JP3875907B2 - Fine processing method and fine processing equipment - Google Patents

Fine processing method and fine processing equipment Download PDF

Info

Publication number
JP3875907B2
JP3875907B2 JP2002105059A JP2002105059A JP3875907B2 JP 3875907 B2 JP3875907 B2 JP 3875907B2 JP 2002105059 A JP2002105059 A JP 2002105059A JP 2002105059 A JP2002105059 A JP 2002105059A JP 3875907 B2 JP3875907 B2 JP 3875907B2
Authority
JP
Japan
Prior art keywords
fine
tip
electrode
electric field
axis table
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002105059A
Other languages
Japanese (ja)
Other versions
JP2003300131A (en
Inventor
陽一 赤上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefecture
Original Assignee
Akita Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefecture filed Critical Akita Prefecture
Priority to JP2002105059A priority Critical patent/JP3875907B2/en
Publication of JP2003300131A publication Critical patent/JP2003300131A/en
Application granted granted Critical
Publication of JP3875907B2 publication Critical patent/JP3875907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、砥粒を用いた微細加工技術に関し、特に微細形状の加工、複雑形状を有する微細加工部を高品位な面に仕上げることができる微細加工方法及び微細加工装置に関する。
【0002】
【従来の技術】
半導体製造技術の進展と伴に高度に成長してきた微細加工技術は高度な工業製品の製造技術工程に求められるようになってきた。しかし、微細加工技術は、製造ラインにクリーンルームを要してさらに高価な半導体製造装置を用いるため、初期投資並びに運転維持費用も製品価格の上昇並びに環境に負荷を与える要因である。しかし、これらを排除可能な有用な技術の創製と安価な製品を導くための微細加工技術が現状まで提供されていない。また試料がガラスとなるとダイヤモンド工具による加工が適切であるが、ダイヤモンド工具も工具としては高価である。したがって、微細な工具は未だに提供されていない現状がある。
【0003】
【発明が解決しようとする課題】
交流高圧電界下で砥粒を微細工具が保持して加工する装置は、小型に構成可能な微細加工装置を提供することができる。すなわち、加工環境や付帯設備も良好なクリーン度の部屋全体を維持する工法から装置が載る周囲部に抑えられるため、環境配慮型微細加工工法である。
【0004】
【課題を解決するための手段】
本発明は上記を鑑み提案されたもので、先端が球形状を有する微細工具を電極とし、他方の電極を被加工物下部に配置し、微細工具の先端と被加工物とを接近した非接触状に配置した間に、溶媒の主成分が20℃にて1〜1,000cStの粘度を有するシリコーンオイルで、この溶媒に粒子径が0.1〜30μmの電気的誘電性を持つ砥粒を分散させた液状組成物を配設し、電界強度±0.3〜5kV/mm,周波数0.1〜100Hzの交流電界を印加しながら砥粒が配向した状態で前記微細工具を高速回転させて砥粒を転動させて加工することを特徴とする微細加工方法である。
特に始めは20Hz以上100Hz以下の高い周波数の交流高電圧を印加し、微細工具と被加工部面との位置調整を行った後に、印加周波数を0.1〜20Hzに変更すると共に微細工具を高速回転させる手法が望ましい。
【0005】
また、本発明は、先端が球形状を有する微細工具を電極としてZ軸テーブルに一体に取り付け、他方の電極をX−Y軸テーブルとし、微細工具の先端はX−Y軸テーブル上に非接触状に配置されてZ軸方向に移動可能且つ回転可能であり、X−Y軸テーブル上に載置される被加工物と微細工具の先端との間に、溶媒の主成分が20℃にて1〜1,000cStの粘度を有するシリコーンオイルで、この溶媒に粒子径が0.1〜30μmの電気的誘電性を持つ砥粒を分散させた液状組成物を供給し、電極間に電界強度±0.3〜5kV/mm,周波数0.1〜100Hzの交流電界を印加、制御することにより微細加工できることを特徴とする微細加工装置をも提案するものである。
【0006】
【発明の実施の形態】
本発明に用いる液状組成物は、以下の溶媒と砥粒からなる。溶媒は、20℃において1〜1,000cStの粘度を有するシリコーンオイルを主成分として用いる。砥粒は、粒子径が0.1〜30μmの電気的誘電性を持つ絶縁性粒子、半導体粒子であり、加工幅(1〜50μm)に応じてそれ以下の粒子径のものを用いる。この砥粒の電気的誘電性については、砥粒の比誘電率が前記溶媒の比誘電率より1以上大きいものが望ましい。それにより砥粒は液状組成物中に与えられた電界勾配によって砥粒に力が発現(誘発)される。この砥粒としては、加工性(研磨・研削性)が必要であるため、その硬度が被加工物の硬度と同等或いはそれ以上であるか、被加工物とメカノケミカル作用を有するものが用いられる。具体的にはダイヤモンドやコランダム、エメリー、ザクロ石、珪石、焼成ドロマイト、溶融アルミナ、人造エメリー、炭化珪素、酸化ジルコニウム、立方晶系窒化ホウ素cBNなど、或いはメカノケミカル研磨に使用される酸化クロムや酸化珪素、酸化鉄、酸化カルシウム、酸化マグネシウム、酸化セリウム、炭化マグネシウム、炭酸バリウムなどが挙げられる。そして、前記溶媒中に、前記砥粒を混合して超音波分散機などにて均一に分散させて液状組成物とする。
【0007】
また、本発明にて印加する交流電界は、電界強度±0.3〜5kV/mm,周波数0.1〜100Hz、波形は立ち上がりが30〜500V/μsecの繰り返しでプラス、マイナスに振れる方形波や正弦波である。印加周波数が0.1Hz未満では砥粒が沈降する可能性があり、100Hzを超えると砥粒が周波数に対して応答できず動けなくなる。
【0008】
本発明に用いる微細工具は、その先端が回転電極として用いられるものであって、特に材質を限定するものではないが、例えばタングステン合金系やcBN材などの超硬材や導電性を有する脆性材、導電性プラスチック、さらに砥粒を保持しながら加工を進める銅合金さらに焼入れ鋼などを用いることができる。また、この微細工具の先端は、球形状を有するように成形している。また、この微細工具を回転電極として用いるのであるが、具体的には例えばエアースピンドルなどの設備機構を付帯させ、その際の回転速度を5,000〜100,000rpm程度とすることが望ましい。
【0009】
上記微細工具が兼ねる回転電極に対する他方の電極は、被加工物の下部に配置するが、この電極をX−Y軸テーブルとし、それに対して垂直方向をZ軸として微細工具の移動を制御するようにしても良い。また、このX−Y軸テーブルは、固定電極としても良いし、回転可能な電極としても良い。
【0010】
このような材料及び設備を用いて本発明の微細加工方法を実施するには、微細工具と被加工物とを、接近した非接触状に配置するのであるが、具体的にその距離(Z軸方向の距離)は加工幅(0.5〜50μm)に応じて調整すれば良く、その調整には例えば拡大鏡にCCDカメラ(100〜1000倍)に取り付けて微細工具の側方から撮影し、モニターに写し出しながら微細工具を一体的に取り付けたZ軸テーブルの微動調整で設定距離に調整すれば良い。またはレーザー変位計を配して良い。勿論、微細工具と被加工物との間には前記組成の液状組成物が配置される。
尚、加工形状が凹状窪みである場合には図2に示すように微細工具をZ軸に平行に(垂直状に)配置することが望ましいが、均一な深さの線幅にて直線形状など任意の凹部を形成する場合には、図1や図3に示すように微細工具を10〜80度(Z軸に対して80〜10度)に傾けて配置することが望ましい。即ち微細工具の回転は、図2のような配置では中心位置で周速が0となって中心以外にて回転による砥粒の転動作用が果たされるが、図1や図3のような配置では回転による砥粒の転動作用は全体に及ぼすことができる。
【0011】
そして、まず20Hz以上100Hz以下の高い周波数の交流高電圧を印加して液状組成物中の砥粒を共振させ、電極間(上方の回転電極と下方の電極との間)においてそれらの動きは微振動を呈し、配向状態となり、微細工具の先端に砥粒が保持されて加工準備が整う。ここでさらに微細工具を一体的に取り付けたZ軸テーブルを微動調整して電極間の距離を狭める。
【0012】
次に、微細工具を高速回転させると共に印加周波数を0.1〜20Hzに変更すると、液状組成物中の砥粒は電極間にて活発に運動する。すなわち回転電極である微細工具の先端は砥粒を保持しながら微細加工することができるものである。
この微細加工において、微細工具の回転によって発生する遠心力にて砥粒が飛散する力も与えられるが、電界によりクーロン力が発生作用し誘電材である砥粒は飛散せずに加工により生じた加工屑のみを遠心力にて電界の外へ弾き出すことができる。すなわち、砥粒の飛散を嫌う加工法として特に有効な加工法である。
また、この微細加工において、微細工具の先端は常に被加工物と非接触状態を維持し、加工は砥粒によってなされるので、工具を被加工物に接触させて加工する場合のように摩擦による発熱を生ずることがないし、より精微な加工を実施することができる。
【0013】
【実施例】
図1に示す微細加工装置は、被加工物2であるスライドガラスを載置するX−Y軸テーブル1を下方の固定電極として採用した例である。
微細工具4としては、タングステンカーバイド系超硬材(超硬WC)を用い、その先端はR0.5(直径1mm)の球形状とし、上方の回転電極とした。また被加工物2と微細工具(の先端)4との距離は、拡大鏡をCCDカメラに取り付けてZ軸テーブル6で調整可能とした。
また、電気的誘電性を持つ砥粒としてガラスに対してメカノケミカル効果を発現する酸化セリウムを用い、粘度が100cStのシリコーンオイル(溶媒)中に、平均粒径5〜10μmの酸化セリウムを濃度30wt%程度に調整し、超音波分散機にて入念に分散させ、液状組成物3とした。
尚、X−Y軸テーブル1を回転させる場合にはリニアモータなどを活用すれば良いし、微動方式については圧電素子などを用いて微動させれば良い。
また、図3に示すような直線状の溝加工を行う場合などに用いるθ軸送り機構7についてはモータを用いて微細工具(の先端)4に角度を与えて固定し、X軸方向へ往復運動させることによって直線状の微細溝を創製することができる。
さらに、Z軸送り機構9の粗動はモータで、微動は圧電素子を用いて微動させる装置とした。ここでの精密な送りが創製する溝幅の加工精度に反映させるため特に重要な機構である。
【0014】
まず、CCDカメラを用いて微細工具4の先端と被加工物2との間を40μmとし、上部の回転電極(=微細工具4の先端)と下方の固定電極(=X−Y軸テーブル1)との間に液状組成物3を滴下した後に、印加電界として供給交流高圧電源8から周波数20Hz、電界強度±3.0kV/mm交流高電圧を印加して液状組成物3中の砥粒の配向性を促進し、その後に精密Z軸テーブル6のZ軸送り機構9で微細工具(の先端)4と被加工物2との間を10μm狭めた。
次に、エアースピンドル5で微細工具(の先端)4を60,000rpmで1分間回転させて加工した。0.5〜1.5電界によって砥粒が微細工具(の先端)4に保持され、遠心力による砥粒の飛散が抑えられ、加工屑のみが電界外へ弾き出され、加工が促進される状況が観察された。
加工後の評価は倒立顕微鏡で実施した。
本加工実験より得られた凹部は、底面の直径が直径10μmで上面はおよそ直径30μmの微細加工部を創製することができた。
また、図3に示すようにθ軸送り機構7を駆動し、微細工具4に角度をもたせて、微細工具4を回転させると共に、X−Y軸テーブル1を前後方向に往復運動させると、速度差によって相対速度が砥粒に発生し、転動作用が働き加工が進む状況が観察された。
【0015】
以上本発明の実施例を示したが、本発明は前記実施例に限定されるものではなく、特許請求の範囲に記載の構成を変更しない限りどのようにでも実施することができる。
【0016】
【発明の効果】
以上説明したように本発明の微細加工方法は、電界によって砥粒の配置を微細工具の先端に制御かつ保持することができるものであって、工具の回転によって発生する遠心力による砥粒の飛散を電界によって抑え、保持することができ、さらに砥粒の電界極性の切り替わる時に生じる砥粒の運動によってセルフドレッシングや衝撃力加工を促進することができる。
また、本発明の微細加工装置は、装置の小型化が実現でき、精度補償も容易に抑えることが可能となり、加工精度が高く安価な装置が実現できる。そして、加工環境を実現するための設備導入における規模を現行より大きく縮小できる可能性がある。
【図面の簡単な説明】
【図1】実施例にて用いた微細加工装置の概略図を示す。
【図2】掘り込み加工を行う場合の微細工具と被加工物との間の様子を拡大して示した模式的概略図である。
【図3】直線状の溝加工を行う際に微細工具に角度をもたせた場合の微細工具と被加工物との間の様子を拡大して示した模式的概略図である。
【符号の説明】
1 X−Y軸テーブル
2 被加工物(スライドガラス)
3 液状組成物
4 微細工具
5 エアースピンドル
6 精密Z軸テーブル
7 θ軸送り機構
8 供給交流高圧電源
9 Z軸送り機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a micromachining technique using abrasive grains, and more particularly to a micromachining method and a micromachining apparatus capable of finishing a fine shape and a finely machined portion having a complex shape into a high-quality surface.
[0002]
[Prior art]
With the progress of semiconductor manufacturing technology, the fine processing technology that has grown to a high degree has come to be required for the manufacturing process of advanced industrial products. However, since the microfabrication technology requires a clean room on the production line and uses a more expensive semiconductor manufacturing apparatus, initial investment and operation and maintenance costs are factors that increase the product price and have an environmental impact. However, the creation of useful technologies capable of eliminating these and the microfabrication technology for leading to inexpensive products have not been provided so far. When the sample is glass, processing with a diamond tool is appropriate, but the diamond tool is also expensive as a tool. Therefore, there is a present situation that a fine tool has not yet been provided.
[0003]
[Problems to be solved by the invention]
An apparatus for processing an abrasive grain held by a micro tool under an AC high-voltage electric field can provide a micro-processing apparatus that can be made compact. In other words, since the processing environment and incidental equipment can be suppressed from the method of maintaining the entire room with a good cleanliness to the surrounding area where the apparatus is placed, it is an environment-friendly micro-processing method.
[0004]
[Means for Solving the Problems]
The present invention has been proposed in view of the above, and a non-contact in which a fine tool having a spherical tip is used as an electrode and the other electrode is disposed below the workpiece, and the tip of the fine tool and the workpiece are brought close to each other. A silicone oil having a viscosity of 1 to 1,000 cSt at 20 ° C. is used as the main component of the solvent, and abrasive particles having an electric dielectric property with a particle size of 0.1 to 30 μm are placed in this solvent. Dispersed liquid composition is disposed, and the fine tool is rotated at a high speed while the abrasive grains are oriented while applying an AC electric field with an electric field strength of ± 0.3 to 5 kV / mm and a frequency of 0.1 to 100 Hz. It is a fine processing method characterized by rolling and processing abrasive grains.
In particular, at first, an AC high voltage with a high frequency of 20 Hz or more and 100 Hz or less is applied, and after adjusting the position of the fine tool and the surface of the workpiece, the applied frequency is changed to 0.1 to 20 Hz and the fine tool is operated at high speed A rotating method is desirable.
[0005]
Further, the present invention attaches a fine tool having a spherical tip to the Z-axis table as an electrode and the other electrode as an XY axis table, and the tip of the fine tool is not in contact with the XY axis table. The main component of the solvent is 20 ° C. between the workpiece placed on the XY axis table and the tip of the fine tool. A silicone oil having a viscosity of 1 to 1,000 cSt and a liquid composition in which abrasive grains having an electric dielectric property with a particle diameter of 0.1 to 30 μm are dispersed in this solvent are supplied, and an electric field strength of ± The present invention also proposes a microfabrication apparatus that can perform microfabrication by applying and controlling an alternating electric field of 0.3 to 5 kV / mm and a frequency of 0.1 to 100 Hz.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The liquid composition used in the present invention comprises the following solvent and abrasive grains. As a solvent, a silicone oil having a viscosity of 1 to 1,000 cSt at 20 ° C. is used as a main component. The abrasive grains are insulating particles and semiconductor particles having an electrical dielectric property with a particle size of 0.1 to 30 μm, and those having a particle size smaller than that according to the processing width (1 to 50 μm). As for the electrical dielectric properties of the abrasive grains, it is desirable that the relative dielectric constant of the abrasive grains be one or more larger than the relative dielectric constant of the solvent. As a result, a force is developed (induced) in the abrasive grains by the electric field gradient applied in the liquid composition. As the abrasive grains, workability (polishing / grindability) is required, so that the hardness thereof is equal to or higher than the hardness of the workpiece, or has a mechanochemical action with the workpiece. . Specifically, diamond, corundum, emery, garnet, silica, calcined dolomite, fused alumina, artificial emery, silicon carbide, zirconium oxide, cubic boron nitride cBN, etc. or chromium oxide or oxide used for mechanochemical polishing Examples thereof include silicon, iron oxide, calcium oxide, magnesium oxide, cerium oxide, magnesium carbide, and barium carbonate. And the said abrasive grain is mixed in the said solvent, and it is made to disperse | distribute uniformly with an ultrasonic disperser etc. to make a liquid composition.
[0007]
In addition, the AC electric field applied in the present invention is a square wave that swings positively and negatively with repetition of an electric field strength of ± 0.3 to 5 kV / mm, a frequency of 0.1 to 100 Hz, and a rise of 30 to 500 V / μsec. It is a sine wave. If the applied frequency is less than 0.1 Hz, the abrasive grains may settle. If the applied frequency exceeds 100 Hz, the abrasive grains cannot respond to the frequency and cannot move.
[0008]
The tip of the fine tool used in the present invention is used as a rotating electrode, and the material is not particularly limited. For example, a cemented carbide material such as a tungsten alloy system or a cBN material, or a brittle material having conductivity. Further, a conductive plastic, a copper alloy that advances the processing while holding the abrasive grains, and a hardened steel can be used. Further, the tip of the fine tool is formed to have a spherical shape. Further, this fine tool is used as a rotating electrode. Specifically, for example, it is desirable to attach an equipment mechanism such as an air spindle and set the rotational speed at that time to about 5,000 to 100,000 rpm.
[0009]
The other electrode with respect to the rotating electrode also serving as the fine tool is arranged at the lower part of the workpiece, and this electrode is used as an XY axis table, and the vertical direction is Z axis to control the movement of the fine tool. Anyway. The XY axis table may be a fixed electrode or a rotatable electrode.
[0010]
In order to carry out the micromachining method of the present invention using such materials and equipment, the fine tool and the work piece are arranged in a close non-contact manner, specifically the distance (Z-axis). (Distance in the direction) may be adjusted according to the processing width (0.5 to 50 μm). For the adjustment, for example, a magnifying glass is attached to a CCD camera (100 to 1000 times) and photographed from the side of the fine tool, What is necessary is just to adjust to a set distance by fine-movement adjustment of the Z-axis table which attached the fine tool integrally while projecting on a monitor. Alternatively, a laser displacement meter may be provided. Of course, the liquid composition of the said composition is arrange | positioned between a fine tool and a to-be-processed object.
When the processing shape is a concave depression, it is desirable to arrange the fine tools parallel to the Z axis (perpendicular) as shown in FIG. 2, but a linear shape with a uniform line width, etc. When forming an arbitrary recess, as shown in FIGS. 1 and 3, it is desirable that the fine tool be disposed at an angle of 10 to 80 degrees (80 to 10 degrees with respect to the Z axis). In other words, the rotation of the fine tool is such that the peripheral speed is 0 at the center position in the arrangement as shown in FIG. Then, the abrasive rolling operation by rotation can affect the whole.
[0011]
First, an AC high voltage having a high frequency of 20 Hz to 100 Hz is applied to resonate the abrasive grains in the liquid composition, and the movement between the electrodes (between the upper rotating electrode and the lower electrode) is slight. It exhibits vibration, becomes an oriented state, holds the abrasive grains at the tip of the fine tool, and is ready for processing. Here, the distance between the electrodes is narrowed by finely adjusting the Z-axis table to which the fine tool is integrally attached.
[0012]
Next, when the fine tool is rotated at a high speed and the applied frequency is changed to 0.1 to 20 Hz, the abrasive grains in the liquid composition are actively moved between the electrodes. That is, the tip of the fine tool as the rotating electrode can be finely processed while holding the abrasive grains.
In this microfabrication, the force that the abrasive grains are scattered by the centrifugal force generated by the rotation of the fine tool is also given, but the coulomb force is generated by the electric field, and the abrasive grains that are dielectric materials do not scatter and are produced by machining Only debris can be blown out of the electric field by centrifugal force. That is, it is a particularly effective processing method as a processing method that dislikes the scattering of abrasive grains.
Also, in this micromachining, the tip of the fine tool is always kept in non-contact with the workpiece, and the machining is performed by abrasive grains. Therefore, friction is applied as in the case of machining with the tool in contact with the workpiece. There is no generation of heat and finer processing can be performed.
[0013]
【Example】
The microfabrication apparatus shown in FIG. 1 is an example in which an XY axis table 1 on which a slide glass as a workpiece 2 is placed is adopted as a lower fixed electrode.
As the fine tool 4, a tungsten carbide cemented carbide (carbide WC) was used, the tip of which was formed into a spherical shape of R0.5 (diameter 1 mm), and an upper rotating electrode. The distance between the workpiece 2 and the fine tool (tip) 4 can be adjusted by the Z-axis table 6 by attaching a magnifying glass to the CCD camera.
In addition, cerium oxide that exhibits a mechanochemical effect on glass is used as abrasive grains having electrical dielectric properties, and cerium oxide having an average particle diameter of 5 to 10 μm in a concentration of 30 wt.% In a silicone oil (solvent) having a viscosity of 100 cSt. % Liquid and carefully dispersed with an ultrasonic disperser to obtain a liquid composition 3.
Note that when the XY axis table 1 is rotated, a linear motor or the like may be used, and the fine movement method may be finely moved using a piezoelectric element or the like.
Further, the θ-axis feed mechanism 7 used when performing linear groove machining as shown in FIG. 3 is fixed by giving an angle to the fine tool (tip) 4 using a motor and reciprocating in the X-axis direction. By making it move, a linear fine groove can be created.
Further, the coarse movement of the Z-axis feed mechanism 9 is a motor, and the fine movement is a fine movement apparatus using a piezoelectric element. This precise feed is a particularly important mechanism for reflecting the processing accuracy of the groove width created.
[0014]
First, the distance between the tip of the fine tool 4 and the workpiece 2 is set to 40 μm using a CCD camera, and the upper rotating electrode (= tip of the fine tool 4) and the lower fixed electrode (= XY axis table 1). After the liquid composition 3 is dropped between the two, the orientation of the abrasive grains in the liquid composition 3 is applied as an applied electric field by applying a frequency of 20 Hz and an electric field strength of ± 3.0 kV / mm from the AC high voltage power supply 8. After that, the Z axis feed mechanism 9 of the precision Z axis table 6 narrows the space between the fine tool (tip) 4 and the workpiece 2 by 10 μm.
Next, the fine tool (front end) 4 was rotated at 60,000 rpm for 1 minute by the air spindle 5 for processing. A situation in which abrasive grains are held by the fine tool (tip) 4 by an electric field of 0.5 to 1.5, scattering of abrasive grains due to centrifugal force is suppressed, and only machining waste is ejected out of the electric field, thereby promoting machining. Was observed.
Evaluation after processing was performed with an inverted microscope.
The recess obtained from this processing experiment was able to create a finely processed portion having a bottom diameter of 10 μm and a top surface of approximately 30 μm in diameter.
Also, as shown in FIG. 3, when the θ-axis feed mechanism 7 is driven, the fine tool 4 is angled, the fine tool 4 is rotated, and the XY axis table 1 is reciprocated back and forth. Due to the difference, a relative speed was generated in the abrasive grains, and the situation where the rolling operation worked and the processing progressed was observed.
[0015]
As mentioned above, although the Example of this invention was shown, this invention is not limited to the said Example, Unless it changes the structure as described in a claim, it can implement in any way.
[0016]
【The invention's effect】
As described above, the fine machining method of the present invention can control and hold the arrangement of abrasive grains at the tip of a fine tool by an electric field, and the scattering of abrasive grains due to the centrifugal force generated by the rotation of the tool. Can be suppressed and held by an electric field, and self-dressing and impact force machining can be promoted by the movement of the abrasive grains that occur when the electric field polarity of the abrasive grains is switched.
Further, the microfabrication apparatus of the present invention can realize downsizing of the apparatus, can easily suppress accuracy compensation, and can realize an apparatus with high machining accuracy and low cost. In addition, there is a possibility that the scale in introducing the equipment for realizing the processing environment can be greatly reduced from the current level.
[Brief description of the drawings]
FIG. 1 is a schematic view of a microfabrication apparatus used in Examples.
FIG. 2 is a schematic schematic diagram showing an enlarged view between a fine tool and a workpiece when performing a digging process.
FIG. 3 is a schematic diagram showing an enlarged view of a state between a fine tool and a workpiece when the fine tool is provided with an angle when performing linear groove processing.
[Explanation of symbols]
1 XY axis table 2 Work piece (slide glass)
3 Liquid Composition 4 Fine Tool 5 Air Spindle 6 Precision Z Axis Table 7 θ Axis Feed Mechanism 8 Supply AC High Voltage Power Supply 9 Z Axis Feed Mechanism

Claims (2)

先端が球形状を有する微細電極とし、他方の電極は被加工物の下部に配置し、微細電極の先端と被加工物とを接近した非接触状態に配置した間に、溶媒の主成分が20℃にて1〜1,000cStの粘度を有するシリコーンオイルで、この溶媒に粒子径が0.1〜30μmの電気的誘電性を持つ絶縁性粒子又は半導体粒子からなる砥粒を分散させた液状組成物を配設し、電界強度±0.3〜5kV/mm,周波数0.1〜100Hzの交流電界を印加しながら砥粒が配向した状態で前記微細電極を高速回転させて砥粒が転動するように加工することを特徴とする微細加工方法。Tip to a fine electrode having a spherical shape, while the other electrode is disposed in the lower portion of the workpiece, which is placed in a non-contact state in close proximity to the tip and workpiece microelectrodes, the main component of the solvent 20 Silicone oil having a viscosity of 1 to 1,000 cSt at ° C, and a liquid composition in which abrasive particles made of insulating particles or semiconductor particles having an electrical dielectric property with a particle size of 0.1 to 30 μm are dispersed in this solvent. It arranged things, electric field strength ± 0.3~5kV / mm, the fine electrode is rotated at a high speed abrasive in a state in which abrasive grains while applying an alternating electric field having a frequency of 0.1~100Hz are oriented tumbling A fine processing method characterized in that processing is performed. 先端が球形状を有する微細電極としてZ軸テーブルに一体に取り付け、他方の電極をX−Y軸テーブルとし、微細電極の先端はX−Y軸テーブル上に非接触状に配置されてZ軸方向に移動可能且つ回転可能であり、X−Y軸テーブル上に載置される被加工物と微細電極の先端との間に、溶媒の主成分が20℃にて1〜1,000cStの粘度を有するシリコーンオイルで、この溶媒に粒子径が0.1〜30μmの電気的誘電性を持つ絶縁性粒子又は半導体粒子からなる砥粒を分散させた液状組成物を供給し、電極間に電界強度±0.3〜5kV/mm,周波数0.1〜100Hzの交流電界を印加、制御することにより微細加工できることを特徴とする微細加工装置。The tip is attached to the Z-axis table as a fine electrode having a spherical shape, the other electrode is an XY axis table, and the tip of the fine electrode is arranged in a non-contact manner on the XY axis table. The main component of the solvent has a viscosity of 1 to 1,000 cSt at 20 ° C. between the workpiece placed on the XY axis table and the tip of the fine electrode. A liquid composition in which abrasive particles made of insulating particles or semiconductor particles having an electric dielectric property with a particle diameter of 0.1 to 30 μm are dispersed in this solvent, and the electric field strength between the electrodes is ± A fine processing apparatus capable of performing fine processing by applying and controlling an AC electric field of 0.3 to 5 kV / mm and a frequency of 0.1 to 100 Hz.
JP2002105059A 2002-04-08 2002-04-08 Fine processing method and fine processing equipment Expired - Fee Related JP3875907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002105059A JP3875907B2 (en) 2002-04-08 2002-04-08 Fine processing method and fine processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105059A JP3875907B2 (en) 2002-04-08 2002-04-08 Fine processing method and fine processing equipment

Publications (2)

Publication Number Publication Date
JP2003300131A JP2003300131A (en) 2003-10-21
JP3875907B2 true JP3875907B2 (en) 2007-01-31

Family

ID=29389937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105059A Expired - Fee Related JP3875907B2 (en) 2002-04-08 2002-04-08 Fine processing method and fine processing equipment

Country Status (1)

Country Link
JP (1) JP3875907B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5300939B2 (en) * 2011-08-25 2013-09-25 安田工業株式会社 Machining method using finishing tools
JP6244573B2 (en) * 2014-01-15 2017-12-13 株式会社小林機械製作所 Cutting tool finishing apparatus and cutting tool finishing method
JP6446590B1 (en) * 2018-08-09 2018-12-26 国立大学法人 東京大学 Local polishing method, local polishing apparatus, and corrected polishing apparatus using the local polishing apparatus
CN109590810B (en) * 2018-11-19 2020-08-21 西安近代化学研究所 Self-adaptive polishing method for inner wall surface of arc-head revolving body

Also Published As

Publication number Publication date
JP2003300131A (en) 2003-10-21

Similar Documents

Publication Publication Date Title
JP2006239813A (en) Small multiaxis composite working machine and working method
Kuriyagawa et al. Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts
Rahman et al. Tool-based nanofinishing and micromachining
JP3422731B2 (en) ELID centerless grinding machine
Luo et al. An atomic-scale and high efficiency finishing method of zirconia ceramics by using magnetorheological finishing
JP5061296B2 (en) Flat double-side polishing method and flat double-side polishing apparatus
JP2682260B2 (en) Micro polishing method and micro polishing tool
CN114918742B (en) Microstructure in-situ grinding and polishing processing device based on electrorheological effect and processing method thereof
JP3874340B2 (en) Polishing equipment
JP2006224227A (en) Magnetic polishing method
JPH11239970A (en) Grinding method by energized dressing and device for it
JP3875907B2 (en) Fine processing method and fine processing equipment
JPH11239969A (en) Grinding method for formed mirror surface, and device for it
JP3463796B2 (en) Plasma discharge truing apparatus and micromachining method using the same
JP2011083827A (en) Magnetic fluid polishing method and polishing device
JP5663733B2 (en) Flat double-sided finishing method and flat double-sided finishing apparatus
JP3906165B2 (en) Cutting edge polishing method using electric abrasive grains, and manufacturing method of fine parts having cutting edge
Kim et al. Surface finishing technique for small parts using dielectrophoretic effects of abrasive particles
JP4355669B2 (en) Cutting method and cutting apparatus used as precision machining technology
JP3595219B2 (en) Processing method using particle-dispersed dielectric fluid
Cheng et al. Electrorheological finishing for glasses by using an integrated-electrodes tool
JP5352892B2 (en) Grinding method and grinding apparatus
JP3686652B2 (en) A grindstone that can control the distribution and arrangement of abrasive grains by an electric field, its manufacturing method, and surface finishing method
Kumar et al. Advancement of Abrasive-Based Nano-Finishing: Processes Principle, Challenges, and Current Applications
Kumar et al. 4 Comprehensive Study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061027

R150 Certificate of patent or registration of utility model

Ref document number: 3875907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees