JP2003300131A - Method and device for fine processing - Google Patents

Method and device for fine processing

Info

Publication number
JP2003300131A
JP2003300131A JP2002105059A JP2002105059A JP2003300131A JP 2003300131 A JP2003300131 A JP 2003300131A JP 2002105059 A JP2002105059 A JP 2002105059A JP 2002105059 A JP2002105059 A JP 2002105059A JP 2003300131 A JP2003300131 A JP 2003300131A
Authority
JP
Japan
Prior art keywords
fine
tool
tip
abrasive grains
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002105059A
Other languages
Japanese (ja)
Other versions
JP3875907B2 (en
Inventor
Yoichi Akagami
陽一 赤上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefecture
Original Assignee
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefecture filed Critical Akita Prefecture
Priority to JP2002105059A priority Critical patent/JP3875907B2/en
Publication of JP2003300131A publication Critical patent/JP2003300131A/en
Application granted granted Critical
Publication of JP3875907B2 publication Critical patent/JP3875907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To suggest a method and a device for fine processing relating to a fine processing technique using abrasive grains capable of especially processing a fine shape, and finishing a fine processing part having a complicated shape into a high quality face. <P>SOLUTION: According to the method and device for fine processing, a fine tool having a spherical tip end is used as an electrode, and the other electrode is placed at a bottom part of a workpiece. A liquid composition obtained by dispersing grind grains having an electric inductivity of 0.1-30 μm grain diameter in a solvent which is mainly composed of silicone oil having a viscosity of 1-1,000 cSt at 20°C is arranged between the tip of the fine tool and the workpiece under a close contactless condition. The fine tool is rotated at high speed and the grind grains are rolled and processed under such a condition that the grind grains are orientated while an alternating current with 0.3-5 kV/mm electric field strength and 0.1-100 Hz frequency is applied. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、砥粒を用いた微細
加工技術に関し、特に微細形状の加工、複雑形状を有す
る微細加工部を高品位な面に仕上げることができる微細
加工方法及び微細加工装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine processing technique using abrasive grains, and particularly to a fine processing method and a fine processing method capable of finishing a fine processed portion having a complicated shape into a high quality surface. Regarding the device.

【0002】[0002]

【従来の技術】半導体製造技術の進展と伴に高度に成長
してきた微細加工技術は高度な工業製品の製造技術工程
に求められるようになってきた。しかし、微細加工技術
は、製造ラインにクリーンルームを要してさらに高価な
半導体製造装置を用いるため、初期投資並びに運転維持
費用も製品価格の上昇並びに環境に負荷を与える要因で
ある。しかし、これらを排除可能な有用な技術の創製と
安価な製品を導くための微細加工技術が現状まで提供さ
れていない。また試料がガラスとなるとダイヤモンド工
具による加工が適切であるが、ダイヤモンド工具も工具
としては高価である。したがって、微細な工具は未だに
提供されていない現状がある。
2. Description of the Related Art Microfabrication technology, which has grown to a high degree with the progress of semiconductor manufacturing technology, has come to be required in the manufacturing technology process of sophisticated industrial products. However, since the microfabrication technology requires a clean room in the manufacturing line and uses a more expensive semiconductor manufacturing apparatus, the initial investment and the operation and maintenance cost are also factors that increase the product price and impact the environment. However, until now, no fine processing technology has been provided to create a useful technology that can eliminate these and to lead to an inexpensive product. Further, if the sample is glass, processing with a diamond tool is appropriate, but the diamond tool is also expensive as a tool. Therefore, there is a current situation in which fine tools are not yet provided.

【0003】[0003]

【発明が解決しようとする課題】交流高圧電界下で砥粒
を微細工具が保持して加工する装置は、小型に構成可能
な微細加工装置を提供することができる。すなわち、加
工環境や付帯設備も良好なクリーン度の部屋全体を維持
する工法から装置が載る周囲部に抑えられるため、環境
配慮型微細加工工法である。
An apparatus for holding and processing abrasive grains by a fine tool under an alternating high-voltage electric field can provide a fine processing apparatus which can be constructed in a small size. In other words, the processing environment and incidental facilities are an environment-friendly microfabrication method because the method is maintained from the method of maintaining the entire room with a good cleanness to the surrounding area where the device is mounted.

【0004】[0004]

【課題を解決するための手段】本発明は上記を鑑み提案
されたもので、先端が球形状を有する微細工具を電極と
し、他方の電極を被加工物下部に配置し、微細工具の先
端と被加工物とを接近した非接触状に配置した間に、溶
媒の主成分が20℃にて1〜1,000cStの粘度を有す
るシリコーンオイルで、この溶媒に粒子径が0.1〜3
0μmの電気的誘電性を持つ砥粒を分散させた液状組成
物を配設し、電界強度±0.3〜5kV/mm,周波数0.
1〜100Hzの交流電界を印加しながら砥粒が配向した
状態で前記微細工具を高速回転させて砥粒を転動させて
加工することを特徴とする微細加工方法である。特に始
めは20Hz以上100Hz以下の高い周波数の交流高電圧
を印加し、微細工具と被加工部面との位置調整を行った
後に、印加周波数を0.1〜20Hzに変更すると共に微
細工具を高速回転させる手法が望ましい。
The present invention has been proposed in view of the above, and a fine tool having a spherical tip is used as an electrode, and the other electrode is arranged at the lower part of a workpiece, and the tip of the fine tool is A silicone oil whose main component is a solvent having a viscosity of 1 to 1,000 cSt at 20 ° C. and a particle size of 0.1 to 3
A liquid composition in which abrasive grains having an electrical dielectric property of 0 μm are dispersed is arranged, and the electric field strength is ± 0.3 to 5 kV / mm and the frequency is 0.1.
It is a fine processing method characterized by rotating the fine tool at a high speed in a state in which the abrasive grains are oriented while applying an alternating electric field of 1 to 100 Hz to roll the abrasive grains for processing. Especially at the beginning, after applying a high frequency AC high voltage of 20Hz or more and 100Hz or less to adjust the position of the fine tool and the surface of the work part, the applied frequency is changed to 0.1 to 20Hz and the fine tool is operated at high speed. The method of rotating is desirable.

【0005】また、本発明は、先端が球形状を有する微
細工具を電極としてZ軸テーブルに一体に取り付け、他
方の電極をX−Y軸テーブルとし、微細工具の先端はX
−Y軸テーブル上に非接触状に配置されてZ軸方向に移
動可能且つ回転可能であり、X−Y軸テーブル上に載置
される被加工物と微細工具の先端との間に、溶媒の主成
分が20℃にて1〜1,000cStの粘度を有するシリコ
ーンオイルで、この溶媒に粒子径が0.1〜30μmの電
気的誘電性を持つ砥粒を分散させた液状組成物を供給
し、電極間に電界強度±0.3〜5kV/mm,周波数0.
1〜100Hzの交流電界を印加、制御することにより微
細加工できることを特徴とする微細加工装置をも提案す
るものである。
Further, according to the present invention, a fine tool having a spherical tip is integrally attached to a Z-axis table as an electrode, and the other electrode is an XY axis table, and the tip of the fine tool is X-axis.
-A solvent that is arranged in a non-contact manner on the Y-axis table, is movable and rotatable in the Z-axis direction, and is a solvent between the workpiece and the tip of the fine tool placed on the XY-axis table. The main component of is a silicone oil having a viscosity of 1 to 1,000 cSt at 20 ° C., and supplies a liquid composition in which abrasive grains having an electrical dielectric property of a particle diameter of 0.1 to 30 μm are dispersed in this solvent. The electric field strength between the electrodes is ± 0.3 to 5 kV / mm, and the frequency is 0.
The present invention also proposes a microfabrication device characterized by being capable of microfabrication by applying and controlling an AC electric field of 1 to 100 Hz.

【0006】[0006]

【発明の実施の形態】本発明に用いる液状組成物は、以
下の溶媒と砥粒からなる。溶媒は、20℃において1〜
1,000cStの粘度を有するシリコーンオイルを主成
分として用いる。砥粒は、粒子径が0.1〜30μmの電
気的誘電性を持つ絶縁性粒子、半導体粒子、金属粒子で
あり、加工幅(1〜50μm)に応じてそれ以下の粒子
径のものを用いる。この砥粒の電気的誘電性について
は、砥粒の比誘電率が前記溶媒の比誘電率より1以上大
きいものが望ましい。それにより砥粒は液状組成物中に
与えられた電界勾配によって砥粒に力が発現(誘発)さ
れる。この砥粒としては、加工性(研磨・研削性)が必
要であるため、その硬度が被加工物の硬度と同等或いは
それ以上であるか、被加工物とメカノケミカル作用を有
するものが用いられる。具体的にはダイヤモンドやコラ
ンダム、エメリー、ザクロ石、珪石、焼成ドロマイト、
溶融アルミナ、人造エメリー、炭化珪素、酸化ジルコニ
ウム、立方晶系窒化ホウ素cBNなど、或いはメカノケ
ミカル研磨に使用される酸化クロムや酸化珪素、酸化
鉄、酸化カルシウム、酸化マグネシウム、酸化セリウ
ム、炭化マグネシウム、炭酸バリウムなどが挙げられ
る。そして、前記溶媒中に、前記砥粒を混合して超音波
分散機などにて均一に分散させて液状組成物とする。
BEST MODE FOR CARRYING OUT THE INVENTION The liquid composition used in the present invention comprises the following solvent and abrasive grains. The solvent is 1 to 20 ° C.
A silicone oil having a viscosity of 1,000 cSt is used as a main component. Abrasive particles are insulating particles, semiconductor particles, and metal particles having a particle size of 0.1 to 30 μm and having electrical dielectric properties, and those having a particle size smaller than that depending on the processing width (1 to 50 μm) are used. . Regarding the electrical dielectric property of the abrasive grains, it is desirable that the relative permittivity of the abrasive grains is one or more larger than the relative permittivity of the solvent. As a result, a force is exerted (induced) on the abrasive grains due to the electric field gradient provided in the liquid composition. Since these abrasive grains are required to have workability (polishing / grindability), those having a hardness equal to or higher than the hardness of the work piece or having a mechanochemical action with the work piece are used. . Specifically, diamond, corundum, emery, garnet, silica stone, calcined dolomite,
Fused alumina, artificial emery, silicon carbide, zirconium oxide, cubic boron nitride cBN, etc., or chromium oxide or silicon oxide used for mechanochemical polishing, iron oxide, calcium oxide, magnesium oxide, cerium oxide, magnesium carbide, carbonic acid. Examples include barium. Then, the abrasive grains are mixed in the solvent and uniformly dispersed by an ultrasonic disperser or the like to obtain a liquid composition.

【0007】また、本発明にて印加する交流電界は、電
界強度±0.3〜5kV/mm,周波数0.1〜100Hz、
波形は立ち上がりが30〜500V/μsecの繰り返し
でプラス、マイナスに振れる方形波や正弦波である。印
加周波数が0.1Hz未満では砥粒が沈降する可能性があ
り、100Hzを超えると砥粒が周波数に対して応答でき
ず動けなくなる。
The AC electric field applied in the present invention has an electric field strength of ± 0.3 to 5 kV / mm, a frequency of 0.1 to 100 Hz,
The waveform is a square wave or a sine wave that swings positively and negatively when the rising is repeated at 30 to 500 V / μsec. If the applied frequency is less than 0.1 Hz, the abrasive grains may settle, and if the applied frequency exceeds 100 Hz, the abrasive grains cannot respond to the frequency and cannot move.

【0008】本発明に用いる微細工具は、その先端が回
転電極として用いられるものであって、特に材質を限定
するものではないが、例えばタングステン合金系やcB
N材などの超硬材や導電性を有する脆性材、導電性プラ
スチック、さらに砥粒を保持しながら加工を進める銅合
金さらに焼入れ鋼などを用いることができる。また、こ
の微細工具の先端は、球形状を有するように成形してい
る。また、この微細工具を回転電極として用いるのであ
るが、具体的には例えばエアースピンドルなどの設備機
構を付帯させ、その際の回転速度を5,000〜100,
000rpm程度とすることが望ましい。
The fine tool used in the present invention has its tip used as a rotating electrode, and its material is not particularly limited. For example, a tungsten alloy system or cB is used.
It is possible to use a superhard material such as N material, a brittle material having conductivity, a conductive plastic, a copper alloy that advances processing while holding abrasive grains, and hardened steel. Further, the tip of this fine tool is formed to have a spherical shape. Further, although this fine tool is used as a rotary electrode, specifically, for example, an equipment mechanism such as an air spindle is attached, and the rotation speed at that time is 5,000 to 100,
It is desirable to set it to about 000 rpm.

【0009】上記微細工具が兼ねる回転電極に対する他
方の電極は、被加工物の下部に配置するが、この電極を
X−Y軸テーブルとし、それに対して垂直方向をZ軸と
して微細工具の移動を制御するようにしても良い。ま
た、このX−Y軸テーブルは、固定電極としても良い
し、回転可能な電極としても良い。
The other electrode for the rotating electrode which doubles as the fine tool is arranged at the lower part of the workpiece, and this electrode is used as an XY axis table, and the vertical direction is the Z axis to move the fine tool. It may be controlled. The XY axis table may be a fixed electrode or a rotatable electrode.

【0010】このような材料及び設備を用いて本発明の
微細加工方法を実施するには、微細工具と被加工物と
を、接近した非接触状に配置するのであるが、具体的に
その距離(Z軸方向の距離)は加工幅(0.5〜50μ
m)に応じて調整すれば良く、その調整には例えば拡大
鏡にCCDカメラ(100〜1000倍)に取り付けて
微細工具の側方から撮影し、モニターに写し出しながら
微細工具を一体的に取り付けたZ軸テーブルの微動調整
で設定距離に調整すれば良い。またはレーザー変位計を
配して良い。勿論、微細工具と被加工物との間には前記
組成の液状組成物が配置される。尚、加工形状が凹状窪
みである場合には図2に示すように微細工具をZ軸に平
行に(垂直状に)配置することが望ましいが、均一な深
さの線幅にて直線形状など任意の凹部を形成する場合に
は、図1や図3に示すように微細工具を10〜80度
(Z軸に対して80〜10度)に傾けて配置することが
望ましい。即ち微細工具の回転は、図2のような配置で
は中心位置で周速が0となって中心以外にて回転による
砥粒の転動作用が果たされるが、図1や図3のような配
置では回転による砥粒の転動作用は全体に及ぼすことが
できる。
In order to carry out the fine machining method of the present invention using such materials and equipment, the fine tool and the workpiece are arranged in close proximity and in a non-contact manner. (Z-axis direction distance) is the processing width (0.5 to 50μ)
m), which can be adjusted by, for example, attaching a CCD camera (100 to 1000 times) to a magnifying glass, photographing from the side of the micro tool, and attaching the micro tool integrally while displaying it on the monitor. Fine adjustment of the Z-axis table may be used to adjust to the set distance. Alternatively, a laser displacement meter may be provided. Of course, the liquid composition having the above composition is disposed between the fine tool and the workpiece. When the processed shape is a concave depression, it is desirable to arrange the fine tools in parallel (perpendicularly) to the Z-axis as shown in FIG. 2, but a linear shape with a uniform depth line width, etc. When forming an arbitrary concave portion, it is desirable to arrange the fine tool with an inclination of 10 to 80 degrees (80 to 10 degrees with respect to the Z axis) as shown in FIGS. That is, in the rotation of the fine tool, the peripheral speed becomes 0 at the center position in the arrangement as shown in FIG. 2 and the rolling operation of the abrasive grains is performed by the rotation other than the center, but the arrangement as shown in FIG. 1 and FIG. Then, the rolling operation of the abrasive grains can be exerted on the whole.

【0011】そして、まず20Hz以上100Hz以下の高
い周波数の交流高電圧を印加して液状組成物中の砥粒を
共振させ、電極間(上方の回転電極と下方の電極との
間)においてそれらの動きは微振動を呈し、配向状態と
なり、微細工具の先端に砥粒が保持されて加工準備が整
う。ここでさらに微細工具を一体的に取り付けたZ軸テ
ーブルを微動調整して電極間の距離を狭める。
First, an AC high voltage having a high frequency of 20 Hz or more and 100 Hz or less is applied to cause the abrasive grains in the liquid composition to resonate, and between the electrodes (between the upper rotating electrode and the lower electrode), the The movement exhibits a slight vibration, becomes an orientation state, and the abrasive grains are held at the tip of the fine tool to prepare for processing. Here, the Z-axis table integrally attached with the fine tool is finely adjusted to reduce the distance between the electrodes.

【0012】次に、微細工具を高速回転させると共に印
加周波数を0.1〜20Hzに変更すると、液状組成物中
の砥粒は電極間にて活発に運動する。すなわち回転電極
である微細工具の先端は砥粒を保持しながら微細加工す
ることができるものである。この微細加工において、微
細工具の回転によって発生する遠心力にて砥粒が飛散す
る力も与えられるが、電界によりクーロン力が発生作用
し誘電材である砥粒は飛散せずに加工により生じた加工
屑のみを遠心力にて電界の外へ弾き出すことができる。
すなわち、砥粒の飛散を嫌う加工法として特に有効な加
工法である。また、この微細加工において、微細工具の
先端は常に被加工物と非接触状態を維持し、加工は砥粒
によってなされるので、工具を被加工物に接触させて加
工する場合のように摩擦による発熱を生ずることがない
し、より精微な加工を実施することができる。
Next, when the fine tool is rotated at a high speed and the applied frequency is changed to 0.1 to 20 Hz, the abrasive grains in the liquid composition actively move between the electrodes. That is, the tip of the fine tool, which is the rotating electrode, can be finely processed while holding the abrasive grains. In this fine processing, the centrifugal force generated by the rotation of the fine tool also gives a force to scatter the abrasive grains, but the Coulomb force is generated by the electric field and the abrasive grains that are the dielectric material do not scatter and are generated by the machining. Only scraps can be ejected out of the electric field by centrifugal force.
That is, it is a particularly effective processing method as a processing method that does not like the scattering of abrasive grains. Further, in this fine machining, the tip of the fine tool always maintains a non-contact state with the work piece, and since the work is done by the abrasive grains, friction is generated as in the case where the tool is brought into contact with the work piece. It does not generate heat and can perform more precise processing.

【0013】[0013]

【実施例】図1に示す微細加工装置は、被加工物2であ
るスライドガラスを載置するX−Y軸テーブル1を下方
の固定電極として採用した例である。微細工具4として
は、タングステンカーバイド系超硬材(超硬WC)を用
い、その先端はR0.5(直径1mm)の球形状とし、上
方の回転電極とした。また被加工物2と微細工具(の先
端)4との距離は、拡大鏡をCCDカメラに取り付けて
Z軸テーブル6で調整可能とした。また、電気的誘電性
を持つ砥粒としてガラスに対してメカノケミカル効果を
発現する酸化セリウムを用い、粘度が100cStのシリ
コーンオイル(溶媒)中に、平均粒径5〜10μmの酸
化セリウムを濃度30wt%程度に調整し、超音波分散機
にて入念に分散させ、液状組成物3とした。尚、X−Y
軸テーブル1を回転させる場合にはリニアモータなどを
活用すれば良いし、微動方式については圧電素子などを
用いて微動させれば良い。また、図3に示すような直線
状の溝加工を行う場合などに用いるθ軸送り機構7につ
いてはモータを用いて微細工具(の先端)4に角度を与
えて固定し、X軸方向へ往復運動させることによって直
線状の微細溝を創製することができる。さらに、Z軸送
り機構9の粗動はモータで、微動は圧電素子を用いて微
動させる装置とした。ここでの精密な送りが創製する溝
幅の加工精度に反映させるため特に重要な機構である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The microfabrication apparatus shown in FIG. 1 is an example in which an XY axis table 1 on which a slide glass, which is a workpiece 2, is placed is used as a lower fixed electrode. As the fine tool 4, a tungsten carbide type super hard material (super hard WC) was used, and the tip thereof had a spherical shape of R0.5 (diameter 1 mm) to serve as the upper rotating electrode. The distance between the workpiece 2 and (the tip of) the fine tool 4 can be adjusted with the Z-axis table 6 by attaching a magnifying glass to the CCD camera. In addition, cerium oxide that exhibits a mechanochemical effect on glass is used as abrasive grains having electrical dielectric properties, and cerium oxide having an average particle size of 5 to 10 μm is contained in silicone oil (solvent) having a viscosity of 100 cSt at a concentration of 30 wt %, And carefully dispersed with an ultrasonic disperser to obtain Liquid Composition 3. In addition, XY
A linear motor or the like may be used to rotate the shaft table 1, and a fine movement method may be finely moved using a piezoelectric element or the like. Further, regarding the θ-axis feed mechanism 7 used when a linear groove is machined as shown in FIG. 3, a fine tool (the tip thereof) 4 is angled and fixed using a motor, and reciprocated in the X-axis direction. A linear fine groove can be created by the movement. Further, the Z-axis feed mechanism 9 is configured such that coarse movement is performed by a motor and fine movement is performed by using a piezoelectric element. The precise feed here is a particularly important mechanism because it reflects the processing accuracy of the groove width to be created.

【0014】まず、CCDカメラを用いて微細工具4の
先端と被加工物2との間を40μmとし、上部の回転電
極(=微細工具4の先端)と下方の固定電極(=X−Y
軸テーブル1)との間に液状組成物3を滴下した後に、
印加電界として供給交流高圧電源8から周波数20Hz、
電界強度±3.0kV/mm交流高電圧を印加して液状組成
物3中の砥粒の配向性を促進し、その後に精密Z軸テー
ブル6のZ軸送り機構9で微細工具(の先端)4と被加
工物2との間を10μm狭めた。次に、エアースピンド
ル5で微細工具(の先端)4を60,000rpmで1分間
回転させて加工した。0.5〜1.5電界によって砥粒
が微細工具(の先端)4に保持され、遠心力による砥粒
の飛散が抑えられ、加工屑のみが電界外へ弾き出され、
加工が促進される状況が観察された。加工後の評価は倒
立顕微鏡で実施した。本加工実験より得られた凹部は、
底面の直径が直径10μmで上面はおよそ直径30μmの
微細加工部を創製することができた。また、図3に示す
ようにθ軸送り機構7を駆動し、微細工具4に角度をも
たせて、微細工具4を回転させると共に、X−Y軸テー
ブル1を前後方向に往復運動させると、速度差によって
相対速度が砥粒に発生し、転動作用が働き加工が進む状
況が観察された。
First, the distance between the tip of the fine tool 4 and the workpiece 2 is set to 40 μm using a CCD camera, and the upper rotary electrode (= tip of the fine tool 4) and the lower fixed electrode (= XY).
After dropping the liquid composition 3 between the axis table 1),
As an applied electric field, the frequency is 20 Hz from the AC high-voltage power supply 8 supplied,
Electric field strength ± 3.0 kV / mm AC high voltage is applied to promote the orientation of the abrasive grains in the liquid composition 3, and then the Z-axis feed mechanism 9 of the precision Z-axis table 6 is used (the tip of the fine tool). The distance between 4 and the workpiece 2 was narrowed by 10 μm. Next, the fine tool (the tip thereof) 4 was rotated by the air spindle 5 at 60,000 rpm for 1 minute for processing. The abrasive grains are held by (the tip of) the fine tool 4 by the electric field of 0.5 to 1.5, the scattering of the abrasive grains by the centrifugal force is suppressed, and only the processing waste is ejected out of the electric field.
A situation was observed in which processing was accelerated. The evaluation after processing was performed with an inverted microscope. The recesses obtained from this processing experiment are
It was possible to create a microfabricated portion having a bottom surface diameter of 10 μm and a top surface diameter of about 30 μm. Further, as shown in FIG. 3, when the θ-axis feed mechanism 7 is driven, the fine tool 4 has an angle, the fine tool 4 is rotated, and the XY axis table 1 is reciprocally moved in the front-rear direction, Due to the difference, a relative velocity was generated in the abrasive grains, and it was observed that the rolling motion worked and the processing proceeded.

【0015】以上本発明の実施例を示したが、本発明は
前記実施例に限定されるものではなく、特許請求の範囲
に記載の構成を変更しない限りどのようにでも実施する
ことができる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments and can be implemented in any manner as long as the configuration described in the claims is not changed.

【0016】[0016]

【発明の効果】以上説明したように本発明の微細加工方
法は、電界によって砥粒の配置を微細工具の先端に制御
かつ保持することができるものであって、工具の回転に
よって発生する遠心力による砥粒の飛散を電界によって
抑え、保持することができ、さらに砥粒の電界極性の切
り替わる時に生じる砥粒の運動によってセルフドレッシ
ングや衝撃力加工を促進することができる。また、本発
明の微細加工装置は、装置の小型化が実現でき、精度補
償も容易に抑えることが可能となり、加工精度が高く安
価な装置が実現できる。そして、加工環境を実現するた
めの設備導入における規模を現行より大きく縮小できる
可能性がある。
As described above, according to the fine machining method of the present invention, the arrangement of the abrasive grains can be controlled and held at the tip of the fine tool by the electric field, and the centrifugal force generated by the rotation of the tool. It is possible to suppress and maintain the scattering of the abrasive grains by the electric field, and further, the self-dressing and impact force processing can be promoted by the movement of the abrasive grains generated when the electric field polarity of the abrasive grains is switched. Further, the microfabrication apparatus of the present invention can realize downsizing of the apparatus, easily suppress accuracy compensation, and realize an apparatus with high processing accuracy and low cost. Then, there is a possibility that the scale of equipment installation for realizing the processing environment can be greatly reduced from the current level.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例にて用いた微細加工装置の概略図を示
す。
FIG. 1 is a schematic view of a microfabrication device used in an example.

【図2】掘り込み加工を行う場合の微細工具と被加工物
との間の様子を拡大して示した模式的概略図である。
FIG. 2 is a schematic schematic view in which a state between a fine tool and a workpiece when engraving is enlarged and shown.

【図3】直線状の溝加工を行う際に微細工具に角度をも
たせた場合の微細工具と被加工物との間の様子を拡大し
て示した模式的概略図である。
FIG. 3 is a schematic diagram showing an enlarged view of a state between a fine tool and a workpiece when the fine tool has an angle when performing linear groove machining.

【符号の説明】[Explanation of symbols]

1 X−Y軸テーブル 2 被加工物(スライドガラス) 3 液状組成物 4 微細工具 5 エアースピンドル 6 精密Z軸テーブル 7 θ軸送り機構 8 供給交流高圧電源 9 Z軸送り機構 1 X-Y axis table 2 Work piece (slide glass) 3 Liquid composition 4 fine tools 5 Air spindle 6 Precision Z-axis table 7 θ-axis feed mechanism 8 supply AC high voltage power supply 9 Z-axis feed mechanism

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 先端が球形状を有する微細工具を電極と
し、他方の電極を被加工物下部に配置し、微細工具の先
端と被加工物とを接近した非接触状に配置した間に、溶
媒の主成分が20℃にて1〜1,000cStの粘度を有す
るシリコーンオイルで、この溶媒に粒子径が0.1〜3
0μmの電気的誘電性を持つ砥粒を分散させた液状組成
物を配設し、電界強度±0.3〜5kV/mm,周波数0.
1〜100Hzの交流電界を印加しながら砥粒が配向した
状態で前記微細工具を高速回転させて砥粒を転動させて
加工することを特徴とする微細加工方法。
1. A fine tool having a spherical tip is used as an electrode, the other electrode is arranged under a workpiece, and while the tip of the fine tool and the workpiece are arranged in close proximity to each other, The main component of the solvent is silicone oil having a viscosity of 1 to 1,000 cSt at 20 ° C., and the particle size of the solvent is 0.1 to 3
A liquid composition in which abrasive grains having an electrical dielectric property of 0 μm are dispersed is arranged, and the electric field strength is ± 0.3 to 5 kV / mm and the frequency is 0.1.
A fine machining method characterized in that the fine tool is rotated at a high speed in a state in which the abrasive grains are oriented while applying an alternating electric field of 1 to 100 Hz to roll the abrasive grains for machining.
【請求項2】 先端が球形状を有する微細工具を電極と
してZ軸テーブルに一体に取り付け、他方の電極をX−
Y軸テーブルとし、微細工具の先端はX−Y軸テーブル
上に非接触状に配置されてZ軸方向に移動可能且つ回転
可能であり、X−Y軸テーブル上に載置される被加工物
と微細工具の先端との間に、溶媒の主成分が20℃にて
1〜1,000cStの粘度を有するシリコーンオイルで、
この溶媒に粒子径が0.1〜30μmの電気的誘電性を持
つ砥粒を分散させた液状組成物を供給し、電極間に電界
強度±0.3〜5kV/mm,周波数0.1〜100Hzの交
流電界を印加、制御することにより微細加工できること
を特徴とする微細加工装置。
2. A fine tool having a spherical tip at the tip is integrally attached to a Z-axis table as an electrode, and the other electrode is X-
The Y-axis table is used, and the tip of the fine tool is arranged on the XY-axis table in a non-contact manner so as to be movable and rotatable in the Z-axis direction, and the workpiece placed on the XY-axis table. Between the tip of the micro tool and the tip of the fine tool is a silicone oil having a viscosity of 1 to 1,000 cSt at 20 ° C.
The solvent was supplied with a liquid composition in which abrasive grains having a particle size of 0.1 to 30 μm and having an electric dielectric property were dispersed, and an electric field intensity of ± 0.3 to 5 kV / mm and a frequency of 0.1 to between electrodes. A microfabrication device capable of performing microfabrication by applying and controlling an AC electric field of 100 Hz.
JP2002105059A 2002-04-08 2002-04-08 Fine processing method and fine processing equipment Expired - Fee Related JP3875907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002105059A JP3875907B2 (en) 2002-04-08 2002-04-08 Fine processing method and fine processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105059A JP3875907B2 (en) 2002-04-08 2002-04-08 Fine processing method and fine processing equipment

Publications (2)

Publication Number Publication Date
JP2003300131A true JP2003300131A (en) 2003-10-21
JP3875907B2 JP3875907B2 (en) 2007-01-31

Family

ID=29389937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105059A Expired - Fee Related JP3875907B2 (en) 2002-04-08 2002-04-08 Fine processing method and fine processing equipment

Country Status (1)

Country Link
JP (1) JP3875907B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043255A (en) * 2011-08-25 2013-03-04 Yasuda Kogyo Kk Finish machining tool and machining method using the tool
JP2015131376A (en) * 2014-01-15 2015-07-23 株式会社小林機械製作所 Cutting tool finishing device and cutting tool finishing method
JP6446590B1 (en) * 2018-08-09 2018-12-26 国立大学法人 東京大学 Local polishing method, local polishing apparatus, and corrected polishing apparatus using the local polishing apparatus
CN109590810A (en) * 2018-11-19 2019-04-09 西安近代化学研究所 A kind of arc head revolving body inner wall surface self-adaption polishing process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043255A (en) * 2011-08-25 2013-03-04 Yasuda Kogyo Kk Finish machining tool and machining method using the tool
JP2015131376A (en) * 2014-01-15 2015-07-23 株式会社小林機械製作所 Cutting tool finishing device and cutting tool finishing method
JP6446590B1 (en) * 2018-08-09 2018-12-26 国立大学法人 東京大学 Local polishing method, local polishing apparatus, and corrected polishing apparatus using the local polishing apparatus
WO2020032106A1 (en) * 2018-08-09 2020-02-13 国立大学法人東京大学 Local polishing method, local polishing device, and corrective polishing apparatus using said local polishing device
US20210331283A1 (en) * 2018-08-09 2021-10-28 The University Of Tokyo Local polishing method, local polishing device, and corrective polishing apparatus using the local polishing device
CN109590810A (en) * 2018-11-19 2019-04-09 西安近代化学研究所 A kind of arc head revolving body inner wall surface self-adaption polishing process

Also Published As

Publication number Publication date
JP3875907B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
Kuriyagawa et al. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts
Nath et al. A study on ultrasonic elliptical vibration cutting of tungsten carbide
JP3422731B2 (en) ELID centerless grinding machine
US10245701B2 (en) 3D magnetorheological polishing device and magnetorheological polishing fluid
JP2006239813A (en) Small multiaxis composite working machine and working method
Hocheng et al. Fundamental study of ultrasonic polishing of mold steel
Katahira et al. ELID grinding characteristics and surface modifying effects of aluminum nitride (AlN) ceramics
JP5061296B2 (en) Flat double-side polishing method and flat double-side polishing apparatus
JP2682260B2 (en) Micro polishing method and micro polishing tool
CN1803399A (en) Surface polishing method and apparatus thereof
JP3874340B2 (en) Polishing equipment
JP2006224227A (en) Magnetic polishing method
JP3875907B2 (en) Fine processing method and fine processing equipment
Chen et al. Polishing mechanism analysis of silicon carbide ceramics combined ultrasonic vibration and hydroxyl
JPH11239969A (en) Grinding method for formed mirror surface, and device for it
JP2001353648A (en) Device and method of grinding elid mirror surface of large diameter work
Wu et al. Nano-precision polishing of CVD SiC using MCF (magnetic compound fluid) slurry
JP2000246634A (en) Plasma discharge trueing device and fine machining method using this device
JP5663733B2 (en) Flat double-sided finishing method and flat double-sided finishing apparatus
JP3906165B2 (en) Cutting edge polishing method using electric abrasive grains, and manufacturing method of fine parts having cutting edge
Kim et al. Surface finishing technique for small parts using dielectrophoretic effects of abrasive particles
Khoshaim et al. ELID grinding with lapping kinematics
JP4355669B2 (en) Cutting method and cutting apparatus used as precision machining technology
JP3595219B2 (en) Processing method using particle-dispersed dielectric fluid
KR20010049611A (en) Method for grinding the surface of workpiece

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061027

R150 Certificate of patent or registration of utility model

Ref document number: 3875907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees