JP2003201535A - Steel sheet and steel pipe for electron beam welding, and pipeline having excellent low temperature toughness in weld metal zone - Google Patents

Steel sheet and steel pipe for electron beam welding, and pipeline having excellent low temperature toughness in weld metal zone

Info

Publication number
JP2003201535A
JP2003201535A JP2002124397A JP2002124397A JP2003201535A JP 2003201535 A JP2003201535 A JP 2003201535A JP 2002124397 A JP2002124397 A JP 2002124397A JP 2002124397 A JP2002124397 A JP 2002124397A JP 2003201535 A JP2003201535 A JP 2003201535A
Authority
JP
Japan
Prior art keywords
steel
electron beam
weld metal
toughness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002124397A
Other languages
Japanese (ja)
Inventor
Hiroshi Yano
浩史 矢埜
Mitsuhiro Okatsu
光浩 岡津
Koichi Yasuda
功一 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002124397A priority Critical patent/JP2003201535A/en
Publication of JP2003201535A publication Critical patent/JP2003201535A/en
Pending legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet for an electron beam welding, a steel pipe for an electron beam welding, and a pipeline in which the variation of toughness at low temperatures in a weld metal zone welded by an electron beam can be reduced, and to provide an electron beam welding method for the steel pipe. <P>SOLUTION: The steel sheet has a composition containing, by mass, 0.03 to 0.06% C, 0.1 to 0.4% Si, 0.8 to 2.0% Mn, ≤0.015% P, 0.005 to 0.025% Ti, 0.020 to 0.050% Al, and ≤0.0030% O, and also satisfying [O]<0.019×[Si]+0.009×[Al], and in which the number of inclusions of ≥3 μm is ≤5.0 pieces/mm<SP>2</SP>. The steel pipe is obtained by using the steel sheet. As for the pipeline, in the weld metal zone in the circumferential direction of the steel pipe obtained by welding the respective steel pipes in the circumferential direction by electron beam welding, the number of inclusions of ≥3 μm is ≤3.0 pieces/mm<SP>2</SP>, or the ratio of bainite packets with dimensions of ≥30,000 μm<SP>2</SP>occupied in the whole weld metal structure is ≤10%. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子ビームにより
溶接して溶接金属部の低温靱性に優れる、鋼板、鋼管お
よび鋼管の電子ビーム溶接方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate, a steel pipe, and an electron beam welding method for a steel pipe, which are excellent in low temperature toughness of a weld metal by welding with an electron beam.

【0002】[0002]

【従来の技術】寒冷地、オフショアーにおける原油、天
然ガス輸送用大径パイプラインに対しては、高強度とと
もに優れた低温靱性、現地溶接性が要求されている。と
くに近年、溶接施工能率の観点から、厚鋼板でも1パス
で溶接ができ、溶接効率と品質の両者を同時に向上させ
る溶接法として、電子ビーム溶接やレーザ溶接の適用の
検討が進められている。
2. Description of the Related Art High-strength, excellent low-temperature toughness and field weldability are required for large-diameter pipelines for transporting crude oil and natural gas in cold regions and offshore. In particular, in recent years, from the viewpoint of welding work efficiency, the application of electron beam welding or laser welding has been studied as a welding method capable of performing welding even with a thick steel plate in one pass and simultaneously improving both welding efficiency and quality.

【0003】これらの溶接法は従来の溶接法( MIG溶
接、TIG 溶接、被覆アーク溶接、サブマージアーク溶接
など)と異なって、溶接材料を使用せずに、被溶接材
料、例えばパイプラインでは鋼管そのものを溶融、凝固
させて接合する。このため、被溶接材料が溶融し、その
後凝固した溶接金属部では溶接金属部の被成分調整(組
織の制御)が困難であり、その溶接金属部の成分はほと
んど被溶接材料によって決まるため、溶接金属部の低温
靱性は被溶接材料の成分が大きな影響を与える。
Unlike conventional welding methods (MIG welding, TIG welding, covered arc welding, submerged arc welding, etc.), these welding methods do not use a welding material, but a material to be welded, for example, a steel pipe itself in a pipeline. Are melted, solidified and joined. For this reason, it is difficult to adjust the components of the weld metal (structure control) in the weld metal that has melted and then solidified, and the components of the weld metal are mostly determined by the material to be welded. The low temperature toughness of the metal part is greatly affected by the composition of the material to be welded.

【0004】従来の溶接法に用いるために開発された、
溶接熱影響部( HAZ)の低温靱性の優れた鋼は、電子ビ
ーム溶接に適用しても溶接金属部における靱性を改善す
ることが全くできないか、もしくは、溶接金属部におけ
る低温靱性を改善するには溶接条件を狭い範囲に限定し
なければならなかった。一方、電子ビームやレーザ溶接
部の低温靱性を改善する方法として、特開昭64−15321
号公報、特開平2−22418 号公報が開示している。しか
しながら、これらの方法は、溶接熱影響部(HAZ)お
よび溶接金属部中に Ti203、TiN を微細分散させ、組織
を微細化して良好な低温靱性を得ることができるとして
いるものの、電子ビームにより溶接した溶接金属部の低
温靱性ばらつきを低減できるものではなかった。
Developed for use in conventional welding methods,
Steels with excellent low temperature toughness in the heat affected zone (HAZ) are not able to improve the toughness in the weld metal at all when applied to electron beam welding, or to improve the low temperature toughness in the weld metal. Had to limit the welding conditions to a narrow range. On the other hand, as a method for improving the low temperature toughness of an electron beam or laser welded portion, Japanese Patent Laid-Open No. 64-15321
Japanese Unexamined Patent Application Publication No. 2-22418 has been disclosed. However, although these methods say that Ti 2 O 3 and TiN are finely dispersed in the weld heat-affected zone (HAZ) and the weld metal portion, the structure can be refined and good low temperature toughness can be obtained. It was not possible to reduce the variation in low temperature toughness of the weld metal portion welded by the beam.

【0005】また、特開平2001−207242号公報には、電
子ビームあるいはレーザにより溶接された溶接金属部の
低温靱性に優れ、かつ水素誘起割れ性および耐硫化物応
力腐食割れ性に優れた鋼管およびパイプラインに関して
開示されている。しかし、このような鋼管およびパイプ
ラインにおいても、電子ビーム円周方向溶接金属部の低
温での靱性ばらつきを低減できるものではなかった。
Further, Japanese Patent Laid-Open No. 2001-207242 discloses a steel pipe which is excellent in low-temperature toughness of a weld metal portion welded by an electron beam or a laser, and in which hydrogen-induced cracking resistance and sulfide stress corrosion cracking resistance are excellent. It is disclosed for pipelines. However, even in such steel pipes and pipelines, it has not been possible to reduce the toughness variation of the electron beam circumferential weld metal portion at low temperatures.

【0006】とくに、溶接金属部の低温での靱性ばらつ
きを低減できる電子ビーム溶接用鋼板、電子ビーム溶接
用鋼管の開発はほとんどなされておらず、鋼管同士を電
子ビーム溶接により円周方向に沿って溶接したパイプラ
インにおいては、鋼管の円周方向溶接金属部において安
定的に良好な低温靱性を確保できないことが大きな問題
点となっていた。
In particular, almost no development has been made on a steel plate for electron beam welding or a steel pipe for electron beam welding capable of reducing the toughness variation of the weld metal portion at low temperature. The steel pipes are welded along the circumferential direction by electron beam welding. In a welded pipeline, it has been a serious problem that stable good low temperature toughness cannot be secured in the circumferential weld metal portion of the steel pipe.

【0007】[0007]

【発明が解決しようとする課題】そこで、本発明は、上
述した問題を有利に解決するもので、電子ビームにより
溶接された溶接金属部の低温での靱性ばらつきを低減す
ることのできかつ、低温靱性に優れる電子ビーム溶接用
鋼板、電子ビーム溶接用鋼管およびパイプラインを、鋼
管の電子ビーム溶接方法とともに提供するものである。
SUMMARY OF THE INVENTION Therefore, the present invention advantageously solves the above-mentioned problems, and it is possible to reduce the toughness variation of the weld metal portion welded by the electron beam at a low temperature and at a low temperature. A steel plate for electron beam welding, a steel pipe for electron beam welding, and a pipeline having excellent toughness are provided together with an electron beam welding method for a steel pipe.

【0008】[0008]

【課題を解決するための手段】さて発明者らは、上記の
問題を解決すべく、各種の調査および検討を行った結
果、電子ビームにより溶接された溶接金属部中に、特定
の大きさの介在物が一定頻度以上に存在する場合に、シ
ャルピー衝撃試験結果における低温度領域において溶接
線方向の靱性値のばらつきが生じることを見い出し、本
発明を完成させた。
The inventors of the present invention have conducted various investigations and studies to solve the above problems, and as a result, have found that a certain size of a weld metal portion welded by an electron beam has a certain size. It was found that when inclusions are present at a certain frequency or more, the toughness value in the welding line direction varies in the low temperature region in the Charpy impact test result, and the present invention was completed.

【0009】また、発明者らは、電子ビームにより溶接
された溶接金属中に特定の大きさのベイナイトパケット
が一定割合存在する場合に、シャルピー衝突試験結果に
おける低温度領域におけて溶接線方向の靱性値のばらつ
きが生じ易いことを見い出し、本発明を完成させた。す
なわち、シャルピー衝撃試験における破壊の起点となる
と考えられる大きさの介在物量を極力低減するように鋼
板を製造し、ある頻度以下にすることによりシャルピー
衝撃試験結果における低温度領域の靱性値のばらつきを
低減できることが究明されたのである。さらに、鋼板成
分の調整や溶接条件の最適化により、破壊の伝播抵抗を
低下させると考えられる大きさのベイナイトパケットを
ある頻度以下にすることにより、シャルピー衝撃試験結
果における低温度領域の靱性値ばらつきを低減できるこ
とが究明されたのである。なお、ここで低温度とは、0
℃以下の温度範囲を指す。特にパイプラインに要求され
るシャルピー衝撃値の試験温度に近い領域ではばらつき
が問題となる。
Further, the inventors of the present invention have found that when a certain proportion of bainite packets of a specific size are present in the weld metal welded by the electron beam, the welding line direction in the low temperature region in the Charpy impact test results is shown. The inventors have found that variations in toughness are likely to occur, and have completed the present invention. That is, a steel sheet is manufactured so that the amount of inclusions of a size considered to be a starting point of fracture in the Charpy impact test is reduced as much as possible, and the variation in the toughness value in the low temperature region in the Charpy impact test result is controlled by setting the frequency to a certain frequency or less. It has been clarified that it can be reduced. Furthermore, by adjusting the steel plate composition and optimizing the welding conditions, the bainite packet of a size that is considered to reduce the propagation resistance of fracture is kept below a certain frequency, so that the toughness value variation in the low temperature region in the Charpy impact test results is small. It has been determined that this can be reduced. The low temperature is 0 here.
Indicates a temperature range of ℃ or less. In particular, in the region where the Charpy impact value required for the pipeline is close to the test temperature, variation becomes a problem.

【0010】上述した靱性値のばらつきは、シャルピー
衝撃試験結果において、温度範囲が20℃以上の温度幅を
もって3回以上測定した吸収エネルギーが200J以上であ
りかつ、最大値と最小値の差が150J以内の場合にばらつ
きがないというものとする。この発明は上記知見に基づ
いてなされたものであり、その要旨とするところは以下
の通りである。
In the Charpy impact test result, the above-mentioned variation in the toughness value is such that the absorbed energy measured at least three times with the temperature range of 20 ° C. or more is 200 J or more, and the difference between the maximum value and the minimum value is 150 J. If it is within the range, it is assumed that there is no variation. The present invention has been made based on the above findings, and the gist thereof is as follows.

【0011】質量%で、C:0.03〜0.06%、Si:0.10〜
0.40%、Mn:0.80〜 2.0%、P:0.015 %以下、Ti:0.
005 〜 0.025%、Al:0.020 〜 0.050%、O:0.0030%
以下を含有し、好ましくは、S:0.002 %以下、Nb:0.
01〜0.06%、N:0.0010〜0.0050%を含有し、かつ、
〔O〕<0.019 ×〔Si〕+0.009 ×〔Al〕を満足する組
成からなり、3μm以上の鋼中介在物が 5.0個/mm2
下である電子ビーム溶接用鋼板、この鋼板を用いた電子
ビーム溶接用鋼管、または、この鋼管同士を電子ビーム
溶接した鋼管の溶接金属部において、3μm以上の鋼中
介在物が 3.0個/mm2 以下もしくは、30000 μm 2 以上
の大きさを有するベイナイトパケットの溶接金属組織に
占める割合が10%以下であるパイプラインである。ま
た、上記鋼管同士を10Pa以下の真空度で電子ビーム溶接
することを特徴とする鋼管の電子ビーム溶接方法であ
る。
% By mass, C: 0.03 to 0.06%, Si: 0.10 to
0.40%, Mn: 0.80 to 2.0%, P: 0.015% or less, Ti: 0.
005 to 0.025%, Al: 0.020 to 0.050%, O: 0.0030%
It contains the following, preferably S: 0.002% or less, Nb: 0.
01-0.06%, N: 0.0010-0.0050%, and
A steel plate for electron beam welding, which has a composition satisfying [O] <0.019 × [Si] + 0.009 × [Al], and has 5.0 inclusions / mm 2 or less in steel of 3 μm or more. Bainite packets with electron beam welding steel pipes or welded metal parts of steel pipes obtained by electron beam welding of these steel pipes with 3.0 μm / mm 2 or less of inclusions in steel of 3 μm or more, or 30000 μm 2 or more Of the weld metal structure of 10% or less. Further, it is an electron beam welding method for steel pipes, characterized in that the steel pipes are electron beam welded at a vacuum degree of 10 Pa or less.

【0012】[0012]

【発明の実施の形態】この発明の作用について以下に述
べる。最初にこの発明に至った経緯を実験結果に基づい
て説明する。まず、低温でのシャルピー衝撃試験結果に
おいて、同一試験温度での各試験片の個々の吸収エネル
ギーに、150Jを超える吸収エネルギー差が生じた原因を
解明するために、低靱性となったシャルピー衝撃試験片
の破面を電子顕微鏡により観察した。その結果として、
シャルピー衝撃試験における破壊の起点は酸化物系介在
物であり、それらはすべて3μm以上の介在物であるこ
とが判明した。それらの介在物は分析の結果、Ca、Si、
Ti、Alなどを主体とする酸化物であり、一部はCa、Mnな
どを含む硫化物との複合体であった。
BEST MODE FOR CARRYING OUT THE INVENTION The operation of the present invention will be described below. First, the background of the invention will be described based on experimental results. First, in the Charpy impact test result at low temperature, in order to clarify the cause of the difference in the absorbed energy of each test piece at the same test temperature exceeding 150 J, the Charpy impact test with low toughness was conducted. The fractured surface of the piece was observed by an electron microscope. As a result,
It was found that the origin of fracture in the Charpy impact test was oxide-based inclusions, and all of them were inclusions of 3 μm or more. As a result of the analysis, those inclusions are Ca, Si,
It was an oxide mainly composed of Ti, Al, etc., and partly was a complex with a sulfide containing Ca, Mn, etc.

【0013】そこで、介在物サイズが電子ビーム溶接金
属部の低温靱性値のばらつきに及ぼす影響に着目して実
験を行った。すなわち、表1に示す鋼中酸素量のみ異な
る板厚19mmの鋼板A、Bをそれぞれ用い、鋼板Aを用い
て成形した鋼管A同士、鋼板Bを用いて成形した鋼管B
同士をそれぞれ電子ビーム溶接により突合せ円周溶接し
て、鋼板および円周方向溶接金属部中介在物と円周方向
溶接金属部靱性との関係を調査した。
Therefore, an experiment was conducted focusing on the influence of the inclusion size on the variation in the low temperature toughness of the electron beam weld metal. That is, steel plates A and B each having a plate thickness of 19 mm, which differ only in the amount of oxygen in the steel shown in Table 1, are used, and steel pipes A formed using the steel plates A and steel pipes B formed using the steel plates B are used.
Each of them was butt-circumferentially welded by electron beam welding, and the relationship between the inclusions in the steel plate and the circumferential weld metal portion and the toughness of the circumferential weld metal portion was investigated.

【0014】なお、介在物調査は、鋼板および円周方向
溶接金属部のそれぞれについて円周方向全周を45゜以下
のピッチで等分割した複数箇所から試験片を採取して、
円周方向に垂直な断面の光学顕微鏡観察を行い、単位断
面積当たりの、3μm以上の介在物個数を求めた。単位
断面積当たりの、3μm以上の介在物個数は画像解析処
理により次のようにして求めた。先ず、観察像より介在
物の個々の面積を求めると共に、介在物の大きさとして
介在物の面積が等価となる円の直径を求め、その円の直
径が3μm以上となる介在物の個数を求めた。
In the inclusion investigation, test pieces were sampled from a plurality of locations where the entire circumference of the steel plate and the circumferential weld metal portion were equally divided at a pitch of 45 ° or less,
The cross section perpendicular to the circumferential direction was observed with an optical microscope, and the number of inclusions of 3 μm or more per unit cross-sectional area was determined. The number of inclusions of 3 μm or more per unit cross-sectional area was determined by image analysis processing as follows. First, the area of each inclusion is determined from the observed image, the diameter of a circle is calculated as the size of the inclusion, and the number of inclusions whose diameter is 3 μm or more is calculated. It was

【0015】このようにして、単位面積当たりの、介在
物の大きさが3μm 以上の介在物個数を求めたがこの求
め方は、画像解析処理により測定する方法に限定されな
い。また、電子ビームにより溶接された鋼管の円周方向
溶接金属部の低温靱性は、図1に示すように、シャルピ
ー衝撃試験に用いる試験片を円周方向溶接部2の厚さt
方向中央部から採取し、機械加工によりVノッチの先端
が円周方向溶接部2の幅Bの中央に沿うようにVノッチ
シャルピー衝撃試験片を加工した後、衝撃方向が溶接方
向θとなるようにして(図2参照)、その他の条件はJI
S Z 2242(金属材料衝撃試験方法)の規定にしたがっ
て、低温シャルピー衝撃試験を行った。シャルピー衝撃
試験片の形状は、長さL=55mm、高さH=10mm、幅W=
10mm、Vノッチ深さD=2mm、Vノッチ角度α=45°、
Vノッチ先端R=0.25mmとした。図1の2点鎖線は鋼管
(鋼管母材)1の円周方向溶接金属部2の要部を示した
斜視図で、zは鋼管母材1の長さ方向である。
In this way, the number of inclusions having a size of inclusions of 3 μm or more per unit area was obtained, but the method of obtaining is not limited to the method of measuring by image analysis processing. Further, as shown in FIG. 1, the low temperature toughness of the circumferential weld metal portion of the steel pipe welded by the electron beam is the thickness t of the circumferential weld portion 2 of the test piece used for the Charpy impact test.
After the V-notch Charpy impact test piece is machined so that the tip of the V-notch is along the center of the width B of the circumferential welded portion 2 by machining, the impact direction becomes the welding direction θ. (See Fig. 2), other conditions are JI
A low temperature Charpy impact test was performed according to the regulations of SZ 2242 (Metallic material impact test method). The shape of the Charpy impact test piece is length L = 55mm, height H = 10mm, width W =
10mm, V notch depth D = 2mm, V notch angle α = 45 °,
The V notch tip R was 0.25 mm. A two-dot chain line in FIG. 1 is a perspective view showing a main part of a circumferential weld metal portion 2 of a steel pipe (steel pipe base material) 1, and z is a length direction of the steel pipe base material 1.

【0016】但し、円周方向溶接金属部2のシャルピー
衝撃試験に用いる試験片および円周方向溶接金属部2の
介在物観察用試験片は、円周方向に沿って複数の試験片
を採取し、それぞれの試験に供した。鋼板並びに円周方
向溶接金属部中での単位断面積当たりの、3μm以上の
介在物個数および円周方向溶接金属部の低温靱性値の結
果を表2に示す。
However, as the test piece used for the Charpy impact test of the circumferential weld metal part 2 and the inclusion observing test piece of the circumferential weld metal part 2, a plurality of test pieces are taken along the circumferential direction. , And subjected to each test. Table 2 shows the results of the number of inclusions of 3 μm or more and the low temperature toughness value of the circumferential weld metal portion per unit cross-sectional area in the steel sheet and the circumferential weld metal portion.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】表2に示す結果から、鋼板中酸素量が異な
り、それ以外の成分が同じである鋼管でも用いる鋼板お
よび溶接金属部中の介在物個数が異なった場合、円周方
向溶接金属部での低温靱性値のばらつき状況が異なるこ
とが判明した。電子ビーム溶接法で3μm以上の介在物
の靱性ばらつきに及ぼす影響が大きくなった理由として
は、電子ビーム溶接では真空中で溶接するので、溶接時
に鋼板中の酸素量および酸化物介在物以上に溶接金属中
の酸素量および酸化物系介在物が増加することがなく、
他の溶接法( MIG溶接、TIG 溶接、被覆アーク溶接、サ
ブマージアーク溶接など)の溶接金属と異なり、溶接金
属中介在物の個数が非常に少なくなる。このように溶接
金属部中の介在物個数が少ない場合にはシャルピー衝撃
試験のように鋼および溶接金属の切欠き靱性を評価する
試験では、とくにその破壊の起点となる介在物の大きさ
の影響が非常に大きくなったものと推定される。
From the results shown in Table 2, when the amount of oxygen in the steel sheet is different and the number of inclusions in the steel sheet and weld metal portion used in steel pipes having the same other components is also different, it is observed in the circumferential weld metal portion. It was found that the low-temperature toughness of the steels differed in the dispersion state. The reason why the influence of inclusions with a size of 3 μm or more on the toughness variation is large in the electron beam welding method is because electron beam welding involves welding in a vacuum. Without increasing the amount of oxygen in the metal and oxide-based inclusions,
Unlike weld metal of other welding methods (MIG welding, TIG welding, covered arc welding, submerged arc welding, etc.), the number of inclusions in the weld metal is extremely small. When the number of inclusions in the weld metal is small, the influence of the size of inclusions, which is the starting point of the fracture, is particularly noticeable in tests such as the Charpy impact test that evaluate the notch toughness of steel and weld metal. Is estimated to have become very large.

【0020】今回の介在物観察は、鋼板および円周方向
溶接金属部の円周方向全周を45゜以下のピッチで等分割
した複数箇所から採取したそれぞれ円周方向に垂直な断
面について行ったので、この結果は、鋼板および円周方
向溶接金属部のそれぞれの平均的な介在物存在状態を十
分に代表しているものと考えられる。なお、介在物観察
は光学顕微鏡で行ったが、電子顕微鏡を用いてもかまわ
ない。介在物の観察倍率は、光学顕微鏡では400 倍以
下、電子顕微鏡では400 〜1000倍で行うのが望ましい。
試験片の作製および試験方法(測定面積など)は JIS G
0555 (鋼の非金属介在物の顕微鏡試験方法)に基づ
き、研磨きずや錆が出ないように試料を調整した。
The inclusions were observed this time on a cross section perpendicular to the circumferential direction, which was taken from a plurality of locations where the entire circumference in the circumferential direction of the steel plate and the circumferential weld metal was equally divided at a pitch of 45 ° or less. Therefore, this result is considered to sufficiently represent the average state of inclusions in each of the steel plate and the circumferential weld metal portion. The observation of inclusions was performed with an optical microscope, but an electron microscope may be used. The observation magnification of the inclusions is preferably 400 times or less with an optical microscope and 400 to 1000 times with an electron microscope.
Preparation of test pieces and test methods (measurement area, etc.) are JIS G
Based on 0555 (Microscopic test method for non-metallic inclusions in steel), the samples were adjusted so as to prevent polishing flaws and rust.

【0021】ここで、上述した画像解析により求めた、
単位面積当たりの、介在物の大きさが3μm 以上の介在
物は、測定法からも明らかなように、鋼中の非鉄介在物
のすべてを包含しており、硫化物系や AINなどの析出
物、それらを含む複合体等も含むことは言うまでもな
い。この発明は、以上のような知見に基づき積極的に鋼
中介在物の大きさを制御することにより、電子ビームに
より溶接された鋼管の溶接金属部の低温靱性ばらつきを
低減し、安定的に良好な靱性を確保するものであり、従
来の介在物量を低減する清浄な鋼管の製造手段による高
靱性化よりも、鋼管を清浄化することなく、溶接金属部
の良好な靱性を安定的に得られることが明らかとなっ
た。
Here, the value obtained by the above-mentioned image analysis,
Inclusions with a size of inclusions of 3 μm or more per unit area include all non-ferrous inclusions in steel, as is clear from the measurement method, and precipitates such as sulfides and AIN. Needless to say, it includes a complex containing them. The present invention reduces the low temperature toughness variation of the weld metal part of the steel pipe welded by the electron beam by positively controlling the size of inclusions in the steel on the basis of the above knowledge, and it is stable and good. The toughness of the welded metal part can be stably obtained without cleaning the steel pipe, compared to the conventional method of producing a clean steel pipe that reduces the amount of inclusions to increase the toughness. It became clear.

【0022】さらに、発明者らは、電子ビーム溶接金属
部の低温度領域における靱性ばらつきについてより綿密
な検討を加えたところ、新たに、鋼板中Si、Al、O量お
よびある一定の大きさ以上のベイナイトパケット(ベイ
ナイトパケットについては、例えば、“天野ら:まてり
あ、第39巻(2000),185”参照。)が溶接金属組織に占め
る割合を調節した場合には、さらに電子ビーム溶接金属
部の低温度領域における靱性ばらつきを低減できること
が明らかとなった。
Further, the inventors have made a closer examination on the toughness variation in the low temperature region of the electron beam welded metal part. As a result, a new amount of Si, Al, O in the steel sheet and a certain value or more are newly added. Bainite packet (for bainite packet, see, for example, “Amano et al .: Materia, Vol. 39 (2000), 185”), if the proportion of the weld metal structure is adjusted, the electron beam weld metal It was revealed that the toughness variation in the low temperature region of the part can be reduced.

【0023】そこで、鋼板中Si、Al、O量が電子ビーム
溶接金属部の靱性ばらつきに及ぼす影響に着目して実験
を行った。すなわち、板厚15mmの表3に示す組成の鋼板
を用いた鋼管同士を電子ビーム溶接により突合せ円周溶
接して、鋼板中Si、Al、O量が鋼板、溶接金属部中介在
物および電子ビーム円周方向溶接金属部靱性に及ぼす影
響を調査した。その際、単位面積当たりの、径が3μm
以上の介在物個数は、上述のようにして画像解析処理に
より求めた。また、電子ビーム円周方向溶接金属部の低
温靭性を上記の場合と同様にして測定した。
Therefore, an experiment was conducted focusing on the influence of the amounts of Si, Al and O in the steel sheet on the toughness variation of the electron beam welded metal portion. That is, steel pipes having the composition shown in Table 3 having a plate thickness of 15 mm are butt-circumferentially welded by electron beam welding, and the amounts of Si, Al, and O in the steel sheet are steel sheet, inclusions in the weld metal part, and electron beam The influence on the toughness of the weld metal in the circumferential direction was investigated. At that time, the diameter per unit area is 3 μm
The number of the above inclusions was obtained by the image analysis processing as described above. Further, the low temperature toughness of the electron beam circumferential welded metal portion was measured in the same manner as in the above case.

【0024】さらに、電子ビーム溶接円周方向溶接金属
部の30000 μm 2 以上の大きさを有するベイナイトパケ
ットが全溶接金属組織に占める割合を求めた。なお、介
在物調査と同様、円周方向全周を45°以下のピッチで
等分割した複数箇所から試験片を採取して、円周方向に
垂直な断面の光学顕微鏡観察を行い、30000 μm 2 以上
の大きさを有するベイナイトパケットが全溶接金属組織
に占める割合を求めた。まず、観察像を画像処理により
ベイナイトパケットの個々の面積を求め、30000 μm 2
以上の大きさを有するベイナイトパケットが全溶接金属
組織に占める割合を求めた。
Further, the proportion of bainite packets having a size of 30,000 μm 2 or more in the circumferentially welded metal portion of electron beam welding in the entire weld metal structure was determined. As in the inclusions survey, collect specimens from multiple locations were equally divided circumferentially entire circumference at a pitch of 45 ° or less, perform optical microscopy of a cross-section perpendicular to the circumferential direction, 30000 [mu] m 2 The ratio of the bainite packet having the above size to the entire weld metal structure was determined. First, the area of each bainite packet was calculated by image processing of the observed image, and 30000 μm 2
The ratio of the bainite packet having the above size to the entire weld metal structure was determined.

【0025】その結果を表4に示す。The results are shown in Table 4.

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】表4に示す結果から、溶接金属部中の介在
物個数だけでなく、鋼板中Si、Al、O量およびある一定
の大きさ以上のベイナイトパケットが全溶接金属組織に
占める割合により、電子ビーム溶接金属部における低温
靱性値のばらつき状況が異なることが判明した。すなわ
ち、溶接金属部において3μm 以上の介在物個数が 3.0
個/mm2 以下で、かつ鋼板成分が〔O〕<0.019 ×〔S
i〕+0.009 ×〔Al〕を満足する鋼管Eの場合には、電
子ビーム溶接金属部における靱性値のばらつきが極めて
小さくなっており、低温靱性に優れている。ただし、鋼
管Eの場合、30000 μm 2 以上の大きさを有するベイナ
イトパケットが全溶接金属組織に占める割合は10%を
超えている。一方、溶接金属部において3μm 以上の介
在物個数が 3.0個/mm2 以下ではあるものの、鋼板成分
が〔O〕<0.019 ×〔Si〕+0.009 ×〔Al〕を満足せ
ず、かつ30000 μm 2 以上の大きさを有するベイナイト
パケットが全溶接金属組織に占める割合は10%を超え
る鋼管C、Dの場合には、電子ビーム溶接金属部におけ
る靱性値のばらつきが大きく、低温靱性が劣っている。
なお、溶接金属部において、3μm 以上の介在物個数が
3.0 個/mm2 以下を満足しないものの、溶接金属部にお
いて鋼板成分が〔O〕<0.019×〔Si〕+0.0
09×〔Al〕で、かつ30000 μm 2 以上の大きさを有
するベイナイトパケットが全溶接金属組織に占める割合
が10%以下である鋼管Fの場合には、電子ビーム溶接
金属部における靱性値のばらつきが改善されている。
From the results shown in Table 4, not only the number of inclusions in the weld metal part but also the amount of Si, Al, O in the steel sheet and the proportion of bainite packet having a certain size or more in the entire weld metal structure are It was found that the low-temperature toughness values in the electron-beam welded metal part have different variations. That is, the number of inclusions of 3 μm or more in the weld metal is 3.0
Pieces / mm 2 or less and steel plate composition is [O] <0.019 × [S
In the case of the steel pipe E satisfying i] + 0.009 × [Al], the variation of the toughness value in the electron beam weld metal part is extremely small, and the low temperature toughness is excellent. However, in the case of the steel pipe E, the proportion of bainite packets having a size of 30,000 μm 2 or more in the entire weld metal structure exceeds 10%. On the other hand, in the weld metal part, the number of inclusions of 3 μm or more is 3.0 pieces / mm 2 or less, but the steel plate composition does not satisfy [O] <0.019 × [Si] + 0.009 × [Al] and 30000 μm In the case of steel pipes C and D in which the ratio of bainite packets having a size of 2 or more to the entire weld metal structure is more than 10%, the toughness value in the electron beam weld metal part varies greatly and the low temperature toughness is poor. .
In addition, in the weld metal part, the number of inclusions of 3 μm or more
Although it does not satisfy 3.0 pieces / mm 2 or less, the steel plate composition in the weld metal part is [O] <0.019 × [Si] +0.0
In the case of the steel pipe F in which the proportion of bainite packets having a size of 09 × [Al] and 30,000 μm 2 or more in the entire weld metal structure is 10% or less, the toughness variation in the electron beam weld metal portion is uneven. Has been improved.

【0029】この鋼板中Si、Al、O量が靱性ばらつきに
及ぼす影響が大きくなった理由としては、〔O〕<0.01
9 ×〔Si〕+0.009 ×〔Al〕を満足した場合、電子ビー
ム溶接金属中に固溶状態のSi、およびAlが存在すること
により、非常に冷却速度の速い溶接金属におけるベイナ
イト組織内に生成する島状マルテンサイトの生成量を抑
制し、割れ感受性の低い組織となったものと推定され
る。鋼板中O量に対して、充分なSi、Al量を含有してい
ない鋼板では、電子ビーム溶接金属中に粗大な島状マル
テンサイトを生成し、靱性値のばらつきを生じたものと
考えられる。
The reason why the amounts of Si, Al, and O in the steel sheet greatly affect the toughness variation is [O] <0.01
When 9 × [Si] + 0.009 × [Al] is satisfied, due to the presence of solid solution Si and Al in the electron beam weld metal, the bainite structure in the weld metal with a very fast cooling rate It is presumed that the formation of island martensite was suppressed and the structure became less susceptible to cracking. It is considered that in the steel sheet that does not contain a sufficient amount of Si and Al with respect to the O content in the steel sheet, coarse island-shaped martensite was generated in the electron beam weld metal, and the toughness value varied.

【0030】また、30000 μm 2 以上の大きさを有する
ベイナイトパケットが全溶接金属組織に占める割合が靱
性ばらつきに及ぼす影響が大きくなった理由として、シ
ャルピー衝撃試験における破壊の伝播単位となるベイナ
イトパケットのサイズを小さくすることにより破壊の伝
播抵抗が高くなり、靱性値ばらつきが小さくなったもの
だと考えられる。30000 μm 2 以上の大きさを有するベ
イナイトパケットが全溶接金属組織に占める割合が大き
くなった溶接金属では、破壊の伝播抵抗が低くなり、靱
性値ばらつきが生じ易くなったものと考えられる。
The reason why the ratio of the bainite packet having a size of 30,000 μm 2 or more to the total weld metal structure has a great influence on the toughness variation is that the bainite packet, which is a unit of propagation of fracture in the Charpy impact test, is large. It is considered that the smaller the size, the higher the propagation resistance of fracture and the smaller the toughness variation. It is considered that the weld metal in which the bainite packet having a size of 30,000 μm 2 or more accounts for a large proportion of the entire weld metal structure has a low fracture propagation resistance and is likely to cause variations in toughness values.

【0031】今回求めた30000 μm 2 以上の大きさを有
するベイナイトパケットが全溶接金属組織に占める割合
は、円周方向溶接金属部の平均的な全溶接金属組織に占
める割合を十分代表しているものと考えられる。また、
30000 μm 2 以上の大きさを有するベイナイトパケット
が全溶接金属組織に占める割合は画像解析処理により求
めたが、この求め方は画像解析処理により測定する方法
に限定されていない。また、ベイナイト組織の観察は光
学顕微鏡で行ったが、電子顕微鏡で行っても構わない。
ベイナイト組織の観察倍率は、光学顕微鏡では200 倍以
下、電子顕微鏡では400 倍以下で行うのが望ましい。試
験片は介在物観察に用いた試験片と同様に作製し、腐食
液にはナイタールを用いてエッチングを行った。
The ratio of the bainite packet having a size of 30,000 μm 2 or more obtained this time to the entire weld metal structure is sufficiently representative of the ratio of the circumferential weld metal structure to the average weld metal structure. It is considered to be a thing. Also,
The proportion of bainite packets having a size of 30,000 μm 2 or more in the entire weld metal structure was determined by image analysis processing, but this determination method is not limited to the method of measurement by image analysis processing. Although the bainite structure was observed with an optical microscope, it may be observed with an electron microscope.
The observation magnification of the bainite structure is preferably 200 times or less with an optical microscope and 400 times or less with an electron microscope. A test piece was prepared in the same manner as the test piece used for observing inclusions, and etching was performed using nital as a corrosive liquid.

【0032】以下に、本発明における限定理由について
説明する。まず、この発明に係る鋼板または鋼板を用い
た鋼管において、3μm以上の大きさの鋼中介在物の個
数を限定した理由について説明する。すなわち、鋼板ま
たは鋼板を用いた鋼管(以下、鋼管という)において、
径が3μm以上の大きさの鋼中介在物の個数が 5.0個/
mm2 を超えて鋼中に存在する場合には、前述したごとく
低温度領域におけるシャルピー衝撃試験の破壊の起点と
なり、電子ビーム円周方向溶接金属部の低温靱性ばらつ
きの原因となるので3μm以上の大きさの鋼中介在物の
個数は 5.0個/mm2 以下とした。
The reasons for limitation in the present invention will be described below. First, the reason for limiting the number of inclusions in the steel having a size of 3 μm or more in the steel plate or the steel pipe using the steel plate according to the present invention will be described. That is, in a steel plate or a steel pipe using the steel plate (hereinafter referred to as a steel pipe),
The number of inclusions in steel with a diameter of 3 μm or more is 5.0 /
If it exceeds 3 mm 2 in the steel, it becomes the starting point of the Charpy impact test fracture in the low temperature region as described above, and causes the low temperature toughness variation of the weld metal part in the electron beam circumferential direction. The number of inclusions in the size of steel was 5.0 / mm 2 or less.

【0033】また、真空中で電子ビーム溶接された鋼管
の円周方向溶接金属部では、溶接時に酸化物系介在物で
さえも溶解すると考えられ、一部はスラグとなって溶接
金属外に排出されるが、一部は凝固冷却中に再析出して
溶接金属中介在物となる。よって、円周方向溶接金属部
中の介在物の大きさおよび個数は、鋼板の鋼中介在物に
対して変化する。電子ビーム円周方向溶接金属部におい
て、3μm以上の大きさの介在物の個数が 3.0個/mm2
を超えて鋼中に存在する場合には、前述したごとく低温
度領域におけるシャルピー衝撃試験の破壊の起点とな
り、円周方向溶接金属部の低温靱性ばらつきの原因とな
るので、円周方向溶接金属部中での3μm以上の大きさ
の鋼中介在物の個数を 3.0個/mm2 以下とした。
Further, in the circumferential weld metal portion of the steel pipe which is electron beam welded in vacuum, it is considered that even oxide-based inclusions are melted during welding, and a part thereof becomes slag and is discharged out of the weld metal. However, some of them are reprecipitated during solidification cooling and become inclusions in the weld metal. Therefore, the size and the number of inclusions in the circumferential weld metal portion change with respect to the inclusions in the steel plate. The number of inclusions with a size of 3 μm or more is 3.0 / mm 2 in the electron beam circumferential welded metal part.
If it exists in the steel in excess of the above, it becomes the starting point of the Charpy impact test fracture in the low temperature region as described above, and causes the low temperature toughness variation of the circumferential weld metal part. The number of inclusions in the steel with a size of 3 μm or more was set to 3.0 / mm 2 or less.

【0034】ここで、鋼板または鋼管において、3μm
以上の大きさの鋼中介在物の個数を5.0個/mm2 以下に
するためには、鋼板製造時、不純物元素、とくにS、
N、Oをそれぞれ質量%で、S:0.002 %以下、N:0.
0010〜0.0050%、O:0.0030%以下の範囲に制御し、併
せて脱硫および脱酸効率の向上もしくは脱ガス処理時間
の延長などを実施することが肝要である。たとえば、鋼
板製造時での脱硫処理としてはCa等を含む脱硫フラック
ス、または、REM と上記脱硫フラックスとを用いて行え
ばよい。さらに、圧延工程では、スラブ加熱温度の低温
化およびスラブ加熱時間の短縮化により、鋼中介在物の
大きさを抑制することが肝要である。
Here, in the steel plate or steel pipe, 3 μm
In order to reduce the number of inclusions in the steel having the above size to 5.0 pieces / mm 2 or less, impurity elements such as S,
Mass% of N and O, S: 0.002% or less, N: 0.
[0010] It is important to control in the range of 0010 to 0.0050%, O: 0.0030% or less, and to improve desulfurization and deoxidation efficiency or extend degassing treatment time. For example, desulfurization treatment at the time of manufacturing a steel sheet may be performed using desulfurization flux containing Ca or the like, or REM and the desulfurization flux. Further, in the rolling process, it is important to suppress the size of inclusions in the steel by lowering the slab heating temperature and shortening the slab heating time.

【0035】また、電子ビーム溶接金属中の島状マルテ
ンサイト生成量を低減するためには、鋼板の鋼中O、S
i、Al量を限定するだけでなく、鋼板の鋼中Si、Al、O
量のバランスを質量%で〔O〕<0.019 ×〔Si〕+0.00
9 ×〔Al〕の範囲に限定した。鋼板の鋼中Si、Al、O量
が質量%で〔O〕<0.019 ×〔Si〕+0.009 ×〔Al〕を
満足しないと、電子ビーム円周方向溶接金属部が割れ感
受性の高い組織となり、鋼中介在物を制御して鋼板を製
造した場合でも、電子ビーム円周方向溶接金属部の低温
度領域における低温靱性ばらつきの原因となるので、鋼
板の鋼中Si、Al、O量は質量%で〔O〕<0.019 ×〔S
i〕+0.009 ×〔Al〕を満足するようにした。
Further, in order to reduce the amount of island martensite produced in the electron beam weld metal, O, S
Not only limiting the amount of i, Al, but also Si, Al, O in the steel of the steel plate.
Balance the amount in mass% [O] <0.019 x [Si] + 0.00
The range was limited to 9 x [Al]. If the amounts of Si, Al, and O in the steel sheet are in mass% and do not satisfy [O] <0.019 x [Si] + 0.009 x [Al], the electron beam circumferential weld metal part will have a highly crack-sensitive structure. However, even when a steel sheet is manufactured by controlling inclusions in the steel, it causes variation in low temperature toughness in the low temperature region of the electron beam circumferential direction weld metal part. % [O] <0.019 x [S
i] + 0.009 × [Al] is satisfied.

【0036】なおその際シャルピー衝撃試験における破
壊伝播抵抗を高めるため、電子ビーム溶接金属における
破壊の伝播単位となるベイナイトパケットについて、30
000μm 2 以上の大きさを有するベイナイトパケットが
全溶接金属組織に占める割合を10%以下とするのが電
子ビーム溶接金属部の低温での靱性値ばらつきが改善さ
れるので好ましい。(表4中F) 電子ビーム溶接金属における30000 μm 2 以上の大きさ
を有するベイナイトパケットが全溶接金属組織に占める
割合を10%を超えると、電子ビーム円周方向溶接金属
部の破壊伝播抵抗が低くなり、低温度領域における靱性
値ばらつきが生じ易くなる場合がある。(表4中C,
D)。
At that time, in order to increase the fracture propagation resistance in the Charpy impact test, the bainite packet which is the propagation unit of the fracture in the electron beam weld metal is
It is preferable that the proportion of bainite packets having a size of 000 μm 2 or more in the entire weld metal structure be 10% or less because the toughness value variation of the electron beam weld metal portion at low temperatures is improved. (F in Table 4) When the ratio of bainite packets having a size of 30,000 μm 2 or more in the electron beam weld metal to the entire weld metal structure exceeds 10%, the fracture propagation resistance of the electron beam circumferential direction weld metal portion is increased. In some cases, the toughness value becomes low and the toughness value variation easily occurs in the low temperature region. (C in Table 4,
D).

【0037】なお、電子ビーム溶接金属において、3000
0 μm 2 以上の大きさを有するベイナイトパケットが全
溶接金属組織に占める割合が10%以下にするために
は、電子ビーム溶接後の冷却速度の調整、予熱の実施、
溶接後処理などを行えばよい。また、電子ビーム溶接金
属におけるベイナイト変態を抑制する鋼板または鋼管成
分を調整することが肝要である。
In the electron beam weld metal, 3000
In order to make the proportion of bainite packets having a size of 0 μm 2 or more in the entire weld metal structure 10% or less, the cooling rate after electron beam welding is adjusted, preheating is performed,
Post-welding treatment may be performed. In addition, it is important to adjust the steel plate or steel pipe composition that suppresses bainite transformation in the electron beam weld metal.

【0038】以下この発明に係る鋼板、この鋼板を用い
た鋼管の成分組成の限定理由について記す。成分は全て
質量%での値である。 O:0.0030%以下 Oの上限は酸化物系介在物による電子ビーム円周方向溶
接金属部の靱性劣化の観点より0.0030%以下とした。好
ましくは、0.0020%以下である。 C:0.03〜0.06% Cは、強度を確保するために少なくとも0.03%を必要と
するが、0.06%を超えると、円周方向溶接金属部最高硬
さがビッカース硬さで Hv300を超えて、鋼管母材および
円周方向溶接金属部の低温靱性が劣化するため、鋼中C
量は0.03〜0.06%の範囲とした。
The reasons for limiting the composition of the steel sheet according to the present invention and the steel pipe using the steel sheet will be described below. All components are values in mass%. O: 0.0030% or less The upper limit of O is 0.0030% or less from the viewpoint of deterioration of toughness of the weld metal portion in the electron beam circumferential direction due to oxide inclusions. It is preferably 0.0020% or less. C: 0.03 to 0.06% C requires at least 0.03% to secure the strength, but when it exceeds 0.06%, the maximum circumferential hardness of the weld metal in the circumferential direction exceeds Hv300 in Vickers hardness, and the steel pipe Since the low temperature toughness of the base metal and the weld metal in the circumferential direction deteriorates, C in steel
The amount was in the range of 0.03 to 0.06%.

【0039】なお、電子ビーム円周方向溶接金属部のよ
うに、円周方向溶接金属部と鋼管母材部との強度差が大
きく、円周方向溶接金属部の幅Bが狭い場合にはVノッ
チシャルピー試験では亀裂が溶接金属から母材側へ湾曲
してしまうため、円周方向溶接金属部の靱性が把握でき
ないことがよく知られている。鋼中C量を0.06%以下と
することにより、円周方向溶接金属部と鋼管母材部との
強度差が小さくなり、電子ビーム円周方向溶接金属部の
低温靭性をVノッチシャルピー試験により正確に評価す
ることができることにもなる。 Si:0.10〜0.40% Siは鋼板製造時、脱酸に有効なだけでなく、強度向上に
も有用な元素であるが、電子ビーム円周方向溶接金属部
の靱性に大きく影響する元素であり、その効果を得るた
めには少なくとも0.10%以上を必要とする。0.40%を超
えると鋼管母材および溶接熱影響部の靱性が劣化するの
で上限を0.40%とした。好ましくは、鋼中Si量は0.20〜
0.40%の範囲とする。 Mn:0.80〜 2.0% Mnは、強度、靱性を確保する上で不可欠な元素であり、
少なくとも0.80%を必要とするが、2.0 %を超えると、
溶接性および電子ビーム円周方向溶接金属部のの靱性を
低下させるため、鋼中Mn量は0.80%〜 2.0%の範囲とし
た。 Ti:0.005 〜 0.025% Ti は電子ビーム円周方向溶接金属部の溶接熱影響部に
おいて微細な TiNを形成し、オーステナイト粒の粗大化
を制御して、ミクロ組織を微細化し、鋼管母材および溶
接熱影響部の靱性を改善する。鋼中 Ti 量が0.005 %未
満ではその効果が小さく、0.025 %を越えると円周方向
溶接金属部の低温靱性が劣化するので、鋼中Ti量は0.00
5 〜 0.025%の範囲とした。好ましくは、鋼中Ti量は0.
005 〜 0.020%である。 Al:0.020 〜 0.050% Alは、鋼板製造時の脱酸に使用される元素であり、この
発明では低温度領域における電子ビーム円周方向溶接金
属部の靱性安定化に重要な役割を果たす。鋼中Al量が
0.020%未満では低温度領域における円周方向溶接金属
部の靱性安定化効果が期待できない。よって、鋼中Al量
は 0.020%以上とする。一方、鋼中Al量が0.050%を超
えると、円周方向溶接部の溶接熱影響部の靱性が劣化す
るので、鋼中Al量の上限を 0.050%とした。 P:0.015 %以下 Pは、不純物として鋼中に存在し、鋼管の靱性を低下さ
せる元素であり、極力低い方がよく、鋼中P量の上限を
0.015 %とした。
In the case where the strength difference between the circumferential weld metal portion and the steel pipe base metal portion is large and the width B of the circumferential weld metal portion is narrow, as in the electron beam circumferential weld metal portion, V is V. It is well known that in the notch Charpy test, since the crack curves from the weld metal to the base metal side, the toughness of the circumferential weld metal part cannot be grasped. By setting the C content in the steel to 0.06% or less, the strength difference between the circumferential weld metal part and the steel pipe base metal part becomes small, and the low temperature toughness of the electron beam circumferential weld metal part is accurately determined by the V-notch Charpy test. It can also be evaluated. Si: 0.10 to 0.40% Si is an element that is effective not only for deoxidation during steel sheet production but also for strength improvement, but is an element that greatly affects the toughness of the electron beam circumferential direction weld metal part, At least 0.10% or more is required to obtain the effect. If it exceeds 0.40%, the toughness of the steel pipe base material and the weld heat affected zone deteriorates, so the upper limit was made 0.40%. Preferably, the amount of Si in steel is 0.20-
The range is 0.40%. Mn: 0.80-2.0% Mn is an essential element for securing strength and toughness,
Needs at least 0.80%, but above 2.0%,
In order to reduce the weldability and the toughness of the weld metal part in the electron beam circumferential direction, the Mn content in the steel was set in the range of 0.80% to 2.0%. Ti: 0.005 to 0.025% Ti forms fine TiN in the heat affected zone of the electron beam circumferential direction weld metal, controls the coarsening of austenite grains, and refines the microstructure to make the steel pipe base metal and welded. Improve the toughness of the heat affected zone. If the Ti content in the steel is less than 0.005%, its effect is small, and if it exceeds 0.025%, the low temperature toughness of the weld metal in the circumferential direction deteriorates.
The range was 5 to 0.025%. Preferably, the Ti content in steel is 0.
It is 005 to 0.020%. Al: 0.020 to 0.050% Al is an element used for deoxidation during steel sheet production, and in the present invention, plays an important role in stabilizing the toughness of the electron beam circumferential weld metal portion in the low temperature region. The amount of Al in steel
If it is less than 0.020%, the effect of stabilizing the toughness of the circumferential weld metal in the low temperature region cannot be expected. Therefore, the Al content in steel is 0.020% or more. On the other hand, when the Al content in the steel exceeds 0.050%, the toughness of the weld heat affected zone of the circumferential welded portion deteriorates, so the upper limit of the Al content in the steel was set to 0.050%. P: 0.015% or less P is an element that exists in steel as an impurity and reduces the toughness of the steel pipe. It is better to be as low as possible, and the upper limit of P content in steel should be
It was set to 0.015%.

【0040】本発明では、さらに次の組成を限定すると
よい。 S:0.002 %以下 Sは、Pと同様に、不純物として鋼中に存在し、鋼管母
材の靱性を低下させる元素であり、極力低い方がよい。
また、鋼中S量を 0.002%以下にすることにより電子ビ
ーム円周方向溶接金属部に発生する凝固割れが防止でき
ることから、鋼中S量の上限を 0.002%とした。好まし
くは、鋼中S量は0.001 %以下である。 Nb:0.01〜0.06% Nbは、析出強化により強度を向上させる効果を有する。
その添加量が0.01%未満ではその効果が小さく、0.06%
を超えると電子ビーム円周方向溶接金属部の靱性を劣化
させるため、鋼中Nb量は0.01〜0.06%とした。 N:0.0010〜0.0050% Nは、電子ビーム溶接金属部の靱性を劣化させるので極
力低減する方がよいとはいうものの、0.001 %に満たな
いほど低減すると TiN、AIN の析出が生じなくなって鋼
管母材の靱性が損なわれるため、下限を0.001 %とし
た。一方、本発明においては0.0050%以下にすれば十分
な円周方向溶接金属部の靱性が確保できるため、鋼中N
量は0.0010〜0.0050%の範囲とした。好ましくは、鋼中
N量は0.0010〜0.0040%である。
In the present invention, the following compositions may be further limited. S: 0.002% or less S, like P, is an element that is present in steel as an impurity and reduces the toughness of the steel pipe base material, and the lower the S, the better.
Further, by setting the S content in the steel to 0.002% or less, solidification cracking that occurs in the weld metal in the electron beam circumferential direction can be prevented, so the upper limit of the S content in the steel was set to 0.002%. Preferably, the S content in steel is 0.001% or less. Nb: 0.01 to 0.06% Nb has the effect of improving strength by precipitation strengthening.
If the addition amount is less than 0.01%, the effect is small, 0.06%
%, The toughness of the weld metal in the electron beam circumferential direction deteriorates, so the Nb content in the steel was set to 0.01 to 0.06%. N: 0.0010 to 0.0050% N deteriorates the toughness of the electron beam weld metal, so it is better to reduce it as much as possible. However, if it is less than 0.001%, precipitation of TiN and AIN will not occur and the steel pipe matrix will not be generated. Since the toughness of the material is impaired, the lower limit was made 0.001%. On the other hand, in the present invention, if the content is 0.0050% or less, sufficient toughness of the weld metal in the circumferential direction can be secured.
The amount was in the range of 0.0010 to 0.0050%. Preferably, the N content in steel is 0.0010 to 0.0040%.

【0041】つぎに、Ca、Ni、Cu、Cr、Mo、V、REM の
元素のうちから選ばれる一種または二種以上を含有する
のが好適である理由について説明する。 Ca:0.0030%以下 Caは、硫化物(MnS )の形態を制御し、鋼管母材の靱性
や異方性の改善および耐水素誘起割れ性の向上に効果を
発揮する有用な元素であるが、鋼中Ca量が0.0030%を超
えると CaO、CaS が多量に生成して大型の介在物とな
り、鋼管母材の靱性のみならず、溶接性にも悪影響を与
える。このため、鋼中Ca量は0.0030%以下とした。好ま
しくは、鋼中Ca量は0.0025%以下である。 Ni:0.1 〜 1.0% Niは、電子ビーム円周方向溶接金属部の靱性を害するこ
となく、母材の強度と靱性を向上させる有用な元素であ
り、目標の特性を得るためには 0.1%以上が必要であ
る。しかし、1.0 %を超えて添加しても特性改善効果は
少なく、しかも高価な元素であることより鋼中Ni量は
0.1〜 1.0%の範囲とした。 Cu:0.1 〜 1.0% Cuは、強度、靱性を向上させるほか、耐食性、耐水素誘
起割れ特性を向上する効果がある。0.1 %未満ではその
効果が小さく、1.0 %を超えると鋼管母材、溶接熱影響
部の靱性が劣化することにより、鋼中Cu量は0.1 〜 1.0
%の範囲とした。 Cr:0.1 〜 1.0% Crは、焼入性を向上させ、鋼管母材および電子ビーム円
周方向溶接金属部の強度を高める有用な元素である。0.
1 %未満ではその効果が小さく、1.0 %を超えると溶接
性や円周方向溶接金属部の靱性を劣化させるため、鋼中
Cr量は 0.1〜 1.0%の範囲とした。 Mo:1.0 %以下 Moは鋼管母材の強度、靱性をともに向上させる元素であ
る。しかしながら、Mo添加量が 1.0%を超えると電子ビ
ーム円周方向溶接金属部の靱性を劣化させるため、 1.0
%以下とした。低温度領域における円周方向溶接金属部
の靱性ばらつきを低減する観点からは0.25%以下が好ま
しい。 V:0.01〜0.10% Vは、析出強化により強度を向上させる元素である。0.
01%未満ではその効果が小さく、0.10%を超えると電子
ビーム円周方向溶接金属部の靱性が劣化するため、鋼中
V量は0.01〜1.10の範囲とした。
Next, the reason why it is preferable to contain one kind or two or more kinds selected from the elements of Ca, Ni, Cu, Cr, Mo, V and REM will be explained. Ca: 0.0030% or less Ca is a useful element that controls the morphology of sulfide (MnS) and is effective in improving the toughness and anisotropy of the steel pipe base material and hydrogen-induced cracking resistance. If the amount of Ca in the steel exceeds 0.0030%, a large amount of CaO and CaS is generated and becomes large inclusions, which adversely affects not only the toughness of the steel pipe base metal but also the weldability. Therefore, the amount of Ca in the steel is set to 0.0030% or less. Preferably, the amount of Ca in steel is 0.0025% or less. Ni: 0.1 to 1.0% Ni is a useful element that improves the strength and toughness of the base metal without impairing the toughness of the weld metal in the electron beam circumferential direction. To obtain the target characteristics, 0.1% or more is required. is necessary. However, even if added over 1.0%, the effect of improving the properties is small, and since it is an expensive element, the Ni content in steel is
The range was 0.1 to 1.0%. Cu: 0.1 to 1.0% Cu has the effect of improving strength and toughness as well as corrosion resistance and hydrogen-induced cracking resistance. If it is less than 0.1%, the effect is small, and if it exceeds 1.0%, the toughness of the steel pipe base material and the weld heat affected zone deteriorates, so the Cu content in the steel is 0.1 to 1.0.
The range is%. Cr: 0.1 to 1.0% Cr is a useful element that improves hardenability and enhances the strength of the steel pipe base material and the electron beam circumferential weld metal part. 0.
If it is less than 1%, its effect is small, and if it exceeds 1.0%, the weldability and the toughness of the weld metal in the circumferential direction are deteriorated.
The Cr content was in the range of 0.1 to 1.0%. Mo: 1.0% or less Mo is an element that improves both the strength and toughness of the steel pipe base material. However, if the addition amount of Mo exceeds 1.0%, the toughness of the weld metal in the electron beam circumferential direction is deteriorated.
% Or less. From the viewpoint of reducing the toughness variation of the weld metal portion in the circumferential direction in the low temperature region, 0.25% or less is preferable. V: 0.01 to 0.10% V is an element that improves strength by precipitation strengthening. 0.
If it is less than 01%, its effect is small, and if it exceeds 0.10%, the toughness of the electron beam circumferential direction welded metal portion is deteriorated, so the V content in the steel is set to the range of 0.01 to 1.10.

【0042】REM:0.0005〜0.0050% REMは、Caと同様に硫化物(MnS )の形態制御および鋼
管母材の靱性や異方性改善および耐水素誘起割れ性の向
上に有効に寄与するが、鋼中 REM量が0.0005%に満たな
いとその効果に乏しく、一方、鋼中 REM量が0.0050%を
超えると鋼管の母材部の靱性が劣化するので、鋼中 REM
量は0.0005〜0.0050%の範囲とした。
REM: 0.0005 to 0.0050% REM effectively contributes to morphology control of sulfide (MnS), improvement of toughness and anisotropy of steel pipe base metal, and improvement of hydrogen-induced cracking resistance, similar to Ca. If the REM content in steel is less than 0.0005%, its effect is poor. On the other hand, if the REM content in steel exceeds 0.0050%, the toughness of the base metal part of the steel pipe deteriorates.
The amount was in the range of 0.0005 to 0.0050%.

【0043】ところで、鋼管同士を電子ビーム溶接によ
り突合せ円周溶接し、良好な円周方向溶接金属部を有す
るパイプラインとするには、真空度が重要であり10Pa以
下とする必要がある。この理由は、電子ビーム溶接時、
真空度が10Paを超えた場合には、アンダーカットなどの
溶接欠陥のない円周溶接金属部が得られなくなるからで
ある。
By the way, in order to butt-circularly weld steel pipes together by electron beam welding to form a pipeline having a good circumferential weld metal portion, the degree of vacuum is important and needs to be 10 Pa or less. The reason for this is that during electron beam welding,
This is because if the degree of vacuum exceeds 10 Pa, a circumferential weld metal portion having no welding defects such as undercut cannot be obtained.

【0044】以上の説明では、本発明に係る鋼板は鋼管
として用い、パイプラインに適用しているが、本発明に
係る鋼板は、鋼管に限定されず、鋼板を用いる鋼部材と
して使用し、電子ビーム溶接により溶接された鋼部材の
溶接金属部での低温靭性が良好であるから、パイプライ
ン以外の圧力容器や海洋構造物などの溶接鋼構造物に適
用することができることは説明するまでもない。
In the above description, the steel sheet according to the present invention is used as a steel pipe and is applied to a pipeline. However, the steel sheet according to the present invention is not limited to a steel pipe and is used as a steel member using a steel sheet, Needless to say that it can be applied to welded steel structures such as pressure vessels other than pipelines and marine structures because the low temperature toughness of the weld metal part of steel members welded by beam welding is good. .

【0045】上述した電子ビーム溶接の対象となる鋼
板、鋼管などの板厚は電子ビーム溶接により貫通円周溶
接が可能である40mm以下程度であり、とくに限定する必
要はない。また、鋼管の径は電子ビーム溶接可能なサイ
ズであれば、とくに限定する必要はない。本発明に使用
する電子ビーム溶接の溶接条件の一例を下記に示す。
The plate thickness of the above-mentioned steel plate, steel pipe or the like to be subjected to electron beam welding is about 40 mm or less, which allows through-hole welding by electron beam welding, and is not particularly limited. Further, the diameter of the steel pipe is not particularly limited as long as it is a size that allows electron beam welding. An example of the welding conditions for electron beam welding used in the present invention is shown below.

【0046】電子ビーム電源としては定格最大出力5〜
50KW程度のものでよい。上記した鋼板、鋼管などに所定
形状の開先加工(主にI開先)を施したのち電子ビーム
溶接を行う。電子ビーム溶接は、加速電圧30〜80kV、ビ
ーム電流10〜 600mA、溶接速度 300〜 900mm/min の溶
接条件で全姿勢円周溶接を行う。なお、開先形状、溶接
条件、溶接金属の再溶解を含む、溶接パス回数および溶
接姿勢などはとくに限定する必要はない。
As the electron beam power source, the rated maximum output is 5 to 5
It should be about 50KW. Electron beam welding is performed after the above-described steel plate, steel pipe, and the like are subjected to groove processing of a predetermined shape (mainly I groove). For electron beam welding, all-position circumferential welding is performed under the welding conditions of accelerating voltage of 30 to 80 kV, beam current of 10 to 600 mA, and welding speed of 300 to 900 mm / min. It is not necessary to particularly limit the number of welding passes, the welding posture, and the like, including the groove shape, welding conditions, and remelting of the weld metal.

【0047】[0047]

【実施例】(実施例1)板厚が14mmの表5に示す成分の
鋼板を転炉−連続鋳造−厚板工程により製造した。得ら
れた各鋼板を用い、UOE成形して径が 610mmのUOE
鋼管とした。実施例(No.1〜9)では、鋼板製造に当た
り、転炉−連続鋳造工程では、転炉吹錬により種々の成
分に調整し、脱硫、脱酸ならびに脱ガス処理を強化し、
厚板工程ではスラブ加熱温度の低温化およびスラブ加熱
時間の短縮によって、大きさが3μm 以上の介在物個数
を 5.0個/mm2 以下とした。UOE成形条件は通常とし
た。
Example 1 A steel plate having a thickness of 14 mm and having the components shown in Table 5 was manufactured by a converter-continuous casting-thick plate process. Using each of the obtained steel plates, UOE is formed and the diameter is 610 mm.
It was a steel pipe. In Examples (No. 1 to 9), in steel plate production, in the converter-continuous casting step, various components were adjusted by converter blowing to enhance desulfurization, deoxidation and degassing treatment,
In the thick plate process, the number of inclusions having a size of 3 μm or more was set to 5.0 / mm 2 or less by lowering the slab heating temperature and shortening the slab heating time. The UOE molding conditions were normal.

【0048】同じ成分のUOE鋼管同士(同一No. 同
士)を電子ビーム溶接により突合せ円周溶接してパイプ
ラインとし、円周方向溶接金属部から介在物測定用試料
およびシャルピー衝撃試験片用試料をそれぞれ円周方向
に沿って複数採取した。採取した試料について所定の処
理をそれぞれ施した後、上述のようにして介在物測定と
シャルピー衝撃試験を実施した。その際、パイプライン
の鋼管母材からは、介在物測定用試料を採取して介在物
測定を行い、各鋼板の鋼中介在物とした。
UOE steel pipes (having the same No.) of the same composition are butt-circumferentially welded by electron beam welding to form a pipeline, and a sample for inclusion measurement and a sample for Charpy impact test piece are prepared from the welded metal portion in the circumferential direction. Multiple samples were taken along the circumferential direction. After subjecting the collected samples to predetermined treatments, inclusion measurement and Charpy impact test were performed as described above. At that time, a sample for measuring inclusions was sampled from the steel pipe base material of the pipeline, and the inclusions were measured to obtain inclusions in the steel of each steel plate.

【0049】なお、介在物測定用試験片の採取位置は、
鋼管母材および溶接金属部ともに円周方向に垂直とし、
またシャルピー衝撃試験に用いる試験片は、前記の図1
と同様に採取し、同じ2mmVノッチ試験片とした(シャ
ルピー衝撃試験片寸法:試験片長さL=55mm、試験片高
さH=10mm、試験片幅W=10mm、Vノッチ深さD=2m
m、Vノッチ角度α=45°、Vノッチ先端R=0.25m
m)。
The sampling position for the inclusion measuring test piece is
Both the steel pipe base metal and the weld metal part are perpendicular to the circumferential direction,
The test piece used for the Charpy impact test is the one shown in FIG.
The same 2 mm V-notch test piece was sampled (Charpy impact test piece size: test piece length L = 55 mm, test piece height H = 10 mm, test piece width W = 10 mm, V notch depth D = 2 m).
m, V notch angle α = 45 °, V notch tip R = 0.25m
m).

【0050】電子ビーム溶接に際しては、真空度を10Pa
以下とし、電子ビームの周方向移動速度を 600mm/分、
電子ビームの加速電圧を60kV、電子ビーム電流 200mA、
電子ビーム収束条件(対物距離/焦点距離)を 0.9〜
1.1とした。一方比較例(No.10〜14) は、成分を調整
して表5に示す鋼板とした。電子ビーム溶接条件は、実
施例と同じとしてパイプラインとし、実施例と同様な調
査を行った。
At the time of electron beam welding, the degree of vacuum is 10 Pa.
Below, the electron beam circumferential movement speed is 600 mm / min,
Electron beam acceleration voltage 60kV, electron beam current 200mA,
Electron beam focusing condition (objective distance / focal length) 0.9 ~
It was 1.1. On the other hand, in Comparative Examples (Nos. 10 to 14), the steel plates shown in Table 5 were prepared by adjusting the components. The electron beam welding conditions were the same as in the example, and the pipeline was used, and the same investigation as in the example was performed.

【0051】実施例並びに比較例の3μm以上の大きさ
の鋼中介在物の個数および円周方向溶接金属部の低温靱
性の評価結果を表6に示す。ここで、円周方向溶接金属
部の低温靱性の評価は、シャルピー衝撃試験結果におい
て、同一試験温度での各試験片の個々の吸収エネルギー
の最大値と最小値の差が150Jを超える温度範囲に生じた
場合、×:ばらつきありとし、それ以外は○:ばらつき
なしとした。
Table 6 shows the evaluation results of the number of inclusions in the steel having a size of 3 μm or more and the low temperature toughness of the circumferential weld metal portion in the examples and the comparative examples. Here, the evaluation of the low-temperature toughness of the circumferential weld metal part, in the Charpy impact test results, the difference between the maximum value and the minimum value of the individual absorbed energy of each test piece at the same test temperature is in the temperature range exceeding 150J. If it occurred, x: there was variation, otherwise o: there was no variation.

【0052】[0052]

【表5】 [Table 5]

【0053】[0053]

【表6】 [Table 6]

【0054】本発明にしたがう鋼管同士を電子ビーム溶
接により円周方向に溶接した鋼管の円周方向溶接金属部
においては、良好な低温での靭性特性を有し、吸収エネ
ルギーのばらつきはない。これに対して、本発明によら
ない鋼板を用いた鋼管母材は化学組成が適切でなく、安
定的に良好な低温靱性が得られない。また、比較例14で
は鋼板の鋼中S量が本発明範囲をはずれているために電
子ビーム円周方向溶接金属部に割れが発生した。 (実施例2)板厚が19mmの表7に示す成分の鋼板Gを
転炉−連続鋳造−鋼板工程により製造した。
The circumferentially welded metal portion of the steel pipe obtained by welding the steel pipes according to the present invention to each other by electron beam welding in the circumferential direction has good toughness characteristics at a low temperature and has no variation in absorbed energy. On the other hand, the steel pipe base material using the steel sheet not according to the present invention has an unsuitable chemical composition and cannot stably obtain good low temperature toughness. Further, in Comparative Example 14, the amount of S in the steel plate was out of the range of the present invention, so that cracks occurred in the electron beam circumferential direction weld metal portion. (Example 2) A steel plate G having the composition shown in Table 7 and having a plate thickness of 19 mm was manufactured by a converter-continuous casting-steel plate process.

【0055】[0055]

【表7】 [Table 7]

【0056】得られた鋼板Gを用い、UOE成形して外
径が711mmのUOE鋼管とした。鋼板の製造は実施例
1と同様にして行なった。UOE成形条件は通常とし
た。UOE鋼管同士を電子ビーム溶接により寄合せ円周
溶接して溶接継手とし、円周方向溶接金属物から介在物
測定用試料、組織観察用試料およびシャルピー衝撃試験
片試料をそれぞれ円周方向に沿って複数採取した。採取
した試料について所定の処理をそれぞれに施した後、上
述のようにして介在物測定、30000 μm 2 以上の大きさ
を有するベイナイトパケットが全溶接金属組織に占める
割合測定およびシャルピー衝撃試験を実施した。その
際、パイプラインの鋼管母材からは、介在物測定用試料
を採取して介在物測定を行い、鋼板の鋼中介在物の個数
とした。
Using the obtained steel sheet G, UOE molding was performed to obtain a UOE steel pipe having an outer diameter of 711 mm. The steel sheet was manufactured in the same manner as in Example 1. The UOE molding conditions were normal. UOE steel pipes are welded together by electron beam welding and welded circumferentially to form a welded joint. Samples for measuring inclusions, samples for structure observation and samples for Charpy impact test pieces are circumferentially welded from the circumferentially welded metal. Multiple samples were collected. After subjecting each of the collected samples to a predetermined treatment, inclusions were measured, the proportion of bainite packets having a size of 30,000 μm 2 or more in the entire weld metal structure and the Charpy impact test were carried out as described above. . At that time, a sample for measuring inclusions was sampled from the steel pipe base material of the pipeline, and the inclusions were measured to obtain the number of inclusions in the steel plate.

【0057】なお、介在物測定用試験片および組織用観
察用試験片の採取位置は、実施例1と同じとした。また
シャルピー衝撃試験に用いる試験片についても実施例1
と同じとした。電子ビーム溶接に際しては、真空度を10
Pa以下とし、電子ビームの周方向移動速度を400 〜700
mm/分、電子ビームの加速電圧を 60kV、電子ビーム電
流を240 mA、電子ビーム収束条件(対物距離/焦点距
離)を0.9 〜1.1 とした。電子ビーム溶接条件を変化さ
せることにより、溶接後の溶接金属部の冷却速度を変化
させた溶接継手G1,G2を作製した。
The sampling positions of the inclusion measuring test piece and the tissue observing test piece were the same as in Example 1. Further, the test piece used in the Charpy impact test is also described in Example 1.
Same as For electron beam welding, set the vacuum to 10
Pa less than or equal to, electron beam circumferential movement speed is 400-700
The electron beam acceleration voltage was 60 kV, the electron beam current was 240 mA, and the electron beam focusing condition (objective distance / focal length) was 0.9 to 1.1. Welded joints G1 and G2 were produced by changing the cooling rate of the weld metal portion after welding by changing the electron beam welding conditions.

【0058】3μm 以上の大きさの鋼中介在物の個数、
30000 μm2以上の大きさを有するベイナイトパケットが
全溶接金属組織に占める割合および円周方向溶接金属部
の低温靱性評価結果を表8に示す。
The number of inclusions in the steel having a size of 3 μm or more,
Table 8 shows the ratio of bainite packets having a size of 30,000 μm 2 or more to the entire weld metal structure and the low temperature toughness evaluation results of the circumferential weld metal portion.

【0059】[0059]

【表8】 [Table 8]

【0060】本発明にしたがう鋼管同士を電子ビーム溶
により円周方向に溶接した鋼管の円周方向溶接部におい
ては、−40℃の低温でも良好な靱性特性を有し、靱性の
ばらつきはない。なお、30000 μm2以上の大きさを有す
るベイナイトパケットが全溶接部に占める割合が10%
を超えた溶接金属部を有する溶接継手は、パイプライン
として使用上問題とならない非常に低い試験温度(試験
温度−60℃以下)において靱性のばらつきが発生し
た。
In the circumferential welded portion of the steel pipe in which the steel pipes according to the present invention are welded in the circumferential direction by electron beam melting, good toughness characteristics are exhibited even at a low temperature of −40 ° C., and there is no toughness variation. In addition, the proportion of bainite packets having a size of 30,000 μm 2 or more in the entire weld is 10%.
In the welded joint having the weld metal portion exceeding the above range, the toughness varied at a very low test temperature (test temperature −60 ° C. or less) which does not pose a problem in use as a pipeline.

【0061】[0061]

【発明の効果】本発明によれば、電子ビームにより溶接
された溶接金属部の低温靱性ばらつきを極めて小さくす
ることができる。また、シャルピー吸収エネルギー低温
度領域において安定的に良好な靱性が得られる。この結
果、溶接鋼構造物のうちでも特に厳しい環境下で使用さ
れるパイプラインにおいて、低温での安全性を高めるこ
とができるという効果を奏する。
According to the present invention, variations in low temperature toughness of a weld metal portion welded by an electron beam can be extremely reduced. Further, good toughness can be stably obtained in the Charpy absorbed energy low temperature region. As a result, it is possible to enhance the safety at low temperature in a pipeline used in a particularly severe environment among welded steel structures.

【図面の簡単な説明】[Brief description of drawings]

【図1】電子ビーム円周方向溶接金属部におけるシャル
ピー衝撃試験用試験片の採取位置を示す部分斜視図であ
る。
FIG. 1 is a partial perspective view showing a sampling position of a Charpy impact test specimen in an electron beam circumferential weld metal portion.

【図2】Vノッチシャルピー衝撃試験片の形状およびシ
ャルピー衝撃試験時の衝撃方向と試験片の形状との関係
を示す図である。
FIG. 2 is a diagram showing the relationship between the shape of a V-notch Charpy impact test piece and the impact direction during the Charpy impact test, and the shape of the test piece.

【符号の説明】[Explanation of symbols]

1 鋼管(鋼管母材) 2 円周方向溶接金属部 B 円周方向溶接金属部の幅 t 円周方向溶接金属部の厚み θ 溶接方向 z 鋼管長さ方向 L シャルピー衝撃試験片長さ H シャルピー衝撃試験片高さ W シャルピー衝撃試験片幅 α Vノッチ角度 R Vノッチ先端半径 1 Steel pipe (steel pipe base material) 2 Circumferentially welded metal part B Width of weld metal in circumferential direction t Thickness of weld metal in circumferential direction θ welding direction z Steel pipe length direction L Charpy impact test piece length H Charpy impact test piece height W Charpy impact test piece width α V notch angle R V Notch tip radius

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 103:04 B23K 103:04 (72)発明者 安田 功一 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4E066 BE04 CA02 CB00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B23K 103: 04 B23K 103: 04 (72) Inventor Koichi Yasuda 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Manufacturing Co., Ltd. Technical Research Institute F-term (reference) 4E066 BE04 CA02 CB00

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、 C:0.03〜0.06%、 Si:0.10〜0.40% Mn:0.80〜 2.0%、 P:0.015 %以下 Ti:0.005 〜 0.025%、 Al:0.020 〜 0.050% O:0.0030%以下 を含有し、かつ、〔O〕<0.019 ×〔Si〕+0.009 ×
〔Al〕を満足する組成からなり、3μm以上の鋼中介在
物が 5.0個/mm2 以下であることを特徴とする電子ビー
ム溶接用鋼板。ここで、〔O〕、〔Si〕及び〔Al〕はそ
れぞれO、Si及びAlの含有量(質量%)を示す。
1. In mass%, C: 0.03 to 0.06%, Si: 0.10 to 0.40% Mn: 0.80 to 2.0%, P: 0.015% or less Ti: 0.005 to 0.025%, Al: 0.020 to 0.050% O: 0.0030 % Or less, and [O] <0.019 × [Si] + 0.009 ×
A steel sheet for electron beam welding, which has a composition satisfying [Al] and has 5.0 inclusions / mm 2 or less in the steel of 3 μm or more. Here, [O], [Si] and [Al] represent the contents (mass%) of O, Si and Al, respectively.
【請求項2】 質量%で、 C:0.03〜0.06%、 Si:0.10〜0.40% Mn:0.80〜 2.0%、 P:0.015 %以下 S:0.002 %以下、 Nb:0.01〜0.06% Ti:0.005 〜 0.025%、 Al:0.020 〜 0.050% N:0.0010〜0.0050%、 O:0.0030%以下 を含有し、かつ、〔O〕<0.019 ×〔Si〕+0.009 ×
〔Al〕を満足する組成からなり、3μm以上の鋼中介在
物が 5.0個/mm2 以下であることを特徴とする電子ビー
ム溶接用鋼板。ここで、〔O〕、〔Si〕及び〔Al〕はそ
れぞれO、Si及びAlの含有量(質量%)を示す。
2. In mass%, C: 0.03 to 0.06%, Si: 0.10 to 0.40% Mn: 0.80 to 2.0%, P: 0.015% or less S: 0.002% or less, Nb: 0.01 to 0.06% Ti: 0.005 to 0.025%, Al: 0.020 to 0.050% N: 0.0010 to 0.0050%, O: 0.0030% or less, and [O] <0.019 x [Si] + 0.009 x
A steel sheet for electron beam welding, which has a composition satisfying [Al] and has 5.0 inclusions / mm 2 or less in the steel of 3 μm or more. Here, [O], [Si] and [Al] represent the contents (mass%) of O, Si and Al, respectively.
【請求項3】 請求項1又は2に記載の鋼板を用いたこ
とを特徴とする電子ビーム溶接用鋼管。
3. A steel pipe for electron beam welding, comprising the steel plate according to claim 1 or 2.
【請求項4】 請求項3に記載の鋼管同士を電子ビーム
溶接した鋼管の溶接金属部において、3μm以上の鋼中
介在物が 3.0個/mm2 以下であることを特徴とするパイ
プライン。
4. A pipeline characterized in that, in the weld metal portion of the steel pipes obtained by electron beam welding the steel pipes according to claim 3, the number of inclusions in the steel of 3 μm or more is 3.0 / mm 2 or less.
【請求項5】請求項3に記載の鋼管同士を電子ビーム溶
接した鋼管の溶接金属部において、30000 μm 2 以上の
大きさを有するベイナイトパケットの溶接金属組織に占
める割合が10%以下であることを特徴とするパイプラ
イン。
5. In the weld metal portion of the steel pipe obtained by electron beam welding the steel pipes according to claim 3, the proportion of bainite packets having a size of 30,000 μm 2 or more in the weld metal structure is 10% or less. Pipeline.
【請求項6】請求項3に記載の鋼管同士を電子ビーム溶
接した鋼管の溶接金属部において、3μm 以上の鋼中介
在物が3.0 個/mm2 以下であり、かつ、30000 μm 2
上の大きさを有するベイナイトパケットの溶接金属組織
に占める割合が10%以下であることを特徴とするパイ
プライン。
6. The weld metal portion of the steel pipe produced by electron beam welding the steel pipes according to claim 3 has 3.0 μm / mm 2 or less of steel inclusions of 3 μm or more and a size of 30000 μm 2 or more. The ratio of the bainite packet having a thickness to the weld metal structure is 10% or less, a pipeline.
【請求項7】 請求項3に記載の鋼管同士を10Pa以下の
真空度で電子ビーム溶接することを特徴とする鋼管の電
子ビーム溶接方法。
7. An electron beam welding method for steel pipes, characterized in that the steel pipes according to claim 3 are electron beam welded at a vacuum degree of 10 Pa or less.
JP2002124397A 2001-10-22 2002-04-25 Steel sheet and steel pipe for electron beam welding, and pipeline having excellent low temperature toughness in weld metal zone Pending JP2003201535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002124397A JP2003201535A (en) 2001-10-22 2002-04-25 Steel sheet and steel pipe for electron beam welding, and pipeline having excellent low temperature toughness in weld metal zone

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-323727 2001-10-22
JP2001323727 2001-10-22
JP2002124397A JP2003201535A (en) 2001-10-22 2002-04-25 Steel sheet and steel pipe for electron beam welding, and pipeline having excellent low temperature toughness in weld metal zone

Publications (1)

Publication Number Publication Date
JP2003201535A true JP2003201535A (en) 2003-07-18

Family

ID=27666344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002124397A Pending JP2003201535A (en) 2001-10-22 2002-04-25 Steel sheet and steel pipe for electron beam welding, and pipeline having excellent low temperature toughness in weld metal zone

Country Status (1)

Country Link
JP (1) JP2003201535A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241551A (en) * 2005-03-04 2006-09-14 Nippon Steel Corp Thick steel plate having excellent weldability and low temperature toughness
WO2008041372A1 (en) 2006-10-02 2008-04-10 Nippon Steel Corporation Joint welded by electron beam with excellent unsusceptibility to brittle fracture
WO2009119570A1 (en) * 2008-03-25 2009-10-01 住友金属工業株式会社 Uoe steel tube for linepipes and process for production thereof
WO2012070360A1 (en) * 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
WO2014157215A1 (en) * 2013-03-29 2014-10-02 株式会社神戸製鋼所 Steel plate with excellent hydrogen-induced cracking resistance and toughness of the weld heat affected zone, and steel tube for use as line pipe
CN106148815A (en) * 2016-08-30 2016-11-23 山东钢铁股份有限公司 A kind of thin brilliant Strengthening and Toughening steel plate for L245 pipe line steel and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241551A (en) * 2005-03-04 2006-09-14 Nippon Steel Corp Thick steel plate having excellent weldability and low temperature toughness
WO2008041372A1 (en) 2006-10-02 2008-04-10 Nippon Steel Corporation Joint welded by electron beam with excellent unsusceptibility to brittle fracture
US8114528B2 (en) 2006-10-02 2012-02-14 Nippon Steel Corporation Electron beam welded joint excellent in brittle fracture resistance
EP2422913A1 (en) 2006-10-02 2012-02-29 Nippon Steel Corporation Electron beam welded joint excellent in brittle fracture resistance
EP2422912A1 (en) 2006-10-02 2012-02-29 Nippon Steel Corporation Electron beam welded joint excellent in brittle fracture resistance
WO2009119570A1 (en) * 2008-03-25 2009-10-01 住友金属工業株式会社 Uoe steel tube for linepipes and process for production thereof
WO2012070360A1 (en) * 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
JP5177325B2 (en) * 2010-11-22 2013-04-03 新日鐵住金株式会社 Electron beam welded joint, steel plate for electron beam welded joint, and manufacturing method thereof
CN103221565A (en) * 2010-11-22 2013-07-24 新日铁住金株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
WO2014157215A1 (en) * 2013-03-29 2014-10-02 株式会社神戸製鋼所 Steel plate with excellent hydrogen-induced cracking resistance and toughness of the weld heat affected zone, and steel tube for use as line pipe
CN105074036A (en) * 2013-03-29 2015-11-18 株式会社神户制钢所 Steel plate with excellent hydrogen-induced cracking resistance and toughness of the weld heat affected zone, and steel tube for use as line pipe
CN106148815A (en) * 2016-08-30 2016-11-23 山东钢铁股份有限公司 A kind of thin brilliant Strengthening and Toughening steel plate for L245 pipe line steel and preparation method thereof

Similar Documents

Publication Publication Date Title
US8049131B2 (en) Ultrahigh strength welded joint and ultrahigh strength welded steel pipe excellent in cold cracking resistance of weld metal, and methods for producing the same
WO2011155620A1 (en) Ultra high-strength welded joint and method for producing same
JP5870665B2 (en) High-strength welded steel pipe with excellent tensile stress strength of 600 MPa or more with excellent resistance to sulfide stress corrosion cracking
JP5751292B2 (en) Welded joint manufacturing method and welded joint
CN111771007A (en) Austenitic stainless steel welded joint
JPWO2015064077A1 (en) Ferritic-martensitic duplex stainless steel and method for producing the same
WO2002090610A1 (en) Ferritic heat-resistant steel
JP2011179106A (en) High strength steel plate excellent in drop weight properties
JP2007260715A (en) Method for producing superhigh strength welded steel pipe
JP2018053281A (en) Rectangular steel tube
JP2009068078A (en) Welded joint with excellent toughness and fatigue crack inhibiting property
JP2008088504A (en) Electron beam welded joint having excellent resistance to occurrence of brittle fracture
JP4171267B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JP2016216819A (en) Thick steel plate and welded joint
KR20180116176A (en) Thick steel plate
JP2003201535A (en) Steel sheet and steel pipe for electron beam welding, and pipeline having excellent low temperature toughness in weld metal zone
JP4119706B2 (en) High strength welded steel pipe with excellent weld toughness and manufacturing method thereof
JPH09194998A (en) Welded steel tube and its production
WO2018088214A1 (en) High strength steel
JP5870664B2 (en) High strength welded steel pipe and manufacturing method thereof
JP2008087031A (en) Welded joint having excellent resistance to generation of brittle fracture
JPH06340947A (en) Lap arc-welded joint structure excellent in fatigue strength
JP2003306748A (en) Pipeline having excellent low temperature toughness in weld metal part and electron beam circumferential welding method for steel pipe
JP7502589B2 (en) Weld metal of high energy density beam welded joint, high energy density beam welded joint, welded structure and steel pipe
JP6835054B2 (en) High-strength steel plate and its manufacturing method