JP2003309036A - Multilayered electronic parts and method of manufacturing the same - Google Patents

Multilayered electronic parts and method of manufacturing the same

Info

Publication number
JP2003309036A
JP2003309036A JP2002111607A JP2002111607A JP2003309036A JP 2003309036 A JP2003309036 A JP 2003309036A JP 2002111607 A JP2002111607 A JP 2002111607A JP 2002111607 A JP2002111607 A JP 2002111607A JP 2003309036 A JP2003309036 A JP 2003309036A
Authority
JP
Japan
Prior art keywords
electronic component
dielectric
glass
dielectric layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002111607A
Other languages
Japanese (ja)
Other versions
JP3935762B2 (en
Inventor
Daisuke Fukuda
大輔 福田
Yasushi Yamaguchi
泰史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002111607A priority Critical patent/JP3935762B2/en
Publication of JP2003309036A publication Critical patent/JP2003309036A/en
Application granted granted Critical
Publication of JP3935762B2 publication Critical patent/JP3935762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide multilayered electronic parts which have high insulation performance even when a dielectric layer is thin and whose reliability in a high temperature load test is improved, and to provide a manufacturing method thereof. <P>SOLUTION: In the multilayered electronic parts, a pair of external electrodes 3 and internal electrodes 9 alternately connected thereto are formed on the end surfaces of an electronic part main body 1, by alternately laminating a plurality of the dielectric layers 7 containing glass and the internal electrode layers 9. The glass disperses and exists between dielectric crystal particles 21 in a particle state, the relationship of D/t≤0.5 is satisfied when the thickness of the dielectric layer 7 is (t), and the maximum diameter of the glass particles 25 is D. The occupied area by the void 27 on the cross section of the electronic part main body 1 is 1% or less. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、積層型電子部品お
よびその製法に関し、特に、極めて薄い誘電体層を有す
る積層型電子部品およびその製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated electronic component and a manufacturing method thereof, and more particularly to a laminated electronic component having an extremely thin dielectric layer and a manufacturing method thereof.

【0002】[0002]

【従来技術】近年、電子機器の小型化、高密度化に伴
い、積層型電子部品、例えば、積層セラミックコンデン
サは小型高容量化が求められており、このため誘電体層
の積層数の増加と誘電体層の薄層化が図られている。
2. Description of the Related Art In recent years, with the miniaturization and high density of electronic equipment, multilayer electronic parts, for example, monolithic ceramic capacitors, are required to have a small size and a high capacity, which leads to an increase in the number of laminated dielectric layers. The dielectric layer has been made thinner.

【0003】このような積層セラミックコンデンサ等の
ための誘電体磁器を形成するための原料としては、例え
ば、特開平9−35989号公報に開示されるようなも
のが知られている。この公報には、原料の粒径がD50
で0.6〜1.0μmのセラミック原料を用いて、厚み
が11μmの誘電体グリーンシートを形成し、焼成を1
270〜1330℃の温度で行うことにより、静電容量
を安定にし、信頼性に優れた積層セラミックコンデンサ
を容易に得ることができる、と記載されている。
As a raw material for forming a dielectric ceramic for such a monolithic ceramic capacitor or the like, for example, one disclosed in Japanese Patent Laid-Open No. 9-35989 is known. In this publication, the particle size of the raw material is D50.
Then, a ceramic green material having a thickness of 0.6 to 1.0 μm is used to form a dielectric green sheet having a thickness of 11 μm, and the firing is performed 1
It is described that by carrying out at a temperature of 270 to 1330 ° C., it is possible to stabilize the capacitance and easily obtain a multilayer ceramic capacitor having excellent reliability.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開平
9−35989号公報に開示された積層型電子部品の製
法では、上記のように、厚みが11μmの誘電体グリー
ンシートを用いて形成される積層セラミックコンデンサ
の場合には優れた特性を得ることができるものの、近年
の積層セラミックコンデンサの小型高容量化に伴って、
誘電体層の厚みが、例えば、3μm以下に極めて薄層化
された場合には、用いられる原料の粒径がD50で0.
6〜1.0μmの範囲に粒度調整されたとしても、原料
中には多くの粗大粒子が存在するため、焼成後におい
て、そのガラス粉末の成分であるBaO−SrO−Li
O−SiO2により形成されるガラス粒子が誘電体層を
貫通するように形成され、さらには、このように粗大な
ガラス粉末が焼結することにより誘電体層中のボイドが
多くなり、このようにガラス粒子やボイドが存在する部
分では厚み方向の電界強度が低下するために誘電体層の
絶縁抵抗が低下し、特に、高温負荷試験において絶縁不
良が発生しやすいという問題があった。
However, in the method of manufacturing a laminated electronic component disclosed in Japanese Patent Laid-Open No. 9-35989, a laminated body formed by using a dielectric green sheet having a thickness of 11 μm as described above. Although excellent characteristics can be obtained in the case of a ceramic capacitor, with the recent increase in the size and capacity of monolithic ceramic capacitors,
When the thickness of the dielectric layer is extremely thin, for example, 3 μm or less, the grain size of the raw material used is D50.
Even if the particle size is adjusted to the range of 6 to 1.0 μm, since many coarse particles are present in the raw material, after firing, BaO—SrO—Li, which is a component of the glass powder, is included.
Glass particles formed of O—SiO 2 are formed so as to penetrate the dielectric layer, and further, sintering of such coarse glass powder increases the number of voids in the dielectric layer. In the area where glass particles and voids are present, the electric field strength in the thickness direction is reduced, so that the insulation resistance of the dielectric layer is reduced, and in particular, insulation failure is likely to occur in the high temperature load test.

【0005】従って、本発明は、誘電体層を薄層化して
も高い絶縁性を有し、高温負荷試験における信頼性を向
上できる積層型電子部品およびその製法を提供すること
を目的とする。
Therefore, it is an object of the present invention to provide a laminated electronic component which has a high insulating property even when the dielectric layer is made thin and which can improve the reliability in a high temperature load test, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明の積層型電子部品
は、ガラスを含む誘電体層と、内部電極層とを交互に複
数積層してなる電子部品本体の端面に、前記内部電極層
が交互に接続される一対の外部電極をそれぞれ形成して
なる積層型電子部品において、前記ガラスが誘電体結晶
粒子間に粒子状に分散して存在し、前記誘電体層の厚み
をt、前記ガラスの最大径をDとしたときに、D/t≦
0.5の関係を満足するとともに、前記電子部品本体断
面におけるボイドの面積占有率が1%以下であることを
特徴とする。
According to the laminated electronic component of the present invention, the internal electrode layer is formed on the end face of the electronic component main body formed by alternately laminating a plurality of dielectric layers containing glass and internal electrode layers. In a laminated electronic component formed by respectively forming a pair of external electrodes that are alternately connected, the glass is present in the form of particles dispersed among dielectric crystal grains, the thickness of the dielectric layer is t, and the glass is D is the maximum diameter of
The relationship of 0.5 is satisfied, and the area occupancy of voids in the cross section of the electronic component body is 1% or less.

【0007】このような構成によれば、誘電体層の絶縁
性に大きな影響を及ぼすと考えられているガラスの最大
径をD/t≦0.5と、誘電体層の厚みよりも小さくし
かつボイドの面積占有率を1%以下と減らすことによ
り、誘電体層全体における電界強度が高まり絶縁性の低
下が抑制され、特に、高温負荷試験における絶縁不良の
発生を抑制できる。
According to this structure, the maximum diameter of the glass, which is considered to have a great influence on the insulating property of the dielectric layer, is D / t ≦ 0.5, which is smaller than the thickness of the dielectric layer. Moreover, by reducing the area occupancy of the voids to 1% or less, the electric field strength in the entire dielectric layer is increased and the deterioration of the insulating property is suppressed, and in particular, the occurrence of insulation failure in the high temperature load test can be suppressed.

【0008】上記積層型電子部品では、誘電体層中のガ
ラス粒子が誘電体結晶粒子100質量部に対して0.8
〜1.5質量部であることが望ましい。ガラス量をこの
範囲とすることにより誘電体層を緻密化できるととも
に、比誘電率を高め、誘電体層の絶縁性を向上できる。
In the above laminated electronic component, the glass particles in the dielectric layer are 0.8 with respect to 100 parts by mass of the dielectric crystal particles.
It is desirable that the amount is ˜1.5 parts by mass. By setting the amount of glass in this range, the dielectric layer can be densified, the relative dielectric constant can be increased, and the insulating property of the dielectric layer can be improved.

【0009】上記積層型電子部品では、誘電体層の厚み
が3μm以下であることが望ましい。誘電体層の厚みが
3μm以下と薄くなればなるほど、誘電体層中に形成さ
れるガラスによる絶縁性への影響が大きくなり、静電容
量をたかめることができることから、本発明では、誘電
体層厚みが3μm以下の積層型電子部品への適用が効果
的である。
In the above laminated electronic component, the thickness of the dielectric layer is preferably 3 μm or less. As the thickness of the dielectric layer is reduced to 3 μm or less, the influence of the glass formed in the dielectric layer on the insulating property is increased, and the capacitance can be increased. Therefore, in the present invention, the dielectric layer is used. It is effective to apply to a laminated electronic component having a thickness of 3 μm or less.

【0010】本発明の積層型電子部品の製法は、誘電体
グリーンシートと、内部電極パターンとを交互に複数積
層して形成した電子部品本体成形体を焼成する積層型電
子部品の製法であって、前記誘電体グリーンシートが、
誘電体粉末100質量部に対して、Liおよび/または
Bを含み粒径D50が0.4〜0.7μmであるガラス
粉末を0.8〜1.5質量部含有することを特徴とす
る。
The method for producing a laminated electronic component of the present invention is a method for producing a laminated electronic component in which a body of an electronic component body formed by alternately laminating a plurality of dielectric green sheets and internal electrode patterns is fired. , The dielectric green sheet,
It is characterized in that 0.8 to 1.5 parts by mass of glass powder containing Li and / or B and having a particle diameter D50 of 0.4 to 0.7 μm is contained with respect to 100 parts by mass of the dielectric powder.

【0011】このような製法によれば、まず、ガラス粉
末の粒径を上記の範囲とすることにより、粗大粒子によ
る凹凸の無い均質な誘電体グリーンシートを容易に形成
できる。
According to such a manufacturing method, first, by setting the particle diameter of the glass powder within the above range, it is possible to easily form a homogeneous dielectric green sheet without irregularities due to coarse particles.

【0012】また、誘電体粉末に対するガラス粉末量を
上記の範囲とすることにより、焼成後においてもガラス
粉末の偏析を抑え、誘電体層の厚みに対して粗大なガラ
スの形成を抑制でき、また、ガラスの粗大化によるボイ
ドの生成を抑制できる。即ち、誘電体粉末に対するガラ
ス粉末量が少ないために、誘電体層を主として構成する
結晶粒子間に存在するガラスやボイドからなる低抵抗相
が少なくなり、誘電体層の絶縁性の高い積層型電子部品
を容易に形成できる。
Further, by setting the glass powder amount relative to the dielectric powder within the above range, segregation of the glass powder can be suppressed even after firing, and formation of coarse glass with respect to the thickness of the dielectric layer can be suppressed. The generation of voids due to the coarsening of glass can be suppressed. That is, since the amount of glass powder relative to the dielectric powder is small, the low resistance phase composed of glass and voids existing between the crystal grains that mainly constitute the dielectric layer is reduced, and the laminated electron with high insulation of the dielectric layer is reduced. Parts can be easily formed.

【0013】また、上記積層型電子部品の製法では、誘
電体グリーンシートの厚みが4μm以下であることが望
ましい。本発明の製法によれば、用いるガラス粉末の粒
径が微細な径に制御されていることから、誘電体グリー
ンシートの厚みが4μm以下と極めて薄くなっても粗大
粒子による凹凸のない均質なものを容易に形成できる。
Further, in the method of manufacturing the laminated electronic component, it is desirable that the thickness of the dielectric green sheet is 4 μm or less. According to the production method of the present invention, since the particle diameter of the glass powder used is controlled to be a fine diameter, even if the thickness of the dielectric green sheet is as thin as 4 μm or less, it is a homogeneous material having no unevenness due to coarse particles. Can be easily formed.

【0014】上記積層型電子部品の製法では、ガラス粉
末の粒径比が、D50/D90≧0.7であることが望
ましい。このように、ガラス粉末の粒度分布を狭くする
ことにより、誘電体層中に形成されるガラスの偏析をさ
らに抑制できるため、ガラスの粗大化による誘電体層中
での貫通を防止できるとともに、ボイドを低減できるこ
とから薄層化した誘電体層であっても高い絶縁抵抗を有
する誘電体層を容易に形成できる。
In the method for manufacturing the above-mentioned laminated electronic component, it is desirable that the particle diameter ratio of the glass powder is D50 / D90 ≧ 0.7. In this way, by narrowing the particle size distribution of the glass powder, segregation of the glass formed in the dielectric layer can be further suppressed, so that penetration of the glass due to coarsening of the glass can be prevented and voids can be prevented. Therefore, it is possible to easily form a dielectric layer having a high insulation resistance even with a thinned dielectric layer.

【0015】[0015]

【発明の実施の形態】(構造)本発明の積層型電子部品
である積層セラミックコンデンサについて、図1の概略
断面図をもとに詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION (Structure) A laminated ceramic capacitor which is a laminated electronic component of the present invention will be described in detail with reference to the schematic sectional view of FIG.

【0016】本発明の積層型電子部品は、電子部品本体
1の両端部に外部電極3を形成して構成されている。
The laminated electronic component of the present invention is constructed by forming external electrodes 3 on both ends of the electronic component body 1.

【0017】外部電極3は、例えば、CuもしくはCu
とNiの合金ペーストを焼き付けて形成されている。
The external electrode 3 is, for example, Cu or Cu.
And an Ni alloy paste are baked.

【0018】電子部品本体1は、誘電体層7と内部電極
層9とを交互に積層してなる容量部11と、その容量部
11の周囲に誘電体層7と同一材料からなり静電容量に
寄与しない非容量部13が形成されている。
The electronic component body 1 has a capacitance portion 11 formed by alternately laminating dielectric layers 7 and internal electrode layers 9, and a capacitance of the same material as that of the dielectric layer 7 around the capacitance portion 11. The non-capacitance portion 13 that does not contribute to

【0019】誘電体層7は、シート状のセラミック焼結
体であり、例えば、BaTiO3を主成分とする誘電体
グリーンシートを焼成して形成した誘電体磁器からな
る。
The dielectric layer 7 is a sheet-shaped ceramic sintered body, and is composed of, for example, a dielectric ceramic formed by firing a dielectric green sheet containing BaTiO 3 as a main component.

【0020】ここで、容量部11を構成する誘電体層7
の厚みtは、静電容量を高めるという理由から3μm以
下であることが望ましく、特に、静電容量とともに絶縁
性を維持するという理由から誘電体層の厚みは1.5〜
2.5μmであることがより望ましい。
Here, the dielectric layer 7 which constitutes the capacitance section 11
The thickness t is preferably 3 μm or less for the purpose of increasing the electrostatic capacity, and in particular, the thickness of the dielectric layer is 1.5 to 10 μm for maintaining the insulating property together with the electrostatic capacity.
More preferably, it is 2.5 μm.

【0021】図2は、内部電極層9に狭持されている誘
電体層7の要部拡大図である。
FIG. 2 is an enlarged view of a main part of the dielectric layer 7 sandwiched between the internal electrode layers 9.

【0022】誘電体層7は、図2に示すように、結晶相
として誘電体結晶粒子21とガラス粒子25とからな
り、かつこれら誘電体結晶粒子21およびガラス粒子2
5の粒内および/または粒界に不可避的にボイド27が
形成されている。尚、本発明の積層型電子部品では、静
電容量に寄与しない非容量部13側よりも、誘電体層7
が内部電極層9に狭持され静電容量に寄与する容量部1
1側が緻密化されボイドが少ない状態になっている。
As shown in FIG. 2, the dielectric layer 7 is composed of dielectric crystal particles 21 and glass particles 25 as a crystal phase, and these dielectric crystal particles 21 and glass particles 2 are contained.
Voids 27 are unavoidably formed in the grains and / or in the grain boundaries of No. 5. In addition, in the multilayer electronic component of the present invention, the dielectric layer 7 is provided more than the non-capacitance portion 13 side that does not contribute to electrostatic capacitance.
Is sandwiched between the internal electrode layers 9 and contributes to the capacitance.
The 1st side is densified and there are few voids.

【0023】ここで、ガラス粒子25の大きさは、誘電
体層7の厚みをt、誘電体層7中に含まれるガラス粒子
25の最大径をDとしたときに、D/t≦0.5の関係
を満足することが重要である。この場合、D/t比が
0.5より大きい場合には、ガラス粒子25の低い絶縁
性のために誘電体層7の絶縁抵抗が低下するとともに、
焼成後のショート率が増加し、さらに高温負荷試験での
不良率も増加するからである。
Here, the size of the glass particles 25 is D / t ≦ 0, where t is the thickness of the dielectric layer 7 and D is the maximum diameter of the glass particles 25 contained in the dielectric layer 7. It is important to satisfy the relationship of 5. In this case, when the D / t ratio is larger than 0.5, the insulation resistance of the dielectric layer 7 decreases due to the low insulating property of the glass particles 25, and
This is because the short-circuit rate after firing increases and the failure rate in the high temperature load test also increases.

【0024】そして、誘電体層7においては、誘電体磁
器との濡れ性を高め、誘電体層7の焼結性および比誘電
率を高めるという理由からD/tは0.2〜0.4の範
囲にあることがより望ましい。
In the dielectric layer 7, D / t is 0.2 to 0.4 for the reason that the wettability with the dielectric porcelain is enhanced and the sinterability and the relative dielectric constant of the dielectric layer 7 are enhanced. Is more preferable.

【0025】尚、ガラス粒子25とは、主として、本発
明の積層型電子部品の製法に用いられるガラス粉末が焼
成されたものであり、結晶相や非晶質相のうち少なくと
も一種の相を含むものであるが、これらが混在して形成
されたものでもかまわない。
The glass particles 25 are mainly obtained by firing glass powder used in the method for producing a laminated electronic component of the present invention, and include at least one of a crystalline phase and an amorphous phase. However, a mixture of these may be used.

【0026】また、本発明では、積層型電子部品を構成
する電子部品本体1断面におけるボイド27の面積占有
率が1%以下であることが重要である。ボイドの面積占
有率が1%より大きい場合には、誘電体層7の絶縁性お
よび静電容量が低下することとなる。特に、積層型電子
部品の誘電体層7の絶縁抵抗を高め、高温負荷試験での
信頼性を向上させるという理由から、0.4%以下であ
ることがより望ましい。
Further, in the present invention, it is important that the area occupancy of the voids 27 in the cross section of the electronic component body 1 constituting the laminated electronic component is 1% or less. When the area occupancy of voids is larger than 1%, the insulating property and the electrostatic capacity of the dielectric layer 7 are lowered. In particular, it is more preferably 0.4% or less for the reason of increasing the insulation resistance of the dielectric layer 7 of the multilayer electronic component and improving the reliability in the high temperature load test.

【0027】また、誘電体層7を構成する誘電体結晶粒
子21の平均粒径は高い絶縁抵抗を有するという理由か
ら1μm以下、誘電体層7を3μm以下としても、高い
誘電率を得るために、特には0.1〜0.4μmの範囲
が望ましい。
Further, the average grain size of the dielectric crystal grains 21 constituting the dielectric layer 7 is 1 μm or less for the reason that it has a high insulation resistance, and even if the dielectric layer 7 is 3 μm or less, a high dielectric constant is obtained. The range of 0.1 to 0.4 μm is particularly desirable.

【0028】また、ガラス粒子25は、誘電体結晶粒子
21の界面での濡れ性を高めるという理由から、Liお
よび/またはBを含有することが望ましく、さらには、
このLiおよび/またはBが、希土類元素やSiとの複
合酸化物を形成していることが絶縁性を高めるうえでよ
り望ましい。
Further, it is desirable that the glass particles 25 contain Li and / or B for the reason of improving the wettability at the interface of the dielectric crystal particles 21, and further, further,
It is more desirable that Li and / or B form a complex oxide with a rare earth element or Si in order to improve the insulating property.

【0029】また、誘電体層7中におけるガラス粒子2
5の含有量は、誘電体層7が緻密質で静電容量および絶
縁性を高める上で、誘電体層中の誘電体結晶粒子100
質量部に対して0.8〜1.5質量部であることが望ま
しいが、特には、1.2〜1.4質量部であることがよ
り望ましい。
Further, the glass particles 2 in the dielectric layer 7
The content of 5 is 100% in order that the dielectric layer 7 is dense and enhances the electrostatic capacity and the insulating property.
The amount is preferably 0.8 to 1.5 parts by mass, and more preferably 1.2 to 1.4 parts by mass.

【0030】一方、誘電体磁器を構成する誘電体結晶粒
子21は、金属元素として、Ba、Ti、Mg、および
Mnを含有するペロブスカイト型複合酸化物から構成さ
れていることが静電容量およびその温度特性をならびに
絶縁性を向上させる上で望ましい。
On the other hand, the dielectric crystal particles 21 constituting the dielectric ceramic are composed of a perovskite type complex oxide containing Ba, Ti, Mg, and Mn as metal elements, and the capacitance and It is desirable for improving temperature characteristics as well as insulating properties.

【0031】内部電極層9は、導電性ペーストの膜を焼
結させた金属膜からなり、その厚みは、積層型電子部品
の内部電極層9の有効面積を高め、例えば、積層セラミ
ックコンデンサの静電容量を高めるとともに、デラミネ
ーションを抑制するという理由から0.5〜1.5μm
であることが望ましい。
The internal electrode layer 9 is made of a metal film obtained by sintering a film of a conductive paste, and its thickness increases the effective area of the internal electrode layer 9 of the multilayer electronic component, for example, a static capacitance of a multilayer ceramic capacitor. 0.5 to 1.5 μm for the reason of increasing the capacitance and suppressing delamination
Is desirable.

【0032】また、本発明の積層型電子部品の積層数
は、その積層型電子部品を構成する誘電体層7が薄層多
層化され、例えば、積層セラミックコンデンサの小型高
容量化に対してその積層数は100層以上であることが
望ましい。
Further, the number of laminated layers of the laminated electronic component of the present invention is such that the dielectric layers 7 constituting the laminated electronic component are thinned and multilayered. The number of layers is preferably 100 or more.

【0033】(製法)本発明の積層型電子部品の製法に
関し、先ず、誘電体層7となる誘電体粉末とガラス粉末
の調製法について説明する。
(Manufacturing Method) Regarding the manufacturing method of the multilayer electronic component of the present invention, first, a method of preparing the dielectric powder and the glass powder to be the dielectric layer 7 will be described.

【0034】誘電体粉末は主成分としてBaTiO3
が好適に用いられる。そのBaTiO3粉の合成法は、
固相法、液相法(シュウ酸塩を経過する方法等)、水熱
合成法等があるが、そのうち粒度分布が狭く、結晶性が
高いという理由から水熱合成法が望ましい。BaTiO
3粉の比表面積は1.7〜6.6m2/gが好ましい。
BaTiO 3 powder is preferably used as the main component of the dielectric powder. The synthesis method of the BaTiO 3 powder is
There are solid-phase method, liquid-phase method (method of passing oxalate, etc.), hydrothermal synthesis method, etc. Among them, hydrothermal synthesis method is preferable because of its narrow particle size distribution and high crystallinity. BaTiO
The specific surface area of the three powders is preferably 1.7 to 6.6 m 2 / g.

【0035】そして、本発明の誘電体粉末は、BaTi
3原料粉末に対して、助剤として酸化マグネシウム
(MgO)と炭酸マンガン(MnCO3)を所定量混合
して調製される。
The dielectric powder of the present invention is BaTi.
It is prepared by mixing a predetermined amount of magnesium oxide (MgO) and manganese carbonate (MnCO 3 ) as auxiliary agents with the O 3 raw material powder.

【0036】この誘電体粉末の平均粒径および比表面積
は、誘電体層の薄層化、緻密化を促すとともに、静電容
量およびその温度特性を向上させるという理由から、
0.2〜0.5μm、1.7〜7.5m2/gであるこ
とが望ましく、特に、平均粒径は0.3〜0.4μm
で、比表面積は2〜4m2/gであることがより望まし
い。
The average particle diameter and the specific surface area of this dielectric powder promote the thinning and densification of the dielectric layer and improve the capacitance and the temperature characteristics thereof.
0.2-0.5 μm, 1.7-7.5 m 2 / g is desirable, and especially the average particle size is 0.3-0.4 μm.
It is more desirable that the specific surface area is 2 to 4 m 2 / g.

【0037】一方、ガラス粉末は、Y23粉末とSiO
2粉末、更にLi2CO3粉末および/またはB23粉末
を秤量して混合した後、900〜1100℃の温度にて
仮焼し、その後、この仮焼粉体をボールミルを用いて粉
砕することにより調製される。このときのガラス粉末の
粒径D50が0.4〜0.7μmの範囲に調整されるこ
とが重要である。ガラス粉末の粒径が0.4μmよりも
小さい場合にはガラス粉末が凝集しやいために、焼成時
にかえって最大径の大きなガラス粒子25が形成されや
すく、一方、ガラス粉末の粒径が0.7μmよりも大き
い場合には、誘電体層中に粗大なガラス粒子25が形成
されやすくかつボイド27も多くなり、このため誘電体
層の絶縁性が低下する。
On the other hand, the glass powder is composed of Y 2 O 3 powder and SiO 2.
2 powder, further Li 2 CO 3 powder and / or B 2 O 3 powder are weighed and mixed, and then calcined at a temperature of 900 to 1100 ° C., and then this calcined powder is pulverized by using a ball mill. It is prepared by At this time, it is important that the particle diameter D50 of the glass powder is adjusted to the range of 0.4 to 0.7 μm. When the particle size of the glass powder is smaller than 0.4 μm, the glass powder is likely to aggregate, so that the glass particles 25 having a large maximum diameter are likely to be formed during firing, while the particle size of the glass powder is 0.7 μm. If it is larger than this, coarse glass particles 25 are likely to be formed in the dielectric layer and the number of voids 27 is increased, so that the insulating property of the dielectric layer is deteriorated.

【0038】このためガラス粉末の粒径は、粗大粒子を
除き、絶縁抵抗を高めるという理由から、D50/D9
0≧0.7であることが望ましい。
Therefore, the particle size of the glass powder is D50 / D9, because coarse particles are excluded to increase the insulation resistance.
It is desirable that 0 ≧ 0.7.

【0039】なお、D50とは、累積分布が0.5、す
なわち、この場合、ガラス粉末全量に対して50質量%
である場合の粒径を示す。また、D90とは、累積分布
が0.9、すなわち、この場合、ガラス粉末全量に対し
て90質量%である場合の粒径を示す。
D50 means a cumulative distribution of 0.5, that is, in this case, 50% by mass based on the total amount of glass powder.
Shows the particle size. D90 indicates a particle size when the cumulative distribution is 0.9, that is, 90% by mass based on the total amount of the glass powder in this case.

【0040】次に、上記した誘電体粉末とガラス粉末と
を用いてグリーンシートを形成するための原料スラリー
の調製を行う。
Next, a raw material slurry for forming a green sheet is prepared using the above-mentioned dielectric powder and glass powder.

【0041】まず、誘電体粉末に対して、ガラス粉末を
添加し、公知の分散剤、分散媒とともに直径が10mm
のZrO2ボールを用いたボールミルにて平均粒径が約
0.4〜0.7μmになるまで湿式にて粉砕混合し原料
スラリーが調製される。誘電体粉末100質量部に対す
るガラス粉末の添加量は0.8〜1.5質量部であるこ
とが重要であるが、誘電体層7の静電容量および絶縁性
を高く維持するという理由から、特に、1.2〜1.4
質量部が望ましい。本発明の積層型電子部品では、前記
したようにガラス粉末の添加量に相当する量のガラス粒
子が形成される。ガラス粉末の添加量が0.8質量部よ
りも少ない場合には、誘電体磁器の焼結性が低下するた
めボイドが多くなり、一方、1.5質量部より多い場合
には、誘電体材料からなる誘電体結晶粒子21の割合に
対してガラス粒子25の比率が大きくなるために、誘電
体層7の静電容量および絶縁性が低下する。
First, glass powder was added to the dielectric powder, and the diameter was 10 mm together with a known dispersant and dispersion medium.
In a ball mill using ZrO 2 balls, the raw material slurry is prepared by wet pulverizing and mixing until the average particle size becomes about 0.4 to 0.7 μm. It is important that the amount of the glass powder added to 100 parts by mass of the dielectric powder is 0.8 to 1.5 parts by mass, but for the reason that the capacitance and the insulating property of the dielectric layer 7 are kept high, Especially 1.2-1.4
Parts by mass are desirable. In the multilayer electronic component of the present invention, glass particles are formed in an amount corresponding to the amount of glass powder added, as described above. When the amount of the glass powder added is less than 0.8 parts by mass, the sinterability of the dielectric ceramic decreases, so that the number of voids increases, while when it exceeds 1.5 parts by mass, the dielectric material is added. Since the proportion of the glass particles 25 is larger than the proportion of the dielectric crystal particles 21 made of, the electrostatic capacity and the insulating property of the dielectric layer 7 are lowered.

【0042】次に、この誘電体粉末とガラス粉末との混
合物に対し、有機バインダを混合し、スラリーを得た
後、ドクターブレード法により、厚さ1.5〜4μmの
グリーンシートが形成される。
Next, an organic binder is mixed with the mixture of the dielectric powder and the glass powder to obtain a slurry, and a green sheet having a thickness of 1.5 to 4 μm is formed by the doctor blade method. .

【0043】次に、上記グリーンシートに内部電極ペー
ストを塗布して内部電極パターンが形成される。内部電
極パターンの厚みは0.7〜2μmであることが望まし
い。ここで、内部電極パターンを形成するための導電性
ペーストに含まれる卑金属粒子の平均粒径は、内部電極
パターンの薄層化のために0.1〜0.5μmであるこ
とが望ましい。
Next, an internal electrode paste is applied to the green sheet to form an internal electrode pattern. The internal electrode pattern preferably has a thickness of 0.7 to 2 μm. Here, the average particle size of the base metal particles contained in the conductive paste for forming the internal electrode pattern is preferably 0.1 to 0.5 μm for thinning the internal electrode pattern.

【0044】また、卑金属粉末としては、Cu、Ni等
から選ばれる少なくとも1種の金属が好適に用いられ
る。誘電体磁器との同時焼成を行い、製造コストの低減
を図る上で、特に、Niが望ましい。
As the base metal powder, at least one metal selected from Cu, Ni and the like is preferably used. Ni is particularly preferable in order to reduce the manufacturing cost by performing simultaneous firing with the dielectric ceramics.

【0045】このように内部電極パターンの厚みを2μ
m以下としても、副成分として添加するガラス粉末の粒
径D50を0.4〜0.7μmとすることにより、ガラ
ス成分の表面張力が低下し、内部電極パターンを構成す
る金属粉末に対して濡れ性が向上するため金属の粗大粒
子の形成を抑制でき、誘電体層7への圧迫や貫通を防止
できることから、内部電極層9間のショートを無くすこ
とができる。
As described above, the thickness of the internal electrode pattern is set to 2 μm.
By setting the particle diameter D50 of the glass powder added as an accessory component to 0.4 to 0.7 μm even if it is m or less, the surface tension of the glass component is lowered and wets the metal powder forming the internal electrode pattern. Since the property is improved, the formation of coarse metal particles can be suppressed, and pressing and penetration of the dielectric layer 7 can be prevented, so that a short circuit between the internal electrode layers 9 can be eliminated.

【0046】即ち、ガラス粉末の粒径D50は内部電極
パターンを構成する金属粉末の粒径の2倍以下とするこ
とが望ましい。また、このように金属の粗大粒子の形成
を抑制できるという理由に関しても、ガラス粉末の粒径
をD50/D90で0.7以上とすることが望ましい。
That is, it is desirable that the particle diameter D50 of the glass powder be less than or equal to twice the particle diameter of the metal powder forming the internal electrode pattern. Further, also for the reason that the formation of coarse metal particles can be suppressed, it is desirable that the particle size of the glass powder is 0.7 or more in terms of D50 / D90.

【0047】次に、この内部電極パターンが形成された
グリーンシートを複数枚積層し熱圧着させる。その後、
この積層体を格子状に切断して、電子部品本体1の成形
体を得る。この電子部品本体1の成形体の両端面には、
内部電極パターンの端部が交互に露出している。
Next, a plurality of green sheets having the internal electrode patterns are laminated and thermocompression bonded. afterwards,
This laminated body is cut into a lattice shape to obtain a molded body of the electronic component body 1. On both end surfaces of the molded body of the electronic component body 1,
The ends of the internal electrode patterns are exposed alternately.

【0048】次に、この電子部品本体1の成形体を大気
中で5〜40℃/hの昇温速度で200〜500℃にて
脱バインダ処理を行い、その後、還元雰囲気中で500
℃からの昇温速度を200〜500℃/hとし、120
0〜1300℃の温度で2〜5時間焼成し、続いて20
0〜400℃/hの降温速度で冷却し、窒素雰囲気中9
00〜1100℃で再酸化処理を行う。
Next, the molded body of the electronic component main body 1 is subjected to binder removal treatment at 200 to 500 ° C. at a temperature rising rate of 5 to 40 ° C./h in the atmosphere, and then 500 in a reducing atmosphere.
The temperature rising rate from ℃ is set to 200 to 500 ℃ / h, 120
Baking at a temperature of 0 to 1300 ° C. for 2 to 5 hours, followed by 20
Cool at a temperature-fall rate of 0 to 400 ° C./h, and in a nitrogen atmosphere,
Reoxidation is performed at 00 to 1100 ° C.

【0049】特に、誘電体層7を構成するガラス粒子2
5の最大径を小さくするとともに、ボイド27を減らす
ことができるという理由から500℃からの昇温速度を
200〜400℃/hとすることが望ましい。
In particular, the glass particles 2 constituting the dielectric layer 7
It is desirable to set the temperature rising rate from 500 ° C. to 200 to 400 ° C./h for the reason that the maximum diameter of 5 can be reduced and the voids 27 can be reduced.

【0050】この後、焼成した電子部品本体1の両端面
に、外部電極ペーストを塗布して窒素中で焼き付けるこ
とによって外部電極3が形成され、さらに外部電極3の
表面にメッキ膜が形成される。
After that, the external electrode paste is applied to both end surfaces of the fired electronic component body 1 and baked in nitrogen to form the external electrodes 3, and further the plated films are formed on the surfaces of the external electrodes 3. .

【0051】[0051]

【実施例】積層型電子部品の一つである積層セラミック
コンデンサを以下のように作製した。
Example A monolithic ceramic capacitor, which is one of multi-layer electronic components, was manufactured as follows.

【0052】まず、ガラス粉末として、モル比でY23
粉末を40%、Li2CO3粉末あるいはB23粉末を2
0%、SiO2粉末を40%の割合になるように秤量し
て混合した後、1000℃の温度にて仮焼し、その後、
この仮焼粉体を粉砕し、粒径D50およびD50/D9
0を表1に示す粒度になるように微粉砕してガラス粉末
を調製した。
First, as a glass powder, Y 2 O 3 was used in a molar ratio.
40% powder, 2 Li 2 CO 3 powder or 2 B 2 O 3 powder
0%, SiO 2 powder was weighed and mixed so as to have a ratio of 40%, calcined at a temperature of 1000 ° C., and thereafter,
The calcined powder is crushed to obtain particle sizes D50 and D50 / D9.
Glass powder was prepared by finely pulverizing 0 into the particle size shown in Table 1.

【0053】次に、平均粒径が0.4μm、比表面積が
3.2m2/gであるBaTiO3原料粉末を用い、Ba
TiO3100重量部に対して、酸化マグネシウム(M
gO)を0.15質量部、炭酸マンガン(MnCO3
を0.15質量部と、Y23粉末とSiO2粉末、更に
Li2CO3粉末またはB23粉末を混合して調製された
上記のガラス粉末を表1に示す所定の割合になるように
秤量し、公知の分散剤、分散媒とともに直径が10mm
のZrO2ボールを用いたボールミルにて粉砕混合し、
原料スラリーを調製した。このセラミック粉末と有機バ
インダを混合し、スラリーを得た後、ドクターブレード
法により、所望の厚みの誘電体グリーンシートを作製し
た。
Next, BaTiO 3 raw material powder having an average particle size of 0.4 μm and a specific surface area of 3.2 m 2 / g was used.
For 100 parts by weight of TiO 3 , magnesium oxide (M
gO) 0.15 parts by mass, manganese carbonate (MnCO 3 ).
And 0.15 parts by weight, Y 2 O 3 powder and SiO 2 powder, further Li 2 CO 3 powder or B 2 O 3 powder of the above glass powder prepared by mixing a predetermined ratio shown in Table 1 So that the diameter is 10 mm together with a known dispersant and dispersion medium.
Crushed and mixed in a ball mill using ZrO 2 balls of
A raw material slurry was prepared. After mixing this ceramic powder and an organic binder to obtain a slurry, a dielectric green sheet having a desired thickness was prepared by a doctor blade method.

【0054】次に、このグリーンシート上に、平均粒径
0.3μmのNi粉末と、エチルセルロース、テルピネ
オールとからなる内部電極ペーストを用いてスクリーン
印刷した。その際、内部電極パターンの有効面積は4.
5mm2とした。次に、この内部電極パターンを形成し
たグリーンシートを100枚積層し、その上下面に、内
部電極ペーストを印刷していないグリーンシートをそれ
ぞれ20枚積層し、ホットプレスして一体化し、所定寸
法に切断して電子部品本体成形体を作製した。
Next, screen printing was performed on this green sheet using an internal electrode paste composed of Ni powder having an average particle size of 0.3 μm, ethyl cellulose and terpineol. At that time, the effective area of the internal electrode pattern is 4.
It was set to 5 mm 2 . Next, 100 green sheets on which the internal electrode pattern is formed are laminated, and 20 green sheets on which the internal electrode paste is not printed are laminated on the upper and lower surfaces thereof, respectively, and hot pressed to integrate them into a predetermined size. It cut | disconnected and the electronic component main body molded object was produced.

【0055】そして、この電子部品本体成形体を大気中
で400℃にて脱バインダ処理を行い、その後昇温速度
200、300、400℃で最高温度1270℃(酸素
分圧10-6Pa)で2時間焼成し、続いて大気雰囲気中
1000℃で再酸化処理をして電子部品本体を作製し
た。
Then, the molded body of the electronic component main body was subjected to binder removal treatment at 400 ° C. in the atmosphere, and thereafter at a temperature rising rate of 200, 300, 400 ° C. and a maximum temperature of 1270 ° C. (oxygen partial pressure of 10 −6 Pa). It was fired for 2 hours, and then reoxidized at 1000 ° C. in an air atmosphere to produce an electronic component body.

【0056】次に、この電子部品本体をバレル研磨した
後、その両端部にCu粉末を含んだ外部電極ペーストを
塗布して、850℃、窒素中で焼き付けて外部電極3を
形成し、この外部電極上に順にNiメッキ層、Snメッ
キ層を施した。
Next, after barrel-polishing the electronic component body, external electrode paste containing Cu powder is applied to both ends of the electronic component body and baked in nitrogen at 850 ° C. to form the external electrode 3. A Ni plating layer and a Sn plating layer were sequentially applied on the electrodes.

【0057】先ず、作製した積層セラミックコンデンサ
について、各5個ずつ断面研磨を行った後、電子顕微鏡
を用いて観察を行い、その断面写真からボイドの面積占
有率を算出した。
First, each of the manufactured monolithic ceramic capacitors was subjected to cross-section polishing by five pieces, and then observed using an electron microscope, and the area occupancy of voids was calculated from the cross-section photograph.

【0058】次に、これらの積層セラミックコンデンサ
各100個の初期の静電容量(C)および絶縁抵抗
(R)を測定した。測定は、基準温度25℃で行い、静
電容量は、周波数1.0kHz、入力信号レベル0.5
Vrmsの条件で測定した。また、測定の際ショートし
た積層セラミックコンデンサの個数より、ショート率を
算出した。尚、絶縁抵抗はショートした試料を除いてそ
の平均値を算出した。
Next, the initial capacitance (C) and insulation resistance (R) of each of these 100 monolithic ceramic capacitors were measured. The measurement is performed at a reference temperature of 25 ° C., the capacitance is 1.0 kHz, and the input signal level is 0.5.
It was measured under the condition of Vrms. Further, the short-circuit rate was calculated from the number of laminated ceramic capacitors that were short-circuited during the measurement. In addition, the insulation resistance was calculated as an average value excluding the short-circuited sample.

【0059】高温負荷試験は、試料数100個につい
て、温度85℃、電圧は9.5Vの条件で1000時間
行い、絶縁抵抗の評価を行った。絶縁抵抗(R)は、直
流電圧10Vを1分間印加して測定した。
The high temperature load test was conducted for 100 samples under the conditions of a temperature of 85 ° C. and a voltage of 9.5 V for 1000 hours to evaluate the insulation resistance. The insulation resistance (R) was measured by applying a DC voltage of 10 V for 1 minute.

【0060】一方、比較例として、誘電体粉末およびガ
ラス粉末の原料粒径をD50で0.8μmとした試料を
作製し、本発明と同様の評価を行った。
On the other hand, as a comparative example, a sample was prepared in which the raw material particle diameter of the dielectric powder and the glass powder was 0.8 μm at D50, and the same evaluation as in the present invention was performed.

【0061】[0061]

【表1】 [Table 1]

【0062】表1の結果から明らかなように、ガラス粉
末のD50を0.4〜0.7μmとし、また、ガラス粉
末の粒径D50/D90を0.4〜0.9とし、焼成後
の誘電体層の厚みをt、その誘電体層を構成するガラス
粒子の最大径をDとしたときに、D/tを0.5以下と
した試料No.2〜15では、ガラス粉末の添加量によ
る静電容量の違いはあるものの、絶縁抵抗が330MΩ
以上で、ショート率が9%以下となり、高温負荷試験に
おいても不良が9/100個以下と少なかった。
As is clear from the results in Table 1, the D50 of the glass powder was 0.4 to 0.7 μm, the particle size D50 / D90 of the glass powder was 0.4 to 0.9, and after firing. When the thickness of the dielectric layer is t and the maximum diameter of the glass particles constituting the dielectric layer is D, Sample No. No. D / t set to 0.5 or less. In 2 to 15, although there is a difference in capacitance depending on the amount of glass powder added, the insulation resistance is 330 MΩ
As described above, the short-circuit rate was 9% or less, and the number of defects was as small as 9/100 or less in the high temperature load test.

【0063】特に、ガラス粉末の粒径をD50/D90
で0.7以上とし、D/tを0.3以下とした試料N
o.8〜10では、ボイドの面積占有率が0.3〜0.
4%と低くなり、焼成後のショート率も3%以下と少な
く、かつ高温負荷試験における不良が無かった。
Particularly, the particle size of the glass powder is set to D50 / D90.
N of 0.7 or more and D / t of 0.3 or less
o. 8-10, the void area occupation ratio is 0.3-0.
It was as low as 4%, the short-circuit rate after firing was as low as 3% or less, and there were no defects in the high temperature load test.

【0064】これに対して、誘電体粉末およびガラス粉
末のD50を0.8μmとした試料1では、ガラス粉末
の粒径D50/D90比が制御されず粗大粒子が多くな
り、このため誘電体層中のガラス粒子のD/tが0.8
と大きくなったために、焼成後の積層セラミックコンデ
ンサの絶縁抵抗が140MΩ以下まで低下し、ショート
率が18%以上に高くなり、高温負荷試験での不良も2
5/100個と多かった。
On the other hand, in Sample 1 in which the D50 of the dielectric powder and the glass powder was 0.8 μm, the particle size D50 / D90 ratio of the glass powder was not controlled and the number of coarse particles increased, so that the dielectric layer D / t of the glass particles inside is 0.8
As a result, the insulation resistance of the laminated ceramic capacitor after firing decreased to 140 MΩ or less, the short-circuit rate increased to 18% or more, and the failure in the high temperature load test was 2
There were many as 5/100.

【0065】[0065]

【発明の効果】以上詳述したように、本発明では、誘電
体層の厚みをt、誘電体層中に含まれるガラス粒子の最
大径をDとしたときに、D/t≦0.5とし、かつ電子
部品本体断面におけるボイドの面積占有率が1%以下と
することにより、薄層化した誘電体層であっても、その
絶縁性を高め、特に、高温負荷試験における絶縁不良の
発生を防止できる。
As described above in detail, in the present invention, when the thickness of the dielectric layer is t and the maximum diameter of the glass particles contained in the dielectric layer is D, D / t ≦ 0.5. In addition, the area occupancy rate of voids in the cross section of the electronic component body is 1% or less, so that even the thinned dielectric layer has improved insulation properties, and in particular, insulation failure occurs in a high temperature load test. Can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の積層型電子部品の概略断面図である。FIG. 1 is a schematic sectional view of a multilayer electronic component of the present invention.

【図2】図1の内部電極層に狭持された誘電体層の要部
拡大図である。
FIG. 2 is an enlarged view of a main part of a dielectric layer sandwiched between internal electrode layers of FIG.

【符号の説明】[Explanation of symbols]

1 電子部品本体 3 外部電極 7 誘電体層 9 内部電極層 21 誘電体結晶粒子 25 ガラス粒子 27 ボイド 1 Electronic component body 3 external electrodes 7 Dielectric layer 9 Internal electrode layer 21 Dielectric crystal particles 25 glass particles 27 void

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ガラスを含む誘電体層と、内部電極層とを
交互に複数積層してなる電子部品本体の端面に、前記内
部電極層が交互に接続される一対の外部電極をそれぞれ
形成してなる積層型電子部品において、前記ガラスが誘
電体結晶粒子間に粒子状に分散して存在し、前記誘電体
層の厚みをt、前記ガラス粒子の最大径をDとしたとき
に、D/t≦0.5の関係を満足するとともに、前記電
子部品本体断面におけるボイドの面積占有率が1%以下
であることを特徴とする積層型電子部品。
1. A pair of external electrodes, to which the internal electrode layers are alternately connected, are formed on an end face of an electronic component body formed by alternately laminating a plurality of glass-containing dielectric layers and internal electrode layers. In the laminated electronic component, the glass is present in a state of being dispersed between the dielectric crystal particles in a particle shape, and when the thickness of the dielectric layer is t and the maximum diameter of the glass particles is D, D / A multilayer electronic component satisfying the relationship of t ≦ 0.5 and having an area occupation rate of voids of 1% or less in the cross section of the electronic component body.
【請求項2】誘電体層中のガラス粒子が誘電体結晶粒子
100質量部に対して0.8〜1.5質量部であること
を特徴とする請求項1に記載の積層型電子部品。
2. The multilayer electronic component according to claim 1, wherein the glass particles in the dielectric layer are 0.8 to 1.5 parts by mass with respect to 100 parts by mass of the dielectric crystal particles.
【請求項3】誘電体層の厚みが3μm以下であることを
特徴とする請求項1または2に記載の積層型電子部品。
3. The laminated electronic component according to claim 1, wherein the thickness of the dielectric layer is 3 μm or less.
【請求項4】誘電体グリーンシートと、内部電極パター
ンとを交互に複数積層して形成した電子部品本体成形体
を焼成する積層型電子部品の製法であって、前記誘電体
グリーンシートが、誘電体粉末100質量部に対して、
Liおよび/またはBを含み粒径D50が0.4〜0.
7μmであるガラス粉末を0.8〜1.5質量部含有す
ることを特徴とする積層型電子部品の製法。
4. A method for producing a laminated electronic component, comprising firing an electronic component main body formed by alternately laminating a plurality of dielectric green sheets and internal electrode patterns, wherein the dielectric green sheets are dielectric layers. With respect to 100 parts by mass of body powder,
It contains Li and / or B and has a particle size D50 of 0.4 to 0.
A method for producing a laminated electronic component, comprising 0.8 to 1.5 parts by mass of glass powder having a size of 7 μm.
【請求項5】誘電体グリーンシートの厚みが4μm以下
であることを特徴とする請求項4に記載の積層型電子部
品の製法。
5. The method for producing a laminated electronic component according to claim 4, wherein the thickness of the dielectric green sheet is 4 μm or less.
【請求項6】ガラス粉末の粒径比が、D50/D90≧
0.7であることを特徴とする請求項4または5に記載
の積層型電子部品の製法。
6. The particle size ratio of the glass powder is D50 / D90 ≧
It is 0.7, The manufacturing method of the laminated electronic component of Claim 4 or 5 characterized by the above-mentioned.
JP2002111607A 2002-04-15 2002-04-15 Multilayer electronic component and manufacturing method thereof Expired - Fee Related JP3935762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002111607A JP3935762B2 (en) 2002-04-15 2002-04-15 Multilayer electronic component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002111607A JP3935762B2 (en) 2002-04-15 2002-04-15 Multilayer electronic component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003309036A true JP2003309036A (en) 2003-10-31
JP3935762B2 JP3935762B2 (en) 2007-06-27

Family

ID=29394351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002111607A Expired - Fee Related JP3935762B2 (en) 2002-04-15 2002-04-15 Multilayer electronic component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3935762B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050679A1 (en) * 2003-11-21 2005-06-02 Tdk Corporation Layered ceramic capacitor
US7365958B2 (en) 2004-10-27 2008-04-29 Kyocera Corporation Dielectric ceramics, multilayer ceramic capacitor and method for manufacturing the same
WO2016084876A1 (en) * 2014-11-28 2016-06-02 京セラ株式会社 Layered ceramic capacitor
CN110797188A (en) * 2018-08-03 2020-02-14 三星电机株式会社 Capacitor assembly

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005050679A1 (en) * 2003-11-21 2005-06-02 Tdk Corporation Layered ceramic capacitor
KR100861100B1 (en) * 2003-11-21 2008-09-30 티디케이가부시기가이샤 Layered ceramic capacitor
US7595974B2 (en) 2003-11-21 2009-09-29 Tdk Corporation Layered ceramic capacitor
US7365958B2 (en) 2004-10-27 2008-04-29 Kyocera Corporation Dielectric ceramics, multilayer ceramic capacitor and method for manufacturing the same
TWI402872B (en) * 2004-10-27 2013-07-21 Kyocera Corp Electrolyte procelain, laminated ceramic capacitor and methods for manufacturing electrolyte porcelain and laminated ceramic capacitor
WO2016084876A1 (en) * 2014-11-28 2016-06-02 京セラ株式会社 Layered ceramic capacitor
CN107077968A (en) * 2014-11-28 2017-08-18 京瓷株式会社 Laminated ceramic capacitor
JPWO2016084876A1 (en) * 2014-11-28 2017-08-31 京セラ株式会社 Multilayer ceramic capacitor
US9972441B2 (en) 2014-11-28 2018-05-15 Kyocera Corporation Layered ceramic capacitor
CN110797188A (en) * 2018-08-03 2020-02-14 三星电机株式会社 Capacitor assembly
CN110797188B (en) * 2018-08-03 2022-08-16 三星电机株式会社 Capacitor assembly

Also Published As

Publication number Publication date
JP3935762B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP4809152B2 (en) Multilayer ceramic capacitor
TWI402874B (en) Laminated ceramic capacitors
JP4965435B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP3705141B2 (en) Dielectric ceramic, manufacturing method and evaluation method thereof, and multilayer ceramic electronic component
JP4782598B2 (en) Multilayer ceramic capacitor
US7057876B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP5121311B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP4587924B2 (en) Multilayer ceramic capacitor
JP2008239407A (en) Dielectric porcelain and multilayer ceramic capacitor
JPH11273985A (en) Dielectric ceramic and its manufacture, and laminated ceramic electronic part and its manufacture
JP2006206362A (en) Dielectric ceramic and multilayer ceramic capacitor
JP2004214539A (en) Dielectric ceramic and laminated ceramic capacitor
JP2008078593A (en) Multilayer ceramic capacitor and manufacturing method therefor
JP2007197233A (en) Dielectric ceramic and manufacturing method of dielectric ceramic, as well as laminated ceramic capacitor
JP4721576B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4557472B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP4771818B2 (en) Multilayer ceramic capacitor
JP4663141B2 (en) Dielectric porcelain and multilayer electronic components
JP2001307940A (en) Laminated ceramic capacitor and its manufacturing method
JP2010208905A (en) Method for manufacturing dielectric ceramic, dielectric ceramic, method for manufacturing laminated ceramic capacitor and the laminated ceramic capacitor
JP2009173473A (en) Dielectric porcelain composition and manufacturing method of multilayer ceramic capacitor using the same
JP2005187296A (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP5159682B2 (en) Multilayer ceramic capacitor
JP3935762B2 (en) Multilayer electronic component and manufacturing method thereof
WO2021131819A1 (en) Capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070320

R150 Certificate of patent or registration of utility model

Ref document number: 3935762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees