JP2003306748A - Pipeline having excellent low temperature toughness in weld metal part and electron beam circumferential welding method for steel pipe - Google Patents

Pipeline having excellent low temperature toughness in weld metal part and electron beam circumferential welding method for steel pipe

Info

Publication number
JP2003306748A
JP2003306748A JP2002112835A JP2002112835A JP2003306748A JP 2003306748 A JP2003306748 A JP 2003306748A JP 2002112835 A JP2002112835 A JP 2002112835A JP 2002112835 A JP2002112835 A JP 2002112835A JP 2003306748 A JP2003306748 A JP 2003306748A
Authority
JP
Japan
Prior art keywords
weld metal
electron beam
steel pipe
welding
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002112835A
Other languages
Japanese (ja)
Inventor
Hiroshi Yano
浩史 矢埜
Koichi Yasuda
功一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002112835A priority Critical patent/JP2003306748A/en
Publication of JP2003306748A publication Critical patent/JP2003306748A/en
Pending legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pipeline in which the low temperature toughness of a circumferential weld metal part is excellent in a circumferential direction, and to provide a circumferential electron beam welding method of steel pipes. <P>SOLUTION: In the pipeline, the circumferential weld metal part of a steel pipe obtained by welding steel pipes in a circumferential direction by electron beam welding contains, by mass, 0.005 to 0.020% solid solution Ti and 0.0015 to 0.0060% solid solution N. In the electron beam circumferential welding method for steel pipes, as for the cooling rate of the circumferential weld metal part, the cooling time from 800 to 500°C is controlled to ≤5 s, and the cooling time from 500 to 300°C is controlled to 2 to 10 s; and the content of solid solution Ti in the circumferential weld metal part is controlled to, by mass, 0.005 to 0.020%, and the content of solid solution N is controlled to 0.0015 to 0.0060%. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶接金属部の低温
靱性に優れたパイプラインおよび鋼管の電子ビーム溶接
方法に関するものである。
TECHNICAL FIELD The present invention relates to a pipeline excellent in low temperature toughness of a weld metal portion and an electron beam welding method for a steel pipe.

【0002】[0002]

【従来の技術】寒冷地、オフショアーにおける原油、天
然ガス輸送用大径ラインンパイプに用られる鋼管に対し
ては、高強度であるともに、低温靱性および現地溶接性
とくに円周方向の溶接性に優れることが要求されてい
る。とくに近年、溶接施工能率の観点から、厚肉の鋼管
同士を1パスで溶接でき、溶接効率と品質の両者を同時
に向上させる溶接方法として、電子ビーム溶接やレーザ
溶接の適用の検討が進められている。これらの溶接法
は、従来の溶接法(MIG 溶接、TIG 溶接、被覆アーク溶
接、サブマージアーク溶接など)と異なり溶接材料を使
用せずに、被溶接材料、例えばパイプラインにおいては
鋼管そのものの金属部分を溶融、凝固させて接合する。
2. Description of the Related Art For steel pipes used for large-diameter linen pipes for transporting crude oil and natural gas in cold regions and offshore, they have high strength, low temperature toughness and field weldability, especially weldability in the circumferential direction. Is required to be excellent. Especially in recent years, from the viewpoint of welding work efficiency, the application of electron beam welding or laser welding has been advanced as a welding method that can weld thick-walled steel pipes in one pass and improve both welding efficiency and quality at the same time. There is. Unlike conventional welding methods (MIG welding, TIG welding, covered arc welding, submerged arc welding, etc.), these welding methods do not use welding materials, but the materials to be welded, for example, the metal part of the steel pipe itself in a pipeline. Are melted, solidified and joined.

【0003】このため、電子ビーム溶接では、鋼管その
ものの金属部分である被溶接材料を溶融し、その後凝固
させるので溶接金属部の成分調整(組織の制御)が困難
であり、その溶接金属部の成分はほとんど鋼管材料によ
って決まる。このため、パイプラインの円周方向溶接金
属部の低温靱性には、鋼管の成分が大きな影響を与え
る。
Therefore, in electron beam welding, since the material to be welded, which is the metal portion of the steel pipe itself, is melted and then solidified, it is difficult to adjust the composition (structure control) of the weld metal portion, and the weld metal portion The composition depends mostly on the steel pipe material. Therefore, the composition of the steel pipe has a great influence on the low temperature toughness of the circumferential weld metal portion of the pipeline.

【0004】[0004]

【発明が解決しようとする課題】従来の溶接法に用いる
ために開発された、溶接熱影部(HAZ )の低温靱性の優
れた鋼は、電子ビーム溶接に適用した場合、溶接金属部
における靱性を改善することができなかった。一方、電
子ビーム等により溶接した溶接金属部の低温靱性を改善
する方法が特開昭64-15321号公報、特開平2-22418 号公
報に開示されている。しかしながら、これらの方法は、
溶接熱影部(HAZ )および溶接金属部の金属中にTi
203 、TiNを微細分散させ、組織を微細化しているもの
の、シャルピー衝撃試験を低温で行って得られる溶接金
属部の吸収エネルギーのばらつきが大きいという問題が
あった。
The steel having excellent low-temperature toughness in the welding heat shadow zone (HAZ) developed for use in the conventional welding method is toughness in the weld metal portion when applied to electron beam welding. Could not be improved. On the other hand, methods for improving the low temperature toughness of a weld metal portion welded by an electron beam or the like are disclosed in JP-A-64-15321 and JP-A-2-22418. However, these methods
Ti in the weld heat shadow (HAZ) and in the weld metal
2 0 3, TiN was finely dispersed, but tissue is miniaturized, there is a problem that variation in the absorbed energy of the weld metal obtained by performing Charpy impact test at low temperature is large.

【0005】また、特開2001-20742号公報には、電子ビ
ームあるいはレーザに溶接された溶接金属部の低温靱性
に優れ、かつ水素有起割れ性および耐硫化物応力腐食割
れ性に優れた鋼管およびパイプラインに関して開示され
ている。しかしながら、このような鋼管を用い、鋼管同
士を電子ビーム溶接により円周方向に溶接した溶接金属
部の一部に低温靱性の劣る部分があり、吸収エネルギー
のばらつきが大きいという問題が解消できなかった。こ
のような低温靱性の劣る部分がパイプラインの一部にあ
ると0℃以下の温度域、特にパイプラインの性能試験
(シャルピー衝撃試験)を行う試験温度に近い温度域に
おいて吸収エネルギーのばらつきが発生しやすいことは
問題である。
Further, in Japanese Patent Laid-Open No. 2001-20742, a steel pipe excellent in low temperature toughness of a weld metal portion welded to an electron beam or a laser, and excellent in hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance. And pipelines. However, the problem that the low temperature toughness is inferior in a part of the weld metal part where the steel pipes are welded in the circumferential direction by electron beam welding using such a steel pipe, and the variation in absorbed energy is large cannot be solved. . If such a portion with low low temperature toughness is present in a part of the pipeline, variations in absorbed energy occur in a temperature range of 0 ° C. or less, particularly in a temperature range close to a test temperature at which a pipeline performance test (Charpy impact test) is performed. Easy to do is a problem.

【0006】本発明は、上述した問題を有利に解決する
もので、溶接金属部の低温靱性が円周方向に亘って優れ
たパイプラインおよび鋼管の電子ビーム溶接方法を提供
することを目的とする。
The present invention advantageously solves the above-mentioned problems, and an object of the present invention is to provide a pipeline and an electron beam welding method for steel pipes, in which the low temperature toughness of the weld metal portion is excellent in the circumferential direction. .

【0007】[0007]

【課題を解決するための手段】この発明は、以下の通り
である。 1. 鋼管同士を溶接した溶接金属部が質量%で、固溶
Ti量:0.005 〜0.020 %、固溶N量:0.0015〜0.0060%
を含有することを特徴とする溶接金属部の低温靱性に優
れたパイプライン。 2. 請求項1に記載の鋼管が質量%で、C:0.03〜0.
06%、Si:0.1 〜0.6 %、Mn:0.80〜2.0 %、P:0.01
5 %以下、Ti:0.005 〜0.025 %、Al:0.010 〜0.050
%、O:0.0030%以下を含有し、残部が鉄および不可避
的不純物からなる鋼管同士を溶接したことを特徴とする
溶接金属部の低温靱性に優れたパイプライン。 3. 請求項2に記載の鋼管が、さらに加えて質量%
で、S:0.002 %以下、Nb:0.01〜0.06%、およびN:
0.0010〜0.0060%を含有することを特徴とする上記2.
に記載の円周方向電子ビーム溶接金属部の低温靱性に優
れたパイプライン。 4. 鋼管同士の電子ビーム溶接方法において、溶接金
属部の800 ℃から500 ℃までの冷却時間を5秒以内、50
0 ℃から300 ℃までの冷却時間を2〜10秒以内とし、前
記溶接金属部の成分含有量を質量%で、固溶Ti量:0.00
5 〜0.020 %、固溶N量:0.0015〜0.0060%としたこと
を特徴とする鋼管の溶接方法。 5. 請求項4に記載の鋼管を質量%で、C:0.03〜0.
06%、Si:0.10〜0.60%、Mn:0.80〜2.0 %、P:0.01
5 %以下、Ti:0.005 〜0.025 %、Al:0.010 〜0.050
%、O:0.0030%以下を含有する組成としたことを特徴
とする上記4.に記載の鋼管の溶接方法。 6. 請求項5に記載の鋼管がさらに加えて質量%で、
S:0.002 %以下、Nb:0.01〜0.06%、およびN:0.00
10〜0.0060%を含有することを特徴とする上記5.に記
載の鋼管の溶接方法。
The present invention is as follows. 1. The weld metal part where steel pipes are welded together is in mass% and forms a solid solution.
Ti amount: 0.005 to 0.020%, solute N amount: 0.0015 to 0.0060%
A pipeline excellent in low-temperature toughness of a welded metal portion, which is characterized by containing. 2. The steel pipe according to claim 1 has a mass% of C: 0.03 to 0.
06%, Si: 0.1 to 0.6%, Mn: 0.80 to 2.0%, P: 0.01
5% or less, Ti: 0.005 to 0.025%, Al: 0.010 to 0.050
%, O: 0.0030% or less, and a steel pipe having the balance of iron and inevitable impurities welded to each other. A pipeline excellent in low-temperature toughness of a weld metal part. 3. The steel pipe according to claim 2, further comprising:
, S: 0.002% or less, Nb: 0.01 to 0.06%, and N:
The above-mentioned 2. characterized in that it contains 0.0010 to 0.0060%.
Pipeline with excellent low temperature toughness of the circumferential electron beam welded metal part described in. 4. In the electron beam welding method of steel pipes, the cooling time from 800 ℃ to 500 ℃ of the weld metal is within 5 seconds, 50
The cooling time from 0 ° C to 300 ° C is set within 2 to 10 seconds, the content of the components in the weld metal part is% by mass, and the amount of solid solution Ti: 0.00
A welding method for a steel pipe, characterized in that the content of S is 5 to 0.020% and the amount of dissolved N is 0.0015 to 0.0060%. 5. The steel pipe according to claim 4, in mass%, C: 0.03 to 0.
06%, Si: 0.10 to 0.60%, Mn: 0.80 to 2.0%, P: 0.01
5% or less, Ti: 0.005 to 0.025%, Al: 0.010 to 0.050
%, O: 0.0030% or less. The method for welding a steel pipe according to. 6. The steel pipe according to claim 5 is further added in mass%,
S: 0.002% or less, Nb: 0.01 to 0.06%, and N: 0.00
5. The content according to the above 5, characterized by containing 10 to 0.0060%. The method for welding a steel pipe according to.

【0008】[0008]

【発明の実施の形態】本発明では、鋼管同士を電子ビー
ム溶接により円周方向に溶接した鋼管の円周方向溶接金
属部が質量%で、固溶Ti量:0.005 〜0.020 %、固溶N
量:0.0015〜0.0060%を含有するようにしたことによ
り、円周方向電子ビーム溶接金属部の低温靱性を円周方
向に亘って良好にできることが究明されたのである。な
お、以下のきさいでは特に断わり無いかぎり%は質量%
を示すものとする。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the circumferential weld metal portion of a steel pipe in which steel pipes are welded in the circumferential direction by electron beam welding is mass%, and the amount of solid solution Ti: 0.005 to 0.020%, solid solution N
It has been clarified that the low temperature toughness of the circumferential electron beam welded metal portion can be improved over the circumferential direction by containing the amount of 0.0015 to 0.0060%. Unless otherwise specified,% in the following sizes is% by mass.
Shall be indicated.

【0009】この発明の作用について以下に述べる。最
初にこの発明に到った経緯を実験結果に基づいて説明す
る。まず、低温でのシャルピー衝撃試験結果において、
同一試験温度での各試験片の個々の吸収エネルギーに15
0 Jをこえる吸収エネルギー差が生じた原因を解明する
ために、吸収エネルギーが低かったシャルピー衝撃試験
片の破面を電子顕微鏡により観察した。その結果として
シャルピー衝撃試験における破壊の起点は酸化物系介在
物であることが判明した。
The operation of the present invention will be described below. First, the background of the invention will be described based on experimental results. First, in the Charpy impact test result at low temperature,
15 for each absorbed energy of each test piece at the same test temperature
In order to elucidate the cause of the difference in absorbed energy exceeding 0 J, the fracture surface of the Charpy impact test piece having a low absorbed energy was observed with an electron microscope. As a result, it was found that the origin of the fracture in the Charpy impact test was oxide inclusions.

【0010】そこで、破壊の起点となる酸化物系介在物
量がシャルピー衝撃試験によって得られる吸収エネルギ
ーのばらつきに及ぼす影響に着目して実験を行った。す
なわち、板厚が19mmの表1に示す3種類の鋼板をそれぞ
れ用い、鋼板Aを用いてUOE 成形し、鋼板Bを用いてUO
E 成形し、鋼板Cを用いてUOE 成形し、製造した鋼管同
士をそれぞれ電子ビーム溶接により突合せ円周溶接し、
鋼管母材の金属中の介在物並びに円周方向溶接金属部中
の介在物と、円周方向溶接金属部の低温靱性との関係を
調査した。なお、3種類の鋼板は、鋼板Bに対し、鋼中
酸素量が異なる鋼板A、Ti量が異なる鋼板の鋼板Cとし
た。
Therefore, an experiment was conducted paying attention to the influence of the amount of oxide-based inclusions, which is the starting point of fracture, on the variation in absorbed energy obtained by the Charpy impact test. That is, each of the three types of steel plates shown in Table 1 having a plate thickness of 19 mm is used to perform UOE molding using steel plate A and UO using steel plate B.
E forming, UOE forming using steel plate C, the produced steel pipes are butt-circle welded by electron beam welding,
The relationship between the inclusions in the metal of the steel pipe base metal and the inclusions in the circumferential weld metal part and the low temperature toughness of the circumferential weld metal part was investigated. Note that the three types of steel plates were steel plate A having a different oxygen content in the steel and steel plate C having a different Ti content relative to steel plate B.

【0011】[0011]

【表1】 [Table 1]

【0012】(鋼管母材部金属中の介在物並びに円周方
向溶接金属部中の介在物の評価)介在物量測定は、鋼管
母材および円周方向溶接金属部のそれぞれについて、鋼
管の円周方向全周を45°以下のピッチで等分割した複数
個所から試験片を採取し、円周方向に垂直な断面での光
学顕微鏡観察を行い、単位断面積あたりの、3μm以上
の介在物個数を求めた。具体的には、観察像より介在物
の大きさとして介在物の面積が等価となる円の直径を求
め、その円の直径が3μm以上となる介在物個数を求め
た。単位断面積当たりの3μm以上の介在物個数は画像
解析処理により求めたが、この求め方は、画像解析処理
により測定する方法に限定されない。 (円周方向溶接金属部の低温靱性の評価)鋼管の円周方
向溶接金属部の低温靱性は、図1に示すように、鋼管1
の厚みtの中央部から鋼管1のZ方向がシャルピー衝撃
試験片長さ方向Lとなるようにして鋼管1の円周方向全
周を45°以下のピッチで等分割した複数個所から試験片
を採取し、機械加工した後、シャルピー衝撃試験を低温
で行って得られる円周方向複数箇所における溶接金属部
の吸収エネルギーと、そのばらつきで評価した。
(Evaluation of Inclusions in Metal of Steel Pipe Base Material and Inclusion in Circumferential Weld Metal) For measuring the amount of inclusions, the circumference of the steel pipe is measured for each of the steel pipe base metal and the circumferential weld metal. Specimens were sampled from a plurality of locations that were equally divided over the entire circumference in a pitch of 45 ° or less, and observed under an optical microscope in a cross section perpendicular to the circumferential direction. The number of inclusions of 3 μm or more per unit cross-sectional area was measured. I asked. Specifically, the diameter of a circle having the area of the inclusion equivalent to the size of the inclusion was determined from the observed image, and the number of inclusions having a diameter of the circle of 3 μm or more was determined. The number of inclusions having a size of 3 μm or more per unit cross-sectional area was obtained by the image analysis process, but this obtaining method is not limited to the method of measuring by the image analysis process. (Evaluation of low temperature toughness of circumferential weld metal part) As shown in FIG.
From the center of the thickness t of the steel pipe 1 such that the Z direction of the steel pipe 1 is the length direction L of the Charpy impact test piece, and the test pipes are sampled from a plurality of locations where the entire circumference of the steel pipe 1 is equally divided at a pitch of 45 ° or less. After machining, the Charpy impact test was conducted at a low temperature, and the absorbed energy of the weld metal portion at a plurality of positions in the circumferential direction obtained and its variation were evaluated.

【0013】この場合、0、-20 および-40 ℃の各試験
温度でそれぞれ3回測定した吸収エネルギーが全て200J
以上であり、かつ最大値と最小値の差が150 J 以内の場
合、低温靭性に優れる(○印)、それ以外の場合低温靭
性が劣る(×印)とした。シャルピー衝撃試験は、Vノ
ッチ先端の位置が円周方向溶接金属部2の幅B中央に一
致するように機械加工したシャルピー衝撃試験片を用
い、衝撃方向を図2のようにしてシャルピー衝撃試験を
低温で行い、円周方向溶接金属部2の溶接線方向の吸収
エネルギーを測定した。図1中2点鎖線が鋼管(鋼管母
材)1の要部であり、B寸法は円周方向溶接金属部2の
幅である。その他の条件はJIS Z 2242(金属材料衝撃試
験方法)の規定にしたがって、シャルピー衝撃試験を低
温で行った。シャルピー衝撃試験片の形状は、長さL=
55mm、高さH=10mm、幅W=10mm、Vノッチ深さD=2
mm、Vノッチ角度α=45°、Vノッチ先端R=0.25mmと
した。
In this case, the absorbed energies measured three times at the respective test temperatures of 0, -20 and -40 ° C. are all 200 J
When the difference is 150 J or less between the maximum value and the minimum value, the low temperature toughness is excellent (marked with O), and in other cases, the low temperature toughness is poor (marked with X). The Charpy impact test uses a Charpy impact test piece machined so that the position of the tip of the V notch coincides with the center of the width B of the weld metal part 2 in the circumferential direction. The measurement was performed at a low temperature, and the absorbed energy in the welding line direction of the circumferential weld metal part 2 was measured. The two-dot chain line in FIG. 1 is the main part of the steel pipe (steel pipe base material) 1, and the B dimension is the width of the circumferential weld metal part 2. For other conditions, the Charpy impact test was performed at a low temperature in accordance with JIS Z 2242 (Metallic material impact test method). The shape of the Charpy impact test piece has a length L =
55mm, height H = 10mm, width W = 10mm, V notch depth D = 2
mm, V notch angle α = 45 °, and V notch tip R = 0.25 mm.

【0014】鋼管母材並びに円周方向溶接金属部中での
単位断面積あたりの、3μm以上の介在物個数、円周方
向溶接金属部中の固溶Ti、N量、および円周方向溶接金
属部のシャルピー衝撃試験結果を合わせて表2に示す。
Number of inclusions of 3 μm or more per unit cross-sectional area in the steel pipe base material and the circumferential weld metal portion, solid solution Ti, N content in the circumferential weld metal portion, and circumferential weld metal Table 2 also shows the results of the Charpy impact test for each part.

【0015】[0015]

【表2】 [Table 2]

【0016】溶接金属部中の固溶Ti量および固溶N量
は、金属中に含まれるTi量およびN量から析出Ti量およ
び析出N量を差し引いた値である。電子ビームにより円
周方向に溶接した溶接金属部中の析出Ti量は、溶接金属
部より採取した試料を10mass%AA(アセチルアセトン)
系電解液中で電解により溶解し、得られた残さを発光分
析により分析した。また、溶接金属部中の析出N量は10
mass%AA(アセチルアセトン)系電解液中での電解によ
り得られた残さを、さらにブロム−メタノール溶液中で
溶解し、残さを分析した。介在物観察は光学顕微鏡で行
ったが、電子顕微鏡を用いてもかまわない。介在物の観
察倍率は、光学顕微鏡では 400倍以下、電子顕微鏡では
400〜1000倍で行うのが望ましい。試験片の作製および
試験方法(測定面積など)はJIS G0555(鋼の非金属介在
物の顕微鏡試験方法)に基づき、研磨きずや錆が出ない
ように試料を調整した。
The amount of solid solution Ti and the amount of solid solution N in the weld metal are values obtained by subtracting the amount of precipitated Ti and the amount of precipitated N from the amount of Ti and N contained in the metal. The amount of precipitated Ti in the weld metal part welded in the circumferential direction by the electron beam is 10 mass% AA (acetylacetone) for the sample taken from the weld metal part.
The residue was dissolved by electrolysis in a system electrolytic solution, and the obtained residue was analyzed by emission spectrometry. The amount of precipitated N in the weld metal is 10
The residue obtained by electrolysis in a mass% AA (acetylacetone) -based electrolytic solution was further dissolved in a bromine-methanol solution, and the residue was analyzed. The observation of inclusions was performed with an optical microscope, but an electron microscope may be used. The observation magnification of inclusions is 400 times or less with an optical microscope and with an electron microscope.
It is desirable to carry out 400 to 1000 times. The preparation of test pieces and the test method (measurement area, etc.) were based on JIS G0555 (microscopic test method for non-metallic inclusions in steel), and the samples were adjusted so as not to produce polishing flaws and rust.

【0017】表2に示す結果から、鋼管Cの場合、円周
方向溶接金属部中での単位断面積あたりの3μm以上の
介在物個数が3個を超えて多いが、円周方向複数箇所に
おける溶接金属部の吸収エネルギーが十分でかつそのば
らつきが小さく、溶接金属部の低温靱が優れることが明
らかとなった。さらに、シャルピー衝撃試験を低温で行
って得られる円周方向溶接金属部の吸収エネルギーの円
周方向位置におけるばらつきと、溶接金属部の成分およ
び組織との関係について綿密な検討を加えたところ、新
たに、溶接後の冷却速度を調整することが、円周方向溶
接金属部の吸収エネルギーのばらつきを低減し、靱性の
安定化に有効であることが明らかになった。
From the results shown in Table 2, in the case of the steel pipe C, the number of inclusions of 3 μm or more per unit cross-sectional area in the weld metal portion in the circumferential direction is more than 3 and is large, but at a plurality of locations in the circumferential direction. It was revealed that the absorbed energy of the weld metal part is sufficient and its variation is small, and the low temperature toughness of the weld metal part is excellent. Furthermore, a detailed study was conducted on the relationship between the variation in absorbed energy of the circumferential weld metal part obtained by performing the Charpy impact test at low temperature in the circumferential position and the composition and structure of the weld metal part. In addition, it was clarified that adjusting the cooling rate after welding reduces variations in absorbed energy in the circumferential weld metal and is effective in stabilizing toughness.

【0018】そこで、溶接後の冷却速度が円周方向溶接
金属部の吸収エネルギーのばらつきに及ぼす影響に着目
して実験を行った。すなわち、板厚15mmの表3に示す組
成の鋼板を、電子ビームの照射条件、電子ビーム溶接速
度、予熱の実施、溶接後処理などを施すことにより、電
子ビーム溶接により突合せ溶接して、溶接後の溶接金属
部の冷却速度を変え、溶接金属部の低温靱性に及ぼす影
響を調査した。その結果を表4に示す。
Therefore, an experiment was conducted paying attention to the influence of the cooling rate after welding on the dispersion of the absorbed energy of the circumferential weld metal portion. That is, a steel plate having a composition shown in Table 3 with a plate thickness of 15 mm is subjected to butt welding by electron beam welding by subjecting it to electron beam irradiation conditions, electron beam welding speed, preheating, and post-welding treatment, and after welding. The effect on the low temperature toughness of the weld metal part was investigated by changing the cooling rate of the weld metal part. The results are shown in Table 4.

【0019】なお、鋼板同士を電子ビーム溶接したの
で、シャルピー衝撃試験片用の試験片は、複数箇所の溶
接金属部から溶接線方向に対して上記と同様に採取し、
上記の場合と同様に機械加工し、上記の場合と同様にシ
ャルピー衝撃試験を低温で行った。なお、溶接後の冷却
時間の測定は、あらかじめ電子ビーム溶接を行う箇所近
傍に熱電対をセットしておき、記録計などを用いて行っ
た。この電子ビーム溶接部近傍の冷却時間を溶接後の冷
却時間とした。
Since the steel plates were electron-beam welded to each other, the Charpy impact test specimens were sampled from a plurality of weld metal portions in the welding line direction in the same manner as above.
Machining was performed as in the above case and the Charpy impact test was performed at low temperature as in the above case. The cooling time after welding was measured by using a recorder or the like with a thermocouple set in advance near the position where electron beam welding was performed. The cooling time in the vicinity of the electron beam welded portion was set as the cooling time after welding.

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】表4に示す結果から、溶接金属中固溶Ti量
および固溶N量だけでなく、電子ビーム溶接金属部の冷
却速度により低温靱性が異なることが判明した。すなわ
ち、溶接金属部の固溶Ti量が0.005 〜0.020 %、固溶N
量が0.0015〜0.0060%を満足し、電子ビーム溶接後の冷
却時間が 800℃から 500℃までが5秒以内、 500℃から
300℃までが2〜10秒以内を満足した場合、溶接金属部
の低温靭性が優れることが明らかとなった。一方、電子
ビーム溶接金属において固溶Ti量が0.005 〜0.020 %、
固溶N量が0.0015〜0.0060%を満足しても、冷却速度が
上記範囲以外の場合、溶接金属部の低温靭性が劣ること
が明らかとなった。
From the results shown in Table 4, it was found that the low temperature toughness varies depending on not only the amount of solid solution Ti and the amount of solid solution N in the weld metal but also the cooling rate of the electron beam weld metal. That is, the amount of solid solution Ti in the weld metal part is 0.005 to 0.020%, and the amount of solid solution N is
Content of 0.0015 to 0.0060%, cooling time after electron beam welding from 800 ℃ to 500 ℃ within 5 seconds, from 500 ℃
It was revealed that the low temperature toughness of the welded metal portion was excellent when the temperature up to 300 ° C was within 2 to 10 seconds. On the other hand, in the electron beam weld metal, the solid solution Ti content is 0.005 to 0.020%,
Even if the amount of solute N satisfies 0.0015 to 0.0060%, it was revealed that the low temperature toughness of the weld metal part is inferior when the cooling rate is out of the above range.

【0023】この溶接後の冷却時間が靱性ばらつきに及
ぼす影響が大きくなった理由としては、 800℃から 500
℃までが5秒以内、 500℃から 300℃までが2〜10秒以
内の冷却時間を満足した場合、電子ビーム溶接金属のよ
うに多量の固溶Tiおよび固溶Nを含んだ溶接金属におい
ても島状マルテンサイト(M-A )組織およびセメンタイ
トの生成を抑制した上部ベイナイト組織となったことに
より破壊の伝播抵抗が高くなり、靱性が安定したものと
推定される。 800℃から 500℃までが5秒以内、 500℃
から 300℃までが2〜10秒以内の冷却時間を満足しない
場合、溶接金属中の上部ベイナイト組織内の島状マルテ
ンサイト(M-A )組織もしくはセメンタイトの生成量が
増大し、粗大化することにより、破壊の伝播抵抗が低く
なったものと考えられる。
The reason why the cooling time after welding has a great influence on the toughness variation is that the temperature is from 800 ° C to 500 ° C.
When the cooling time is within 5 seconds up to ℃ and within 2-10 seconds within 500 ℃ to 300 ℃, even in weld metal containing a large amount of solid solution Ti and solid solution N such as electron beam weld metal. It is presumed that due to the island-like martensite (MA) structure and the upper bainite structure in which the formation of cementite was suppressed, the propagation resistance of fracture increased and the toughness was stabilized. Within 5 seconds from 800 ℃ to 500 ℃, 500 ℃
If the temperature does not satisfy the cooling time within 2 to 10 seconds from 1 to 300 ° C, the amount of island martensite (MA) structure or cementite in the upper bainite structure in the weld metal increases, and the coarsening causes It is considered that the propagation resistance of destruction was lowered.

【0024】組織の観察は、鏡面研磨した観察面をナイ
タールエッチして光学顕微鏡400 倍観察により行った。
なお、靱性が安定化した場合に観察される組織は、上部
ベイナイト組織を主体としながら、マイナーな組織とし
て次の組織が含有されることも許容される。すなわち、
上部ベイナイト組織に類似した光学顕微鏡組織として観
察される、連続冷却変態組織の下部ベイナイト、アシュ
キュラーフェライト、ウィドマンシュテッテンフェライ
ト、擬ポリゴナルフェライト、グラニュラーZwフェライ
ト、中間変態(Zw)組織などである。また、島状マルテ
ンサイトおよびセメンタイト組織は面積率10%程度まで
許容される。
The structure was observed by observing the mirror-polished observation surface with Nital and observing it with an optical microscope at a magnification of 400 times.
The structure observed when the toughness is stabilized is allowed to include the following structure as a minor structure while mainly having the upper bainite structure. That is,
Continuous bainite microstructure similar to upper bainite microstructure, lower bainite of continuous cooling transformation structure, Acicular ferrite, Widmanstaetten ferrite, pseudopolygonal ferrite, granular Zw ferrite, intermediate transformation (Zw) structure, etc. . Also, island martensite and cementite structures are allowed up to an area ratio of about 10%.

【0025】このような靱性安定化手法は前述した従来
技術のようなTiを含んだ析出物を核として微細なアシキ
ュラーフェライトを生成させ、組織の微細化により良好
な靱性を方法とは全く異なった高靱性化機構である。以
下に、本発明における限定理由について説明する。ま
ず、この発明に係るパイプラインにおいて、溶接金属部
の固溶Ti量:0.005〜0.020 %、固溶N量:0.0015〜0.0
060%と限定した理由について説明する。以下、各成分
量は質量%である。 (固溶Ti量:0.005 〜0.020 %)パイプラインの溶接金
属において、固溶Ti量が0.020 %を超えて溶接金属中に
存在する場合には、前述したごとく低温度領域における
シャルピー衝撃試験の破壊の伝播抵抗が低くなり、溶接
金属部の低靭性とシャルピー衝撃試験による溶接金属部
の吸収エネルギーの大きなばらつきの原因となるので固
溶Ti量は0.020 %以下とした。真空中で電子ビーム溶接
された溶接金属では、溶接時に酸化物系介在物でさえも
溶解すると考えられ、一部はスラグとなって溶接金属外
に排出されるが、一部は凝固冷却中に再析出して溶接金
属中に存在する。しかしながら、電子ビーム溶接金属の
冷却速度は非常に速く、ほとんどの溶接金属中Tiは固溶
状態で存在する。固溶Ti量が0.005 %以下となると鋼管
母材のTi量が少なくなり靱性が損なわれるため、固溶Ti
量の下限を0.005 %とした。 (固溶N量;0.0015%〜0.0060%)Nは溶接金属部の靭
性を劣化させる元素であり、電子ビーム溶接金属ではTi
と同様に溶接金属中のほとんどのNは固溶状態で存在
し、0.0060%を超えると溶接金属部が低靭性となるので
上限を0.0060%とした。また、固溶N量が0.0015%未満
であると鋼管母材のN量が少なくなりTiN 、AIN などの
析出量が少なくなり鋼管母材の靱性が損なわれるため、
下限を0.0015%とした。
Such a toughness stabilizing method is different from the above-mentioned conventional method in that fine precipitates containing Ti are used as nuclei to generate fine acicular ferrite, and fine toughening of the structure results in good toughness. It is a toughening mechanism. The reasons for limitation in the present invention will be described below. First, in the pipeline according to the present invention, the amount of solid solution Ti in the weld metal part: 0.005 to 0.020%, the amount of solid solution N: 0.0015 to 0.0
Explain the reason why it is limited to 060%. Hereinafter, the amount of each component is% by mass. (Amount of solid solution Ti: 0.005 to 0.020%) In the weld metal of pipeline, when the amount of solid solution Ti exceeds 0.020% and is present in the weld metal, destruction of Charpy impact test in the low temperature region as described above. The solid solution Ti content was set to 0.020% or less because it causes a decrease in the propagation resistance of the weld metal and causes a large variation in the absorbed energy of the weld metal part by the Charpy impact test. Weld metal that is electron beam welded in a vacuum is thought to dissolve even oxide-based inclusions during welding, and part of it is discharged outside the weld metal as slag, but part of it is solidified during cooling. Reprecipitated and present in the weld metal. However, the cooling rate of the electron beam weld metal is very fast, and most of the weld metal Ti exists in a solid solution state. If the solid solution Ti content is 0.005% or less, the Ti content of the steel pipe base material decreases and the toughness is impaired.
The lower limit of the amount was set to 0.005%. (Solute N content: 0.0015% to 0.0060%) N is an element that deteriorates the toughness of the weld metal part, and Ti is the electron beam weld metal.
Similarly, most of N in the weld metal exists in a solid solution state, and if it exceeds 0.0060%, the weld metal portion has low toughness, so the upper limit was made 0.0060%. Further, if the amount of solute N is less than 0.0015%, the N content of the steel pipe base material decreases, the precipitation amount of TiN, AIN, etc. decreases, and the toughness of the steel pipe base material deteriorates.
The lower limit was made 0.0015%.

【0026】ここで、電子ビーム溶接金属部中の固溶Ti
量および固溶N量をそれぞれ0.005%〜0.020 %および
0.0015%〜0.0060%の範囲とするためには、鋼板または
鋼管の組成を調整し、併せて電子ビーム溶接後の冷却時
間を調整することが肝要である。鋼板または鋼管の組成
の調整としては、鋼板中のTiおよびN量はもとより、脱
酸元素としてはたらくSi、Mn、Alなど、そしてそれらの
元素と共に析出物および介在物を形成するS、Nなどの
調整の実施が肝要である。また、電子ビーム円周方向溶
接金属における硬さ規定を満足するためには、これらの
成分調整が非常に重要である。
Here, solid solution Ti in the electron beam weld metal part
Content and solid solution N content of 0.005% to 0.020% and
In order to set the range of 0.0015% to 0.0060%, it is important to adjust the composition of the steel plate or steel pipe and also adjust the cooling time after electron beam welding. In order to adjust the composition of the steel plate or steel pipe, not only the amount of Ti and N in the steel plate, but also Si, Mn, Al, etc. which act as deoxidizing elements, and S, N, etc. which form precipitates and inclusions with these elements, etc. It is important to make adjustments. Further, in order to satisfy the hardness regulation in the electron beam circumferential direction weld metal, adjustment of these components is very important.

【0027】電子ビーム溶接後の溶接金属部の冷却速度
は、 800℃から 500℃までの冷却時間が5秒以内、 500
℃から 300℃までの冷却時間が2〜10秒以内とした。こ
の範囲を満足しない場合、溶接金属中の上部ベイナイト
組織内の島状マルテンサイト(M-A )組織もしくはセメ
ンタイト生成量が増大し、粗大化することにより、破壊
の伝播抵抗が低くなり、シャルピー衝撃試験による溶接
金属部の吸収エネルギーの大きなばらつきが発生するよ
うになる。溶接金属部の冷却速度は、電子ビームの照射
条件および電子ビーム溶接速度の調整、予熱の実施、溶
接後処理などを施すことにより調整することができる。
電子ビーム円周方向溶接金属に要求される強度および靱
性を満足するためには、上部ベイナイト組織における組
織制御が非常に重要である。
The cooling rate of the weld metal portion after electron beam welding is from 500 ° C. to 800 ° C. within 5 seconds.
The cooling time from ℃ to 300 ℃ was within 2-10 seconds. If this range is not satisfied, the island martensite (MA) structure in the upper bainite structure in the weld metal or the amount of cementite generated increases and coarsens, which reduces the propagation resistance of fracture and results in a Charpy impact test. Large variations occur in the absorbed energy of the weld metal. The cooling rate of the weld metal portion can be adjusted by adjusting the electron beam irradiation conditions and the electron beam welding rate, performing preheating, and performing post-welding treatment.
Microstructure control in the upper bainite structure is very important to satisfy the strength and toughness required for electron beam circumferential weld metal.

【0028】以下に鋼管の成分組成の限定理由に説明す
る。 C:0.03〜0.06% Cは、強度を確保するために少なくとも0.03%を必要と
するが、0.06%を超えると円周方向溶接金属部最高硬さ
がビッカース硬さでHv 300を超えて、鋼管母材および円
周方向溶接金属部の低温靱性を劣化させるため、鋼中C
量は0.03〜0.06%の範囲とした。
The reasons for limiting the composition of the steel pipe will be described below. C: 0.03 to 0.06% C requires at least 0.03% to secure the strength, but if it exceeds 0.06%, the circumferential maximum weld metal part hardness exceeds Hv 300 in Vickers hardness, and steel pipe In order to deteriorate the low temperature toughness of the base metal and the weld metal in the circumferential direction,
The amount was in the range of 0.03 to 0.06%.

【0029】なお、電子ビーム円周溶接部のように、円
周方向溶接金属部と鋼管母材との強度差が大きく、円周
方向溶接金属部の幅Bが狭い場合にはVノッチシャルピ
ー試験ではき裂が溶接金属から母材側へ湾曲してしまう
ため、円周方向溶接金属部の靱性が把握できないことが
よく知られている。鋼中C量を0.06%以下とすることに
より、電子ビーム円周方向溶接金属部の低温靱性をVノ
ッチシャルピー試験により正確に評価することができる
ことにもなる。
When there is a large difference in strength between the circumferentially welded metal portion and the steel pipe base metal and the width B of the circumferentially welded metal portion is narrow, as in the electron beam circumferentially welded portion, the V notch Charpy test is performed. It is well known that since the crack curves from the weld metal to the base metal side, the toughness of the weld metal in the circumferential direction cannot be grasped. By setting the C content in the steel to 0.06% or less, the low temperature toughness of the electron beam circumferential weld metal portion can be accurately evaluated by the V-notch Charpy test.

【0030】Si:0.10〜0.60% Siは鋼板製造時、脱酸に有効なだけでなく、強度向上に
も有用な元素であるが、その効果を得るためには少なく
とも0.10%以上を必要とする。0.60%を超えると鋼管母
材および溶接熱影響部の靱性が劣化するので上限を0.60
%とした。好ましくは鋼中Si量は0.20〜0.50%の範囲と
する。
Si: 0.10 to 0.60% Si is an element which is effective not only for deoxidizing but also for improving strength at the time of manufacturing a steel sheet, but at least 0.10% or more is required to obtain the effect. . If it exceeds 0.60%, the toughness of the steel pipe base material and the weld heat affected zone deteriorates, so the upper limit is 0.60.
%. Preferably, the Si content in steel is in the range of 0.20 to 0.50%.

【0031】Mn:0.80〜2.0 %以下 Mnは、強度、靱性を確保する上で不可欠な元素であり、
少なくとも0.80を必要とするが、2.0 %を超えると溶接
性および電子ビーム溶接金属部の靱性を低下させるた
め、0.80〜2.0 %の範囲とした。 P:0.015 %以下 Pは、不純物として鋼中に存在し、鋼管の靱性を低下さ
せる元素であり、極力低い方がよく、鋼中Pの上限を0.
015 %以下とした。
Mn: 0.80 to 2.0% or less Mn is an essential element for ensuring strength and toughness,
At least 0.80 is required, but if it exceeds 2.0%, the weldability and the toughness of the electron beam welded metal part are deteriorated, so the range was made 0.80 to 2.0%. P: 0.015% or less P is an element present in the steel as an impurity and reduces the toughness of the steel pipe. It is better to be as low as possible, and the upper limit of P in the steel is 0.
015% or less.

【0032】Ti:0.005 〜0.025 % Tiは溶接熱影響部において微細なTiN を形成し、オース
テナイト粒の粗大化を抑制して、ミクロ組織を微細化
し、鋼管母材および溶接熱影響部の靱性を改善する。鋼
中Ti量が0.005 %未満ではその効果が小さく、0.025 %
を超えると円周方向溶接金属部の低温靱性が劣化するの
で、鋼中Ti量は0.005 〜0.025 %の範囲とした。
Ti: 0.005 to 0.025% Ti forms fine TiN in the heat-affected zone of the weld, suppresses coarsening of austenite grains, refines the microstructure, and improves the toughness of the steel pipe base material and the heat-affected zone of the weld. Improve. If the Ti content in the steel is less than 0.005%, its effect is small, 0.025%.
Since the low temperature toughness of the weld metal in the circumferential direction is deteriorated if it exceeds 0.1%, the Ti content in the steel is set in the range of 0.005 to 0.025%.

【0033】Al:0.010 〜0.050 % Alは、鋼板製造時の脱酸に使用される元素であり、ま
た、溶接熱影響部の靱性に重要な役割を果たす。鋼中Al
量が0.010 %未満では熱影響部の靱性向上効果が期待で
きない。よって、鋼中Al量は0.010 %以上とする。一
方、鋼中Al量が0.050 %を超えると、溶接熱影響部の靱
性を劣化するので、鋼中Al量の上限を0.050%とした。
Al: 0.010 to 0.050% Al is an element used for deoxidation at the time of manufacturing a steel sheet, and also plays an important role in the toughness of the heat affected zone of welding. Al in steel
If the amount is less than 0.010%, the effect of improving the toughness of the heat affected zone cannot be expected. Therefore, the Al content in steel is set to 0.010% or more. On the other hand, if the Al content in the steel exceeds 0.050%, the toughness of the weld heat affected zone deteriorates, so the upper limit of the Al content in the steel was set to 0.050%.

【0034】O:0.0030% Oの上限は酸化物系介在物による電子ビーム円周方向溶
接金属部の靱性劣化の観点より0.0030%以下とした。好
ましくは、0.0020%以下である。本発明では、さらに次
の組成を限定することが好ましい。 S:0.002 %以下 Sは、Pと同様に、不純物として鋼中に存在し、鋼管母
材の靱性を劣化させる元素であり、極力低い方がよい。
また、鋼板中S量を0.002 %以下にすることにより電子
ビーム円周方向溶接金属部に発生する凝固割れが防止で
きることから、鋼中S量の上限を0.002 %以下とした。
好ましくは、鋼中S量を0.001 %以下とする。
O: 0.0030% The upper limit of O is set to 0.0030% or less from the viewpoint of deterioration of toughness of the weld metal portion in the electron beam circumferential direction due to oxide inclusions. It is preferably 0.0020% or less. In the present invention, it is preferable to further limit the following compositions. S: 0.002% or less S, like P, is an element present in the steel as an impurity and deteriorates the toughness of the steel pipe base material, and the lower the S, the better.
Further, by setting the S content in the steel sheet to 0.002% or less, solidification cracking that occurs in the electron beam circumferential weld metal portion can be prevented, so the upper limit of the S content in the steel was made 0.002% or less.
Preferably, the S content in steel is 0.001% or less.

【0035】Nb:0.01〜0.06% Nbは、析出強化により鋼管母材の強度を向上させる効果
を有する。その添加量が0.01%未満ではその効果が小さ
く、0.06%を超えると電子ビーム円周方向溶接金属部の
靱性を劣化させるため、鋼中Nb量は0.01〜0.06%とし
た。 N:0.0010〜0.0060% Nは、電子ビーム溶接金属部の靱性を劣化させるので極
力低減する方がよいとはいうものの、0.0010%に満たな
いほど低減するとTiN 、AIN の析出が生じなくなって鋼
管母材の靱性が損なわれるため、下限を0.0010%とし
た。一方、本発明においては0.0060%以下にすれば十分
な電子ビーム円周方向溶接金属部の靱性が確保されるた
め、鋼中N量は、0.0010〜0.0060%の範囲とした。好ま
しくは、0.0010〜0.0050%である。
Nb: 0.01 to 0.06% Nb has the effect of improving the strength of the steel pipe base material by precipitation strengthening. If the addition amount is less than 0.01%, the effect is small, and if it exceeds 0.06%, the toughness of the electron beam circumferential weld metal portion is deteriorated, so the Nb content in the steel is set to 0.01 to 0.06%. N: 0.0010 to 0.0060% N deteriorates the toughness of the electron beam weld metal, so it is better to reduce it as much as possible, but if it is less than 0.0010%, precipitation of TiN and AIN will not occur and the steel pipe matrix Since the toughness of the material is impaired, the lower limit was made 0.0010%. On the other hand, in the present invention, when the content is 0.0060% or less, sufficient toughness of the electron beam circumferential direction weld metal portion is secured, so the N content in steel is set to the range of 0.0010 to 0.0060%. Preferably, it is 0.0010 to 0.0050%.

【0036】適宜元素として、Ca、Ni、Cu、Cr、Mo、
V、REM の元素のうちから選ばれた一種または二種以上
を含有するのが好適である理由について説明する。 Ca:0.0030%以下 Caは、硫化物(MnS)の形態を抑制し、鋼管母材の靱性や
異方性の改善および耐水素有誘起割れ性の向上に効果を
発揮する有用な元素であるが、鋼中Ca量は0.0030%以下
とした。好ましくは、鋼中Ca量は0.0025%以下である。
As appropriate elements, Ca, Ni, Cu, Cr, Mo,
The reason why it is preferable to contain one or more selected from the elements of V and REM will be described. Ca: 0.0030% or less Ca is a useful element that suppresses the morphology of sulfide (MnS) and improves the toughness and anisotropy of the steel pipe base material and hydrogen-induced cracking resistance. The amount of Ca in the steel was 0.0030% or less. Preferably, the amount of Ca in steel is 0.0025% or less.

【0037】Ni:0.1 〜1.0 % Niは、電子ビーム円周方向溶接金属部の靭性を害するこ
となく、母材の強度と靱性を向上させる有用な元素であ
り、目標の特性を得るためには0.1 %以上が必要であ
る。しかし、1.0 %を超えて添加しても特性改善効果は
少なく、しかも高価な元素であることより鋼中Ni量は0.
1 〜1.0 %の範囲とした。
Ni: 0.1 to 1.0% Ni is a useful element for improving the strength and toughness of the base metal without impairing the toughness of the weld metal part in the electron beam circumferential direction. 0.1% or more is required. However, even if added over 1.0%, the effect of improving the properties is small, and since it is an expensive element, the Ni content in the steel is 0.
The range was 1 to 1.0%.

【0038】Cu:0.1 〜1.0 % Cuは、強度、靱性を向上させるほか、耐食性、耐水素誘
起割れ特性を向上する効果がある。0.1 %未満ではその
効果が小さく、1.0 %を超えると鋼管母材、溶接熱影響
部の靱性が劣化することより、鋼中Cu量は0.1 〜1.0 %
の範囲とした。 Cr:0.1 〜1.0 % Crは、焼入性を向上させ、鋼管母材および電子ビーム円
周方向溶接金属部の強度を高める有用な元素である。0.
1 %未満ではその効果が小さく、1.0 %を超えると溶接
性や円周方向溶接金属部の靱性を劣化させるため、鋼中
Cr量は0.1 〜1.0 %の範囲とした。
Cu: 0.1-1.0% Cu has the effect of improving the strength and toughness as well as the corrosion resistance and hydrogen-induced cracking resistance. If it is less than 0.1%, its effect is small, and if it exceeds 1.0%, the toughness of the steel pipe base material and the heat-affected zone deteriorates.
And the range. Cr: 0.1 to 1.0% Cr is a useful element that improves hardenability and enhances the strength of the steel pipe base material and the electron beam circumferential weld metal part. 0.
If it is less than 1%, its effect is small, and if it exceeds 1.0%, the weldability and the toughness of the weld metal in the circumferential direction are deteriorated.
The Cr content was in the range of 0.1 to 1.0%.

【0039】Mo:1.0 %以下 Moは鋼管母材の強度、靱性をともに向上させる元素であ
る。しかしながら、Mo添加量が1.0 %を超えると電子ビ
ーム円周方向溶接金属部の靱性を劣化させるため、1.0
%以下とした。低温度領域における円周方向溶接金属部
の靱性ばらつきを低減する観点からは0.50%以下が好ま
しい。
Mo: 1.0% or less Mo is an element that improves both strength and toughness of the steel pipe base material. However, if the amount of addition of Mo exceeds 1.0%, the toughness of the weld metal in the electron beam circumferential direction is deteriorated.
% Or less. From the viewpoint of reducing the toughness variation of the weld metal portion in the circumferential direction in the low temperature region, 0.50% or less is preferable.

【0040】V:0.01〜0.10% Vは、析出強化により強度を向上させる元素である。0.
01%未満ではその効果が小さく、0.10%を超えると電子
ビーム円周方向溶接金属部の靱性が劣化するため、鋼中
V量は0.01〜0.10%の範囲とした。 REM(希土類金属):0.0005〜0.0050% REM は、Caと同様に硫化物(MnS)の形態制御および鋼管
母材の靱性や異方性改善および耐水素誘起割れ性向上に
有効に寄与するが、鋼中REM が0.0005%に満たないとそ
の効果に乏しく、一方、0.0050%を超えると鋼管の母材
の靱性が劣化するので、鋼中REM は0.0005〜0.0050%の
範囲とした。
V: 0.01 to 0.10% V is an element which improves strength by precipitation strengthening. 0.
If it is less than 01%, its effect is small, and if it exceeds 0.10%, the toughness of the electron-beam circumferential direction welded metal portion deteriorates, so the V content in the steel was made 0.01 to 0.10%. REM (rare earth metal): 0.0005 to 0.0050% Like Ca, REM effectively contributes to morphology control of sulfide (MnS), improvement of toughness and anisotropy of steel pipe base metal, and improvement of hydrogen-induced cracking resistance. If the REM content in the steel is less than 0.0005%, the effect is poor. On the other hand, if it exceeds 0.0050%, the toughness of the base material of the steel pipe deteriorates, so the REM content in the steel was set to a range of 0.0005 to 0.0050%.

【0041】上述した電子ビーム溶接の対象となる鋼
板、鋼管などの板厚は電子ビーム溶接により貫通円周溶
接が可能である40mm以下程度であり、とくに限定する必
要はない。また、鋼管の径は電子ビーム溶接可能なサイ
ズであれば、とくに限定する必要はない。本発明に使用
する電子ビーム溶接の溶接条件の一例を下記に示す。
The plate thickness of the above-mentioned steel plate, steel pipe or the like to be subjected to electron beam welding is about 40 mm or less, which allows through-hole welding by electron beam welding, and is not particularly limited. Further, the diameter of the steel pipe is not particularly limited as long as it is a size that allows electron beam welding. An example of the welding conditions for electron beam welding used in the present invention is shown below.

【0042】電子ビーム電源としては定格最大出力5〜
50kW程度のものでよい。上記した鋼板、鋼管などに所定
形状の開先加工(主にI開先)を施したのち電子ビーム
溶接を行う。本発明における電子ビーム溶接は、加速電
圧30〜80kV、ビーム電流100〜600mA 、溶接速度300 〜9
00mm/min の溶接条件で全姿勢円周溶接を行う。開先形
状、溶接条件および溶接姿勢などはとくに限定する必要
はない。
As the electron beam power source, the rated maximum output is 5 to 5
It may be about 50kW. Electron beam welding is performed after the above-described steel plate, steel pipe, and the like are subjected to groove processing of a predetermined shape (mainly I groove). Electron beam welding in the present invention, acceleration voltage 30 ~ 80kV, beam current 100 ~ 600mA, welding speed 300 ~ 9
Performs all-position circumferential welding under the welding condition of 00mm / min. The groove shape, welding conditions, welding position, etc. are not particularly limited.

【0043】また、溶接部の真空度は電子ビームの収束
性を確保する点より10Pa以下が望ましい。電子ビーム溶
接金属の溶接ビード幅は3mm以下とする。
The degree of vacuum of the welded portion is preferably 10 Pa or less from the viewpoint of ensuring the convergence of the electron beam. The weld bead width of electron beam weld metal shall be 3 mm or less.

【0044】[0044]

【実施例】転炉─連続鋳造─厚板工程により板厚19mmの
鋼板を製造し、この鋼板をUOE 成形して得た径610mm の
UOE 鋼管同士(同じ成分の鋼管同士)を電子ビーム溶接
により突き合わせ円周溶接し、パイプラインとした。パ
イプラインにおける円周方向溶接金属部からシャルピー
衝撃試験用試料を円周方向に沿って複数採取した。な
お、シャルピー衝撃試験片は、前記の図1及び図2と同
様に採取、加工し、機械加工により2mmVノッチ試験片
とした( シャルピー衝撃試験片寸法:試験片長さL=55m
m、試験片高さH=10mm、試験片幅W=10mm、Vノッチ深さD
=2mm 、Vノッチ角度α=45℃、Vノッチ先端R=0.25m
m)。
[Example] Converter-Continuous casting-Thick plate manufacturing process to manufacture a steel plate with a plate thickness of 19 mm, and this steel plate was UOE-molded to obtain a diameter of 610 mm.
UOE steel pipes (steel pipes with the same composition) were butt-welded and circumferentially welded by electron beam welding to form a pipeline. A plurality of samples for the Charpy impact test were taken along the circumferential direction from the circumferential weld metal portion in the pipeline. The Charpy impact test piece was sampled, processed and machined into a 2 mm V notch test piece in the same manner as in FIGS. 1 and 2 (Charpy impact test piece size: test piece length L = 55 m.
m, test piece height H = 10mm, test piece width W = 10mm, V notch depth D
= 2mm, V notch angle α = 45 ℃, V notch tip R = 0.25m
m).

【0045】電子ビーム溶接に関しては、真空度を10Pa
以下とし、電子ビームの円周方向移動速度を400 〜600m
m/分、電子ビームの加速電圧を60kV、電子ビーム電流を
200mA 、電子ビーム収束条件(対物距離/焦点距離)を
0.9 〜1.1 とした。その際、電子ビーム溶接後の冷却時
間は、円周方向溶接金属部の円周方向全周において、80
0 ℃から500 ℃までが5秒以内、500 ℃から300 ℃まで
が2〜10秒であった。
Regarding electron beam welding, the degree of vacuum is 10 Pa.
The electron beam circumferential speed is 400 to 600 m
m / min, electron beam acceleration voltage 60 kV, electron beam current
200mA, electron beam focusing condition (objective distance / focal length)
It was set to 0.9 to 1.1. At that time, the cooling time after electron beam welding is 80 in the entire circumference of the circumferential weld metal part.
It was within 5 seconds from 0 ° C to 500 ° C, and within 2 to 10 seconds from 500 ° C to 300 ° C.

【0046】上記鋼管の組成およびパイプラインにおけ
る円周方向溶接金属部の固溶Ti量および固溶N量を表5
に、電子ビーム円周方向溶接金属部の低温靱性評価結果
を表6に示す。この場合、低温靱性としては、シャルピ
ー衝撃試験により、3回以上測定した吸収エネルギーが
200J以上で、かつ最大値と最小値の差が 150J以内の
場合に低温靭性が優れるとした。
Table 5 shows the composition of the above-mentioned steel pipe and the amount of solid solution Ti and the amount of solid solution N in the circumferential weld metal portion in the pipeline.
Table 6 shows the low-temperature toughness evaluation results of the electron beam circumferential weld metal portion. In this case, as the low temperature toughness, the absorbed energy measured three or more times by the Charpy impact test is
It was considered that the low temperature toughness was excellent when it was 200 J or more and the difference between the maximum value and the minimum value was 150 J or less.

【0047】[0047]

【表5】 [Table 5]

【0048】[0048]

【表6】 [Table 6]

【0049】表6に示す結果から、本発明にしたがう鋼
管同士を電子ビーム溶接により円周方向に溶接した鋼管
の円周方向溶接金属部においては、吸収エネルギーが 2
00J以上で、かつ吸収エネルギーのばらつきが小さく、
低温靱性に優れる。これに対して、本発明によらない鋼
板を用いた鋼管母材は化学組成が適切でなく、吸収エネ
ルギーが 200J未満となる場合があり、かつ吸収エネル
ギーのばらつきが大きく、低温靱性が劣る。
From the results shown in Table 6, the absorbed energy is 2 in the circumferential weld metal portion of the steel pipe in which the steel pipes according to the present invention are welded in the circumferential direction by electron beam welding.
00J or more, and the variation in absorbed energy is small,
Excellent low temperature toughness. On the other hand, the steel pipe base material using the steel sheet not according to the present invention has an unsuitable chemical composition, the absorbed energy may be less than 200 J, the absorbed energy varies widely, and the low temperature toughness is poor.

【0050】[0050]

【本発明の効果】本発明によれば、円周方向溶接部の吸
収エネルギーが大きく、かつ円周方向位置における吸収
エネルギーのバラツキが小さい、円周方向電子ビーム溶
接金属部の低温靱性に優れたパイプラインとすることが
できる。
EFFECTS OF THE INVENTION According to the present invention, the low temperature toughness of the circumferential electron beam welded metal portion in which the absorbed energy in the circumferential welded portion is large and the variation in the absorbed energy in the circumferential position is small. It can be a pipeline.

【図面の簡単な説明】[Brief description of drawings]

【図1】電子ビーム円周方向溶接金属部の低温靭性評価
法の一例を示す部分斜視図である。
FIG. 1 is a partial perspective view showing an example of a low temperature toughness evaluation method for an electron beam circumferential direction weld metal portion.

【図2】Vノッチシャルピー衝撃試験片におけるシャル
ピー衝撃試験の衝撃方向を示す説明図である。
FIG. 2 is an explanatory diagram showing the impact direction of a Charpy impact test on a V-notch Charpy impact test piece.

【符号の説明】[Explanation of symbols]

1 鋼管(鋼管母材) 2 円周方向溶接金属部 B 円周方向溶接金属部の幅 t 厚み θ 円周方向(溶接方向) Z 長さ方向 L シャルピー衝撃試験片長さ H シャルピー衝撃試験片高さ W シャルピー衝撃試験片幅 α Vノッチ角度 R Vノッチ先端半径 D Vノッチ深さ 1 Steel pipe (steel pipe base material) 2 Circumferentially welded metal part B Width of weld metal in circumferential direction t thickness θ Circumferential direction (welding direction) Z length direction L Charpy impact test piece length H Charpy impact test piece height W Charpy impact test piece width α V notch angle R V Notch tip radius DV notch depth

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 103:04 B23K 103:04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B23K 103: 04 B23K 103: 04

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 鋼管同士を溶接した溶接金属部が質量%
で、固溶Ti量:0.005 〜0.020 %、固溶N量:0.0015〜
0.0060%を含有することを特徴とする溶接金属部の低温
靱性に優れたパイプライン。
1. A mass% of a weld metal part in which steel pipes are welded to each other.
Then, the amount of solid solution Ti: 0.005 to 0.020%, the amount of solid solution N: 0.0015 to
A pipeline with excellent low-temperature toughness in the weld metal, which is characterized by containing 0.0060%.
【請求項2】 請求項1に記載の鋼管が質量%で、C:
0.03〜0.06%、Si:0.10〜0.60%、Mn:0.80〜2.0 %、
P:0.015 %以下、Ti:0.005 〜0.025 %、Al:0.010
〜0.050 %、O:0.0030%以下を含有する鋼管同士を溶
接したことを特徴とする請求項1に記載の溶接金属部の
低温靱性に優れたパイプライン。
2. The steel pipe according to claim 1, in mass%, C:
0.03 to 0.06%, Si: 0.10 to 0.60%, Mn: 0.80 to 2.0%,
P: 0.015% or less, Ti: 0.005 to 0.025%, Al: 0.010
The steel line containing 0 to 0.050% and O: 0.0030% or less is welded to each other, and the pipeline excellent in low temperature toughness of the weld metal portion according to claim 1.
【請求項3】 請求項2に記載の鋼管が、さらに加えて
質量%で、S:0.002 %以下、Nb:0.01〜0.06%、およ
びN:0.0010〜0.0060%を含有することを特徴とする請
求項2に記載の溶接金属部の低温靱性に優れたパイプラ
イン。
3. The steel pipe according to claim 2, further comprising S: 0.002% or less, Nb: 0.01 to 0.06%, and N: 0.0010 to 0.0060% in mass%. Item 2. A pipeline excellent in low temperature toughness of a weld metal part.
【請求項4】 鋼管同士の電子ビーム溶接方法におい
て、溶接金属部の800 ℃から500 ℃までの冷却時間を5
秒以内、500 ℃から300 ℃までの冷却時間を2〜10秒以
内とし、前記溶接金属部を質量%で、固溶Ti量:0.005
〜0.020 %、固溶N量:0.0015〜0.0060%としたことを
特徴とする鋼管の溶接方法。
4. In the electron beam welding method for steel pipes, the cooling time from 800 ° C. to 500 ° C. of the weld metal is 5
Within 2 seconds, the cooling time from 500 ℃ to 300 ℃ shall be within 2 to 10 seconds, and the weld metal part is in mass% and the solid solution Ti content is 0.005
~ 0.020%, amount of solid solution N: 0.0015 to 0.0060%, a method for welding a steel pipe.
【請求項5】 請求項4に記載の鋼管を質量%で、C:
0.03〜0.06%、Si:0.10〜0.60%、Mn:0.80〜2.0 %、
P:0.015 %以下、Ti:0.005 〜0.025 %、Al:0.010
〜0.050 %、O:0.0030%以下を含有する組成としたこ
とを特徴とする請求項4に記載の鋼管の溶接方法。
5. The steel pipe according to claim 4, wherein C:
0.03 to 0.06%, Si: 0.10 to 0.60%, Mn: 0.80 to 2.0%,
P: 0.015% or less, Ti: 0.005 to 0.025%, Al: 0.010
5. The method for welding a steel pipe according to claim 4, wherein the composition has a content of .about.0.050% and O: 0.0030% or less.
【請求項6】 請求項5に記載の鋼管がさらに加えて質
量%で、S:0.002%以下、Nb:0.01〜0.06%、および
N:0.0010〜0.0060%を含有することを特徴とする請求
項5に記載の鋼管の溶接方法。
6. The steel pipe according to claim 5, further comprising S: 0.002% or less, Nb: 0.01 to 0.06%, and N: 0.0010 to 0.0060% by mass%. 5. The method for welding a steel pipe according to item 5.
JP2002112835A 2002-04-16 2002-04-16 Pipeline having excellent low temperature toughness in weld metal part and electron beam circumferential welding method for steel pipe Pending JP2003306748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112835A JP2003306748A (en) 2002-04-16 2002-04-16 Pipeline having excellent low temperature toughness in weld metal part and electron beam circumferential welding method for steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112835A JP2003306748A (en) 2002-04-16 2002-04-16 Pipeline having excellent low temperature toughness in weld metal part and electron beam circumferential welding method for steel pipe

Publications (1)

Publication Number Publication Date
JP2003306748A true JP2003306748A (en) 2003-10-31

Family

ID=29395186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112835A Pending JP2003306748A (en) 2002-04-16 2002-04-16 Pipeline having excellent low temperature toughness in weld metal part and electron beam circumferential welding method for steel pipe

Country Status (1)

Country Link
JP (1) JP2003306748A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056961A (en) * 2006-08-30 2008-03-13 Jfe Steel Kk HIGH STRENGTH WELDED STEEL PIPE HAVING TENSILE STRENGTH OF 760 MPa OR MORE AND HAVING EXCELLENT TOUGHNESS IN WELDING HEAT-AFFECTED ZONE, AND MANUFACTURING METHOD THEREFOR
JP2008280573A (en) * 2007-05-09 2008-11-20 Kobe Steel Ltd Steel sheet having excellent toughness in weld heat-affected zone in high heat input welding
WO2015194306A1 (en) * 2014-06-18 2015-12-23 Ntn株式会社 Constant velocity universal joint outer joint member and manufacturing method for same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008056961A (en) * 2006-08-30 2008-03-13 Jfe Steel Kk HIGH STRENGTH WELDED STEEL PIPE HAVING TENSILE STRENGTH OF 760 MPa OR MORE AND HAVING EXCELLENT TOUGHNESS IN WELDING HEAT-AFFECTED ZONE, AND MANUFACTURING METHOD THEREFOR
JP2008280573A (en) * 2007-05-09 2008-11-20 Kobe Steel Ltd Steel sheet having excellent toughness in weld heat-affected zone in high heat input welding
KR100997341B1 (en) * 2007-05-09 2010-11-29 가부시키가이샤 고베 세이코쇼 Steel plate excellent in toughness of large heat-input weld heat affected zone
WO2015194306A1 (en) * 2014-06-18 2015-12-23 Ntn株式会社 Constant velocity universal joint outer joint member and manufacturing method for same
US10352369B2 (en) 2014-06-18 2019-07-16 Ntn Corporation Constant velocity universal joint outer joint member and manufacturing method for same

Similar Documents

Publication Publication Date Title
JP4903918B1 (en) Ultra high strength welded joint and manufacturing method thereof
JP6308337B1 (en) Vertical seam welded steel pipe
JP4787062B2 (en) Weld metal with excellent toughness and SR cracking resistance
JP5870665B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
JP2007260715A (en) Method for producing superhigh strength welded steel pipe
JP2007100213A (en) Steel having excellent toughness in weld heat-affected zone and manufacturing method therefor
JP2007260716A (en) Method for producing ultrahigh strength welded steel pipe having excellent deformability
JP3770106B2 (en) High strength steel and its manufacturing method
JP2011074447A (en) High strength steel excellent in toughness in high heat input weld heat-affected zone
JP6235402B2 (en) Weld metal with excellent strength, toughness and SR cracking resistance
JP2007247005A (en) Steel having excellent toughness of weld heat-affected zone and excellent base metal toughness and method for manufacturing the same
JP2004099930A (en) High-strength welded steel pipe having excellent toughness of weld zone, and method for manufacturing the same
JP2016216819A (en) Thick steel plate and welded joint
KR20180116176A (en) Thick steel plate
JP2004068055A (en) High strength welded steel pipe having excellent weld zone toughness and method for producing the same
KR101867111B1 (en) Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP2003306748A (en) Pipeline having excellent low temperature toughness in weld metal part and electron beam circumferential welding method for steel pipe
JP2003201535A (en) Steel sheet and steel pipe for electron beam welding, and pipeline having excellent low temperature toughness in weld metal zone
JP4438210B2 (en) Laser welding joint of steel and laser welding method
JPH08309428A (en) Production of welded steel tube
JP2008087031A (en) Welded joint having excellent resistance to generation of brittle fracture
JP2004011008A (en) Steel member and structure excellent in weld zone toughness
JPH09201688A (en) Manufacture of welded steel tube excellent in strength in weld zone
JP7502588B2 (en) Weld metal for high energy density beam welded joint, high energy density beam welded joint, welded structure, steel pipe, steel material for high energy density beam welded joint and manufacturing method thereof
JP7502589B2 (en) Weld metal of high energy density beam welded joint, high energy density beam welded joint, welded structure and steel pipe