material proposed by the present invention not only exhibits the effect in a single use, but, for example, in combination with a carbon material (Graphite), a battery, particularly a solid battery, a solid secondary battery such as a solid lithium secondary battery among them. It can be suitably used as a negative electrode active material of a secondary battery.
  • a carbon material Graphite
  • a battery particularly a solid battery, a solid secondary battery such as a solid lithium secondary battery among them. It can be suitably used as a negative electrode active material of a secondary battery.
  • the active material (hereinafter referred to as “main active material”) according to an example of the present embodiment includes silicon and a chemical formula MxSiy (where x and y satisfy 0.1 ⁇ x/y ⁇ 7.0, M Is one kind or two or more kinds of metalloid elements and metal elements other than Si.).
  • silicon also means Si capable of inserting and releasing lithium ions. That is, the present active material has a function as an active material by containing silicon.
  • silicon mainly refers to pure silicon, but it may contain an element that forms a solid solution with silicon to form a solid solution. In this case, the solid solution may have a function as an active material.
  • the proportion of silicon in the main active material is preferably 30 wt% or more of the main active material, and more preferably 40 wt% or more.
  • silicon is preferably the main component of the active material in order for the proportion of silicon to affect the charge/discharge capacity and increase the charge/discharge capacity.
  • the proportion of silicon in the substance is preferably 50 wt% or more, and particularly preferably 60 wt% or more.
  • This active material has a chemical formula M x Si y (where x and y satisfy 0.1 ⁇ x/y ⁇ 7.0, and M is one of a metalloid element other than Si and a metal element). Or two or more kinds).
  • M x Si y By containing the compound represented by M x Si y , the present active material can further improve the cycle characteristics, and can further reduce or eliminate the plateau region in the discharge profile, and further, have high rate characteristics. Can be improved.
  • M The compound represented by the chemical formula M x Si y (0.1 ⁇ x/y ⁇ 7.0) is called so-called silicide.
  • M in the chemical formula M x Si y is one or more of metalloid elements and metal elements other than Si. That is, M may be a metalloid element, a metal element, or a combination of two or more metalloid elements and metal elements.
  • the metalloid element and the metal element include elements such as B, Ti, V, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Ta, and W, and among them, B, Ti, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Ta and W are preferable. Further, among them, B, Ti, Mn, Fe, Co and Ni are preferable, and among them, B, Ti, Mn and Fe are particularly preferable.
  • “X/y” in the chemical formula M x Si y is preferably 0.1 or more and 7.0 or less, particularly 0.2 or more or 4.0 or less, and among them 0.3 or more or 3.0 or less, Among them, 0.4 or more or 2.0 or less is more preferable.
  • “x” in the chemical formula M x Si y is preferably 0.5 or more and 15 or less, more preferably 0.75 or more or 13 or less, and further preferably 1 or more or 11 or less.
  • “y” is preferably 0.5 or more and 27 or less, more preferably 0.75 or more or 23 or less, and even more preferably 1 or more or 19 or less.
  • silicide examples include titanium silicide (TiSi 2 , TiSi, Ti 5 Si 4 , Ti 5 Si 3 ), cobalt silicide (CoSi 2 , CoSi, CoSi, Co 2 Si, Co 3 Si), nickel silicide ( NiSi 2 , NiSi, Ni 3 Si 2 , Ni 2 Si, Ni 5 Si 2 , Ni 3 Si), manganese silicide (Mn 11 Si 19 , MnSi, Mn 5 Si 3 , Mn 5 Si 2 , Mn 3 Si), iron Silicide (FeSi 3 , FeSi, Fe 5 Si 3 , Fe 3 Si), Niobium silicide (NbSi 2 , Nb 5 Si 3 , Nb 3 Si), Copper silicide (Cu 3 Si, Cu 6 Si, Cu 7 Si), Boron silicide (B 3 Si, B 6 Si ) zirconium silicide (ZrSi 2, ZrSi, Zr 5 Si 4, Zr 3 Si 2, Zr 5 Si 3, Zr 3
  • the active material may contain "other components” as necessary.
  • the “other components” include silicon-containing substances such as silicon compounds.
  • examples of the silicon compound include Si 3 N 4 and SiC.
  • the “other component” for example, not a constituent element of the compound represented by the chemical formula M x Si y , but a metal having one or more elements of a metalloid element and a metal element, an oxide It may be contained as a substance, a carbide and a nitride.
  • one of H, Li, B, C, O, N, F, Na, Mg, Al, P, K, Cu, Ca, Ga, Ge, Ag, In, Sn and Au for example, one of H, Li, B, C, O, N, F, Na, Mg, Al, P, K, Cu, Ca, Ga, Ge, Ag, In, Sn and Au.
  • the content of components other than silicon (Si) and compound A is preferably less than 15 at %, more than 0 at% or less than 12 at %, of which 1 at% or more. It is preferable that the amount is large or less than 10 at %, and more preferably more than 2 at% or less than 7 at %.
  • the active material contains a carbon (C) element as the “other component”
  • the content thereof is preferably less than 5 wt% of the amount of the active material, particularly preferably less than 3 wt %.
  • the content of C element in the active material has the above upper limit, it is possible to suppress the decrease in capacity.
  • the active material may contain unavoidable impurities derived from the raw materials.
  • the content of unavoidable impurities in the active material is preferably, for example, less than 2 wt %, more preferably less than 1 wt %, and most preferably less than 0.5 wt.
  • the content of the unavoidable impurities in the active material has the above upper limit, it is possible to suppress the decrease in capacity.
  • the active material may contain a Si oxide containing a Si element.
  • the Si oxide include SiO a (0 ⁇ a ⁇ 2). Specifically, SiO, SiO 2, etc. can be mentioned.
  • the content of the Si element in the active material is preferably more than 50 wt %. Above all, it is preferably more than 52 wt %, particularly preferably more than 60 wt %, more preferably more than 63 wt %, and even more preferably more than 65 wt %.
  • the content of the Si element in the active material is, for example, preferably less than 95 wt%, more preferably less than 88 wt%, further preferably less than 82 wt%, and further preferably 78 wt%. It is preferably less than.
  • the content of the Si element here means the total amount of the Si element contained in the active material.
  • the content of the Si element can be the total amount of the Si element mainly derived from silicon and the Si element derived from the compound represented by M x Si y .
  • the content of Si element having the above lower limit makes it possible to suppress the decrease in capacity.
  • the content of the Si element has the upper limit, expansion and contraction of the active material can be suppressed, and cycle characteristics can be improved.
  • the oxygen (O) element content in the active material is preferably less than 30 wt %. Above all, it is preferably less than 20 wt%, particularly preferably less than 15 wt%, further preferably less than 10 wt%, and further preferably less than 5 wt%.
  • the content of the oxygen (O) element in the active material is, for example, preferably more than 0 wt%, more preferably more than 0.1 wt%, and particularly preferably more than 0.2 wt%. Above all, it is preferably more than 0.6 wt %.
  • the content of the oxygen (O) element in the present active material has the above upper limit, it is possible to suppress an increase in the ratio of the oxygen (O) element that does not contribute to charging and discharging, and suppress a decrease in capacity and charging/discharging efficiency. it can.
  • So-called SiO silicon monoxide
  • SiO silicon monoxide
  • the content of the oxygen (O) element has the above lower limit, it is possible to prevent a rapid reaction with oxygen in the atmosphere.
  • the content of M in the active material is preferably more than 5 wt% and less than 38 wt %. Above all, it is more preferably more than 8% by weight, particularly preferably more than 12% by weight, further preferably more than 15% by weight. On the other hand, the content of M in the active material is, for example, preferably less than 35 wt%, more preferably less than 32 wt%, and particularly preferably less than 29 wt%.
  • the content of M in the active material has the above lower limit, expansion and contraction of the active material can be suppressed, and cycle characteristics can be improved.
  • the content of M in the active material has the above upper limit, it becomes possible to suppress the decrease in capacity.
  • the ratio (M/Si) of the content (wt%) of M to the content (wt%) of the Si element in the active material is preferably, for example, more than 0.05, and is 0.06 or more. It is preferably large, particularly preferably larger than 0.07, and particularly preferably larger than 0.10.
  • the ratio of the content of M to the content of Si element (M/Si) is, for example, preferably less than 0.96, more preferably less than 0.86, and particularly less than 0.76. Is preferable, and particularly preferably less than 0.56.
  • the ratio of the content of M to the content of Si element in the active material has the above lower limit, expansion and contraction of the active material can be suppressed, and cycle characteristics can be improved.
  • the ratio of the content of M to the content of Si element in the active material has the above upper limit, the capacity can be maintained.
  • the content of each element other than oxygen is an element ratio determined by chemical analysis such as inductively coupled plasma (ICP) emission spectroscopic analysis in which the active material is completely dissolved.
  • the oxygen element content can be measured using an oxygen/nitrogen analyzer (for example, manufactured by LECO).
  • the amount of oxygen obtained by such a measuring method means that the amount of oxygen as SiOa (0 ⁇ a ⁇ 2) and an oxygen compound with a metalloid element other than Si and a metal element M are included. ..
  • the active material has a Raman spectrum measured by Raman spectroscopy, and has at least one peak P A derived from the compound represented by the chemical formula M x Si y at a wave number of 200 cm ⁇ 1 to 420 cm ⁇ 1. appear, the wave number 450 cm -1 ⁇ 490 cm -1, tensile strain peak P B derived from the silicon occurs appears at least one, and peaks P C at a wavenumber 500 cm -1 ⁇ 525 cm -1 appears at least one.
  • This active material is P A, P B, by the P C appears, tensile strain occurs in the active material particles, so that the state interatomic distance between Si-Si is extended. As a result, distortion of the crystal structure at the time of initial Li insertion can be eliminated, and both durability and rate characteristics can be improved.
  • the present active material is also an active material having an area ratio of the peaks of P B and P C of I PB /I PC of 0.5 or more.
  • the I PB /I PC is, for example, preferably 1.0 or more, and more preferably 1.5 or more.
  • the I PB /I PC may be, for example, 10.0 or less, 8.0 or less, or 5.0 or less.
  • peaks due to Si defects may appear at wave numbers of 200 cm ⁇ 1 to 420 cm ⁇ 1, and whether or not silicide exists can be examined by an electron diffraction method using a transmission electron microscope (TEM). ..
  • TEM transmission electron microscope
  • P B indicates that the tensile strain in the active material particles is relatively large, and represents the state in which the interatomic distance between Si and Si is extended.
  • P C indicates that tensile strain in the active material particles is relatively small, indicating a state in which shrinks interatomic distance between Si-Si.
  • the full width at half maximum of the peak P B is preferably 40 cm ⁇ 1 or more, more preferably 45 cm ⁇ 1 or more, and even more preferably 50 cm ⁇ 1 or more, while 90 cm ⁇ 1 or less, Among them, 80 cm -1 or less is more preferable.
  • the above M is added to a raw material in a predetermined amount, melted, cast, and further modified as described below. Good.
  • the method is not limited to this.
  • the “peak” in the Raman spectrum obtained by measurement by Raman spectroscopy means a spectrum having a peak top in the Raman spectrum and a full width at half maximum of 5.0 cm ⁇ 1 or more. Therefore, a spectrum having a full width at half maximum of 4.9 cm ⁇ 1 or less is regarded as noise.
  • the full width at half maximum and the peak area can be obtained by setting a baseline for the obtained Raman spectrum and separating the peaks.
  • the laser diffraction/scattering particle size distribution measuring method is a measuring method in which agglomerated powder particles are regarded as one particle (aggregated particle) and the particle size is calculated.
  • the D 50 according to this measuring method means a diameter corresponding to 50% cumulative from the smallest cumulative percentage of the volume-measured particle size measured values in the volume-based particle size distribution chart.
  • the D 50 of the active material is preferably less than 4.0 ⁇ m, more preferably less than 3.8 ⁇ m, particularly preferably less than 3.4 ⁇ m, and further preferably less than 3.2 ⁇ m. It is more preferably less than 3.0 ⁇ m, and further preferably less than 2.8 ⁇ m.
  • the D 50 of the active material is preferably larger than 0.01 ⁇ m, more preferably larger than 0.05 ⁇ m, particularly preferably larger than 0.1 ⁇ m, and further preferably larger than 0.5 ⁇ m. Furthermore, it is preferable that it is larger than 1.0 ⁇ m.
  • the D 50 of the present active material has the above upper limit, the influence of expansion and contraction can be reduced, and the contact with the solid electrolyte in the solid battery electrode can be secured.
  • the D 50 of the present active material has the above lower limit, an increase in the number of contacts with the solid electrolyte due to an increase in the specific surface area can be suppressed, and an increase in contact resistance can be suppressed.
  • the D 50 of the present active material can be adjusted by changing the crushing condition and the crushing condition. However, the adjustment method is not limited to these.
  • D max of the active material is preferably D max less than 25 ⁇ m by and volume particle size distribution measurement obtained by the measurement by a laser diffraction scattering particle size distribution measuring method, more preferably among them less than 20 [mu] m, in particular 15 ⁇ m It is preferably less than 10 ⁇ m, and more preferably less than 10 ⁇ m.
  • D max of the present active material is, for example, preferably larger than 0.5 ⁇ m, more preferably larger than 1.0 ⁇ m, particularly preferably larger than 3.0 ⁇ m, and further preferably 5.0 ⁇ m. It is preferably large.
  • the D 50 according to this measurement method means a diameter corresponding to 100% cumulative from the smallest cumulative percentage of volume-converted particle size measurement values in the volume-based particle size distribution chart.
  • the active material is an aggregate of particles, and can be in the form of powder, lump, or the like.
  • the particle shape of the active material is not particularly limited.
  • a spherical shape, a polyhedral shape, a spindle shape, a plate shape, a scaly shape, an amorphous shape, or a combination thereof can be used.
  • the particles have a spherical shape, and when they are pulverized by a jet mill or the like, the particles are broken along the grain boundaries and thus have an irregular shape.
  • the true density of the present active material is, for example, preferably more than 2.4 g/cm 3, more preferably more than 2.5 g/cm 3 , particularly preferably more than 2.7 g/cm 3 , and further 2 It is preferably larger than 0.9 g/cm 3 .
  • the true density of the active material that for example, preferably less than 3.9 g / cm 3, preferably less than Above all 3.8 g / cm 3, in particular less than 3.7 g / cm 3 preferable.
  • the true density of the present active material has the above lower limit, the electrode density can be improved and the energy density can be improved.
  • the true density of the present active material has the upper limit described above, it is possible to suppress the occurrence of the problem that the content of Si element in the active material decreases and the capacity decreases.
  • the true density of the present active material can be adjusted by the amount of M, for example. However, the method is not limited to this.
  • the specific surface area (SSA) of the present active material is, for example, preferably larger than 2.0 m 2 /g, more preferably larger than 2.5 m 2 /g, particularly preferably larger than 3.0 m 2 /g, Further, it is preferably larger than 3.3 m 2 /g.
  • the specific surface area (SSA) of the present active material is, for example, preferably less than 140 m 2 /g, more preferably less than 60 m 2 /g, and particularly preferably less than 30 m 2 /g. It is preferably less than 10 m 2 /g.
  • the active material SSA has the above upper limit, it is possible to suppress an increase in the number of contacts with the solid electrolyte and suppress an increase in contact resistance.
  • the SSA of the active material can be adjusted by, for example, pulverizing conditions or modifying conditions. However, the adjustment method is not limited to these.
  • the active material is obtained by mixing silicon or a silicon (Si)-containing substance, M or an M-containing substance, and optionally other raw materials, heating and melting to alloy them, and crushing or crushing as necessary. It is preferable to carry out the above-mentioned process and, if necessary, classify it, and then carry out a reforming treatment by using a reforming apparatus utilizing a strong impact force.
  • the method is not limited to this.
  • the above-mentioned "silicon or silicon (Si)-containing substance” is meant to include pure silicon and silicon oxide, as well as silicon-containing substances such as silicon compounds such as Si 3 N 4 and SiC.
  • this active material is obtained by mixing silicon or a silicon (Si)-containing substance, the above M or the above M-containing substance, and optionally other raw materials and heating them to obtain a molten liquid, and then an atomizing method.
  • the alloy may be alloyed by the above method, or may be melted as described above, cast by a roll casting method, and further pulverized in a non-oxygen atmosphere to be alloyed. Other alloying methods may be used.
  • the apparatus shown in FIG. 2 of WO 01/081033 pamphlet is used, and the pressure wave generated by causing boiling due to spontaneous nucleation is used and dropped into the cooling medium. It is preferable to employ a method of alloying molten metal (this alloying method is referred to as "steam explosion atomizing method" in the present specification).
  • the reforming treatment using a reforming device that uses a strong impact force is a reforming treatment that uses a device that can perform mechanical milling or mechanical alloying depending on the condition settings. (SSA) can be increased. Further, when the treatment is carried out by a planetary ball mill, a vibrating ball mill, an attritor, a ball mill, etc., particularly in an active material having a small amount of silicide as in the present application, stronger agglomeration occurs, so that D 50 and D max are targeted values. Will be bigger than This is not suitable as a negative electrode active material used for solid-state batteries.
  • a treatment device having rotary blades in a reaction tank is used, and the peripheral speed of the rotating blades is set to, for example, 3.0 m/s or more and 20 m/s or less and charged into the reaction tank.
  • the peripheral speed of the rotating blades is set to, for example, 3.0 m/s or more and 20 m/s or less and charged into the reaction tank.
  • beads having a particle size of, for example, 1500 times or more and 4000 times or less with respect to D 50 of the active material is, for example, about 100 m/s or more and 130 m/s or less, it can be said that the peripheral speed of the rotary blade is slower than the peripheral speed at the time of fine pulverization processing.
  • the peripheral speed of the rotary blade is, for example, 4.0 m/s or more or 17 m/s or less, particularly 4.5 m/s or more or 15 m/s or less, and among them 5.0 m/s or more, or It is preferably 12 m/s or less. Even when the size of the stirring blade is changed, the same effect can be obtained by adjusting the peripheral speeds.
  • the medium put into the reaction tank can be crushed to about 1/1000 of its size. Therefore, the use of beads having a particle size of, for example, 1500 times or more and 4000 times or less with respect to D 50 of the present active material means that the surface modification is performed preferentially over the pulverization.
  • the particle size of the medium charged into the reaction vessel is preferably 4 mm ⁇ or more and 10 mm ⁇ or less, more preferably 5 mm ⁇ or more or 8 mm ⁇ or less, and further preferably 5 mm ⁇ or more or 7 mm ⁇ or less.
  • the material of the medium for example SiO 2, Al 2 O 3, ZrO 2, SiC, Si 3 N 4, WC , etc. can be cited, among others, Al 2 O 3, ZrO 2 , SiC, Si 3 N 4 is preferable.
  • the above-mentioned reforming treatment is preferably carried out in an inert atmosphere such as a nitrogen atmosphere or an argon gas atmosphere, and further, it is preferable to carry out gradual oxidation when collecting the treated product.
  • an inert atmosphere such as a nitrogen atmosphere or an argon gas atmosphere
  • the inside of the reaction tank at the time of carrying out the reforming treatment is set to the above-mentioned inert atmosphere, and when the treated product is recovered from the reaction tank after the reforming treatment, air or the like is gradually introduced into the reaction tank to gradually remove the treated product.
  • Gradual oxidation that is, gradual oxidation is preferably performed.
  • the present active material can be preferably used as a negative electrode active material for batteries, especially solid batteries, and solid secondary batteries such as solid lithium secondary batteries.
  • a negative electrode active material of a solid battery containing a sulfide solid electrolyte as the solid electrolyte can be suitably used as a negative electrode active material of a solid battery containing a sulfide solid electrolyte as the solid electrolyte.
  • the negative electrode according to this embodiment contains the present active material.
  • the present negative electrode is a member composed of a negative electrode mixture.
  • the negative electrode mixture is, for example, a main active material, a binder if necessary, a conductive material if necessary, a solid electrolyte if necessary, and an active material different from the main active material if necessary. It may contain graphite.
  • the present negative electrode can be formed by applying a negative electrode mixture on a negative electrode current collector.
  • the present negative electrode can be used, for example, in a solid state battery. More specifically, it can be used for a lithium solid state battery.
  • the lithium solid state battery may be a primary battery or a secondary battery, but among them, it is preferably used for a lithium secondary battery.
  • a pellet obtained by press-molding a dry powder composed of an active material, a conductive material and an electrolyte is used as a negative electrode, and the negative electrode does not include a binder and a current collector.
  • solid state battery includes not only a solid state battery that does not contain any liquid substance or gelled substance as an electrolyte, but also a solid state battery that contains a small amount, for example, 10 wt% or less of a liquid substance or gelled substance as an electrolyte.
  • the binder is not particularly limited as long as it is a material that can be used for the negative electrode.
  • polyimide, polyamide, polyamide imide, etc. may be mentioned. These may be used alone or in combination of two or more (hereinafter, these may be collectively referred to as "polyimide or the like").
  • a binder other than these may be used in combination.
  • the details of the binder can be the same as those of known binders, and thus the description thereof is omitted here.
  • Solid electrolyte examples include a sulfide solid electrolyte, an oxide solid electrolyte, a nitride solid electrolyte, a halide solid electrolyte, and the like. Among them, a sulfide solid electrolyte containing a sulfur (S) element is preferable. ..
  • the sulfide solid electrolyte may be any of a crystalline material, glass ceramics and glass.
  • a crystalline material glass ceramics and glass.
  • the oxide solid electrolyte, the nitride solid electrolyte, and the halide solid electrolyte can be the same as known ones, and thus the description thereof is
  • the binder is not particularly limited as long as it is a material that can be used for the negative electrode.
  • examples thereof include fine metal powder and powder of conductive carbon material such as acetylene black.
  • metal fine powder it is preferable to use fine powder of a metal having lithium ion conductivity such as Sn, Zn, Ag and In, or an alloy of these metals.
  • the content of the binder is preferably 1 to 25 parts by mass, and more preferably 2 parts by mass or more or 20 parts by mass or less based on 100 parts by mass of the active material.
  • the content of the conductive material is preferably 1 to 15 parts by mass, and particularly 2 parts by mass or more or 10 parts by mass or less based on 100 parts by mass of the active material. Is more preferable.
  • graphite is blended as the negative electrode active material, the content of graphite is 0.5:95 to 50:50, particularly 0.5:95 to 20:50 in terms of the mixing mass ratio of the main active material and graphite. It is preferably 80.
  • the present negative electrode includes, for example, a carbon material (an active material different from the present active material (particulate), a binder, a conductive material, an electrolyte if necessary, a solvent, and optionally the present active material (Graphite) and other materials are mixed to prepare a negative electrode mixture, and the negative electrode mixture is applied to the surface of a current collector made of Cu or the like and dried to form a negative electrode mixture. It can be formed by pressing. Further, as the present negative electrode for an all-solid-state battery, it is preferable to press-mold a dry powder containing an active material, a conductive material, and an electrolyte, and use the obtained pellet as the negative electrode. At this time, the negative electrode preferably does not include a binder and a current collector.
  • Drying after applying the negative electrode mixture to the surface of the current collector is preferably performed for 1 hour to 10 hours, particularly 1 hour to 7 hours in a non-oxygen atmosphere such as a nitrogen atmosphere or an argon atmosphere.
  • the main active material (particulate), a polyimide precursor compound, an organic solvent such as N-methyl-2-pyrrolidone, and if necessary, a conductive material such as fine metal powder or acetylene black or a carbon material (Graphite) And the like are mixed to prepare a negative electrode mixture, and this negative electrode mixture is applied to the surface of a current collector made of Cu or the like.
  • a polyamic acid (polyamic acid) can be used as the polyimide precursor compound.
  • the coating film can be heated to volatilize the organic solvent, and at the same time, the polyimide precursor compound can be polymerized to obtain a polyimide.
  • the polyimide can be planarly adhered to the surface of the active material particles, and the active materials can be connected in a beaded shape via the connection site made of the polyimide.
  • the first-step heating is preferably performed at 100 to 150°C
  • the second-step heating is preferably performed at 200 to 400°C.
  • the heating time it is preferable that the heating time of the first step is the same as or longer than the heating time of the second step. For example, it is preferable to set the heating time for the first step to 120 to 300 minutes, particularly 180 minutes or more or 240 minutes or less, and the heating time for the second step to 30 to 120 minutes, especially 30 to 60 minutes.
  • an intermediate heating temperature between the first stage and the second stage in the above-described two-stage heating is preferably performed at 150 to 190°C.
  • the heating time is preferably the same as the time of the first step and the second step or an intermediate time between the first step and the second step. That is, when performing heating in three stages, it is preferable that the heating time be the same in each stage, or that the heating time be shortened as the stages progress. Further, when performing heating in four stages, it is preferable to adopt a heating temperature higher than that in the third stage.
  • the heating is preferably performed in an inert atmosphere such as nitrogen or argon. Further, during the heat treatment, it is also preferable to press the active material layer with a pressing member such as a glass plate.
  • a pressing member such as a glass plate.
  • Polyimide can be fixed on a wide range of the surface of the particle, and three-dimensional mesh-like voids can be formed in the active material layer over the entire thickness direction.
  • the non-aqueous electrolyte battery examples include a battery that can be composed of the present negative electrode, a positive electrode, a separator, a non-aqueous electrolyte solution, and the like. You can The non-aqueous electrolyte battery may be a primary battery or a secondary battery, but is preferably a secondary battery.
  • the positive electrode in the present non-aqueous electrolyte battery has, for example, a positive electrode active material layer formed on at least one surface of a current collector.
  • the positive electrode active material layer contains a positive electrode active material.
  • the positive electrode active material those known in the art can be used without particular limitation.
  • various lithium transition metal composite oxides can be used. Examples of such substances include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1.
  • Li(Li x Mn 2x Co 1-3x )O 2 in the formula, 0 ⁇ x ⁇ 1/3)
  • LiFePO 4 LiMn 1-z M z PO 4 (in the formula, 0 ⁇ z ⁇ 0.1
  • M is at least one metal element selected from the group consisting of Co, Ni, Fe, Mg, Zn, and Cu).
  • a synthetic resin non-woven fabric As the separator used together with the present negative electrode and the positive electrode, a synthetic resin non-woven fabric, a polyolefin such as polyethylene or polypropylene, or a porous film of polytetrafluoroethylene is preferably used.
  • the non-aqueous electrolytic solution in the present non-aqueous electrolytic solution battery is composed of a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent.
  • the organic solvent include carbonate-based organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate, and fluorine-based organic solvents obtained by fluorinating a part of the carbonate-based organic solvent such as fluoroethylene carbonate. Or a combination of two or more thereof is used. Specifically, fluoroethylene carbonate, diethyl fluorocarbonate, dimethyl fluorocarbonate or the like can be used.
  • the lithium salt CF 3 SO 3 Li, ( CF 3 SO 2) NLi, (C 2 F 5 SO 2) 2 NLi, LiClO 4, LiA1Cl 4, LiPF 6, LiAsF 6, LiSbF 6, LiCl, LiBr, LiI , LiC 4 F 9 SO 3 and the like. These may be used alone or in combination of two or more.
  • the solid-state battery according to the present embodiment may include a positive electrode, the present negative electrode, and a solid electrolyte layer provided between the positive electrode and the negative electrode. That is, the present active material can be used as a negative electrode active material included in the negative electrode. In other words, the active material can be used in a solid state battery. More specifically, it can be used for a lithium all-solid-state battery.
  • the lithium all-solid-state battery may be a primary battery or a secondary battery, but among them, it is preferably used for the lithium secondary battery. Examples of the shape of the present solid state battery include a laminate type, a cylindrical type and a square type.
  • the solid electrolyte layer is, for example, a method of dropping a slurry containing a solid electrolyte, a binder and a solvent onto a substrate and scraping it off with a doctor blade, a method of cutting the substrate with the slurry and then cutting with an air knife, a screen printing method, etc. It can be manufactured by a method in which a coating film is formed by, followed by heating and drying to remove the solvent. Alternatively, the solid electrolyte powder may be press-molded and then appropriately processed to be manufactured. What was mentioned above can be used as a solid electrolyte.
  • a positive electrode active material for the positive electrode, a positive electrode active material (particulate), a binder, a conductive material, a solid electrolyte, and a solvent are mixed to prepare a positive electrode mixture, and this positive electrode mixture is applied to the surface of a current collector and dried. It can be formed by pressing and then pressing if necessary.
  • the positive electrode active material porosity
  • the conductive material for the positive electrode, the positive electrode active material (particulate), the conductive material, and the powder of the solid electrolyte may be mixed, press-molded, and then appropriately processed to be manufactured.
  • the positive electrode the same one as the above-mentioned non-aqueous electrolyte battery can be used.
  • Example 1 Silicon (Si) and nickel (Ni) ingots are mixed, heated and melted, and the melt heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy. It was The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
  • a liquid rapid solidification device single roll type
  • the obtained alloy powder was subjected to a reforming treatment by using a nanoparticle surface reforming device (product name “Simroyer”, equipped with a rotary blade in the reaction device). That is, 2 kg of ZrO 2 beads and 50 g of the alloy powder were placed in a container having a volume of 2 L, and the mixture was treated under an argon atmosphere at 1500 rpm for 3 hours.
  • the alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 ⁇ m to obtain an alloy powder (sample) as a negative electrode active material.
  • an alloy powder sample
  • it was Si: 63 wt% and Ni: 31 wt %.
  • Example 2 Silicon (Si), titanium (Ti), and nickel (Ni) ingots are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) and then rapidly cooled. A ribbon alloy was obtained. The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
  • the obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name "Shimoloyer", equipped with a rotary blade in the reaction device). That is, 2 kg of ZrO 2 beads and 50 g of alloy powder were placed in a container having a capacity of 2 L, and treatment was performed at 1500 rpm for 3 hours in an argon atmosphere.
  • the alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 ⁇ m to obtain an alloy powder (sample) as a negative electrode active material.
  • an alloy powder sample
  • Example 3 Silicon (Si), titanium (Ti) and cobalt (Co) ingots are heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type), and a quenched ribbon alloy Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted by using to obtain an alloy powder.
  • the obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of ZrO 2 beads and 50 g of alloy powder were placed in a container having a volume of 2 L, and treatment was carried out at 1500 rpm for 3 hours in an argon atmosphere.
  • the alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 ⁇ m to obtain an alloy powder (sample) as a negative electrode active material.
  • an alloy powder sample
  • it was Si: 71 wt %
  • Ti 20 wt %
  • Co 7 wt %.
  • Example 4 A silicon (Si) and titanium (Ti) ingot was heated and melted, and the melt heated to 1700° C. was rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy. Other than that, coarse pulverization and grain size adjustment were performed in the same manner as in Example 1 to obtain an alloy powder.
  • the obtained alloy powder was subjected to a reforming treatment in the same manner as in Example 1 by using a nanoparticle surface reforming device (product name "Shimoloyer", equipped with a rotary blade in the reaction device).
  • the treated alloy powder was crushed or crushed using a wet crusher to adjust the particle size, and then an alloy powder (sample) as a negative electrode active material was obtained.
  • Si: 71 wt% and Ti: 22 wt% were found.
  • ⁇ Comparative Example 1> A silicon (Si) ingot was heated and melted, and the molten liquid heated to 1700° C. was rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched thin strip metal.
  • the obtained quenched thin strip metal is roughly crushed by using a dry ball mill, and then further dry crusher under a nitrogen atmosphere (atmosphere less than 1%, and the balance being vaporized nitrogen from liquid nitrogen (purity 99.999% or more)).
  • the particle size was adjusted using to obtain a metal powder (sample). When a chemical analysis of the obtained metal powder (sample) was performed, it was Si: 99 wt %.
  • Silicon (Si) ingot and massive titanium are mixed at an atomic ratio of 85:15 (weight ratio of 76.8:23.2) and melted using a liquid rapid solidification device (single roll type), and the molten metal is argon gas. Then, it was sprayed on a rotating copper roll and rapidly cooled to produce a Si—Ti alloy. Next, the Si—Ti alloy was crushed for 2 hours in a planetary ball mill using a silicon nitride ball in an argon gas atmosphere to obtain an alloy powder electrode material.
  • composition analysis With respect to the alloy powders (samples) obtained in Examples and Comparative Examples, the content of each element was measured by inductively coupled plasma (ICP) emission spectroscopy. However, regarding oxygen, the content was measured using an oxygen/nitrogen analyzer (manufactured by LECO).
  • ICP inductively coupled plasma
  • the dispersion was put into a water-soluble solvent (ion-exchanged water containing 20 vol% of ethanol) using an automatic sample feeder for a laser diffraction particle size distribution measuring device (“Microtorac SDC” manufactured by Microtrac Bell Co., Ltd.). .. Flow rate in 70 mL / sec, and measuring the particle size distribution using a Microtrac Bell Co. laser diffraction particle size distribution measuring instrument "MT3300II", from the chart of the resulting volume-based particle size distribution was determined D 50.
  • a water-soluble solvent ion-exchanged water containing 20 vol% of ethanol
  • the water-soluble solvent used in the measurement was passed through a 60 ⁇ m filter, the solvent refractive index was 1.33, the particle permeability condition was reflection, the measurement range was 0.021 to 2000 ⁇ m, and the measurement time was 10 seconds.
  • the obtained values were defined as the respective measured values.
  • the specific surface area (SSA) of the alloy powders (samples) obtained in Examples and Comparative Examples was measured as follows. First, 1.0 g of a sample (powder) was weighed in a glass cell (standard cell) for a fully automatic specific surface area measuring apparatus Macsorb (manufactured by Mountech Co., Ltd.) and set in an auto sampler. After replacing the inside of the glass with nitrogen gas, heat treatment was performed at 250° C. for 15 minutes in the nitrogen gas atmosphere. Then, the mixture was cooled for 4 minutes while flowing a mixed gas of nitrogen and helium. After cooling, the sample was measured by the BET single point method. A mixed gas of 30 vol% nitrogen and 70 vol% helium was used as the adsorption gas during cooling and measurement.
  • the true densities of the alloy powders (samples) obtained in Examples and Comparative Examples were measured as follows. First, the sample (powder) was put into a sample basket of 10 cm 3 until the 7th minute, and the amount of the put sample was measured. Next, the sample basket containing the sample was set in the true density measuring device BELPycno (manufactured by Mountech Co., Ltd.), the lid of the device was closed, and the measurement was started. Helium gas was used for the measurement, and the temperature of the measurement part was controlled at 25° C. ⁇ 0.1° C.
  • Raman spectra of the alloy powders (samples) obtained in the examples and comparative examples were obtained by Raman spectroscopy under the following conditions using a Raman spectroscope.
  • Raman measurement is performed on a powder sample, the smaller the unevenness of the sample surface and the higher the density of particles, the more particles are present in the space in which the excitation light and the Raman light are focused, and the lower laser excitation power is used. High Raman light intensity can be obtained.
  • a mini hydraulic press manufactured by Specac and a pellet forming die having a diameter of 7 mm the sample powder was pressed into 1 ton to form a pellet.
  • the wave number calibration Si, which is a standard sample contained in the apparatus body, was measured and calibrated so that the main peak appeared at 520.0 cm -1 .
  • the Raman spectrum was obtained by averaging the spectra measured at four points. If the S/N ratio of the spectrum is poor and it is difficult to determine whether it is a sample-derived peak or noise, the number of measurement points may be increased to average the spectrum.
  • the spectrum may include peaks due to cosmic rays. It is possible to determine whether or not it is a cosmic ray peak, and it can be determined that the peak is a cosmic ray if the peak does not appear in the wave number with good reproducibility when the measurement is repeated.
  • Comparative Example 1 the excitation power was set to 1.0 mW, the exposure time was set to 1 second, and the other conditions were set to the above measurement conditions.
  • the exposure time was set to 10 seconds, and the other conditions were measured as described above.
  • the exposure time was set to 5 seconds, and the other conditions were measured as above.
  • the peak intensity was too strong to exceed the detection limit when measured with the same excitation power and exposure time as those in Examples, so the measurement was performed under the conditions not exceeding.
  • Peak analysis The peaks in the Raman spectrum were fitted by "Peak Fitting", which is a peak fitting program of Nanophoton. The parameters of peak wavenumber, full width at half maximum, and area were obtained by peak fitting.
  • the baseline was set to draw a tangent line to the spectrum with a first-order straight line in the range of 200 to 610 cm ⁇ 1 .
  • Function used for fitting the peak of 500 cm -1 ⁇ 525 cm -1 is used Lorentzian peak of 450 cm -1 ⁇ 490 cm -1 was used a Gaussian function. For the peak at 200 to 420 cm ⁇ 1, a Lorentz function or a Gaussian function with which the fitting converges was used.
  • the peak peak top exists at a wavenumber 450cm -1 ⁇ 490cm -1 P B, the peak peak top is present in the range of wave number 500 cm -1 ⁇ 525 cm -1 was P C.
  • the area ratio of the peaks of P B and P C was defined as I PB /I PC .
  • a spectrum having a peak top in the Raman spectrum and having a full width at half maximum of 5.0 cm ⁇ 1 or more was determined as a “peak”. Therefore, a spectrum having a full width at half maximum of 4.9 cm ⁇ 1 or less was regarded as noise.
  • the surface capacity was set to 2.8 mAh/cm 2 for evaluation.
  • the charge capacity is set to 4200 mAh/g
  • 85 wt% of the sample is contained in the negative electrode active material, so the negative electrode active material layer has a coating amount of 0.78 mg/cm 2 . If the charge capacity of the sample is lower than 4200 mAh/g, the coating amount is increased to adjust the same surface capacity.
  • the negative electrode obtained as described above was punched into a circle having a diameter of 14 mm ⁇ , and vacuum dried at 160° C. for 6 hours. Then, the electrochemical evaluation cell TOMCEL (registered trademark) was assembled in a glove box under an argon atmosphere. Metal lithium was used as the counter electrode.
  • As the electrolytic solution an electrolytic solution prepared by dissolving LiPF 6 in a carbonate-based mixed solvent so as to be 1 mol/l was used. A polypropylene porous film was used as the separator.
  • discharge profile shape was determined based on the discharge curve of the first cycle obtained above. That is, the obtained discharge curves were linearly approximated, the heights of the correlation coefficients were compared, and they were used as an index of the “discharge profile shape”. In addition, in Table 2, it is shown as an index when the numerical value of Comparative Example 3 is 100. At this time, if the potential changes continuously from the beginning of discharge to the end of discharge, that is, if the linearity is high, the correlation coefficient at the time of linear approximation becomes high and there is no plateau or the plateau can be reduced. Will be shown.
  • the discharge rate characteristics were evaluated using the electrochemically evaluated cell TOMCEL (registered trademark) that was initially activated by the method described above.
  • constant-current constant-potential charging was performed at 25C at 0.1C to 0.01V (charging was completed when the current value reached 0.01C)
  • constant-current discharging was performed at 5C to 1.0V.
  • the recording interval during charging/discharging was set so that recording was performed when either 300 s or 5.0 mV change was satisfied. With such a setting, it is recorded every 300 s in the region where the voltage fluctuation is small and is recorded every 5.0 mV change in the region where the voltage fluctuation is large.
  • the cell was placed in an environmental tester set so that the environmental temperature for charging/discharging the battery was 45° C., the battery was prepared for charging/discharging, and the cell was allowed to stand for 5 hours so as to reach the environmental temperature.
  • the charging/discharging range is set to 0.01V-1.0V
  • charging is performed at 0.1C constant current/constant potential and discharging is performed at 0.1C constant current for 1 cycle, and then 1C is charged/discharged 98 times.
  • one charge/discharge cycle was performed at 0.1C.
  • the C rate was calculated based on the discharge capacity at 25° C. at the time of initial activation and the third cycle.
  • the percentage (%) of the numerical value obtained by dividing the discharge capacity at the 100th cycle by the discharge capacity at the second cycle was determined as the 45°C cycle characteristic value.
  • Table 2 it is shown as an index when the numerical value of Comparative Example 3 is 100.
  • the alloy powders (samples) obtained in the examples and comparative examples were used as the negative electrode active material to prepare an electrode mixture, to prepare a sulfide-based all-solid-state battery, and to evaluate the battery characteristics.
  • a foil of In and Li was used as the counter electrode, and a powder represented by the composition formula: Li 5.4 PS 4.4 Cl 0.8 Br 0.8 was used as the solid electrolyte powder.
  • the electrode mixture powder is prepared by mixing the active material powder, the solid electrolyte powder, and the conductive agent (VGCF (registered trademark)) powder in a mortar in a mass ratio of 4.5:86.2:9.3. Uniaxial press molding was performed at 10 MPa to obtain a mixture pellet.
  • VGCF registered trademark
  • ⁇ Battery performance evaluation test> Evaluation of charge capacity
  • the capacity confirmation in the battery characteristic evaluation was evaluated by putting the all-solid-state battery in an environmental tester kept at 25° C. and connecting it to a charge/discharge measuring device. Since the cell capacity is 1.6 mAh, 1 C is 1.6 mA.
  • the charge/discharge of the battery was 0.1 C, and the CCCV system was charged to -0.62 V (charging was completed when the current value reached 0.01 C) to obtain the initial charge capacity.
  • the discharge was 0.1 C, and CC discharge was performed up to 0.88 V.
  • the recording interval during charging/discharging was set so that one point was recorded when either 10 s or 1 mV change was satisfied.
  • a sample having an initial charge capacity of more than 3000 mAh/g is shown in Table 3 as “A”, a sample “B” of 1200 mAh/g or more and 3000 mAh/g or less, and a sample “C” of less than 1200 mAh/g.
  • the materials classified into C do not have sufficient capacity because of insufficient capacity, the subsequent measurements were stopped.
  • discharge profile shape was determined based on the discharge curve obtained above. That is, the obtained discharge curves were linearly approximated, the heights of the correlation coefficients were compared, and they were used as an index of the “discharge profile shape”. In addition, in Table 3, it is shown as an index when the numerical value of Comparative Example 2 is 100. At this time, if the potential changes continuously in the section from the initial stage of discharge to the final stage of discharge, that is, if the linearity is high, the correlation coefficient at the time of linear approximation becomes high and there is no plateau region, or there is a plateau region. Is small.
  • High-rate characteristic evaluation was performed using the above-mentioned charged and discharged cells. The evaluation was carried out continuously in the environmental tester kept at 25°C. The battery capacity was calculated based on the above-mentioned charge capacity, and the C rate was determined. Next, after charging to -0.62V by the 0.1C, CCCV method (charging ends when the current value reaches 0.01C), discharging is performed to 0.88V by the 0.1C, CC method. .. The discharge capacity at this time was set to 0.1 C discharge capacity (A).
  • Cycle evaluation was performed using the cell that underwent the high rate characteristic evaluation described above. The evaluation was carried out continuously in the environmental tester kept at 25°C.
  • the initial current value is set to 5 C, and the CV method is used to perform discharge at 0.88 V (discharge is completed when the current value reaches 0.01 C). It was Next, after charging to -0.62V by the 0.1C, CCCV method (charging ends when the current value reaches 0.01C), discharging is performed to 0.88V by the 0.1C, CC method. ..
  • the discharge capacity at this time was set to 0.1 C discharge capacity (B). “0.1 C discharge capacity (B)”/0.1 C discharge capacity (A) ⁇ 100” was calculated and evaluated as a cycle characteristic value.
  • the index of Comparative Example 2 is set as 100 and shown as an index.

Abstract

Provided is an active material containing silicon and a compound represented by formula MxSiy (where, x and y satisfy 0.1≤x/y≤7.0, and M is at least one among a metal element and a metalloid element other than Si), wherein the content of M in the active material is greater than 5 wt% and less than 38 wt%, there are at least one peak PA at a wave number of 200 cm-1 to 420 cm-1, at least one peak PB at a wave number of 450 cm-1 to 490 cm-1, and at least one peak PC at a wave number of 500 cm-1 to 525 cm-1 in a Raman spectrum obtained as measured by a Raman spectroscopy, and the area ratio (IPB/IPC) of peak PB to peak PC is at least 0.5. A solid-state battery using the active material can have improved cycle characteristics, can exhibit a discharge profile in which plateau regions are reduced or eliminated, and can also have improved rate characteristics.

Description

活物質Active material
 本発明は、活物質、それを用いた負極および固体電池に関する。 The present invention relates to an active material, a negative electrode using the same, and a solid-state battery.
 近年、電気自動車やスマートフォンといったアプリケーションの発達に伴い、電池の高容量化や高寿命化がさらに望まれている。現在、市販されている電池の負極は、そのほとんどが炭素材料(「グラファイト」とも称する)を負極活物質として使っているが、容量の面ではすでに理論限界に至っており、新たな負極活物質の開発が必要とされている。その有力候補の一つとして挙げられるのが、シリコンを含有する活物質(「Si含有活物質」とも称する)である。 In recent years, with the development of applications such as electric vehicles and smartphones, there is a growing demand for higher capacity and longer life of batteries. Currently, most of the negative electrodes of commercially available batteries use a carbon material (also referred to as “graphite”) as the negative electrode active material, but in terms of capacity, the theoretical limit has already been reached, and a new negative electrode active material Development is needed. One of the promising candidates is an active material containing silicon (also referred to as “Si-containing active material”).
 Si含有活物質は、質量当たりの容量がグラファイトの5~10倍というポテンシャルを有している。しかしその反面、グラファイトと比べて電子伝導性が高くないという課題を有している。
 そこで、Si含有活物質の電子伝導性を高めるために、例えば集電体と活物質との間の電子伝導性を付与する目的で導電助剤を添加することなどが提案されている。例えば特許文献1において、シリコンを含む核粒子の周囲をMg2Si、CoSi、NiSi等のシリコン固溶体によって被覆し、更にその表面を黒鉛やアセチレンブラック等の導電性材料で被覆することが開示されている。
The Si-containing active material has a potential that the capacity per mass is 5 to 10 times that of graphite. However, on the other hand, it has a problem that the electron conductivity is not higher than that of graphite.
Therefore, in order to increase the electron conductivity of the Si-containing active material, it has been proposed to add a conductive auxiliary agent, for example, for the purpose of imparting electron conductivity between the current collector and the active material. For example, Patent Document 1 discloses that the periphery of a core particle containing silicon is coated with a silicon solid solution such as Mg 2 Si, CoSi, or NiSi, and the surface thereof is further coated with a conductive material such as graphite or acetylene black. There is.
 Si含有活物質はまた、リチウムイオンの挿入脱離による体積変化が大きく、充放電サイクル中に膨張・収縮を繰り返すため、充放電を繰り返すにつれて導電助剤との分離が起こりやすく、結果的にサイクルの劣化やエネルギー密度の減少を引き起こし、電池性能が低下し、また、電池の安全性が低下するという課題を抱えていた。 The Si-containing active material also undergoes a large volume change due to the insertion and desorption of lithium ions, and repeats expansion and contraction during charge and discharge cycles, so separation with the conductive auxiliary agent tends to occur as charge and discharge are repeated, and as a result, cycle However, there is a problem that the battery performance is deteriorated and the safety of the battery is deteriorated by causing deterioration of the battery and a decrease in energy density.
 この課題を解消するために、例えば特許文献2は、ケイ素を含む活物質粒子に関し、平均粒径が5μm以上25μm以下の活物質粒子を開示している。活物質粒子の平均粒径を5μm以上とすることで、元々の活物質の比表面積を低減でき、これにより電解質と活物質新生面の接触面積を低減できるため、サイクル特性の向上効果及び活物質膨化の抑制効果が大きくなる旨が記載されている。 In order to solve this problem, for example, Patent Document 2 discloses active material particles containing silicon and having an average particle diameter of 5 μm or more and 25 μm or less. By setting the average particle diameter of the active material particles to 5 μm or more, the specific surface area of the original active material can be reduced, and thus the contact area between the electrolyte and the new surface of the active material can be reduced. It is described that the suppression effect of is increased.
 また、特許文献3において、リチウムの挿入脱離の効率が高い電極材料として、シリコンを主成分とする固体状態の合金の粒子からなるリチウム二次電池用の電極材料において、前記固体状態の合金の粒子は微結晶シリコンあるいは非晶質化シリコンの中に、シリコン以外の元素からなる微結晶あるいは非晶質が分散していることを特徴とするリチウム二次電池用の電極材料を開示している。 Further, in Patent Document 3, an electrode material for a lithium secondary battery, which comprises particles of a solid-state alloy containing silicon as a main component, is used as an electrode material having a high efficiency of lithium insertion/desorption. Disclosed is an electrode material for a lithium secondary battery, characterized in that particles are microcrystalline silicon or amorphized silicon, in which microcrystalline or amorphous particles composed of elements other than silicon are dispersed. ..
 さらに、特許文献4において、ケイ素、銅および酸素を主要な構成元素とするリチウム二次電池用負極活物質であって、CuSiおよびX線回折法により測定される平均結晶子径(Dx)が50nm以下のケイ素粒子を含み、XRDの測定結果から算出されるピーク強度比(CuSi/Si)が0.05から1.5であるリチウム二次電池用負極活物質を開示している。 Furthermore, in Patent Document 4, a negative electrode active material for a lithium secondary battery containing silicon, copper and oxygen as main constituent elements, wherein Cu 3 Si and an average crystallite diameter (Dx) measured by an X-ray diffraction method are used. Discloses a negative electrode active material for a lithium secondary battery, which contains silicon particles of 50 nm or less and has a peak intensity ratio (Cu 3 Si/Si) of 0.05 to 1.5 calculated from XRD measurement results. ..
特開2000-285919号公報Japanese Patent Laid-Open No. 2000-285919 特開2008-123814号公報JP, 2008-123814, A 特開2010-135336号公報JP, 2010-135336, A 特開2016-35825号公報JP, 2016-35825, A
 上記特許文献3で開示されているように、シリコン中に、シリコン以外の元素からなる微結晶或いは非晶質が分散している材料、または、シリコン中に、シリコン以外の元素の合金が分散している材料を負極活物質として使用すると、リチウムイオンの挿入脱離に寄与するのは、負極活物質中のシリコンのみである。シリコンの占有割合が低下すれば、容量は低下する一方、負極活物質の膨張収縮を抑えることができ、理論的にはサイクル特性を向上させることができるはずである。
 しかしながら、例えばシリコン中に、シリコン以外の元素の合金を混合してリチウム二次電池の負極活物質として実際に使用してみると、サイクル特性を期待した程度に向上させることができないことが分かってきた。
As disclosed in the above-mentioned Patent Document 3, a material in which microcrystals or amorphous materials composed of elements other than silicon are dispersed in silicon, or an alloy of elements other than silicon is dispersed in silicon. When the material described above is used as the negative electrode active material, only silicon in the negative electrode active material contributes to the insertion/desorption of lithium ions. If the occupying ratio of silicon decreases, the capacity decreases, but expansion and contraction of the negative electrode active material can be suppressed, and theoretically the cycle characteristics should be improved.
However, for example, when an alloy of elements other than silicon is mixed in silicon and actually used as a negative electrode active material of a lithium secondary battery, it has been found that the cycle characteristics cannot be improved to an expected degree. It was
 また、Si含有負極活物質を、黒鉛などの炭素材料(Graphite)と組み合わせて負極活物質として使用することが検討されている。しかし、Si含有負極活物質を炭素材料と組み合わせて負極活物質として使用すると、それぞれの充放電曲線プロファイルの違いによって両者は別々に作動するため、制御し難いという課題を抱えている。
 この点について本発明者が検討したところ、炭素材料(Graphite)の放電プロファイルと比較すると、Si含有負極活物質の放電プロファイルは、そのプラトー領域が炭素材料(Graphite)の作動電位と異なるため、Si含有負極活物質を炭素材料と組み合わせて負極活物質として使用すると、充放電曲線に段部が生じ、これが制御し難い原因の一つであることが分かってきた。そのため、Si含有負極活物質の放電プロファイルにおけるプラトー領域を低減若しくは無くすことで、充放電曲線の立ち上がり部分における段部を低減若しくは無くすことができ、制御し易くなると考えることができる。
Further, it has been studied to use a Si-containing negative electrode active material as a negative electrode active material in combination with a carbon material (Graphite) such as graphite. However, when a Si-containing negative electrode active material is used as a negative electrode active material in combination with a carbon material, both of them operate separately due to the difference in their respective charge/discharge curve profiles, which makes it difficult to control.
When the present inventor examined this point, as compared with the discharge profile of the carbon material (Graphite), the discharge profile of the Si-containing negative electrode active material is different in the plateau region from the operating potential of the carbon material (Graphite). It has been found that when the contained negative electrode active material is used as a negative electrode active material in combination with a carbon material, a step portion is generated in the charge/discharge curve, which is one of the causes that are difficult to control. Therefore, it can be considered that by reducing or eliminating the plateau region in the discharge profile of the Si-containing negative electrode active material, the step portion at the rising portion of the charge/discharge curve can be reduced or eliminated, and control can be facilitated.
 また、電池特性において、高い電流域での充放電特性も求められている。すなわち、電池においてハイレート特性であることは重要であり、レート特性の改善が求められている。 Also, in terms of battery characteristics, charge/discharge characteristics in a high current range are also required. That is, it is important that the battery has a high rate characteristic, and improvement of the rate characteristic is required.
 そこで本発明は、シリコンを含有する活物質に関し、サイクル特性を高めることができ、しかも、放電プロファイルにおけるプラトー領域を低減若しくは無くすことができ、さらにはハイレートでもプロファイルを維持した状態で放電することができる、新たな活物質を提供せんとするものである。 Therefore, the present invention can improve the cycle characteristics of the active material containing silicon, reduce or eliminate the plateau region in the discharge profile, and discharge at a high rate while maintaining the profile. It aims to provide a new active material that can.
 本発明は、シリコンと、化学式MSi(ここで、x及びyは、0.1≦x/y≦7.0を満たし、Mは、Si以外の半金属元素及び金属元素のうちの1種又は2種以上である。)で表される化合物と、を含有する活物質であり、前記活物質中の前記Mの含有量は5wt%より多く、38wt%未満であり、ラマン分光測定法により測定して得られるラマンスペクトルにおいて、波数200cm-1~420cm-1に少なくとも一つ以上のピークPを有しており、波数450cm-1~490cm-1に少なくとも一つ以上のピークPを有しており、且つ波数500cm-1~525cm-1にピークPCが少なくとも一つ現れ、前記PBとPCのピークの面積比をIPB/IPCが0.5以上である活物質を提案する。 The present invention relates to silicon and a chemical formula M x Si y (where x and y satisfy 0.1≦x/y≦7.0, and M is a metalloid element other than Si and a metal element). A compound represented by one or two or more kinds) and a content of the M in the active material is more than 5 wt% and less than 38 wt%, and Raman spectroscopic measurement in the Raman spectrum obtained by measuring by law, the wave number 200 cm -1 ~ has at least one or more peaks P a to 420 cm -1, at least one peak P at a wavenumber 450 cm -1 ~ 490 cm -1 has a B, and the wave number 500 cm -1 peak PC to ~ 525 cm -1 appears at least one, the active material of the peak area ratio of the PB and PC I PB / I PC is 0.5 or more suggest.
 本発明が提案する活物質は、負極活物質として用いることができる。また、本発明の活物質は、液系電池や固体電池等の電池に用いることができ、中でも固体電池に好適に用いることができる。特に本発明の活物質は、固体電解質として硫化物固体電解質を含む固体電池に用いられることが有利である。本発明の活物質を用いた固体電池は、サイクル特性を高めることができ、かつハイレート特性も向上することができる。しかも、放電プロファイルにおけるプラトー領域を低減若しくは無くすことができる。
 よって、本発明が提案する活物質は、単独使用において効果を発揮するだけでなく、例えば、炭素材料(Graphite)と組み合わせて、電池、中でも固体電池、その中でも固体リチウム二次電池等の固体二次電池の負極活物質として好適に使用することができる。
The active material proposed by the present invention can be used as a negative electrode active material. In addition, the active material of the present invention can be used in batteries such as liquid batteries and solid batteries, and can be preferably used in solid batteries. In particular, the active material of the present invention is advantageously used in a solid battery containing a sulfide solid electrolyte as the solid electrolyte. The solid-state battery using the active material of the present invention can have improved cycle characteristics and high rate characteristics. Moreover, the plateau region in the discharge profile can be reduced or eliminated.
Therefore, the active material proposed by the present invention not only exhibits the effect in a single use, but, for example, in combination with a carbon material (Graphite), a battery, particularly a solid battery, a solid secondary battery such as a solid lithium secondary battery among them. It can be suitably used as a negative electrode active material of a secondary battery.
実施例1、比較例3で得られたサンプルを測定した、ラマンスペクトルを示した図である。It is the figure which showed the Raman spectrum which measured the sample obtained in Example 1 and the comparative example 3.
 次に、実施形態の一例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態の一例に限定されるものではない。 Next, the present invention will be described based on an example of the embodiment. However, the present invention is not limited to the example of the embodiment described below.
 <本活物質>
 本実施形態の一例に係る活物質(以下「本活物質」と称する)は、シリコンと、化学式MxSiy(ここで、x及びyは、0.1≦x/y≦7.0を満たし、Mは、Si以外の半金属元素及び金属元素のうちの1種又は2種以上である。)で表される化合物と、を含有するものである。
<Active material>
The active material (hereinafter referred to as “main active material”) according to an example of the present embodiment includes silicon and a chemical formula MxSiy (where x and y satisfy 0.1≦x/y≦7.0, M Is one kind or two or more kinds of metalloid elements and metal elements other than Si.).
 (シリコン(Si))
 本活物質において、シリコンは、リチウムイオンの挿入及び脱離をすることができるSiの意味でもある。すなわち、本活物質は、シリコンを含むことにより、活物質としての機能を有する。
 ここで、シリコンは、主に純シリコンを指すが、シリコンに固溶する元素を含有して、固溶体を形成していてもよい。この場合、固溶体が活物質としての機能を有していてもよい。
(Silicone (Si))
In the present active material, silicon also means Si capable of inserting and releasing lithium ions. That is, the present active material has a function as an active material by containing silicon.
Here, silicon mainly refers to pure silicon, but it may contain an element that forms a solid solution with silicon to form a solid solution. In this case, the solid solution may have a function as an active material.
 本活物質におけるシリコンの割合は、本活物質の30wt%以上であるのが好ましく、中でも40wt%以上であるのがより好ましい。
 なお、本活物質において、シリコンの割合が充放電容量に影響して充放電容量を大きくするためには、シリコンが本活物質の主成分であることが好ましく、このような観点から、本活物質におけるシリコンの割合は、中でも50wt%以上であることが好ましく、特に60wt%以上であることが好ましい。
The proportion of silicon in the main active material is preferably 30 wt% or more of the main active material, and more preferably 40 wt% or more.
In the active material, silicon is preferably the main component of the active material in order for the proportion of silicon to affect the charge/discharge capacity and increase the charge/discharge capacity. The proportion of silicon in the substance is preferably 50 wt% or more, and particularly preferably 60 wt% or more.
 (化学式MSi
 本活物質は、化学式MSi(ここで、x及びyは、0.1≦x/y≦7.0を満たし、Mは、Si以外の半金属元素及び金属元素のうちの1種又は2種以上である。)で表される化合物を含有する。
 本活物質は、MSiで表される化合物を含有することで、サイクル特性をより一層高めることができ、しかも、放電プロファイルにおけるプラトー領域を低減若しくは無くすことができ、さらにはハイレート特性を向上することができる。
(Chemical formula M x Si y )
This active material has a chemical formula M x Si y (where x and y satisfy 0.1≦x/y≦7.0, and M is one of a metalloid element other than Si and a metal element). Or two or more kinds).
By containing the compound represented by M x Si y , the present active material can further improve the cycle characteristics, and can further reduce or eliminate the plateau region in the discharge profile, and further, have high rate characteristics. Can be improved.
 化学式MSi(0.1≦x/y≦7.0)で表される化合物は、いわゆるシリサイドと称される。
 化学式MSiの「M」とは、Si以外の半金属元素及び金属元素のうちの1種又は2種以上である。すなわち、Mは、半金属元素であってもよく、金属元素であってもよく、半金属元素及び金属元素の中の2種以上の組合せであってもよい。
 当該半金属元素及び金属元素としては、例えばB、Ti、V、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Ta及びW等の元素を挙げることができ、中でもB、Ti、Mn、Fe、Co、Ni、Y、Zr、Nb、Mo、Ta及びWが好ましい。さらにその中でもB、Ti、Mn、Fe、Co、Niが好ましく、その中でも特に、B、Ti、Mn、Feが好ましい。
The compound represented by the chemical formula M x Si y (0.1≦x/y≦7.0) is called so-called silicide.
“M” in the chemical formula M x Si y is one or more of metalloid elements and metal elements other than Si. That is, M may be a metalloid element, a metal element, or a combination of two or more metalloid elements and metal elements.
Examples of the metalloid element and the metal element include elements such as B, Ti, V, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Ta, and W, and among them, B, Ti, Mn, Fe, Co, Ni, Y, Zr, Nb, Mo, Ta and W are preferable. Further, among them, B, Ti, Mn, Fe, Co and Ni are preferable, and among them, B, Ti, Mn and Fe are particularly preferable.
 化学式MSiにおける「x/y」は、0.1以上7.0以下であるのが好ましく、中でも0.2以上或いは4.0以下、その中でも0.3以上或いは3.0以下、その中でも0.4以上或いは2.0以下であるのがさらに好ましい。
 また、化学式MSiにおける「x」は、0.5以上15以下であるのが好ましく、中でも0.75以上或いは13以下、その中でも1以上或いは11以下であるのがさらに好ましい。
 他方、「y」は、0.5以上27以下であるのが好ましく、中でも0.75以上或いは23以下、その中でも1以上或いは19以下であるのがさらに好ましい。
“X/y” in the chemical formula M x Si y is preferably 0.1 or more and 7.0 or less, particularly 0.2 or more or 4.0 or less, and among them 0.3 or more or 3.0 or less, Among them, 0.4 or more or 2.0 or less is more preferable.
Further, “x” in the chemical formula M x Si y is preferably 0.5 or more and 15 or less, more preferably 0.75 or more or 13 or less, and further preferably 1 or more or 11 or less.
On the other hand, “y” is preferably 0.5 or more and 27 or less, more preferably 0.75 or more or 23 or less, and even more preferably 1 or more or 19 or less.
 上記シリサイドの具体例としては、例えばチタンシリサイド(TiSi、TiSi、TiSi、TiSi)、コバルトシリサイド(CoSi、CoSi、CoSi、CoSi、CoSi)、ニッケルシリサイド(NiSi、NiSi、NiSi、NiSi、NiSi、NiSi)、マンガンシリサイド(Mn11Si19、MnSi、MnSi、MnSi、MnSi)、鉄シリサイド(FeSi、FeSi、FeSi、FeSi)、ニオブシリサイド(NbSi、NbSi、NbSi)、銅シリサイド(CuSi、CuSi、CuSi)、ホウ素シリサイド(BSi、BSi)ジルコニウムシリサイド(ZrSi、ZrSi、ZrSi、ZrSi、ZrSi、ZrSi、ZrSi)、バナジウムシリサイド(VSi、VSi、VSi、VSi)、タングステンシリサイド(WSi、WSi)、タンタルシリサイド(TaSi、TaSi、TaSi、TaSi)、イットリウムシリサイド(YSi、YSi、YSi、YSi)などを挙げることができる。但し、これらに限定するものではない。 Specific examples of the silicide include titanium silicide (TiSi 2 , TiSi, Ti 5 Si 4 , Ti 5 Si 3 ), cobalt silicide (CoSi 2 , CoSi, CoSi, Co 2 Si, Co 3 Si), nickel silicide ( NiSi 2 , NiSi, Ni 3 Si 2 , Ni 2 Si, Ni 5 Si 2 , Ni 3 Si), manganese silicide (Mn 11 Si 19 , MnSi, Mn 5 Si 3 , Mn 5 Si 2 , Mn 3 Si), iron Silicide (FeSi 3 , FeSi, Fe 5 Si 3 , Fe 3 Si), Niobium silicide (NbSi 2 , Nb 5 Si 3 , Nb 3 Si), Copper silicide (Cu 3 Si, Cu 6 Si, Cu 7 Si), Boron silicide (B 3 Si, B 6 Si ) zirconium silicide (ZrSi 2, ZrSi, Zr 5 Si 4, Zr 3 Si 2, Zr 5 Si 3, Zr 2 Si, Zr 4 Si), vanadium silicide (VSi 2, V 6 Si 5, V 5 Si 3, V 3 Si), tungsten silicide (WSi 2, W 5 Si 3 ), tantalum silicide (TaSi 2, Ta 5 Si 3 , Ta 2 Si, Ta 3 Si), yttrium silicide (Y 3 Si 5, YSi, Y 5 Si 4, Y 5 Si 3) and the like. However, it is not limited to these.
 (その他の成分)
 本活物質は、必要に応じて「その他の成分」を含有していてもよい。
 「その他の成分」としては、例えばケイ素化合物といったケイ素含有物質を挙げることができる。ここで、当該ケイ素化合物としては、例えばSiやSiC等が挙げられる。
 また、「その他の成分」として、例えば、化学式MSiで表される化合物の構成元素としてではなく、半金属元素及び金属元素のうちの1種又は2種以上の元素を有する金属、酸化物、炭化物及び窒化物等として含有していてもよい。具体的には、例えばH、Li、B、C、O、N、F、Na、Mg、Al、P、K、Cu、Ca、Ga、Ge、Ag、In、Sn及びAuのうちの1種又は2種以上の元素を有する金属、酸化物、炭化物、窒化物等の化合物を挙げることができる。上記元素としては、中でも、H、Li、B、C、O、N、F、Na、Mg、Al、P、K、Ca、Ga、Ge、Ag、In、Sn及びAuのうちの1種又は2種以上の元素であることが好ましく、特に、H、Li、B、C、O、N、F、Al、P及びSnのうちの1種又は2種以上の元素であることが好ましい。
 この際、本Si系負極活物質において、ケイ素(Si)及び化合物A以外の成分の含有量は、15at%未満であるのが好ましく、中でも0at%より多い或いは12at%未満、その中でも1at%より多い或いは10at%未満、さらにその中でも2at%より多い或いは7at%未満であるのが好ましい。
(Other ingredients)
The active material may contain "other components" as necessary.
Examples of the "other components" include silicon-containing substances such as silicon compounds. Here, examples of the silicon compound include Si 3 N 4 and SiC.
In addition, as the “other component”, for example, not a constituent element of the compound represented by the chemical formula M x Si y , but a metal having one or more elements of a metalloid element and a metal element, an oxide It may be contained as a substance, a carbide and a nitride. Specifically, for example, one of H, Li, B, C, O, N, F, Na, Mg, Al, P, K, Cu, Ca, Ga, Ge, Ag, In, Sn and Au. Alternatively, compounds such as metals, oxides, carbides and nitrides having two or more elements can be mentioned. As the above-mentioned element, one or more of H, Li, B, C, O, N, F, Na, Mg, Al, P, K, Ca, Ga, Ge, Ag, In, Sn and Au, among others, or Two or more elements are preferable, and one or more elements selected from H, Li, B, C, O, N, F, Al, P and Sn are particularly preferable.
At this time, in the present Si-based negative electrode active material, the content of components other than silicon (Si) and compound A is preferably less than 15 at %, more than 0 at% or less than 12 at %, of which 1 at% or more. It is preferable that the amount is large or less than 10 at %, and more preferably more than 2 at% or less than 7 at %.
 本活物質が「その他の成分」として炭素(C)元素を含むとき、その含有量は活物質量の5wt%未満、特に3wt%未満であるのが好ましい。本活物質中のC元素の含有量が上記上限を有することで、容量の低下を抑制することが可能となる。 When the active material contains a carbon (C) element as the “other component”, the content thereof is preferably less than 5 wt% of the amount of the active material, particularly preferably less than 3 wt %. When the content of C element in the active material has the above upper limit, it is possible to suppress the decrease in capacity.
 本活物質は、原料由来の不回避不純物を含有していてもよい。
 但し、本活物質中の不回避不純物の含有量は、例えば2wt%未満であることが好ましく、中でも1wt%未満、その中でも0.5wt未満であることが好ましい。本活物質中の不回避不純物の含有量が上記上限を有することで、容量の低下を抑えることが可能となる。
The active material may contain unavoidable impurities derived from the raw materials.
However, the content of unavoidable impurities in the active material is preferably, for example, less than 2 wt %, more preferably less than 1 wt %, and most preferably less than 0.5 wt. When the content of the unavoidable impurities in the active material has the above upper limit, it is possible to suppress the decrease in capacity.
 本活物質は、Si元素を含むSi酸化物を含有していてもよい。上記Si酸化物としては、例えばSiO(0<a≦2)を挙げることができる。具体的には、SiO、SiO等を挙げることができる。 The active material may contain a Si oxide containing a Si element. Examples of the Si oxide include SiO a (0<a≦2). Specifically, SiO, SiO 2, etc. can be mentioned.
 (各成分の含有割合)
 本活物質中のSi元素の含有量は、50wt%より多いことが好ましい。中でも、52wt%より多いことが好ましく、特に60wt%より多いことが好ましく、さらに63wt%より多いことが好ましく、さらにその中でも、65wt%より多いことが好ましい。一方、本活物質中のSi元素の含有量は、例えば、95wt%未満であることが好ましく、中でも88wt%未満であることが好ましく、さらに82wt%未満であることが好ましく、さらにその中でも78wt%未満であることが好ましい。
 なお、ここでのSi元素の含有量は、本活物質中に含まれるSi元素の総量を指す。したがって、上記Si元素の含有量は、主に、シリコンに由来するSi元素、MSiで表される化合物に由来するSi元素の合計量とすることができる。
 本活物質において、Si元素の含有量が上記下限を有することで、容量の低下を抑制することが可能となる。一方、Si元素の含有量が上記上限を有することで、活物質の膨張収縮を抑えることができ、サイクル特性を向上させることができる。
(Content ratio of each component)
The content of the Si element in the active material is preferably more than 50 wt %. Above all, it is preferably more than 52 wt %, particularly preferably more than 60 wt %, more preferably more than 63 wt %, and even more preferably more than 65 wt %. On the other hand, the content of the Si element in the active material is, for example, preferably less than 95 wt%, more preferably less than 88 wt%, further preferably less than 82 wt%, and further preferably 78 wt%. It is preferably less than.
The content of the Si element here means the total amount of the Si element contained in the active material. Therefore, the content of the Si element can be the total amount of the Si element mainly derived from silicon and the Si element derived from the compound represented by M x Si y .
In the present active material, the content of Si element having the above lower limit makes it possible to suppress the decrease in capacity. On the other hand, when the content of the Si element has the upper limit, expansion and contraction of the active material can be suppressed, and cycle characteristics can be improved.
 本活物質中の酸素(O)元素の含有量は、30wt%未満であるのが好ましい。中でも20wt%未満であることが好ましく、特に15wt%未満であることが好ましく、さらに10wt%未満であることが好ましく、さらにその中でも5wt%未満であることが好ましい。一方、本活物質中の酸素(O)元素の含有量は、例えば、0wt%より多いことが好ましく、中でも0.1wt%より多いことが好ましく、特に0.2wt%より多いことが好ましく、さらにその中でも0.6wt%より多いことが好ましい。
 本活物質において、酸素(O)元素の含有量が上記上限を有することで、充放電に寄与しない酸素(O)元素の比率の上昇の抑え、容量や充放電効率の低下を抑制することができる。いわゆるSiO(一酸化ケイ素)は、ストイキ組成であれば酸素を36%程度含む物質であり、容量や充放電効率が低いため、本願発明とは異なるものである。一方、酸素(O)元素の含有量が上記下限を有することで、大気中の酸素と急激な反応を起こしにくくすることができる。
The oxygen (O) element content in the active material is preferably less than 30 wt %. Above all, it is preferably less than 20 wt%, particularly preferably less than 15 wt%, further preferably less than 10 wt%, and further preferably less than 5 wt%. On the other hand, the content of the oxygen (O) element in the active material is, for example, preferably more than 0 wt%, more preferably more than 0.1 wt%, and particularly preferably more than 0.2 wt%. Above all, it is preferably more than 0.6 wt %.
When the content of the oxygen (O) element in the present active material has the above upper limit, it is possible to suppress an increase in the ratio of the oxygen (O) element that does not contribute to charging and discharging, and suppress a decrease in capacity and charging/discharging efficiency. it can. So-called SiO (silicon monoxide) is a substance containing about 36% oxygen in the stoichiometric composition, and is different from the present invention in that it has low capacity and charge/discharge efficiency. On the other hand, when the content of the oxygen (O) element has the above lower limit, it is possible to prevent a rapid reaction with oxygen in the atmosphere.
 本活物質中のMの含有量は、5wt%より多く、38wt%未満であるのが好ましい。中でも8wt%より多いことがより好ましく、特に12wt%より多いことがより好ましく、さらに15wt%より多いことが好ましい。一方、本活物質中のMの含有量は、例えば、35wt%未満であることがより好ましく、中でも32wt%未満であることがより好ましく、特に29wt%未満であることがより好ましい。
 本活物質中のMの含有量が上記下限を有することで、活物質の膨張収縮を抑えることができ、サイクル特性を向上させることが可能となる。一方、本活物質中のMの含有量が上記上限を有することで、容量の低下を抑制することが可能となる。
The content of M in the active material is preferably more than 5 wt% and less than 38 wt %. Above all, it is more preferably more than 8% by weight, particularly preferably more than 12% by weight, further preferably more than 15% by weight. On the other hand, the content of M in the active material is, for example, preferably less than 35 wt%, more preferably less than 32 wt%, and particularly preferably less than 29 wt%.
When the content of M in the active material has the above lower limit, expansion and contraction of the active material can be suppressed, and cycle characteristics can be improved. On the other hand, when the content of M in the active material has the above upper limit, it becomes possible to suppress the decrease in capacity.
 本活物質中の、Si元素の含有量(wt%)に対する、Mの含有量(wt%)の比率(M/Si)は、例えば、0.05より大きいことが好ましく、中でも0.06り大きいことが好ましく、特に0.07より大きいことが好ましく、その中でも特に0.10より大きいことが好ましい。
 一方、Si元素の含有量に対する、Mの含有量の比率(M/Si)は、例えば、0.96未満であることが好ましく、中でも0.86未満であることが好ましく、特に0.76未満であることが好ましく、その中でも特に0.56未満であることが好ましい。
 本活物質中のSi元素の含有量に対するMの含有量の比率が上記下限を有することで、活物質の膨張収縮を抑えることができ、サイクル特性を向上させることが可能となる。一方、本活物質中のSi元素の含有量に対するMの含有量の比率が上記上限を有することで、容量を維持することが可能となる。
The ratio (M/Si) of the content (wt%) of M to the content (wt%) of the Si element in the active material is preferably, for example, more than 0.05, and is 0.06 or more. It is preferably large, particularly preferably larger than 0.07, and particularly preferably larger than 0.10.
On the other hand, the ratio of the content of M to the content of Si element (M/Si) is, for example, preferably less than 0.96, more preferably less than 0.86, and particularly less than 0.76. Is preferable, and particularly preferably less than 0.56.
When the ratio of the content of M to the content of Si element in the active material has the above lower limit, expansion and contraction of the active material can be suppressed, and cycle characteristics can be improved. On the other hand, when the ratio of the content of M to the content of Si element in the active material has the above upper limit, the capacity can be maintained.
 なお、酸素を除く前記各元素の含有量は、本活物質を全溶解して、誘導結合プラズマ(ICP)発光分光分析などの化学分析によって定量される元素割合である。
 他方、酸素元素含有量については、酸素・窒素分析装置(例えばLECO社製)を用いて測定することができる。なお、かかる測定法により得られる酸素量は、SiOa(0<a≦2)としての酸素量の他、Si以外の半金属元素及び金属元素Mとの酸素化合物を含むことを意味するものである。
The content of each element other than oxygen is an element ratio determined by chemical analysis such as inductively coupled plasma (ICP) emission spectroscopic analysis in which the active material is completely dissolved.
On the other hand, the oxygen element content can be measured using an oxygen/nitrogen analyzer (for example, manufactured by LECO). The amount of oxygen obtained by such a measuring method means that the amount of oxygen as SiOa (0<a≦2) and an oxygen compound with a metalloid element other than Si and a metal element M are included. ..
 (ラマンスペクトルにおける特徴)
 本活物質は、ラマン分光測定法により測定して得られるラマンスペクトルにおいて、波数200cm-1~420cm-1に、前記化学式MSiで表される化合物に由来するピークPが少なくとも1つ現れ、波数450cm-1~490cm-1に、引張ひずみが生じたシリコンに由来するピークPが少なくとも1つ現れ、且つ波数500cm-1~525cm-1にピークPが少なくとも一つ現れる。
 本活物質はP、P、Pが現れることにより、活物質粒子中に引張ひずみが生じ、Si-Si間の原子間距離が伸びている状態とすることができる。これによって、初度のLi挿入時における結晶構造のひずみを解消し、耐久性、及びレート特性を共に高めることができる。
(Characteristics of Raman spectrum)
The active material has a Raman spectrum measured by Raman spectroscopy, and has at least one peak P A derived from the compound represented by the chemical formula M x Si y at a wave number of 200 cm −1 to 420 cm −1. appear, the wave number 450 cm -1 ~ 490 cm -1, tensile strain peak P B derived from the silicon occurs appears at least one, and peaks P C at a wavenumber 500 cm -1 ~ 525 cm -1 appears at least one.
This active material is P A, P B, by the P C appears, tensile strain occurs in the active material particles, so that the state interatomic distance between Si-Si is extended. As a result, distortion of the crystal structure at the time of initial Li insertion can be eliminated, and both durability and rate characteristics can be improved.
 本活物質はまた、前記PとPのピークの面積比をIPB/IPCが0.5以上である活物質である。前記IPB/IPCは、例えば1.0以上であることが好ましく、中でも1.5以上であることが好ましい。一方、前記IPB/IPCは、たとえば10.0以下であってもよく、8.0以下であってもよく、5.0以下であってもよい。
 当該面積比が上記範囲内にあることにより、Si-Si間の原子間距離をより伸びている状態とし、本発明の効果を顕著なものとすることができる。この際、複数のピークが現れた場合、各ピーク面積は当該複数のピークの総面積とする。
 なお、波数200cm-1~420cm-1にSiの欠陥に由来するピークが出現することがあるが、シリサイドが存在するかどうかは透過電子顕微鏡(TEM)を用いて電子回折法により調べることができる。
 上記Pは活物質粒子中の引張ひずみが比較的大きいことを示し、Si-Si間の原子間距離が伸びている状態を表す。一方、上記Pは活物質粒子中の引張ひずみが比較的小さいことを示し、Si-Si間の原子間距離が縮んでいる状態を表す。
The present active material is also an active material having an area ratio of the peaks of P B and P C of I PB /I PC of 0.5 or more. The I PB /I PC is, for example, preferably 1.0 or more, and more preferably 1.5 or more. On the other hand, the I PB /I PC may be, for example, 10.0 or less, 8.0 or less, or 5.0 or less.
When the area ratio is within the above range, the interatomic distance between Si and Si can be further extended, and the effect of the present invention can be made remarkable. At this time, when a plurality of peaks appear, each peak area is the total area of the plurality of peaks.
Note that peaks due to Si defects may appear at wave numbers of 200 cm −1 to 420 cm −1, and whether or not silicide exists can be examined by an electron diffraction method using a transmission electron microscope (TEM). ..
The above P B indicates that the tensile strain in the active material particles is relatively large, and represents the state in which the interatomic distance between Si and Si is extended. On the other hand, the P C indicates that tensile strain in the active material particles is relatively small, indicating a state in which shrinks interatomic distance between Si-Si.
 本活物質においては、前記ピークPの半値全幅が40cm-1以上であるのが好ましく、中でも45cm-1以上、その中でも50cm-1以上であるのがより好ましい一方、中でも90cm-1以下、その中でも80cm-1以下であるのがより好ましい。 In the active material, the full width at half maximum of the peak P B is preferably 40 cm −1 or more, more preferably 45 cm −1 or more, and even more preferably 50 cm −1 or more, while 90 cm −1 or less, Among them, 80 cm -1 or less is more preferable.
 ラマンスペクトルにおいて前述のような特徴を有する本活物質を製造するには、例えば、上記Mを所定量原料に添加して溶融し、鋳造し、さらに後述するような改質処理を行うようにすればよい。但し、かかる方法に限定するものではない。 In order to produce the present active material having the above-mentioned characteristics in the Raman spectrum, for example, the above M is added to a raw material in a predetermined amount, melted, cast, and further modified as described below. Good. However, the method is not limited to this.
 本発明において、ラマン分光測定法により測定して得られるラマンスペクトルにおける前記「ピーク」とは、ラマンスペクトルにおいてピークトップを有し、且つ、半値全幅が5.0cm-1以上のスペクトルを指す。したがって、半値全幅が4.9cm-1以下のスペクトルはノイズとみなす。
 なお、当該半値全幅およびピーク面積は、得られたラマンスペクトルに対しベースラインを設定し、ピーク分離によって得られることができる。
In the present invention, the “peak” in the Raman spectrum obtained by measurement by Raman spectroscopy means a spectrum having a peak top in the Raman spectrum and a full width at half maximum of 5.0 cm −1 or more. Therefore, a spectrum having a full width at half maximum of 4.9 cm −1 or less is regarded as noise.
The full width at half maximum and the peak area can be obtained by setting a baseline for the obtained Raman spectrum and separating the peaks.
 (D50
 レーザー回折散乱式粒度分布測定法は、凝集した粉粒を一個の粒子(凝集粒子)として捉えて粒径を算出する測定方法である。本測定方法によるD50とは、体積基準粒度分布のチャートにおいて体積換算した粒径測定値の累積百分率表記の小さい方から累積50%に相当する径を意味する。
(D 50)
The laser diffraction/scattering particle size distribution measuring method is a measuring method in which agglomerated powder particles are regarded as one particle (aggregated particle) and the particle size is calculated. The D 50 according to this measuring method means a diameter corresponding to 50% cumulative from the smallest cumulative percentage of the volume-measured particle size measured values in the volume-based particle size distribution chart.
 本活物質のD50は、4.0μm未満であるのが好ましく、中でも3.8μm未満であることがより好ましく、特に3.4μm未満であることが好ましく、さらに3.2μm未満であることが好ましく、さらにその中でも3.0μm未満であることが好ましく、さらにまた2.8μm未満であることが好ましい。一方、本活物質のD50は、0.01μmより大きいことが好ましく、中でも0.05μmより大きいことが好ましく、特に0.1μmより大きいことが好ましく、さらにその中でも0.5μmより大きいことが好ましく、さらにまた1.0μmより大きいことが好ましい。
 本活物質のD50は、上記上限を有することで、膨張・収縮の影響を小さくでき、固体電池電極中における固体電解質との接点が確保できる。一方、本活物質のD50は、上記下限を有することで、比表面積が大きくなることによる固体電解質との接点数の増加を抑制し、接触抵抗の上昇を抑えることができる。
 本活物質のD50は、解砕条件や粉砕条件を変えることにより調整することができる。但し、これらの調整方法に限定されるものではない。
The D 50 of the active material is preferably less than 4.0 μm, more preferably less than 3.8 μm, particularly preferably less than 3.4 μm, and further preferably less than 3.2 μm. It is more preferably less than 3.0 μm, and further preferably less than 2.8 μm. On the other hand, the D 50 of the active material is preferably larger than 0.01 μm, more preferably larger than 0.05 μm, particularly preferably larger than 0.1 μm, and further preferably larger than 0.5 μm. Furthermore, it is preferable that it is larger than 1.0 μm.
When the D 50 of the present active material has the above upper limit, the influence of expansion and contraction can be reduced, and the contact with the solid electrolyte in the solid battery electrode can be secured. On the other hand, when the D 50 of the present active material has the above lower limit, an increase in the number of contacts with the solid electrolyte due to an increase in the specific surface area can be suppressed, and an increase in contact resistance can be suppressed.
The D 50 of the present active material can be adjusted by changing the crushing condition and the crushing condition. However, the adjustment method is not limited to these.
 本活物質のDmaxは、レーザー回折散乱式粒度分布測定法により測定して得られる体積粒度分布測定によるDmaxは25μm未満であるのが好ましく、中でも20μm未満であることがより好ましく、特に15μm未満であることが好ましく、さらに10μm未満であることが好ましい。一方、本活物質のDmaxは、例えば、0.5μmより大きいことが好ましく、中でも1.0μmより大きいことが好ましく、その中でも特に3.0μmより大きいことが好ましく、さらにその中でも5.0μmより大きいことが好ましい。
 なお、本測定方法によるD50とは、体積基準粒度分布のチャートにおいて体積換算した粒径測定値の累積百分率表記の小さい方から累積100%に相当する径を意味する。
 本活物質のDmaxは、上記上限を有することで、固体電池電極中における固体電解質との間に隙間が生じることや、セパレータ層を突き破るリスクを低減できる。
D max of the active material is preferably D max less than 25μm by and volume particle size distribution measurement obtained by the measurement by a laser diffraction scattering particle size distribution measuring method, more preferably among them less than 20 [mu] m, in particular 15μm It is preferably less than 10 μm, and more preferably less than 10 μm. On the other hand, D max of the present active material is, for example, preferably larger than 0.5 μm, more preferably larger than 1.0 μm, particularly preferably larger than 3.0 μm, and further preferably 5.0 μm. It is preferably large.
The D 50 according to this measurement method means a diameter corresponding to 100% cumulative from the smallest cumulative percentage of volume-converted particle size measurement values in the volume-based particle size distribution chart.
When the D max of the present active material has the above upper limit, it is possible to reduce a risk that a gap is formed between the active material and the solid electrolyte in the solid battery electrode, and the risk of breaking through the separator layer.
 (粒子形状)
 本活物質は粒子の集合体であり、例えば粉末状、塊状などを呈することができる。本活物質の粒子形状は、特に限定されるものではない。例えば球状、多面体状、紡錘状、板状、鱗片状若しくは不定形又はそれらの組み合わせを用いることができる。例えばガスアトマイズ製法によれば球状となり、ジェットミルなどにより粉砕すると、粒界に沿って粒子が割れるために不定形状になることが確認されている。
(Particle shape)
The active material is an aggregate of particles, and can be in the form of powder, lump, or the like. The particle shape of the active material is not particularly limited. For example, a spherical shape, a polyhedral shape, a spindle shape, a plate shape, a scaly shape, an amorphous shape, or a combination thereof can be used. For example, according to the gas atomizing method, it has been confirmed that the particles have a spherical shape, and when they are pulverized by a jet mill or the like, the particles are broken along the grain boundaries and thus have an irregular shape.
 (真密度)
 本活物質の真密度は、例えば2.4g/cmより大きいことが好ましく、中でも、2.5g/cmより大きいことが好ましく、特に2.7g/cmより大きいことが好ましく、さらに2.9g/cmより大きいことが好ましい。一方、本活物質の真密度は、例えば3.9g/cm未満であることが好ましく、中でも3.8g/cm未満であることが好ましく、特に3.7g/cm未満であることが好ましい。
 本活物質の真密度は上記下限を有することで、電極密度を向上させることができ、エネルギー密度を向上させることができる。一方、本活物質の真密度は上記上限を有することで、活物質中のSi元素の含有量が減少し、容量が少なくなるといった不具合の発生を抑制することができる。
 本活物質の真密度は、例えば、Mの量により調整することができる。但し、かかる方法に限定するものではない。
(True density)
The true density of the present active material is, for example, preferably more than 2.4 g/cm 3, more preferably more than 2.5 g/cm 3 , particularly preferably more than 2.7 g/cm 3 , and further 2 It is preferably larger than 0.9 g/cm 3 . On the other hand, the true density of the active material, that for example, preferably less than 3.9 g / cm 3, preferably less than Above all 3.8 g / cm 3, in particular less than 3.7 g / cm 3 preferable.
When the true density of the present active material has the above lower limit, the electrode density can be improved and the energy density can be improved. On the other hand, since the true density of the present active material has the upper limit described above, it is possible to suppress the occurrence of the problem that the content of Si element in the active material decreases and the capacity decreases.
The true density of the present active material can be adjusted by the amount of M, for example. However, the method is not limited to this.
 (比表面積)
 本活物質の比表面積(SSA)は、例えば2.0m/gより大きいことが好ましく、中でも2.5m/gより大きいことが好ましく、特に3.0m/gより大きいことが好ましく、さらに3.3m/gより大きいことが好ましい。一方、本活物質の比表面積(SSA)は、例えば140m/g未満であることが好ましく、中でも60m/g未満であることが好ましく、特に30m/g未満であることが好ましく、さらに10m/g未満であることが好ましい。
 本活物質のSSAが上記下限を有することで、表面の改質が十分になされており、電極抵抗を低下させることができる。一方、本活物質SSAが上記上限を有することで、固体電解質との接点数の増加を抑制し、接触抵抗の上昇を抑えることができる。
 本活物質のSSAは、例えば粉砕条件や改質条件により調整することができる。但し、これらの調整方法に限定されるものではない。
(Specific surface area)
The specific surface area (SSA) of the present active material is, for example, preferably larger than 2.0 m 2 /g, more preferably larger than 2.5 m 2 /g, particularly preferably larger than 3.0 m 2 /g, Further, it is preferably larger than 3.3 m 2 /g. On the other hand, the specific surface area (SSA) of the present active material is, for example, preferably less than 140 m 2 /g, more preferably less than 60 m 2 /g, and particularly preferably less than 30 m 2 /g. It is preferably less than 10 m 2 /g.
When the SSA of the present active material has the above lower limit, the surface is sufficiently modified and the electrode resistance can be reduced. On the other hand, when the active material SSA has the above upper limit, it is possible to suppress an increase in the number of contacts with the solid electrolyte and suppress an increase in contact resistance.
The SSA of the active material can be adjusted by, for example, pulverizing conditions or modifying conditions. However, the adjustment method is not limited to these.
 <本活物質の製造方法>
 本活物質は、ケイ素又はケイ素(Si)含有物質と、M又はM含有物質と、必要に応じてその他の原料物質とを混合して加熱溶融して合金化し、必要に応じて解砕乃至粉砕を行い、必要に応じて分級を行った後、強力な衝撃力を利用した改質装置を用いて改質処理を行って製造するのが好ましい。但し、このような方法に限定されるものではない。
 ここで、上記「ケイ素又はケイ素(Si)含有物質」とは、純シリコン及びケイ素酸化物のほか、SiやSiC等のケイ素化合物などのケイ素含有物質を包含する意味である。
<Method for producing active material>
The active material is obtained by mixing silicon or a silicon (Si)-containing substance, M or an M-containing substance, and optionally other raw materials, heating and melting to alloy them, and crushing or crushing as necessary. It is preferable to carry out the above-mentioned process and, if necessary, classify it, and then carry out a reforming treatment by using a reforming apparatus utilizing a strong impact force. However, the method is not limited to this.
Here, the above-mentioned "silicon or silicon (Si)-containing substance" is meant to include pure silicon and silicon oxide, as well as silicon-containing substances such as silicon compounds such as Si 3 N 4 and SiC.
 上記合金化方法としては、公知の方法を採用することができる。例えば本活物質は、ケイ素又はケイ素(Si)含有物質と、上記M又は上記M含有物質と、必要に応じてその他の原料物質とを混合して加熱して溶融液とした後、アトマイズ法などによって合金化させてもよいし、又、前記のように溶融液とした後、ロール鋳造法により鋳造し、さらに非酸素雰囲気下で粉砕を行って合金化させてもよい。
 その他の合金化方法を採用してもよい。
As the alloying method, a known method can be adopted. For example, this active material is obtained by mixing silicon or a silicon (Si)-containing substance, the above M or the above M-containing substance, and optionally other raw materials and heating them to obtain a molten liquid, and then an atomizing method. Alternatively, the alloy may be alloyed by the above method, or may be melted as described above, cast by a roll casting method, and further pulverized in a non-oxygen atmosphere to be alloyed.
Other alloying methods may be used.
 本発明において金属を溶融させる方法として、特開2010-135336号公報に記載されるようなアーク溶解工程を行わないことが好ましい。これは、特開2011-518943号公報の段落[0029]及び、特開2014-513197号公報の段落[0011]に記載されるとおり、アーク溶解を行うと残留大気により酸化が起こる場合があるためである。一度、原料中に大量の酸素が取り込まれてしまうと、後の工程で取り除くことは難しい。 As a method of melting a metal in the present invention, it is preferable not to perform the arc melting step as described in JP 2010-135336A. This is because, as described in paragraph [0029] of Japanese Patent Application Laid-Open No. 2011-518943 and paragraph [0011] of Japanese Patent Application Laid-Open No. 2014-513197, when arc melting is performed, oxidation may occur due to residual air. Is. Once a large amount of oxygen is taken into the raw material, it is difficult to remove it in a later step.
 上記のアトマイズ法としては、例えば、国際公開WO01/081033号パンフレットの図2に記載の装置を用いて、自発核生成による沸騰を起こさせて生じる圧力波を利用して、冷却媒中に滴下した溶融金属を合金化する方法(この合金化方法を本明細書では「水蒸気爆発アトマイズ法」と称する)を採用するのが好ましい。 As the above-mentioned atomization method, for example, the apparatus shown in FIG. 2 of WO 01/081033 pamphlet is used, and the pressure wave generated by causing boiling due to spontaneous nucleation is used and dropped into the cooling medium. It is preferable to employ a method of alloying molten metal (this alloying method is referred to as "steam explosion atomizing method" in the present specification).
 上記合金化した後、必要に応じて解砕乃至粉砕を行い、必要に応じて分級を行って粒度を調整するのが好ましい。 After the above alloying, it is preferable to crush or pulverize if necessary, and classify as necessary to adjust the particle size.
 強力な衝撃力を利用した改質装置を用いて行う改質処理は、条件設定によってメカニカルミリング或いはメカニカルアロイングなどを行うことができる装置を使用する改質処理であり、本活物質の比表面積(SSA)を大きくすることができる。
 また、遊星ボールミル、振動ボールミル、アトライタ、ボールミルなどで処理を行った場合、特に本願のようにシリサイドの量が少ない活物質において、より強い凝集が起こってしまうため、D50やDmaxが狙い値よりも大きくなってしまう。これは固体電池向けに使用する負極活物質としては不向きである。
The reforming treatment using a reforming device that uses a strong impact force is a reforming treatment that uses a device that can perform mechanical milling or mechanical alloying depending on the condition settings. (SSA) can be increased.
Further, when the treatment is carried out by a planetary ball mill, a vibrating ball mill, an attritor, a ball mill, etc., particularly in an active material having a small amount of silicide as in the present application, stronger agglomeration occurs, so that D 50 and D max are targeted values. Will be bigger than This is not suitable as a negative electrode active material used for solid-state batteries.
 さらに、例えば、先行文献などでは、Si粉末と、Siとシリサイド形成する元素の粉末とをボールミルに入れて反応によりシリサイドを製造する方法が提案されている。しかし、その場合、反応が不均一に起きるため、原料元素がそのまま残留するリスクが高くなるため、本願発明の目的物を得るための製造方法としては不向きである。 Further, for example, in the prior art documents, there is proposed a method of producing silicide by reacting Si powder and powder of an element forming a silicide with Si in a ball mill. However, in that case, since the reaction occurs nonuniformly, the risk of the raw material element remaining as it is becomes high, which is unsuitable as a production method for obtaining the object of the present invention.
 上記改質処理としては、例えば、反応槽内に回転羽根を備えた処理装置を使用し、回転する羽根の周速を、例えば3.0m/s以上20m/s以下とし、反応槽内に投入する媒体として、本活物質のD50に対して例えば1500倍以上4000倍以下程度の粒径のビーズを使用して処理するのが好ましい。
 上記回転羽根の周速は、ピンミルが例えば100m/s以上130m/s以下程度であることを考慮すると、微粉砕処理する際の周速に比べると遅いと言える。かかる観点から、回転羽根の周速は例えば4.0m/s以上或いは17m/s以下であることが好ましく、中でも4.5m/s以上或いは15m/s以下、その中でも5.0m/s以上或いは12m/s以下であることが好ましい。なお、撹拌羽根のサイズが変わった場合も、周速を合わせることで、同等の効果を得ることができる。
As the above-mentioned reforming treatment, for example, a treatment device having rotary blades in a reaction tank is used, and the peripheral speed of the rotating blades is set to, for example, 3.0 m/s or more and 20 m/s or less and charged into the reaction tank. As a medium to be used, it is preferable to use beads having a particle size of, for example, 1500 times or more and 4000 times or less with respect to D 50 of the active material.
Considering that the pin mill is, for example, about 100 m/s or more and 130 m/s or less, it can be said that the peripheral speed of the rotary blade is slower than the peripheral speed at the time of fine pulverization processing. From this point of view, it is preferable that the peripheral speed of the rotary blade is, for example, 4.0 m/s or more or 17 m/s or less, particularly 4.5 m/s or more or 15 m/s or less, and among them 5.0 m/s or more, or It is preferably 12 m/s or less. Even when the size of the stirring blade is changed, the same effect can be obtained by adjusting the peripheral speeds.
 また、ビーズミルやボールミルなどの粉砕機において、反応槽内に投入する媒体は、その大きさの1/1000程度まで粉砕できると言われている。よって、本活物質のD50に対して例えば1500倍以上4000倍以下程度の粒径のビーズを使用するということは、粉砕よりも表面改質が優先的に行われていることになる。
 かかる観点から、反応槽内に投入する媒体の粒径は、例えば4mmφ以上10mmφ以下であることが好ましく、中でも5mmφ以上或いは8mmφ以下、その中でも5mmφ以上或いは7mmφ以下であることがさらに好ましい。
 媒体の材質としては、例えばSiO、Al、ZrO、SiC、Si、WC等を挙げることができ、中でも、Al、ZrO、SiC、Siが好ましい。
In a crusher such as a bead mill or a ball mill, it is said that the medium put into the reaction tank can be crushed to about 1/1000 of its size. Therefore, the use of beads having a particle size of, for example, 1500 times or more and 4000 times or less with respect to D 50 of the present active material means that the surface modification is performed preferentially over the pulverization.
From this viewpoint, the particle size of the medium charged into the reaction vessel is preferably 4 mmφ or more and 10 mmφ or less, more preferably 5 mmφ or more or 8 mmφ or less, and further preferably 5 mmφ or more or 7 mmφ or less.
As the material of the medium, for example SiO 2, Al 2 O 3, ZrO 2, SiC, Si 3 N 4, WC , etc. can be cited, among others, Al 2 O 3, ZrO 2 , SiC, Si 3 N 4 is preferable.
 上記改質処理は、窒素雰囲気、アルゴンガス雰囲気などの不活性雰囲気下で行うことが好ましく、さらに、処理品を回収する際、徐酸化を図るのが好ましい。例えば、改質処理を行う際の反応槽内は上記不活性雰囲気とし、改質処理後、処理品を該反応槽から回収する際、該反応槽中に大気などを徐々に入れて処理品の徐酸化、つまり徐々に酸化を図るようにするのが好ましい。 The above-mentioned reforming treatment is preferably carried out in an inert atmosphere such as a nitrogen atmosphere or an argon gas atmosphere, and further, it is preferable to carry out gradual oxidation when collecting the treated product. For example, the inside of the reaction tank at the time of carrying out the reforming treatment is set to the above-mentioned inert atmosphere, and when the treated product is recovered from the reaction tank after the reforming treatment, air or the like is gradually introduced into the reaction tank to gradually remove the treated product. Gradual oxidation, that is, gradual oxidation is preferably performed.
 <本活物質の用途>
 本活物質は、電池、中でも固体電池、その中でも固体リチウム二次電池等の固体二次電池の負極活物質として好適に使用することができる。例えば固体電解質として硫化物固体電解質を含む固体電池の負極活物質として好適に用いることができる。
<Use of active material>
The present active material can be preferably used as a negative electrode active material for batteries, especially solid batteries, and solid secondary batteries such as solid lithium secondary batteries. For example, it can be suitably used as a negative electrode active material of a solid battery containing a sulfide solid electrolyte as the solid electrolyte.
 <本負極>
 本実施形態に係る負極(以下「本負極」と称する)は、本活物質を含有する。
 本負極は、負極合剤により構成される部材である。
 当該負極合剤は、例えば、本活物質と、必要に応じてバインダーと、必要に応じて導電材と、必要に応じて固体電解質と、必要に応じて本活物質とは別の活物質としてグラファイトとを含有していてもよい。また、本負極は、負極集電体上に負極合剤を塗布して形成することができる。
 本負極は、例えば固体電池に用いることができる。より具体的には、リチウム固体電池に用いることができる。リチウム固体電池は、一次電池であってもよく、二次電池であってもよいが、中でもリチウム二次電池に用いることが好ましい。
 なお、後述する固体電池の実施例では、活物質と導電材と電解質からなる乾粉をプレス成型してなるペレットを負極として用いており、当該負極はバインダー及び集電体を含んでいない。
<This negative electrode>
The negative electrode according to this embodiment (hereinafter, referred to as “main negative electrode”) contains the present active material.
The present negative electrode is a member composed of a negative electrode mixture.
The negative electrode mixture is, for example, a main active material, a binder if necessary, a conductive material if necessary, a solid electrolyte if necessary, and an active material different from the main active material if necessary. It may contain graphite. Further, the present negative electrode can be formed by applying a negative electrode mixture on a negative electrode current collector.
The present negative electrode can be used, for example, in a solid state battery. More specifically, it can be used for a lithium solid state battery. The lithium solid state battery may be a primary battery or a secondary battery, but among them, it is preferably used for a lithium secondary battery.
In the examples of solid-state batteries to be described later, a pellet obtained by press-molding a dry powder composed of an active material, a conductive material and an electrolyte is used as a negative electrode, and the negative electrode does not include a binder and a current collector.
 ここで、「固体電池」とは、液状物質又はゲル状物質を電解質として一切含まない固体電池のほか、少量、例えば10wt%以下の液状物質又はゲル状物質を電解質として含む固体電池も包含する。 The term “solid state battery” as used herein includes not only a solid state battery that does not contain any liquid substance or gelled substance as an electrolyte, but also a solid state battery that contains a small amount, for example, 10 wt% or less of a liquid substance or gelled substance as an electrolyte.
 (バインダー)
 バインダーは、負極に用いることができる材料であれば特に限定されない。例えば、ポリイミド、ポリアミド及びポリアミドイミド等が挙げられる。これらは単独で用いてもよく、あるいは2種以上を組み合わせてもよい(以下、これらを総称して「ポリイミド等」とも言う。)。更にこれら以外のバインダーを更に併用してもよい。
 なお、バインダーの詳細については、公知のバインダーと同じとすることができるため、ここでの記載は省略する。
(binder)
The binder is not particularly limited as long as it is a material that can be used for the negative electrode. For example, polyimide, polyamide, polyamide imide, etc. may be mentioned. These may be used alone or in combination of two or more (hereinafter, these may be collectively referred to as "polyimide or the like"). Further, a binder other than these may be used in combination.
The details of the binder can be the same as those of known binders, and thus the description thereof is omitted here.
 (固体電解質)
 固体電解質としては、例えば、硫化物固体電解質、酸化物固体電解質、窒化物固体電解質、ハロゲン化物固体電解質等が挙げられるが、中でも硫黄(S)元素を含有する硫化物固体電解質であることが好ましい。
(Solid electrolyte)
Examples of the solid electrolyte include a sulfide solid electrolyte, an oxide solid electrolyte, a nitride solid electrolyte, a halide solid electrolyte, and the like. Among them, a sulfide solid electrolyte containing a sulfur (S) element is preferable. ..
 硫化物固体電解質は、結晶性材料、ガラスセラミックス、ガラスのいずれであってもよい。例えばLiPS、Li10GeP12、Li3.25Ge0.250.75、30LiS・26B・44LiI、63LiS・36SiS・LiPO、57LiS・38SiS・5LiSi、70LiS・30P、50LiS・50GeS、Li11、Li3.250.95、Li7-xPS6-xHa(0.2<x<1.8、Haは1種類以上のハロゲン元素を指す。)などで表される化合物を挙げることができる。但し、これらに限定するものではない。
 なお、酸化物固体電解質、窒化物固体電解質及びハロゲン化物固体電解質については、公知のものと同じとすることができるため、ここでの記載は省略する。
The sulfide solid electrolyte may be any of a crystalline material, glass ceramics and glass. For example Li 3 PS 4, Li 10 GeP 2 S 12, Li 3.25 Ge 0.25 P 0.75 S 4, 30Li 2 S · 26B 2 S 3 · 44LiI, 63Li 2 S · 36SiS 2 · Li 3 PO 4 , 57Li 2 S · 38SiS 2 · 5Li 4 Si 4, 70Li 2 S · 30P 2 S 5, 50Li 2 S · 50GeS 2, Li 7 P 3 S 11, Li 3.25 P 0.95 S 4, Li 7- Examples thereof include compounds represented by x PS 6-x Ha x (0.2<x<1.8, Ha represents one or more kinds of halogen elements). However, it is not limited to these.
The oxide solid electrolyte, the nitride solid electrolyte, and the halide solid electrolyte can be the same as known ones, and thus the description thereof is omitted here.
 (導電材)
 バインダーは、負極に用いることができる材料であれば特に限定されない。例えば、金属微粉や、アセチレンブラック等の導電性炭素材料の粉末等が挙げられる。導電材として金属微粉を用いる場合には、Sn、Zn、Ag及びIn等のリチウムイオン伝導性を有する金属又はこれらの金属の合金等の微粉を用いることが好ましい。
(Conductive material)
The binder is not particularly limited as long as it is a material that can be used for the negative electrode. Examples thereof include fine metal powder and powder of conductive carbon material such as acetylene black. When metal fine powder is used as the conductive material, it is preferable to use fine powder of a metal having lithium ion conductivity such as Sn, Zn, Ag and In, or an alloy of these metals.
 (グラファイト)
 本活物質とは別の活物質としてグラファイトを本活物質に加えることで、ケイ素に起因する高容量化と、グラファイトに起因する良好なサイクル特性とを両方得ることができる。
 特に本活物質は、上述のように、放電プロファイルにおけるプラトー領域が無いため、炭素材料(Graphite)と組み合わせて使用した際、放電プロファイルに段部ができるのを防ぐことができ、黒鉛などの炭素材料(Graphite)と組み合わせて負極活物質として使用した際に制御し易く、好適である。
(Graphite)
By adding graphite to the main active material as an active material different from the main active material, it is possible to obtain both high capacity due to silicon and good cycle characteristics due to graphite.
In particular, since the active material does not have a plateau region in the discharge profile as described above, when used in combination with a carbon material (Graphite), it is possible to prevent a step from being formed in the discharge profile, and carbon such as graphite can be prevented. It is preferable because it can be easily controlled when used as a negative electrode active material in combination with a material (Graphite).
 (配合組成)
 本負極において、バインダーの含有量は、本活物質100質量部に対して1~25質量部であるのが好ましく、中でも2質量部以上或いは20質量部以下であるのがさらに好ましい。
 また、導電材を配合する場合には、導電材の含有量は、本活物質100質量部に対して1~15質量部であるのが好ましく、中でも2質量部以上或いは10質量部以下であるのがさらに好ましい。
 また、負極活物質としてグラファイトを配合する場合には、グラファイトの含有量は、本活物質とグラファイトとの混合質量比は0.5:95~50:50、特に0.5:95~20:80であるのが好ましい。
(Compound composition)
In the present negative electrode, the content of the binder is preferably 1 to 25 parts by mass, and more preferably 2 parts by mass or more or 20 parts by mass or less based on 100 parts by mass of the active material.
When the conductive material is mixed, the content of the conductive material is preferably 1 to 15 parts by mass, and particularly 2 parts by mass or more or 10 parts by mass or less based on 100 parts by mass of the active material. Is more preferable.
When graphite is blended as the negative electrode active material, the content of graphite is 0.5:95 to 50:50, particularly 0.5:95 to 20:50 in terms of the mixing mass ratio of the main active material and graphite. It is preferably 80.
 (本負極の製造方法)
 本負極は、例えば、上記本活物質(粒子状)と、バインダーと、導電材と、必要に応じて電解質と、溶媒と、必要に応じて本活物質とは別の活物質として炭素材料(Graphite)などの他の材料とを混合して負極合剤を調製し、この負極合剤をCu等からなる集電体の表面に塗布して乾燥させることで形成し、その後、必要に応じてプレスして形成することができる。
 また、全固体電池向けの本負極としては、活物質と導電材と電解質とを含む乾粉をプレス成型し、得られたペレットを負極として用いるのが好ましい。この際、当該負極はバインダー及び集電体を含まないのが好ましい。
(Method for manufacturing this negative electrode)
The present negative electrode includes, for example, a carbon material (an active material different from the present active material (particulate), a binder, a conductive material, an electrolyte if necessary, a solvent, and optionally the present active material ( Graphite) and other materials are mixed to prepare a negative electrode mixture, and the negative electrode mixture is applied to the surface of a current collector made of Cu or the like and dried to form a negative electrode mixture. It can be formed by pressing.
Further, as the present negative electrode for an all-solid-state battery, it is preferable to press-mold a dry powder containing an active material, a conductive material, and an electrolyte, and use the obtained pellet as the negative electrode. At this time, the negative electrode preferably does not include a binder and a current collector.
 負極合剤を集電体の表面に塗布した後の乾燥は、非酸素雰囲気、例えば窒素雰囲気下やアルゴン雰囲気下において、1時間~10時間、特に1時間~7時間乾燥を行うのが好ましい。 Drying after applying the negative electrode mixture to the surface of the current collector is preferably performed for 1 hour to 10 hours, particularly 1 hour to 7 hours in a non-oxygen atmosphere such as a nitrogen atmosphere or an argon atmosphere.
 ここで、バインダーとしてポリイミドを用いた場合の本負極の製造方法について説明する。 Here, a method for producing the present negative electrode when polyimide is used as a binder will be described.
 先ず、本活物質(粒子状)と、ポリイミドの前駆体化合物と、N-メチル-2-ピロリドン等の有機溶媒、必要に応じて、金属微粉やアセチレンブラック等の導電材や炭素材料(Graphite)などとを混合して負極合剤を調製し、この負極合剤をCu等からなる集電体の表面に塗布する。
 この際、ポリイミドの前駆体化合物としては、ポリアミック酸(ポリアミド酸)を用いることができる。
First, the main active material (particulate), a polyimide precursor compound, an organic solvent such as N-methyl-2-pyrrolidone, and if necessary, a conductive material such as fine metal powder or acetylene black or a carbon material (Graphite) And the like are mixed to prepare a negative electrode mixture, and this negative electrode mixture is applied to the surface of a current collector made of Cu or the like.
At this time, a polyamic acid (polyamic acid) can be used as the polyimide precursor compound.
 負極合剤を集電体の表面に塗布したら、塗膜を加熱して有機溶剤を揮発させるとともに、ポリイミドの前駆体化合物を重合させてポリイミドとすることができる。
 この際、当該前駆体化合物の重合条件を調整することで、活物質粒子の表面にポリイミドを面状に固着させることができ、ポリイミドからなる連結部位を介して活物質を数珠状に連結することができる。
After the negative electrode mixture is applied to the surface of the current collector, the coating film can be heated to volatilize the organic solvent, and at the same time, the polyimide precursor compound can be polymerized to obtain a polyimide.
At this time, by adjusting the polymerization conditions of the precursor compound, the polyimide can be planarly adhered to the surface of the active material particles, and the active materials can be connected in a beaded shape via the connection site made of the polyimide. You can
 前駆体化合物の重合条件として、多段階の加熱を行うことが有利であることが、本発明者らの検討の結果判明した。特に、少なくとも2段階、好適には少なくとも3段階、さらに好ましくは4段階の加熱を行うことが有利である。例えば、2段階の加熱を行う場合には、1段階目の加熱を100~150℃で行うことが好ましく、2段階目の加熱を200~400℃で行うことが好ましい。
 加熱時間に関しては、1段階目の加熱時間を2段階目の加熱時間と同じか又はそれよりも長くすることが好ましい。例えば、1段階目の加熱時間を120~300分、特に180分以上或いは240分以下に設定し、2段階目の加熱時間を30~120分、特に30~60分に設定することが好ましい。
As a result of studies conducted by the present inventors, it was found that it is advantageous to carry out multi-step heating as a polymerization condition for the precursor compound. In particular, it is advantageous to carry out heating in at least two stages, preferably at least three stages, more preferably four stages. For example, in the case of performing the two-step heating, the first-step heating is preferably performed at 100 to 150°C, and the second-step heating is preferably performed at 200 to 400°C.
Regarding the heating time, it is preferable that the heating time of the first step is the same as or longer than the heating time of the second step. For example, it is preferable to set the heating time for the first step to 120 to 300 minutes, particularly 180 minutes or more or 240 minutes or less, and the heating time for the second step to 30 to 120 minutes, especially 30 to 60 minutes.
 3段階の加熱を行う場合には、上述した2段階の加熱において、1段階目と2段階目の中間の加熱温度を採用することが好ましい。
 この中間の加熱は、150~190℃で行うことが好ましい。加熱時間は、1段階目及び2段階目の時間と同じか又は1段階目と2段階目の中間の時間とすることが好ましい。つまり、3段階の加熱を行う場合には、各段階で加熱時間を同じにするか、又は段階が進むにつれて加熱時間を短くすることが好ましい。
 さらに4段階の加熱を行う場合には、3段階目よりも高い加熱温度を採用することが好ましい。
When performing heating in three stages, it is preferable to adopt an intermediate heating temperature between the first stage and the second stage in the above-described two-stage heating.
This intermediate heating is preferably performed at 150 to 190°C. The heating time is preferably the same as the time of the first step and the second step or an intermediate time between the first step and the second step. That is, when performing heating in three stages, it is preferable that the heating time be the same in each stage, or that the heating time be shortened as the stages progress.
Further, when performing heating in four stages, it is preferable to adopt a heating temperature higher than that in the third stage.
 加熱を何段階で行うかにかかわらず、加熱は、窒素やアルゴン等の不活性雰囲気中で行うことが好ましい。
 また、加熱処理のときには、活物質層をガラス板等の押さえ部材で押さえることも好ましい。こうすることで、有機溶媒が潤沢な状態で、つまりポリアミック酸が有機溶媒中にあたかも飽和したような状態で、該ポリアミック酸を重合させることができるので、生成するポリイミドの分子鎖どうしが絡まりやすくなるからである。
Regardless of how many stages the heating is performed, the heating is preferably performed in an inert atmosphere such as nitrogen or argon.
Further, during the heat treatment, it is also preferable to press the active material layer with a pressing member such as a glass plate. By doing so, in a state where the organic solvent is abundant, that is, in a state in which the polyamic acid is saturated in the organic solvent, it is possible to polymerize the polyamic acid, so that the molecular chains of the polyimide to be produced are easily entangled. It will be.
 以上の多段階加熱を行うことで、負極合剤に含まれている有機溶媒を徐々に揮発させることができ、それによってポリイミドの前駆体化合物を十分に高分子量化させることができるとともに、活物質粒子の表面の広い範囲にわたりポリイミドを固着させることができ、活物質層中にはその厚み方向全域にわたる三次元網目状の空隙を形成することができる。 By performing the above multi-step heating, it is possible to gradually volatilize the organic solvent contained in the negative electrode mixture, thereby making it possible to sufficiently increase the molecular weight of the polyimide precursor compound, and at the same time, to make the active material. Polyimide can be fixed on a wide range of the surface of the particle, and three-dimensional mesh-like voids can be formed in the active material layer over the entire thickness direction.
 <本非水電解液電池>
 本実施形態に係る非水電解液電池(「本非水電解液電池」と称する)として、本負極と、正極と、セパレータと、非水電解液等とから構成することができる電池を挙げることができる。本非水電解液電池は、一次電池であってもよく、二次電池であってもよいが、二次電池であることが好ましい。
<This non-aqueous electrolyte battery>
Examples of the non-aqueous electrolyte battery according to the present embodiment (hereinafter referred to as “the non-aqueous electrolyte battery”) include a battery that can be composed of the present negative electrode, a positive electrode, a separator, a non-aqueous electrolyte solution, and the like. You can The non-aqueous electrolyte battery may be a primary battery or a secondary battery, but is preferably a secondary battery.
 (正極)
 本非水電解液電池における正極は、例えば集電体の少なくとも一面に正極活物質層が形成されてなるものである。正極活物質層には正極活物質が含まれている。正極活物質としては、当該技術分野において従来知られているものを特に制限なく用いることができる。例えば各種のリチウム遷移金属複合酸化物を用いることができる。そのような物質としては、例えばLiCoO2、LiNiO2、LiMnO2、LiMn24、LiCo1/3Ni1/3Mn1/32、LiCo0.5Ni0.52、LiNi0.7Co0.2Mn0.12、Li(LixMn2xCo1-3x)O2(式中、0<x<1/3である)、LiFePO4、LiMn1-zzPO4 (式中、0<z≦0.1であり、MはCo、Ni、Fe、Mg、Zn及びCuからなる群から選ばれる少なくとも1種の金属元素である。)などを挙げることができる。
(Positive electrode)
The positive electrode in the present non-aqueous electrolyte battery has, for example, a positive electrode active material layer formed on at least one surface of a current collector. The positive electrode active material layer contains a positive electrode active material. As the positive electrode active material, those known in the art can be used without particular limitation. For example, various lithium transition metal composite oxides can be used. Examples of such substances include LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiCo 0.5 Ni 0.5 O 2 , LiNi 0.7 Co 0.2 Mn 0.1. O 2 , Li(Li x Mn 2x Co 1-3x )O 2 (in the formula, 0<x<1/3), LiFePO 4 , LiMn 1-z M z PO 4 (in the formula, 0<z≦ 0.1, and M is at least one metal element selected from the group consisting of Co, Ni, Fe, Mg, Zn, and Cu).
 (セパレータ)
 本非水電解液電池において、本負極及び正極とともに用いられるセパレータとしては、合成樹脂製不織布、ポリエチレンやポリプロピレン等のポリオレフィン、又はポリテトラフルオロエチレンの多孔質フィルム等が好ましく用いられる。
(Separator)
In the present non-aqueous electrolyte battery, as the separator used together with the present negative electrode and the positive electrode, a synthetic resin non-woven fabric, a polyolefin such as polyethylene or polypropylene, or a porous film of polytetrafluoroethylene is preferably used.
 (非水電解液)
 本非水電解液電池における非水電解液は、支持電解質であるリチウム塩を有機溶媒に溶解した溶液からなる。有機溶媒としては、例えばエチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等のカーボネート系有機溶媒、フルオロエチレンカーボネート等の前記カーボネート系有機溶媒の一部をフッ素化したフッ素系有機溶媒等の1種又は2種以上の組み合わせが用いられる。具体的には、フルオロエチレンカーボネート、ジエチルフルオロカーボネート、ジメチルフルオロカーボネート等を用いることができる。
 リチウム塩としては、CF3SO3Li、(CF3SO2)NLi、(C25SO22NLi、LiClO4、LiA1Cl4、LiPF6、LiAsF6、LiSbF6、LiCl、LiBr、LiI、LiC49SO3等を例示することができる。これらは単独で又は2種以上を組み合わせて用いることができる。
(Non-aqueous electrolyte)
The non-aqueous electrolytic solution in the present non-aqueous electrolytic solution battery is composed of a solution in which a lithium salt as a supporting electrolyte is dissolved in an organic solvent. Examples of the organic solvent include carbonate-based organic solvents such as ethylene carbonate, propylene carbonate, dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate, and fluorine-based organic solvents obtained by fluorinating a part of the carbonate-based organic solvent such as fluoroethylene carbonate. Or a combination of two or more thereof is used. Specifically, fluoroethylene carbonate, diethyl fluorocarbonate, dimethyl fluorocarbonate or the like can be used.
The lithium salt, CF 3 SO 3 Li, ( CF 3 SO 2) NLi, (C 2 F 5 SO 2) 2 NLi, LiClO 4, LiA1Cl 4, LiPF 6, LiAsF 6, LiSbF 6, LiCl, LiBr, LiI , LiC 4 F 9 SO 3 and the like. These may be used alone or in combination of two or more.
 <本固体電池>
 本実施形態に係る固体電池(「本固体電池」と称する)は、正極と、前記本負極と、当該正極および負極の間に設けられた固体電解質層とを有するものを挙げることができる。すなわち、本活物質は、負極に含まれる負極活物質として使用することができる。換言すると、本活物質は、固体電池に用いることができる。より具体的には、リチウム全固体電池に用いることができる。リチウム全固体電池は、一次電池であってもよく、二次電池であってもよいが、中でもリチウム二次電池に用いることが好ましい。
 本固体電池の形状としては、例えば、ラミネート型、円筒型及び角型等が挙げられる。
<This solid battery>
The solid-state battery according to the present embodiment (referred to as “present solid-state battery”) may include a positive electrode, the present negative electrode, and a solid electrolyte layer provided between the positive electrode and the negative electrode. That is, the present active material can be used as a negative electrode active material included in the negative electrode. In other words, the active material can be used in a solid state battery. More specifically, it can be used for a lithium all-solid-state battery. The lithium all-solid-state battery may be a primary battery or a secondary battery, but among them, it is preferably used for the lithium secondary battery.
Examples of the shape of the present solid state battery include a laminate type, a cylindrical type and a square type.
 (固体電解質層)
 前記固体電解質層は、例えば、固体電解質、バインダー及び溶剤を含むスラリーを基体上に滴下し、ドクターブレードなどで擦り切る方法、基体とスラリーを接触させた後にエアーナイフで切る方法、スクリーン印刷法等で塗膜を形成し、その後加熱乾燥を経て溶剤を除去する方法等で製造することができる。あるいは、固体電解質の粉末をプレス成形した後、適宜加工して製造することもできる。
 固体電解質としては、前述したものを使用することができる。
(Solid electrolyte layer)
The solid electrolyte layer is, for example, a method of dropping a slurry containing a solid electrolyte, a binder and a solvent onto a substrate and scraping it off with a doctor blade, a method of cutting the substrate with the slurry and then cutting with an air knife, a screen printing method, etc. It can be manufactured by a method in which a coating film is formed by, followed by heating and drying to remove the solvent. Alternatively, the solid electrolyte powder may be press-molded and then appropriately processed to be manufactured.
What was mentioned above can be used as a solid electrolyte.
 (正極)
 正極は、正極活物質(粒子状)と、バインダーと、導電材と、固体電解質、溶媒とを混合して正極合剤を調製し、この正極合剤を集電体の表面に塗布して乾燥させることで形成し、その後、必要に応じてプレスして形成することができる。あるいは、正極活物質(粒子状)と、導電材と、固体電解質の粉末を混合し、プレス成形した後、適宜加工して製造することもできる。
 正極としては、前述した本非水電解液電池と同様のものを使用することができる。
(Positive electrode)
For the positive electrode, a positive electrode active material (particulate), a binder, a conductive material, a solid electrolyte, and a solvent are mixed to prepare a positive electrode mixture, and this positive electrode mixture is applied to the surface of a current collector and dried. It can be formed by pressing and then pressing if necessary. Alternatively, the positive electrode active material (particulate), the conductive material, and the powder of the solid electrolyte may be mixed, press-molded, and then appropriately processed to be manufactured.
As the positive electrode, the same one as the above-mentioned non-aqueous electrolyte battery can be used.
 <語句の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
<Explanation of terms>
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), “preferably larger than X” or “preferably Y” is included together with “meaning X or more and Y or less” unless otherwise specified. It also means "less than".
Further, when expressed as “X or more” (X is an arbitrary number) or “Y or less” (Y is an arbitrary number), it means “preferably greater than X” or “less than Y”. It also includes intent.
 以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。但し、本発明が以下に示す実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail based on the following examples and comparative examples. However, the present invention is not limited to the examples shown below.
 <実施例1>
 ケイ素(Si)とニッケル(Ni)のインゴットを混合して加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて粒度調整を行い、合金粉末とした。
<Example 1>
Silicon (Si) and nickel (Ni) ingots are mixed, heated and melted, and the melt heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy. It was The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
 得られた合金粉末を、ナノ粒子表面改質装置(製品名「シモロイヤー」、反応装置内に回転羽根を装備)を用いて改質処理を行った。すなわち、容量2Lの容器内に、ZrOビーズ2kgと、前記合金粉末50gを入れて、アルゴン雰囲気下にて、1500rpmで3時間処理を行った。処理後の合金粉末を、乾式粉砕機を用いて解砕乃至粉砕して粒度調整を行った後、目開き75μmの篩で分級し、負極活物質としての合金粉末(サンプル)を得た。
 得られた合金粉末(サンプル)の化学分析を実施したところ、Si:63wt%、Ni:31wt%であった。
The obtained alloy powder was subjected to a reforming treatment by using a nanoparticle surface reforming device (product name “Simroyer”, equipped with a rotary blade in the reaction device). That is, 2 kg of ZrO 2 beads and 50 g of the alloy powder were placed in a container having a volume of 2 L, and the mixture was treated under an argon atmosphere at 1500 rpm for 3 hours. The alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 μm to obtain an alloy powder (sample) as a negative electrode active material.
When chemical analysis of the obtained alloy powder (sample) was performed, it was Si: 63 wt% and Ni: 31 wt %.
 <実施例2>
 ケイ素(Si)とチタン(Ti)とニッケル(Ni)のインゴットを混合して加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて粒度調整を行い、合金粉末とした。
<Example 2>
Silicon (Si), titanium (Ti), and nickel (Ni) ingots are mixed, heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type) and then rapidly cooled. A ribbon alloy was obtained. The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted using to obtain an alloy powder.
 得られた合金粉末を、ナノ粒子表面改質装置(製品名「シモロイヤ―」、反応装置内に回転羽根を装備)を用いて改質処理を行った。すなわち、容量2Lの容器内に、ZrOビーズ2kgと、合金粉末50gを入れて、アルゴン雰囲気下にて、1500rpmで3時間処理を行った。処理後の合金粉末を、乾式粉砕機を用いて解砕乃至粉砕して粒度調整を行った後、目開き75μmの篩で分級し、負極活物質としての合金粉末(サンプル)を得た。
 得られた合金粉末(サンプル)の化学分析を実施したところ、Si:70wt%、Ti:20wt%、Ni:7wt%であった。
The obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name "Shimoloyer", equipped with a rotary blade in the reaction device). That is, 2 kg of ZrO 2 beads and 50 g of alloy powder were placed in a container having a capacity of 2 L, and treatment was performed at 1500 rpm for 3 hours in an argon atmosphere. The alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 μm to obtain an alloy powder (sample) as a negative electrode active material.
When chemical analysis of the obtained alloy powder (sample) was performed, it was Si: 70 wt%, Ti: 20 wt%, Ni: 7 wt%.
 <実施例3>
 ケイ素(Si)とチタン(Ti)とコバルト(Co)のインゴットを加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。得られた急冷薄帯合金を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて、粒度調整を行い、合金粉末とした。
<Example 3>
Silicon (Si), titanium (Ti) and cobalt (Co) ingots are heated and melted, and the molten liquid heated to 1700° C. is rapidly cooled using a liquid rapid solidification device (single roll type), and a quenched ribbon alloy Got The obtained quenched ribbon alloy is roughly crushed using a dry ball mill, and then further dry crushed under a nitrogen atmosphere (atmosphere of less than 1%, the balance being vaporized nitrogen from liquid nitrogen (purity of 99.999% or more)). The particle size was adjusted by using to obtain an alloy powder.
 得られた合金粉末を、ナノ粒子表面改質装置(製品名「シモロイヤ―」、反応装置内に回転羽根を装備)を用いて改質処理を行った。すなわち、容量2Lの容器内に、ZrOビーズ2kgと、合金粉末50gを入れて、アルゴン雰囲気下にて、1500rpmで3時間処理を行った。処理後の合金粉末を、乾式粉砕機を用いて解砕乃至粉砕して粒度調整を行った後、目開き75μmの篩で分級し、負極活物質としての合金粉末(サンプル)を得た。
 得られた合金粉末(サンプル)の化学分析を実施したところ、Si:71wt%、Ti:20wt%、Co:7wt%であった。
The obtained alloy powder was subjected to a reforming treatment using a nanoparticle surface reforming device (product name “SIMOLOYER”, equipped with a rotary blade in the reaction device). That is, 2 kg of ZrO 2 beads and 50 g of alloy powder were placed in a container having a volume of 2 L, and treatment was carried out at 1500 rpm for 3 hours in an argon atmosphere. The alloy powder after the treatment was crushed or crushed using a dry crusher to adjust the particle size, and then classified with a sieve having an opening of 75 μm to obtain an alloy powder (sample) as a negative electrode active material.
When chemical analysis of the obtained alloy powder (sample) was carried out, it was Si: 71 wt %, Ti: 20 wt %, Co: 7 wt %.
 <実施例4>
 ケイ素(Si)とチタン(Ti)のインゴットを加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯合金を得た。それ以外は実施例1と同様に粗粉砕及び粒度調整を行って合金粉末とした。
<Example 4>
A silicon (Si) and titanium (Ti) ingot was heated and melted, and the melt heated to 1700° C. was rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched ribbon alloy. Other than that, coarse pulverization and grain size adjustment were performed in the same manner as in Example 1 to obtain an alloy powder.
 得られた合金粉末を、実施例1と同様にして、ナノ粒子表面改質装置(製品名「シモロイヤ―」、反応装置内に回転羽根を装備)を用いて改質処理を行った。処理後の合金粉末を、湿式粉砕機を用いて解砕乃至粉砕して粒度調整を行った後、負極活物質としての合金粉末(サンプル)を得た。
 得られた合金粉末(サンプル)の化学分析を実施したところ、Si:71wt%、Ti:22wt%であった。
The obtained alloy powder was subjected to a reforming treatment in the same manner as in Example 1 by using a nanoparticle surface reforming device (product name "Shimoloyer", equipped with a rotary blade in the reaction device). The treated alloy powder was crushed or crushed using a wet crusher to adjust the particle size, and then an alloy powder (sample) as a negative electrode active material was obtained.
When chemical analysis of the obtained alloy powder (sample) was performed, Si: 71 wt% and Ti: 22 wt% were found.
 <比較例1>
 ケイ素(Si)のインゴットを加熱溶融させ、1700℃に加熱した溶融液を、液体急冷凝固装置(単ロール型)を用いて急速冷却し、急冷薄帯金属を得た。得られた急冷薄帯金属を、乾式ボールミルを用いて粗粉砕した後、さらに窒素雰囲気(大気1%未満、残部は液体窒素からの気化窒素(純度99.999%以上))下で乾式粉砕機を用いて、粒度調整を行い、金属粉末(サンプル)とした。
 得られた金属粉末(サンプル)の化学分析を実施したところ、Si:99wt%であった。
<Comparative Example 1>
A silicon (Si) ingot was heated and melted, and the molten liquid heated to 1700° C. was rapidly cooled using a liquid rapid solidification device (single roll type) to obtain a quenched thin strip metal. The obtained quenched thin strip metal is roughly crushed by using a dry ball mill, and then further dry crusher under a nitrogen atmosphere (atmosphere less than 1%, and the balance being vaporized nitrogen from liquid nitrogen (purity 99.999% or more)). The particle size was adjusted using to obtain a metal powder (sample).
When a chemical analysis of the obtained metal powder (sample) was performed, it was Si: 99 wt %.
 <比較例2>
 ケイ素(Si)のインゴットと塊状チタンを原子比85:15(重量比76.8:23.2)で混合し、液体急冷凝固装置(単ロール型)を用いて溶解し、溶湯をアルゴンガスで、回転する銅製のロールに吹き付けて急冷し、Si-Ti合金を作製した。次いで、Si-Ti合金を遊星ボールミル装置にてアルゴンガス雰囲気中窒化シリコン製ボールを使用し、2時間粉砕して合金粉末の電極材料を得た。
<Comparative example 2>
Silicon (Si) ingot and massive titanium are mixed at an atomic ratio of 85:15 (weight ratio of 76.8:23.2) and melted using a liquid rapid solidification device (single roll type), and the molten metal is argon gas. Then, it was sprayed on a rotating copper roll and rapidly cooled to produce a Si—Ti alloy. Next, the Si—Ti alloy was crushed for 2 hours in a planetary ball mill using a silicon nitride ball in an argon gas atmosphere to obtain an alloy powder electrode material.
 <比較例3>
 固相Aには、SiとBを用い、これらを重量比19.9:0.1の混合物とした。この混合物を高周波溶解槽に投入して溶解させ、得られた合金溶湯を、単ロール法により急冷凝固させて、第一の合金塊を得た。また、固相Bには、TiとSiを用い、これらの原子比1:2の混合物とした。この混合物を高周波溶解槽に投入して溶解させ、得られた合金溶湯を、単ロール法により急冷凝固させて、組成式TiSiで表される金属間化合物からなる第二の合金塊を得た。次いで、第一の合金塊と第二の合金塊とを重量比20:80で混合した混合物を遊星ボールミルの容器内に投入し、1時間粉砕を行い、合金粉末の電極材料を得た。
<Comparative example 3>
Si and B were used for the solid phase A, and these were made into a mixture with a weight ratio of 19.9:0.1. This mixture was put into a high-frequency melting tank and melted, and the resulting molten alloy was rapidly solidified by a single roll method to obtain a first alloy ingot. Further, Ti and Si were used for the solid phase B, and a mixture of these with an atomic ratio of 1:2 was used. This mixture was put into a high-frequency melting tank and melted, and the obtained alloy melt was rapidly solidified by a single roll method to obtain a second alloy ingot composed of an intermetallic compound represented by a composition formula TiSi 2 . .. Then, a mixture obtained by mixing the first alloy ingot and the second alloy ingot at a weight ratio of 20:80 was put into a container of a planetary ball mill and pulverized for 1 hour to obtain an electrode material of alloy powder.
 <各種物性値の測定方法>
 実施例及び比較例で得られた合金粉末(サンプル)(以下では、金属粉末(サンプル)を含む)の各種物性値を次のように測定した。
<Measurement method of various physical properties>
Various physical properties of the alloy powder (sample) (including metal powder (sample) below) obtained in Examples and Comparative Examples were measured as follows.
 (組成分析)
 実施例及び比較例で得られた合金粉末(サンプル)について、誘導結合プラズマ(ICP)発光分光分析により、各元素の含有量を測定した。但し、酸素については、酸素・窒素分析装置(LECO社製)を用いて、含有量を測定した。
(Composition analysis)
With respect to the alloy powders (samples) obtained in Examples and Comparative Examples, the content of each element was measured by inductively coupled plasma (ICP) emission spectroscopy. However, regarding oxygen, the content was measured using an oxygen/nitrogen analyzer (manufactured by LECO).
 (D50
 50mlのビーカーに、実施例及び比較例で得られた合金粉末(サンプル)0.15gと、エタノールを20vol%添加したイオン交換水50mlを入れて、超音波ホモジナイザー(株式会社日本精機製作所製超音波ホモジナイザーUS-150E、チップは20φを使用)にセットし、AMPLITUDEが80%になるようにダイヤルレベルを調整し、5分間超音波をあてて、サンプルを液中に分散させて分散液を得た。
 次に、レーザー回折粒子径分布測定装置用自動試料供給機(マイクロトラック・ベル株式会社製「Microtorac SDC」)を用い、当該分散液を水溶性溶媒(エタノール20vol%含有イオン交換水)に投入した。70mL/secの流速中、マイクロトラック・ベル株式会社製レーザー回折粒度分布測定機「MT3300II」を用いて粒度分布を測定し、得られた体積基準粒度分布のチャートからD50を求めた。なお、測定の際の水溶性溶媒は60μmのフィルターを通し、溶媒屈折率を1.33、粒子透過性条件を反射とし、測定レンジを0.021~2000μm、測定時間10秒とし、1回測定により、得られた値をそれぞれの測定値とした。
(D 50)
Into a 50 ml beaker, 0.15 g of the alloy powder (sample) obtained in Examples and Comparative Examples and 50 ml of ion-exchanged water containing 20 vol% of ethanol were added, and an ultrasonic homogenizer (Nippon Seiki Seisakusho Co., Ltd. Homogenizer US-150E, 20φ tip was used), the dial level was adjusted so that AMPLITUDE was 80%, and ultrasonic waves were applied for 5 minutes to disperse the sample in the liquid to obtain a dispersion liquid. ..
Next, the dispersion was put into a water-soluble solvent (ion-exchanged water containing 20 vol% of ethanol) using an automatic sample feeder for a laser diffraction particle size distribution measuring device (“Microtorac SDC” manufactured by Microtrac Bell Co., Ltd.). .. Flow rate in 70 mL / sec, and measuring the particle size distribution using a Microtrac Bell Co. laser diffraction particle size distribution measuring instrument "MT3300II", from the chart of the resulting volume-based particle size distribution was determined D 50. The water-soluble solvent used in the measurement was passed through a 60 μm filter, the solvent refractive index was 1.33, the particle permeability condition was reflection, the measurement range was 0.021 to 2000 μm, and the measurement time was 10 seconds. The obtained values were defined as the respective measured values.
 (比表面積:SSA)
 実施例及び比較例で得られた合金粉末(サンプル)の比表面積(SSA)を次のようにして測定した。
 先ず、サンプル(粉体)1.0gを全自動比表面積測定装置Macsorb(株式会社マウンテック製)用のガラスセル(標準セル)に秤量し、オートサンプラーにセットした。窒素ガスでガラス内を置換した後、前記窒素ガス雰囲気中で250℃、15分間熱処理した。その後、窒素・ヘリウム混合ガスを流しながら4分間冷却を行った。冷却後、サンプルをBET一点法にて測定した。
 なお、冷却時及び測定時の吸着ガスは、窒素30vol%:ヘリウム70vol%の混合ガスを用いた。
(Specific surface area: SSA)
The specific surface area (SSA) of the alloy powders (samples) obtained in Examples and Comparative Examples was measured as follows.
First, 1.0 g of a sample (powder) was weighed in a glass cell (standard cell) for a fully automatic specific surface area measuring apparatus Macsorb (manufactured by Mountech Co., Ltd.) and set in an auto sampler. After replacing the inside of the glass with nitrogen gas, heat treatment was performed at 250° C. for 15 minutes in the nitrogen gas atmosphere. Then, the mixture was cooled for 4 minutes while flowing a mixed gas of nitrogen and helium. After cooling, the sample was measured by the BET single point method.
A mixed gas of 30 vol% nitrogen and 70 vol% helium was used as the adsorption gas during cooling and measurement.
 (真密度)
 実施例及び比較例で得られた合金粉末(サンプル)の真密度を次のようにして測定した。
 先ず、サンプル(粉体)をサンプルバスケット10cmの7分目まで入れて、投入したサンプル量を測定した。次に真密度測定装置BELPycno(株式会社マウンテック製)内に、サンプル入れたサンプルバスケットをセットして、装置のフタを閉め、測定を開始した。
 なお、測定には、ヘリウムガスを使用し、測定部の温度は25℃±0.1℃で管理した。
(True density)
The true densities of the alloy powders (samples) obtained in Examples and Comparative Examples were measured as follows.
First, the sample (powder) was put into a sample basket of 10 cm 3 until the 7th minute, and the amount of the put sample was measured. Next, the sample basket containing the sample was set in the true density measuring device BELPycno (manufactured by Mountech Co., Ltd.), the lid of the device was closed, and the measurement was started.
Helium gas was used for the measurement, and the temperature of the measurement part was controlled at 25° C.±0.1° C.
 (ラマン分光測定)
 実施例及び比較例で得られた合金粉末(サンプル)について、ラマン分光装置を用いて、下記条件でのラマン分光測定法により、ラマンスペクトルを得た。
 なお、粉末試料をラマン測定するときは、試料表面の凹凸が少なく粒子の密度が高いほど、励起光およびラマン光の焦点が合った空間により多くの粒子が存在し、より低いレーザーの励起パワーで高いラマン光強度を得ることができる。
 Specac社製のミニ油圧プレスおよびΦ7mmのペレット成型用ダイスを用いて、試料粉末を1ton加圧することでペレット状に成型した。
(Raman spectroscopy measurement)
Raman spectra of the alloy powders (samples) obtained in the examples and comparative examples were obtained by Raman spectroscopy under the following conditions using a Raman spectroscope.
When Raman measurement is performed on a powder sample, the smaller the unevenness of the sample surface and the higher the density of particles, the more particles are present in the space in which the excitation light and the Raman light are focused, and the lower laser excitation power is used. High Raman light intensity can be obtained.
Using a mini hydraulic press manufactured by Specac and a pellet forming die having a diameter of 7 mm, the sample powder was pressed into 1 ton to form a pellet.
 =ラマン分光測定条件=
 装置:Raman touch(ナノフォトン社製)
 励起波長:532nm
 レーザー電流:100%
 励起パワー:10.0mW
 励起パワー密度:1.85kW/cm2
 グレーティング:600gr/mm
 スリット幅:50μm
 露光時間:60秒
 対物レンズ:×20/NA0.45
 測定エリア:420μm×65μm
 測定モード:XY Averaging(AreaFlash)
=Raman spectroscopy measurement conditions=
Device: Raman touch (Nanophoton)
Excitation wavelength: 532nm
Laser current: 100%
Excitation power: 10.0mW
Excitation power density: 1.85kW/cm 2
Grating: 600gr/mm
Slit width: 50 μm
Exposure time: 60 seconds Objective lens: ×20/NA0.45
Measurement area: 420μm×65μm
Measurement mode: XY Averaging(AreaFlash)
 波数校正は、装置本体に含まれる標準試料であるSiを測定し、メインピークが520.0cm-1にあらわれるように校正した。
 ラマンスペクトルは4箇所で測定したスペクトルを平均化することで得た。なお、スペクトルのS/N比が悪く、試料由来のピークかノイズか判断が難しいときは測定箇所を増やしてスペクトルを平均化してもよい。また、スペクトル中に宇宙線によるピークが含まれることがある。宇宙線によるピークかどうかは判断することができ、測定を繰り返したときに再現性良くその波数にピークが出現していなければそのピークは宇宙線であると判断できる。
In the wave number calibration, Si, which is a standard sample contained in the apparatus body, was measured and calibrated so that the main peak appeared at 520.0 cm -1 .
The Raman spectrum was obtained by averaging the spectra measured at four points. If the S/N ratio of the spectrum is poor and it is difficult to determine whether it is a sample-derived peak or noise, the number of measurement points may be increased to average the spectrum. In addition, the spectrum may include peaks due to cosmic rays. It is possible to determine whether or not it is a cosmic ray peak, and it can be determined that the peak is a cosmic ray if the peak does not appear in the wave number with good reproducibility when the measurement is repeated.
 なお、比較例1については、励起パワーを1.0mW、露光時間を1秒に設定し、それら以外の条件は上記の測定条件にして測定した。
 比較例2については、露光時間を10秒に設定し、それら以外の条件は上記の測定条件にして測定した。
 比較例3については、露光時間を5秒に設定し、それら以外の条件は上記の測定条件にして測定した。比較例1~3については実施例と同じ励起パワーおよび露光時間で測定するとピーク強度が強すぎて検出限界を超えてしまうため、超えない条件で測定した。
In Comparative Example 1, the excitation power was set to 1.0 mW, the exposure time was set to 1 second, and the other conditions were set to the above measurement conditions.
For Comparative Example 2, the exposure time was set to 10 seconds, and the other conditions were measured as described above.
For Comparative Example 3, the exposure time was set to 5 seconds, and the other conditions were measured as above. In Comparative Examples 1 to 3, the peak intensity was too strong to exceed the detection limit when measured with the same excitation power and exposure time as those in Examples, so the measurement was performed under the conditions not exceeding.
 =ピーク解析=
 ナノフォトン社のピークフィッティングプログラムである「Peak Fitting」によりラマンスペクトル中のピークのフィッティングを実施した。ピークフィッティングにより、ピークの波数、半値全幅、面積のパラメーターを得た。ベースラインは200~610cm-1の範囲でスペクトルに対して1次直線で接線を引くように設定した。
 フィッティングに用いる関数は、500cm-1~525cm-1のピークはローレンツ関数を用い、450cm-1~490cm-1のピークはガウス関数を用いた。200~420cm-1のピークはローレンツ関数またはガウス関数のうちフィッティングが収束する関数を用いた。
=Peak analysis=
The peaks in the Raman spectrum were fitted by "Peak Fitting", which is a peak fitting program of Nanophoton. The parameters of peak wavenumber, full width at half maximum, and area were obtained by peak fitting. The baseline was set to draw a tangent line to the spectrum with a first-order straight line in the range of 200 to 610 cm −1 .
Function used for fitting, the peak of 500 cm -1 ~ 525 cm -1 is used Lorentzian peak of 450 cm -1 ~ 490 cm -1 was used a Gaussian function. For the peak at 200 to 420 cm −1, a Lorentz function or a Gaussian function with which the fitting converges was used.
 (ピーク面積比の計算)
 ピークトップが波数450cm-1~490cm-1に存在するピークをP、ピークトップが波数500cm-1~525cm-1の範囲に存在するピークをPとした。前記PとPのピークの面積比をIPB/IPCとした。
(Calculation of peak area ratio)
The peak peak top exists at a wavenumber 450cm -1 ~ 490cm -1 P B, the peak peak top is present in the range of wave number 500 cm -1 ~ 525 cm -1 was P C. The area ratio of the peaks of P B and P C was defined as I PB /I PC .
 ラマンスペクトルにおいてピークトップを有し、且つ、半値全幅が5.0cm-1以上のスペクトルを「ピーク」として判定した。したがって、半値全幅が4.9cm-1以下のスペクトルはノイズとみなした。 A spectrum having a peak top in the Raman spectrum and having a full width at half maximum of 5.0 cm −1 or more was determined as a “peak”. Therefore, a spectrum having a full width at half maximum of 4.9 cm −1 or less was regarded as noise.
 <非水電解液二次電池特性の評価>
 (電極の作製)
 実施例及び比較例で得られた合金粉末(サンプル):導電材:結着剤=85:5:10(重量%)の混合比となるようにこれらを混合し、これらをN-メチル-2-ピロリドンに分散させて負極合剤を得た。
 導電材としてはアセチレンブラックを用いた。結着剤としてはポリイミドを用いた。この負極合剤を、厚み15μmの電解銅箔上に塗布した。
 塗膜を乾燥して負極活物質層を形成し負極を得た。
 この際、塗布量は面容量(mAh/cm)を考慮して決定した。一例として面容量を2.8mAh/cmで揃えて評価することとした。例えばPure-Siの場合、充電容量を4200mAh/gと設定すると、負極活物質中に85wt%のサンプルが含まれるため、負極活物質層は0.78mg/cmが塗布量となる。充電容量が4200mAh/gよりも低いサンプルであれば、同じ面容量を得るためには塗布量を増やして調整することになる。
<Evaluation of characteristics of non-aqueous electrolyte secondary battery>
(Preparation of electrode)
The alloy powders (samples) obtained in Examples and Comparative Examples: conductive material: binder = 85:5:10 (wt%) were mixed so as to have a mixing ratio, and these were mixed with N-methyl-2. -Dispersed in pyrrolidone to obtain a negative electrode mixture.
Acetylene black was used as the conductive material. Polyimide was used as the binder. This negative electrode mixture was applied on an electrolytic copper foil having a thickness of 15 μm.
The coating film was dried to form a negative electrode active material layer to obtain a negative electrode.
At this time, the coating amount was determined in consideration of the surface capacity (mAh/cm 2 ). As an example, the surface capacity was set to 2.8 mAh/cm 2 for evaluation. For example, in the case of Pure-Si, when the charge capacity is set to 4200 mAh/g, 85 wt% of the sample is contained in the negative electrode active material, so the negative electrode active material layer has a coating amount of 0.78 mg/cm 2 . If the charge capacity of the sample is lower than 4200 mAh/g, the coating amount is increased to adjust the same surface capacity.
 (電池の作製)
 上記のようにして得られた負極を直径14mmφの円形に打ち抜き、160℃で6時間真空乾燥を施した。そして、アルゴン雰囲気下のグローブボックス内で、電気化学評価用セルTOMCEL(登録商標)を組み立てた。対極としては金属リチウムを用いた。電解液としては、カーボネート系の混合溶媒にLiPFを1mol/lになるように溶解させた電解液を用いた。セパレータとしては、ポリプロピレン製多孔質フィルムを用いた。
(Preparation of battery)
The negative electrode obtained as described above was punched into a circle having a diameter of 14 mmφ, and vacuum dried at 160° C. for 6 hours. Then, the electrochemical evaluation cell TOMCEL (registered trademark) was assembled in a glove box under an argon atmosphere. Metal lithium was used as the counter electrode. As the electrolytic solution, an electrolytic solution prepared by dissolving LiPF 6 in a carbonate-based mixed solvent so as to be 1 mol/l was used. A polypropylene porous film was used as the separator.
 (電池性能評価試験)
 上記のようにして準備した電気化学評価用セルTOMCEL(登録商標)を用いて次に記述する方法で初期活性を行った。作製した電気化学評価用セルTOMCEL(登録商標)を6時間静置した後、25℃にて0.1Cで0.01Vまで定電流定電位充電した後(電流値が0.01Cになった時点で充電終了)、0.1Cで1.0Vまで定電流放電した。充放電時の記録間隔は、300s毎、もしくは5.0mV変化毎のいずれかを満たした際に記録されるように設定した。このような設定にすることで、電圧変動が小さい領域では300s毎に記録され、電圧変動が大きい領域では5.0mV変化毎に記録されることになる。これを3サイクル繰り返した。なお、実際に設定した電流値は負極中の負極活物質の含有量から算出した。
(Battery performance evaluation test)
Initial activity was performed by the method described below using the electrochemical evaluation cell TOMCEL (registered trademark) prepared as described above. After the prepared cell for electrochemical evaluation TOMCEL (registered trademark) was allowed to stand for 6 hours, it was charged with a constant current and constant potential at 0.1 C at 25° C. to 0.01 V (when the current value reached 0.01 C). Charging was completed), and constant current discharge was performed at 0.1 C to 1.0 V. The recording interval during charging/discharging was set so that recording was performed when either 300 s or 5.0 mV change was satisfied. With such a setting, it is recorded every 300 s in the region where the voltage fluctuation is small and is recorded every 5.0 mV change in the region where the voltage fluctuation is large. This was repeated 3 cycles. The current value actually set was calculated from the content of the negative electrode active material in the negative electrode.
 (放電プロファイル形状評価)
 前述で得た1サイクル目の放電曲線をもとにして、「放電プロファイル形状」の判定を行った。すなわち、得られた放電曲線を線形近似して、相関係数の高さを比較し、「放電プロファイル形状」の指数とした。
 なお、表2には、比較例3の数値を100とした場合の指数として示した。
 この際、放電初期から放電末期までの区間で連続的に電位が変化していく、つまり直線性が高ければ、線形近似した際の相関係数は高くなり、プラトーが無い、もしくはプラトーが低減できていることを示すことになる。
(Evaluation of discharge profile shape)
The "discharge profile shape" was determined based on the discharge curve of the first cycle obtained above. That is, the obtained discharge curves were linearly approximated, the heights of the correlation coefficients were compared, and they were used as an index of the “discharge profile shape”.
In addition, in Table 2, it is shown as an index when the numerical value of Comparative Example 3 is 100.
At this time, if the potential changes continuously from the beginning of discharge to the end of discharge, that is, if the linearity is high, the correlation coefficient at the time of linear approximation becomes high and there is no plateau or the plateau can be reduced. Will be shown.
 (ハイレート特性評価)
 前述の方法で、初期活性を行った電気化学評価用セルTOMCEL(登録商標)を用いて、放電レート特性評価を行った。まず、25℃にて0.1Cで0.01Vまで定電流定電位充電した後(電流値が0.01Cになった時点で充電終了)、5Cで1.0Vまで定電流放電した。充放電時の記録間隔は、300s毎、もしくは5.0mV変化毎のいずれかを満たした際に記録されるように設定した。このような設定にすることで、電圧変動が小さい領域では300s毎に記録され、電圧変動が大きい領域では5.0mV変化毎に記録されることになる。
 5C時の放電曲線から、前述のように「放電プロファイル形状」の判定を行い、5Cでの「放電プロファイル形状」の指数とした。前述の0.1Cでの「放電プロファイル形状」指数に対する5Cでの「放電プロファイル形状」指数の比を「ハイレート特性」とした。
 なお、表2には、比較例3の数値を100とした場合の指数として示した。
(High-rate characteristic evaluation)
The discharge rate characteristics were evaluated using the electrochemically evaluated cell TOMCEL (registered trademark) that was initially activated by the method described above. First, after constant-current constant-potential charging was performed at 25C at 0.1C to 0.01V (charging was completed when the current value reached 0.01C), constant-current discharging was performed at 5C to 1.0V. The recording interval during charging/discharging was set so that recording was performed when either 300 s or 5.0 mV change was satisfied. With such a setting, it is recorded every 300 s in the region where the voltage fluctuation is small and is recorded every 5.0 mV change in the region where the voltage fluctuation is large.
From the discharge curve at 5C, the "discharge profile shape" was determined as described above and used as the index of the "discharge profile shape" at 5C. The ratio of the "discharge profile shape" index at 5C to the above-mentioned "discharge profile shape" index at 0.1C was defined as "high rate characteristic".
In addition, in Table 2, it is shown as an index when the numerical value of Comparative Example 3 is 100.
 (サイクル特性評価)
 前述と同様に、電気化学評価用セルTOMCEL(登録商標)を作製した。作製した電気化学評価用セルTOMCEL(登録商標)を6時間静置した後、25℃にて0.1Cで0.01Vまで定電流定電位充電した後(電流値が0.01Cになった時点で充電終了)、0.1Cで1.0Vまで定電流放電した。これを3サイクル繰り返した。なお、実際に設定した電流値は負極中の負極活物質の含有量から算出した。
 上記のようにして、初期活性を行った後の電気化学評価用セルTOMCEL(登録商標)を用いて、下記に記述する方法で充放電試験し、45℃サイクル特性を評価した。電池を充放電する環境温度を45℃となるようにセットした環境試験機内にセルを入れて、充放電できるように準備し、セル温度が環境温度になるように、5時間静置した。その後、充放電範囲を0.01V-1.0Vとし、充電は0.1C定電流定電位、放電は0.1C定電流で1サイクル充放電行った後に、1Cにて充放電サイクルを98回行い、その後、0.1Cにて充放電サイクルを1サイクル行った。Cレートは初期活性時の25℃、3サイクル目の放電容量を元に計算した。
 100サイクル目の放電容量を2サイクル目の放電容量で割り算して求めた数値の百分率(%)を45℃サイクル特性値として求めた。
 なお、表2には、比較例3の数値を100とした場合の指数で示した。
(Cycle characteristic evaluation)
A cell for electrochemical evaluation, TOMCEL (registered trademark), was prepared in the same manner as described above. After the prepared cell for electrochemical evaluation TOMCEL (registered trademark) was allowed to stand for 6 hours, it was charged with a constant current and constant potential at 0.1 C at 25° C. to 0.01 V (when the current value reached 0.01 C). Charging was completed), and constant current discharge was performed at 0.1 C to 1.0 V. This was repeated 3 cycles. The current value actually set was calculated from the content of the negative electrode active material in the negative electrode.
As described above, using the electrochemical evaluation cell TOMCEL (registered trademark) after the initial activation, a charge/discharge test was performed by the method described below, and the 45° C. cycle characteristics were evaluated. The cell was placed in an environmental tester set so that the environmental temperature for charging/discharging the battery was 45° C., the battery was prepared for charging/discharging, and the cell was allowed to stand for 5 hours so as to reach the environmental temperature. After that, the charging/discharging range is set to 0.01V-1.0V, charging is performed at 0.1C constant current/constant potential and discharging is performed at 0.1C constant current for 1 cycle, and then 1C is charged/discharged 98 times. After that, one charge/discharge cycle was performed at 0.1C. The C rate was calculated based on the discharge capacity at 25° C. at the time of initial activation and the third cycle.
The percentage (%) of the numerical value obtained by dividing the discharge capacity at the 100th cycle by the discharge capacity at the second cycle was determined as the 45°C cycle characteristic value.
In addition, in Table 2, it is shown as an index when the numerical value of Comparative Example 3 is 100.
 <電池特性の評価>
 実施例及び比較例で得られた合金粉末(サンプル)を負極活物質として用いて電極合剤を調整し、硫化物系全固体電池を作製して、電池特性評価を行った。対極としては、InとLiの箔、固体電解質粉末として組成式:Li5.4PS4.4Cl0.8Br0.8で示される粉末を用いた。
<Evaluation of battery characteristics>
The alloy powders (samples) obtained in the examples and comparative examples were used as the negative electrode active material to prepare an electrode mixture, to prepare a sulfide-based all-solid-state battery, and to evaluate the battery characteristics. A foil of In and Li was used as the counter electrode, and a powder represented by the composition formula: Li 5.4 PS 4.4 Cl 0.8 Br 0.8 was used as the solid electrolyte powder.
 (合剤調整)
 電極合材粉末は、活物質粉末、固体電解質粉末及び導電剤(VGCF(登録商標))粉末を、質量比で4.5:86.2:9.3の割合で乳鉢混合することで調製し、10MPaで1軸プレス成型して合剤ペレットを得た。
(Mixture adjustment)
The electrode mixture powder is prepared by mixing the active material powder, the solid electrolyte powder, and the conductive agent (VGCF (registered trademark)) powder in a mortar in a mass ratio of 4.5:86.2:9.3. Uniaxial press molding was performed at 10 MPa to obtain a mixture pellet.
 (固体電池セルの作製)
 上下を開口したセラミック製の円筒(開口径10mm)の下側開口部を電極(SUS製)で閉塞し、0.10g固体電解質を注ぎ、上側開口部を電極で挟み、10MPaで1軸プレス成型し、電解質層を作製した。上側の電極を一度取り外し、シリコン活物質からなる電極合剤ペレットを挿入し、上側の電極を再度装着し、42MPaで1軸プレス成型し、合剤ペレットと電解質層を圧着した。下側の電極を一度取り外し、InとLiの箔を挿入し、下側の電極を再度装着し、上側電極と下側電極間を6N・mのトルク圧で4か所ねじ止めし、1.6mAh相当の全固体電池を作製した。この際、上記全固体電池セルの作製においては、平均露点-45℃の乾燥空気で置換されたグローブボックス内で行った。
(Preparation of solid-state battery cell)
The lower opening of a ceramic cylinder (opening diameter 10 mm) with upper and lower openings was closed with an electrode (made of SUS), 0.10 g of solid electrolyte was poured, the upper opening was sandwiched by the electrodes, and uniaxial press molding was performed at 10 MPa. Then, the electrolyte layer was produced. The upper electrode was once removed, an electrode mixture pellet made of a silicon active material was inserted, the upper electrode was mounted again, and uniaxial press molding was performed at 42 MPa, and the mixture pellet and the electrolyte layer were pressure bonded. Remove the lower electrode once, insert a foil of In and Li, attach the lower electrode again, and screw between the upper electrode and the lower electrode at a torque pressure of 6 N·m at four locations, and 1. An all-solid-state battery equivalent to 6 mAh was produced. At this time, the production of the all-solid-state battery cell was performed in a glove box which was replaced with dry air having an average dew point of −45° C.
 <電池性能評価試験>
 (充電容量の評価)
 電池特性評価における容量確認は、25℃に保たれた環境試験機内に全固体電池を入れて充放電測定装置に接続して評価した。セル容量が1.6mAhであるため、1Cは1.6mAとなる。電池の充放電は0.1C、CCCV方式で-0.62Vまで充電(電流値が0.01Cになった時点で充電終了)し、初回充電容量を得た。放電は0.1C、CC方式で0.88Vまで放電した。
 なお、充放電時の記録間隔は、10s毎、もしくは1mV変化毎のいずれかを満たした際に1点記録されるように設定した。このような設定にすることで、電圧変動が小さい領域では10s毎に記録され、電圧変動が大きい領域では1mV変化毎に記録されることになる。
 初回充電容量が3000mAh/gより大きいサンプルを「A」、1200mAh/g以上3000mAh/g以下のサンプル「B」、1200mAh/g未満のサンプルを「C」として表3に示した。なお、Cに分類したものは、容量不足であるので、評価に値しないため、それ以降の測定を中止した。
<Battery performance evaluation test>
(Evaluation of charge capacity)
The capacity confirmation in the battery characteristic evaluation was evaluated by putting the all-solid-state battery in an environmental tester kept at 25° C. and connecting it to a charge/discharge measuring device. Since the cell capacity is 1.6 mAh, 1 C is 1.6 mA. The charge/discharge of the battery was 0.1 C, and the CCCV system was charged to -0.62 V (charging was completed when the current value reached 0.01 C) to obtain the initial charge capacity. The discharge was 0.1 C, and CC discharge was performed up to 0.88 V.
The recording interval during charging/discharging was set so that one point was recorded when either 10 s or 1 mV change was satisfied. With such a setting, recording is performed every 10 s in the area where the voltage fluctuation is small, and is recorded every 1 mV change in the area where the voltage fluctuation is large.
A sample having an initial charge capacity of more than 3000 mAh/g is shown in Table 3 as “A”, a sample “B” of 1200 mAh/g or more and 3000 mAh/g or less, and a sample “C” of less than 1200 mAh/g. In addition, since the materials classified into C do not have sufficient capacity because of insufficient capacity, the subsequent measurements were stopped.
 (放電プロファイル形状評価)
 前述で得た放電曲線をもとにして、「放電プロファイル形状」の判定を行った。すなわち、得られた放電曲線を線形近似して、相関係数の高さを比較し、「放電プロファイル形状」の指数とした。
 なお、表3には、比較例2の数値を100とした場合の指数として示した。この際、放電初期から放電末期までの区間で連続的に電位が変化していく、つまり直線性が高ければ、線形近似した際の相関係数は高くなり、プラトー領域が無い、若しくは、プラトー領域が小さいことを示すことになる。
(Evaluation of discharge profile shape)
The "discharge profile shape" was determined based on the discharge curve obtained above. That is, the obtained discharge curves were linearly approximated, the heights of the correlation coefficients were compared, and they were used as an index of the “discharge profile shape”.
In addition, in Table 3, it is shown as an index when the numerical value of Comparative Example 2 is 100. At this time, if the potential changes continuously in the section from the initial stage of discharge to the final stage of discharge, that is, if the linearity is high, the correlation coefficient at the time of linear approximation becomes high and there is no plateau region, or there is a plateau region. Is small.
 (ハイレート特性評価)
 前述の充放電後のセルを用いて、ハイレート特性評価を行った。評価は引き続き、25℃に保たれた環境試験機内に入れたまま行った。前述の充電容量を元にして、電池容量を算出し、Cレートを決定した。
 次に、0.1C、CCCV方式で、-0.62Vまで充電(電流値が0.01Cになった時点で充電終了)したのち、0.1C、CC方式で0.88Vまで放電を行った。このときの放電容量を0.1C放電容量(A)とした。
 続いて、0.1C、CCCV方式で、-0.62Vまで充電(電流値が0.01Cになった時点で充電終了)したのち、5C、CC方式で0.88Vまで放電した。このときの放電容量を5C放電容量とした。
 「5C放電容量/0.1C放電容量(A)×100」を算出し、ハイレート特性値として評価した。なお、表3には、比較例2の数値を100とした場合の指数として示した。
(High-rate characteristic evaluation)
High-rate characteristic evaluation was performed using the above-mentioned charged and discharged cells. The evaluation was carried out continuously in the environmental tester kept at 25°C. The battery capacity was calculated based on the above-mentioned charge capacity, and the C rate was determined.
Next, after charging to -0.62V by the 0.1C, CCCV method (charging ends when the current value reaches 0.01C), discharging is performed to 0.88V by the 0.1C, CC method. .. The discharge capacity at this time was set to 0.1 C discharge capacity (A).
Subsequently, the battery was charged to −0.62V by the 0.1C CCCV method (charging was completed when the current value reached 0.01C), and then discharged to 0.88V by the 5C CC method. The discharge capacity at this time was defined as 5C discharge capacity.
“5 C discharge capacity/0.1 C discharge capacity (A)×100” was calculated and evaluated as a high rate characteristic value. In addition, in Table 3, it is shown as an index when the numerical value of Comparative Example 2 is 100.
 (サイクル特性評価)
 前述のハイレート特性評価を行ったセルを用いて、サイクル評価を行った。評価は引き続き、25℃に保たれた環境試験機内に入れたまま行った。まず、事前準備として、前述のセルの残放電を行うため、初期電流値を5Cして、CV方式で、0.88Vで放電(電流値が0.01Cになった時点で放電終了)を行った。
 次に、0.1C、CCCV方式で、-0.62Vまで充電(電流値が0.01Cになった時点で充電終了)したのち、0.1C、CC方式で0.88Vまで放電を行った。このときの放電容量を0.1C放電容量(B)とした。
 「0.1C放電容量(B)」/0.1C放電容量(A)×100」を算出し、サイクル特性値として評価した。なお、表3には比較例2の数値を100とした指数として示した。
(Cycle characteristic evaluation)
Cycle evaluation was performed using the cell that underwent the high rate characteristic evaluation described above. The evaluation was carried out continuously in the environmental tester kept at 25°C. First, as a preliminary preparation, in order to perform the above-mentioned residual discharge of the cell, the initial current value is set to 5 C, and the CV method is used to perform discharge at 0.88 V (discharge is completed when the current value reaches 0.01 C). It was
Next, after charging to -0.62V by the 0.1C, CCCV method (charging ends when the current value reaches 0.01C), discharging is performed to 0.88V by the 0.1C, CC method. .. The discharge capacity at this time was set to 0.1 C discharge capacity (B).
“0.1 C discharge capacity (B)”/0.1 C discharge capacity (A)×100” was calculated and evaluated as a cycle characteristic value. In Table 3, the index of Comparative Example 2 is set as 100 and shown as an index.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記実施例及びこれまで発明者が行ってきた試験結果から、シリコンと、化学式MSi(ここで、x及びyは、0.1≦x/y≦7.0を満たし、Mは、Si以外の半金属元素及び金属元素のうちの1種又は2種以上である。)で表される化合物と、を含有する活物質であり、
 前記活物質中の前記Mの含有量は5wt%より多く、38wt%未満であり、
 ラマン分光測定法により測定して得られるラマンスペクトルにおいて、波数200cm-1~420cm-1に前記化学式MxSiyで表される化合物に由来する少なくとも一つ以上のピークPを有しており、波数450cm-1~490cm-1に少なくとも一つ以上のピークPを有しており、且つ波数500cm-1~525cm-1にピークPが少なくとも一つ現れ、前記PとPのピークの面積比をIPB/IPCが0.5以上である活物質であれば、サイクル特性を高めることができ、放電プロファイルにおけるプラトー領域を低減若しくは無くすことができ、さらにはハイレート特性を向上できることが分かった。
 
From the above examples and the test results conducted by the inventor so far, silicon and the chemical formula M x Si y (where x and y satisfy 0.1≦x/y≦7.0, and M is A compound represented by one or more of a semi-metal element other than Si and a metal element), and an active material containing:
The content of M in the active material is more than 5 wt% and less than 38 wt %,
In the Raman spectrum obtained by the Raman spectroscopic measurement method, at least one peak P A derived from the compound represented by the chemical formula MxSiy is present at a wave number of 200 cm −1 to 420 cm −1 , and a wave number of 450 cm has at least one or more peaks P B to -1 ~ 490 cm -1, and the wave number 500 cm -1 ~ 525 cm -1 of at least one manifestation peak P C is the area of the peak of the P B and P C It has been found that an active material having a ratio of I PB /I PC of 0.5 or more can enhance the cycle characteristics, reduce or eliminate the plateau region in the discharge profile, and further improve the high rate characteristics. It was

Claims (7)

  1.  シリコンと、化学式MSi(ここで、x及びyは、0.1≦x/y≦7.0を満たし、Mは、Si以外の半金属元素及び金属元素のうちの1種又は2種以上である。)で表される化合物と、を含有する活物質であり、
     前記活物質中の前記Mの含有量は5wt%より多く、38wt%未満であり、
     ラマン分光測定法により測定して得られるラマンスペクトルにおいて、波数200cm-1~420cm-1に少なくとも一つ以上のピークPを有しており、波数450cm-1~490cm-1に少なくとも一つ以上のピークPを有しており、且つ波数500cm-1~525cm-1にピークPが少なくとも一つ現れ、前記Pと前記Pとのピークの面積比(IPB/IPC)が0.5以上である活物質。
    Silicon and a chemical formula M x Si y (where x and y satisfy 0.1≦x/y≦7.0, and M is one or two of metalloid elements and metal elements other than Si. And a compound represented by the formula (1) or more.
    The content of M in the active material is more than 5 wt% and less than 38 wt %,
    In the Raman spectrum obtained by measuring the Raman spectroscopy, has at least one or more peaks P A at a wavenumber 200 cm -1 ~ 420 cm -1, at least one at a wavenumber of 450cm -1 ~ 490cm -1 of has a peak P B, and the wave number 500 cm -1 ~ 525 cm -1 appeared one peak P C is at least, the ratio of peak areas between the P B and the P C (I PB / I PC ) is An active material of 0.5 or more.
  2.  前記ピークPの半値全幅が40cm-1以上である請求項1に記載の活物質。 The active material according to claim 1, wherein the full width at half maximum of the peak P B is 40 cm −1 or more.
  3.  前記Mは、B、Ti、V、Mn、Fe、Co、Ni、Cu、Y、Zr、Nb、Mo、Ta及びWのうちの1種又は2種以上の元素である請求項1又は2に記載の活物質。 The M is one or more elements selected from the group consisting of B, Ti, V, Mn, Fe, Co, Ni, Cu, Y, Zr, Nb, Mo, Ta and W. 3. The listed active material.
  4.  比表面積(SSA)が3.0m/g以上である請求項1~3の何れかに記載の活物質。 The active material according to any one of claims 1 to 3, which has a specific surface area (SSA) of 3.0 m 2 /g or more.
  5.  リチウム二次電池用の負極活物質として使用される請求項1~4の何れかに記載の活物質。 The active material according to any one of claims 1 to 4, which is used as a negative electrode active material for a lithium secondary battery.
  6.  請求項1~5の何れかに記載の活物質を含有する負極。 A negative electrode containing the active material according to any one of claims 1 to 5.
  7.  硫化物固体電解質と、請求項1~5の何れかに記載の活物質と、を備える固体電池。
     
     
    A solid battery comprising a sulfide solid electrolyte and the active material according to claim 1.

PCT/JP2020/005305 2019-02-13 2020-02-12 Active material WO2020166599A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020572269A JPWO2020166599A1 (en) 2019-02-13 2020-02-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-023491 2019-02-13
JP2019023491 2019-02-13

Publications (1)

Publication Number Publication Date
WO2020166599A1 true WO2020166599A1 (en) 2020-08-20

Family

ID=72044922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005305 WO2020166599A1 (en) 2019-02-13 2020-02-12 Active material

Country Status (2)

Country Link
JP (1) JPWO2020166599A1 (en)
WO (1) WO2020166599A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273182A (en) * 2006-03-30 2007-10-18 Sony Corp Current collector, negative electrode and battery
JP2013179033A (en) * 2012-02-01 2013-09-09 Sanyo Special Steel Co Ltd Silicon-based alloy negative electrode material
JP2014078400A (en) * 2012-10-10 2014-05-01 Toyota Motor Corp Slurry for sulfide-based solid battery negative electrode, sulfide-based solid battery negative electrode and manufacturing method thereof, and sulfide-based solid battery and manufacturing method thereof
JP2014086222A (en) * 2012-10-22 2014-05-12 Idemitsu Kosan Co Ltd Method for manufacturing secondary battery
JP2016225143A (en) * 2015-05-29 2016-12-28 エルジー・ケム・リミテッド Negative electrode material for secondary battery and nonaqueous electrolyte secondary battery using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273182A (en) * 2006-03-30 2007-10-18 Sony Corp Current collector, negative electrode and battery
JP2013179033A (en) * 2012-02-01 2013-09-09 Sanyo Special Steel Co Ltd Silicon-based alloy negative electrode material
JP2014078400A (en) * 2012-10-10 2014-05-01 Toyota Motor Corp Slurry for sulfide-based solid battery negative electrode, sulfide-based solid battery negative electrode and manufacturing method thereof, and sulfide-based solid battery and manufacturing method thereof
JP2014086222A (en) * 2012-10-22 2014-05-12 Idemitsu Kosan Co Ltd Method for manufacturing secondary battery
JP2016225143A (en) * 2015-05-29 2016-12-28 エルジー・ケム・リミテッド Negative electrode material for secondary battery and nonaqueous electrolyte secondary battery using the same

Also Published As

Publication number Publication date
JPWO2020166599A1 (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP4865556B2 (en) Multiphase silicon-containing electrodes for lithium ion batteries
KR101884476B1 (en) Negative electrode material for lithium ion battery
KR100790271B1 (en) Non-aqueous electrolyte secondary battery and production method thereof
JP5790282B2 (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
CA2752844A1 (en) Method for preparing a particulate of si or siox-based anode material, and material thus obtained
JP5513689B1 (en) Anode active material for non-aqueous electrolyte secondary battery
TWI635645B (en) Si-based eutectic alloy for negative electrode active material of power storage device and method for producing same
WO2015041063A1 (en) Composite particles of silicon phase-containing substance and graphite, and method for producing same
JP6601937B2 (en) Negative electrode active material, negative electrode employing the same, lithium battery, and method for producing the negative electrode active material
JP2014107132A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery
US10483531B2 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries
WO2020166658A1 (en) Active material
JP2016035825A (en) Negative electrode active material for lithium ion secondary battery, and manufacturing method therefor and negative electrode and battery
WO2020166655A1 (en) Active material
JP6978563B2 (en) Si-based negative electrode active material
WO2020166599A1 (en) Active material
JP2019179731A (en) All solid-state battery negative electrode and all solid lithium secondary battery
JP7337580B2 (en) Anode materials for lithium-ion batteries containing multicomponent silicides and silicon
WO2020166601A1 (en) Active material
JP2018098018A (en) Negative electrode active material for lithium ion secondary battery and manufacturing method thereof, negative electrode, and battery
WO2015163398A1 (en) Negative electrode active substance for non-aqueous electrolyte secondary batteries
WO2022202357A1 (en) Active material and method for producing same
JP7443851B2 (en) Powder material for negative electrode of lithium ion battery and its manufacturing method
JP2015138625A (en) Negative electrode active material for lithium ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572269

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20755116

Country of ref document: EP

Kind code of ref document: A1