JP2003297686A - Method for producing solid electrolytic capacitor - Google Patents

Method for producing solid electrolytic capacitor

Info

Publication number
JP2003297686A
JP2003297686A JP2002093936A JP2002093936A JP2003297686A JP 2003297686 A JP2003297686 A JP 2003297686A JP 2002093936 A JP2002093936 A JP 2002093936A JP 2002093936 A JP2002093936 A JP 2002093936A JP 2003297686 A JP2003297686 A JP 2003297686A
Authority
JP
Japan
Prior art keywords
capacitor element
solid electrolytic
electrolytic capacitor
polymerizable monomer
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002093936A
Other languages
Japanese (ja)
Inventor
Atsushi Yamada
篤 山田
Hisaki Wakabayashi
寿樹 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2002093936A priority Critical patent/JP2003297686A/en
Publication of JP2003297686A publication Critical patent/JP2003297686A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a solid electrolytic capacitor in which ESR can be reduced. <P>SOLUTION: An anode foil and a cathode foil having an oxide film layer formed on the surface are wound through a separator to form a capacitor element which is then subjected to restoration formation. Subsequently, the capacitor element is immersed into mixture liquid prepared by mixing polymerizable monomer and an oxidizing agent together with a specified solvent and impregnated with the polymerizable monomer and the oxidizing agent. Substantially, simultaneously with the end of impregnation, it is preheated at a specified temperature so that polymerization reaction of conductive polymer takes place in the capacitor element thus forming a solid electrolytic layer. Thereafter, the capacitor element is inserted into an enclosure case, a sealing rubber is fixed to the end part of opening, and the case is sealed by caulking before the entirety is subjected to aging thus forming a solid electrolytic capacitor. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サの製造方法に係り、特に、固体電解コンデンサの等価
直列抵抗(以下、ESRと記す)を低減させるべく改良
を施した固体電解コンデンサの製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more particularly to a method for manufacturing a solid electrolytic capacitor which has been improved to reduce the equivalent series resistance (hereinafter referred to as ESR) of the solid electrolytic capacitor. It is about.

【0002】[0002]

【従来の技術】タンタルあるいはアルミニウム等のよう
な弁作用を有する金属を利用した電解コンデンサは、陽
極側対向電極としての弁作用金属を焼結体あるいはエッ
チング箔等の形状にして誘電体を拡面化することによ
り、小型で大きな容量を得ることができることから、広
く一般に用いられている。特に、電解質に固体電解質を
用いた固体電解コンデンサは、小型、大容量、低等価直
列抵抗であることに加えて、チップ化しやすく、表面実
装に適している等の特質を備えていることから、電子機
器の小型化、高機能化、低コスト化に欠かせないものと
なっている。
2. Description of the Related Art An electrolytic capacitor using a metal having a valve action, such as tantalum or aluminum, has a valve action metal as a counter electrode on the anode side formed into a sintered body, an etching foil, or the like so that the dielectric is expanded. It is widely used because it is possible to obtain a small size and a large capacity. In particular, a solid electrolytic capacitor using a solid electrolyte as an electrolyte has characteristics such as small size, large capacity, low equivalent series resistance, easy chip formation, and suitability for surface mounting. It is indispensable for downsizing, high functionality, and cost reduction of electronic devices.

【0003】この種の固体電解コンデンサにおいて、小
型、大容量用途としては、一般に、アルミニウム等の弁
作用金属からなる陽極箔と陰極箔をセパレータを介在さ
せて巻回してコンデンサ素子を形成し、このコンデンサ
素子に駆動用電解液を含浸し、アルミニウム等の金属製
ケースや合成樹脂製のケースにコンデンサ素子を収納
し、密閉した構造を有している。なお、陽極材料として
は、アルミニウムを初めとしてタンタル、ニオブ、チタ
ン等が使用され、陰極材料には、陽極材料と同種の金属
が用いられる。
In this type of solid electrolytic capacitor, for small size and large capacity use, generally, an anode foil and a cathode foil made of a valve metal such as aluminum are wound with a separator interposed therebetween to form a capacitor element. The capacitor element is impregnated with a driving electrolytic solution, and the capacitor element is housed in a case made of metal such as aluminum or a case made of synthetic resin, which is hermetically sealed. In addition, aluminum, tantalum, niobium, titanium, etc. are used as the anode material, and the same kind of metal as the anode material is used as the cathode material.

【0004】また、固体電解コンデンサに用いられる固
体電解質としては、二酸化マンガンや7、7、8、8−
テトラシアノキノジメタン(TCNQ)錯体が知られて
いるが、近年、反応速度が緩やかで、かつ陽極電極の酸
化皮膜層との密着性に優れたポリエチレンジオキシチオ
フェン(以下、PEDTと記す)等の導電性ポリマーに
着目した技術(特開平2−15611号公報等)が存在
している。
As the solid electrolyte used in the solid electrolytic capacitor, manganese dioxide, 7, 7, 8, 8-
Tetracyanoquinodimethane (TCNQ) complex is known, but in recent years, polyethylenedioxythiophene (hereinafter referred to as PEDT), etc., which has a slow reaction rate and excellent adhesion to the oxide film layer of the anode electrode, etc. There is a technique (Japanese Patent Application Laid-Open No. 2-15611, etc.) that focuses on the conductive polymer.

【0005】このような巻回型のコンデンサ素子にPE
DT等の導電性ポリマーからなる固体電解質層を形成す
るタイプの固体電解コンデンサは、以下のようにして作
製される。まず、アルミニウム等の弁作用金属からなる
陽極箔の表面を塩化物水溶液中での電気化学的なエッチ
ング処理により粗面化して、多数のエッチングピットを
形成した後、ホウ酸アンモニウム等の水溶液中で電圧を
印加して誘電体となる酸化皮膜層を形成する。陽極箔と
同様に、陰極箔もアルミニウム等の弁作用金属からなる
が、その表面にはエッチング処理を施すのみである。
PE in such a winding type capacitor element
A solid electrolytic capacitor of the type in which a solid electrolyte layer made of a conductive polymer such as DT is formed is manufactured as follows. First, the surface of the anode foil made of a valve metal such as aluminum is roughened by electrochemical etching in a chloride aqueous solution to form a large number of etching pits, and then in an aqueous solution of ammonium borate or the like. A voltage is applied to form an oxide film layer serving as a dielectric. Similar to the anode foil, the cathode foil is also made of a valve metal such as aluminum, but its surface is only subjected to etching treatment.

【0006】このようにして表面に酸化皮膜層が形成さ
れた陽極箔とエッチングピットのみが形成された陰極箔
とを、セパレータを介して巻回してコンデンサ素子を形
成する。続いて、修復化成を施したコンデンサ素子に、
3,4−エチレンジオキシチオフェン(以下、EDTと
記す)等の重合性モノマーと酸化剤溶液をそれぞれ吐出
し、あるいは両者の混合液に浸漬して、コンデンサ素子
内で重合反応を促進し、PEDT等の導電性ポリマーか
らなる固体電解質層を生成する。その後、このコンデン
サ素子を有底筒状の外装ケースに収納して固体電解コン
デンサを作成する。
In this way, the anode foil having the oxide film layer formed on the surface and the cathode foil having only the etching pit are wound with the separator interposed therebetween to form a capacitor element. Then, on the capacitor element that has been subjected to repair formation,
A polymerizable monomer such as 3,4-ethylenedioxythiophene (hereinafter referred to as EDT) and an oxidant solution are respectively discharged or immersed in a mixed solution of both to accelerate the polymerization reaction in the capacitor element, and to improve the PEDT. To produce a solid electrolyte layer composed of a conductive polymer such as. Then, the capacitor element is housed in a cylindrical outer case having a bottom to form a solid electrolytic capacitor.

【0007】[0007]

【発明が解決しようとする課題】ところで、近年、電子
情報機器はデジタル化され、さらにこれらの電子情報機
器の心臓部であるマイクロプロセッサ(MPU)の駆動
周波数の高速化が進んでいる。これに伴って、消費電力
の増大化が進み、発熱による信頼性の問題が顕在化して
きたため、その対策として駆動電圧の低減化が図られて
きた。
By the way, in recent years, electronic information devices have been digitized, and the driving frequency of the microprocessor (MPU), which is the heart of these electronic information devices, has been increasing. Along with this, the increase in power consumption has progressed, and the problem of reliability due to heat generation has become apparent. As a countermeasure against this, reduction of the drive voltage has been attempted.

【0008】上記駆動電圧の低減化を図るため、マイク
ロプロセッサに高精度な電力を供給する回路として電圧
制御モジュールと呼ばれるDC−DCコンバーターが広
く使用されており、その出力側コンデンサには、電圧降
下を防ぐためESRの低いコンデンサが多数用いられて
いる。このような低ESR特性を有するコンデンサとし
て、上述したような固体電解コンデンサが実用化され、
多用されている。
In order to reduce the driving voltage, a DC-DC converter called a voltage control module is widely used as a circuit for supplying highly accurate electric power to a microprocessor, and a voltage drop occurs in its output side capacitor. In order to prevent this, many capacitors with low ESR are used. As a capacitor having such a low ESR characteristic, the solid electrolytic capacitor as described above has been put into practical use,
It is used a lot.

【0009】しかしながら、マイクロプロセッサの駆動
周波数の高速化は著しく、それに伴って消費電力がさら
に増大し、それに対応するために電圧降下を防ぐための
コンデンサからの供給電力のさらなる増大化が求められ
ている。すなわち、大きな電力を短時間で供給すること
ができなければならず、このために固体電解コンデンサ
には大容量化、小型化、低電圧化と共に、さらに優れた
ESR特性が要求されている。なお、このような問題点
は、重合性モノマーとしてEDTを用いた場合に限ら
ず、他のチオフェン誘導体、ピロール、アニリン等を用
いた場合にも同様に生じていた。
However, the driving frequency of the microprocessor is remarkably increased, and the power consumption is further increased accordingly. To cope with this, further increase of the power supplied from the capacitor to prevent the voltage drop is required. There is. That is, it is necessary to be able to supply a large amount of power in a short time, and for this reason, a solid electrolytic capacitor is required to have a large capacity, a small size, a low voltage, and further excellent ESR characteristics. It should be noted that such a problem similarly occurs not only when EDT is used as the polymerizable monomer, but also when other thiophene derivative, pyrrole, aniline or the like is used.

【0010】本発明は、上述したような従来技術の問題
点を解決するために提案されたものであり、その目的
は、ESRをさらに低減させることができる固体電解コ
ンデンサの製造方法を提供することにある。
The present invention has been proposed in order to solve the above-mentioned problems of the prior art, and an object thereof is to provide a method of manufacturing a solid electrolytic capacitor which can further reduce ESR. It is in.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上記課題
を解決すべく、ESRを従来よりもさらに低減させるこ
とができる固体電解コンデンサの製造方法について鋭意
検討を重ねた結果、本発明を完成するに至ったものであ
る。すなわち、本発明者等は、コンデンサ素子への重合
性モノマー及び酸化剤の含浸工程終了後、加熱重合工程
に移行するまでの時間の長さによって、ESRの低減効
果に差が生ずることを見出し、本発明を完成するに至っ
たものである。
In order to solve the above problems, the inventors of the present invention have made extensive studies as to a method of manufacturing a solid electrolytic capacitor capable of further reducing ESR, and as a result, It has been completed. That is, the inventors of the present invention found that there is a difference in the ESR reduction effect depending on the length of time until the heat polymerization step after the step of impregnating the capacitor element with the polymerizable monomer and the oxidizing agent is completed, The present invention has been completed.

【0012】(固体電解コンデンサの製造方法)本発明
に係る固体電解コンデンサの製造方法は以下の通りであ
る。すなわち、表面に酸化皮膜層が形成された陽極箔と
陰極箔をセパレータを介して巻回してコンデンサ素子を
形成し、このコンデンサ素子に修復化成を施す。続い
て、このコンデンサ素子を重合性モノマーと酸化剤と所
定の溶媒とを混合して調製した混合液に浸漬し、コンデ
ンサ素子に重合性モノマーと酸化剤を含浸する。含浸終
了とほぼ同時に所定の温度に加熱してコンデンサ素子内
で導電性ポリマーの重合反応を発生させ、固体電解質層
を形成する。その後、このコンデンサ素子を外装ケース
に挿入し、開口端部に封口ゴムを装着して、加締め加工
によって封止した後、エージングを行い、固体電解コン
デンサを形成する。
(Method of Manufacturing Solid Electrolytic Capacitor) The method of manufacturing the solid electrolytic capacitor according to the present invention is as follows. That is, an anode foil and a cathode foil each having an oxide film layer formed on the surface thereof are wound with a separator interposed therebetween to form a capacitor element, and this capacitor element is subjected to restoration chemical conversion. Subsequently, the capacitor element is dipped in a mixed solution prepared by mixing a polymerizable monomer, an oxidizing agent and a predetermined solvent to impregnate the capacitor element with the polymerizable monomer and the oxidizing agent. Almost at the same time as the completion of impregnation, heating to a predetermined temperature causes a polymerization reaction of the conductive polymer in the capacitor element to form a solid electrolyte layer. After that, this capacitor element is inserted into an outer case, a sealing rubber is attached to the opening end, and after sealing by caulking, aging is performed to form a solid electrolytic capacitor.

【0013】なお、重合性モノマー及び酸化剤をコンデ
ンサ素子に含浸する方法としては、重合性モノマー及び
酸化剤の混合液にコンデンサ素子を浸漬する方法、コン
デンサ素子に上記混合液をシリンジ等により注入する方
法、あるいはコンデンサ素子に重合性モノマーと酸化剤
溶液を別々に注入する方法を用いることができる。この
ように、本発明においては、含浸終了とほぼ同時に重合
加熱することにより良好な結果が得られた。具体的には
含浸終了後15分以内に重合加熱することが好ましく、
10分以内がより好ましく、5分以内がさらに好まし
い。
As a method for impregnating the capacitor element with the polymerizable monomer and the oxidizing agent, the capacitor element is dipped in a mixed solution of the polymerizable monomer and the oxidizing agent, or the mixed solution is injected into the capacitor element by a syringe or the like. The method or the method of separately injecting the polymerizable monomer and the oxidant solution into the capacitor element can be used. As described above, in the present invention, good results were obtained by polymerizing and heating almost at the end of impregnation. Specifically, it is preferable to heat the polymerization within 15 minutes after completion of the impregnation.
It is more preferably within 10 minutes and even more preferably within 5 minutes.

【0014】このように含浸終了とほぼ同時に重合加熱
すると良好な結果が得られた理由は、以下の通りと考え
られる。通常、含浸が終了したコンデンサ素子は、恒温
槽に投入する等の方法によって加熱重合反応を促進する
ように構成されている。この場合、通常はコンデンサ素
子をリードフレーム等に取り付けて、数個から数十個単
位で含浸工程及び重合加熱工程に供している。従って、
含浸工程から重合加熱工程に移行するまでの間、含浸し
たコンデンサ素子を室温で放置する状態が存在する。
The reason why good results were obtained by polymerizing and heating almost at the same time as the completion of impregnation is considered as follows. Usually, the impregnated capacitor element is configured to promote the heat polymerization reaction by a method such as putting it in a constant temperature bath. In this case, the capacitor element is usually attached to a lead frame or the like, and subjected to the impregnation step and the polymerization heating step in units of several to several tens. Therefore,
There is a state in which the impregnated capacitor element is left at room temperature until the impregnation step shifts to the polymerization heating step.

【0015】しかし、含浸したコンデンサ素子を放置す
る時間が長いと、コンデンサ素子の端面から重合性モノ
マーや溶媒が蒸発して、コンデンサ素子内の重合性モノ
マー、酸化剤及び溶媒の比が不均一となり、その結果、
形成される導電性ポリマーが不均一となって、良好な結
果が得られなくなると考えられる。
However, when the impregnated capacitor element is left for a long time, the polymerizable monomer and the solvent evaporate from the end surface of the capacitor element, and the ratio of the polymerizable monomer, the oxidizing agent and the solvent in the capacitor element becomes nonuniform. ,as a result,
It is considered that the conductive polymer formed becomes non-uniform and good results cannot be obtained.

【0016】また、含浸終了とほぼ同時に重合加熱する
方法としては、重合性モノマーと酸化剤の注入が終了し
た直後に加熱する方法、コンデンサ素子を混合液に浸漬
して引き上げた直後に加熱する方法等を用いることがで
きる。また、加熱方法としては、含浸直後にコンデンサ
素子に温風を当てる方法、含浸直後にコンデンサ素子を
順次所定の温度の恒温槽内に投入する方法等を用いるこ
とができる。また、混合液を注入した容器にコンデンサ
素子を浸漬した後、容器を加熱し、その後に恒温槽に投
入して重合反応を促進させることもできる。
Further, as a method of heating for polymerization almost simultaneously with the completion of impregnation, there is a method of heating immediately after the injection of the polymerizable monomer and the oxidizing agent is completed, and a method of heating immediately after the capacitor element is immersed in the mixed solution and pulled up. Etc. can be used. As the heating method, a method of applying hot air to the capacitor element immediately after the impregnation, a method of sequentially charging the capacitor elements immediately after the impregnation into a constant temperature bath at a predetermined temperature, or the like can be used. It is also possible to immerse the capacitor element in a container into which the mixed solution has been injected, heat the container, and then put it in a thermostat to accelerate the polymerization reaction.

【0017】(EDT及び酸化剤)重合性モノマーとし
てEDTを用いた場合、コンデンサ素子に含浸するED
Tとしては、EDTモノマーを用いることができるが、
EDTと揮発性溶媒とを1:0〜1:3の体積比で混合
したモノマー溶液を用いることもできる。前記揮発性溶
媒としては、ペンタン等の炭化水素類、テトラヒドロフ
ラン等のエーテル類、ギ酸エチル等のエステル類、アセ
トン等のケトン類、メタノール等のアルコール類、アセ
トニトリル等の窒素化合物等を用いることができるが、
なかでも、メタノール、エタノール、アセトン等が好ま
しい。
(EDT and Oxidizing Agent) When EDT is used as the polymerizable monomer, the ED that impregnates the capacitor element
Although EDT monomer can be used as T,
It is also possible to use a monomer solution in which EDT and a volatile solvent are mixed in a volume ratio of 1: 0 to 1: 3. As the volatile solvent, hydrocarbons such as pentane, ethers such as tetrahydrofuran, esters such as ethyl formate, ketones such as acetone, alcohols such as methanol, nitrogen compounds such as acetonitrile and the like can be used. But,
Of these, methanol, ethanol, acetone and the like are preferable.

【0018】また、酸化剤としては、ブタノールに溶解
したパラトルエンスルホン酸第二鉄、過ヨウ素酸もしく
はヨウ素酸の水溶液を用いることができ、酸化剤の溶媒
に対する濃度は40〜58wt%が好ましく、45〜5
7wt%がより好ましい。酸化剤の溶媒に対する濃度が
高い程、ESRは低減する。
As the oxidant, an aqueous solution of ferric p-toluenesulfonate, periodate or iodic acid dissolved in butanol can be used, and the concentration of the oxidant in the solvent is preferably 40 to 58 wt%. 45-5
7 wt% is more preferable. The higher the concentration of oxidant to solvent, the lower the ESR.

【0019】(修復化成の化成液)修復化成の化成液と
しては、リン酸二水素アンモニウム、リン酸水素二アン
モニウム等のリン酸系の化成液、ホウ酸アンモニウム等
のホウ酸系の化成液、アジピン酸アンモニウム等のアジ
ピン酸系の化成液を用いることができるが、なかでも、
リン酸二水素アンモニウムを用いることが望ましい。ま
た、コンデンサ素子を化成液に浸漬し、電圧印加して修
復化成する時間は、5〜120分が望ましい。
(Chemical conversion solution for repair chemical conversion) As chemical conversion solution for repair chemical conversion, phosphoric acid-based chemical conversion solutions such as ammonium dihydrogen phosphate and diammonium hydrogen phosphate, boric acid-based chemical conversion solutions such as ammonium borate, Adipic acid-based chemical conversion solutions such as ammonium adipate can be used, but above all,
It is desirable to use ammonium dihydrogen phosphate. Further, it is preferable that the time for immersing the capacitor element in the chemical conversion liquid and applying the voltage to perform the repair chemical formation is 5 to 120 minutes.

【0020】(他の重合性モノマー)本発明に用いられ
る重合性モノマーとしては、上記EDTの他に、EDT
以外のチオフェン誘導体、アニリン、ピロール、フラ
ン、アセチレンまたはそれらの誘導体であって、所定の
酸化剤により酸化重合され、導電性ポリマーを形成する
ものであれば適用することができる。なお、チオフェン
誘導体としては、下記の構造式のものを用いることがで
きる。
(Other Polymerizable Monomer) As the polymerizable monomer used in the present invention, in addition to the above EDT, EDT
Other thiophene derivatives, aniline, pyrrole, furan, acetylene or their derivatives, which are oxidatively polymerized by a predetermined oxidant to form a conductive polymer, can be applied. As the thiophene derivative, one having the following structural formula can be used.

【化1】 [Chemical 1]

【0021】[0021]

【実施例】続いて、以下のようにして製造した実施例及
び比較例に基づいて本発明をさらに詳細に説明する。 (実施例1)表面に酸化皮膜層が形成された陽極箔と陰
極箔に電極引き出し手段を接続し、両電極箔をセパレー
タを介して巻回して、素子形状が5φ×2.8Lのコン
デンサ素子を形成した。そして、このコンデンサ素子を
リン酸二水素アンモニウム水溶液に40分間浸漬して、
修復化成を行った。一方、所定の容器に、EDTと50
%のパラトルエンスルホン酸第二鉄のブタノール溶液を
1:3の割合で混合し、コンデンサ素子を上記混合液に
10秒間浸漬してコンデンサ素子にEDTと酸化剤を含
浸した。そして、このコンデンサ素子を重合液から引き
上げ、5分以内に60℃の恒温槽内に1時間放置し、さ
らに150℃の恒温槽内で1時間加熱して、コンデンサ
素子内でPEDTの重合反応を発生させ、固体電解質層
を形成した。そして、このコンデンサ素子を有底筒状の
外装ケースに挿入し、開口端部に封口ゴムを装着して、
加締め加工によって封止した。その後に、150℃、1
20分、26Vの電圧印加によってエージングを行い、
固体電解コンデンサを形成した。なお、この固体電解コ
ンデンサの定格電圧は20WV、定格容量は22μFで
ある。
EXAMPLES Next, the present invention will be described in more detail based on Examples and Comparative Examples produced as follows. (Example 1) A capacitor element having an element shape of 5φ x 2.8 L, in which an electrode lead-out means is connected to an anode foil and a cathode foil having an oxide film layer formed on the surface and both electrode foils are wound with a separator interposed therebetween. Was formed. Then, the capacitor element is immersed in an ammonium dihydrogen phosphate aqueous solution for 40 minutes,
Repair formation was performed. On the other hand, place the EDT and
% Ferric paratoluenesulfonate butanol solution was mixed at a ratio of 1: 3, and the capacitor element was immersed in the above mixed solution for 10 seconds to impregnate the capacitor element with EDT and an oxidant. Then, the capacitor element is pulled out from the polymerization solution, left in a constant temperature bath of 60 ° C. for 1 hour within 5 minutes, and further heated in a constant temperature bath of 150 ° C. for 1 hour to allow PEDT polymerization reaction in the capacitor element. It was generated to form a solid electrolyte layer. Then, insert this capacitor element into a cylindrical outer case with a bottom, and attach a sealing rubber to the open end,
It was sealed by caulking. After that, 150 ℃, 1
Aging is performed by applying a voltage of 26 V for 20 minutes,
A solid electrolytic capacitor was formed. The solid electrolytic capacitor has a rated voltage of 20 WV and a rated capacity of 22 μF.

【0022】(比較例1)コンデンサ素子を重合液から
引き上げた後、室温で1時間放置し、その後に60℃の
恒温槽内に1時間放置し、さらに150℃の恒温槽内で
1時間加熱して、コンデンサ素子内でPEDTの重合反
応を発生させ、固体電解質層を形成した。その他の条件
及び工程は、実施例1と同様である。
(Comparative Example 1) After pulling up the capacitor element from the polymerization solution, it was left at room temperature for 1 hour, then left in a constant temperature bath at 60 ° C for 1 hour, and further heated in a constant temperature bath at 150 ° C for 1 hour. Then, a polymerization reaction of PEDT was generated in the capacitor element to form a solid electrolyte layer. The other conditions and steps are the same as in Example 1.

【0023】(比較例2)コンデンサ素子を重合液から
引き上げた後、室温で3時間放置し、その後に60℃の
恒温槽内に1時間放置し、さらに150℃の恒温槽内で
1時間加熱して、コンデンサ素子内でPEDTの重合反
応を発生させ、固体電解質層を形成した。その他の条件
及び工程は、実施例1と同様である。
(Comparative Example 2) After pulling up the capacitor element from the polymerization solution, it was left at room temperature for 3 hours, then left in a constant temperature bath at 60 ° C for 1 hour, and further heated in a constant temperature bath at 150 ° C for 1 hour. Then, a polymerization reaction of PEDT was generated in the capacitor element to form a solid electrolyte layer. The other conditions and steps are the same as in Example 1.

【0024】[比較結果]上記の方法により得られた実
施例及び比較例について、初期特性を調べたところ表1
に示すような結果が得られた。
[Comparison Results] The initial characteristics of the examples and comparative examples obtained by the above method were examined.
The results shown in are obtained.

【表1】 [Table 1]

【0025】表1から明らかなように、含浸終了直後に
重合加熱を行った実施例のESRは、含浸終了後1時間
経過後に重合加熱を行った比較例1に比べて、ESRは
約87.4%に低減した。また、含浸終了後3時間経過
後に重合加熱を行った比較例2に比べて、ESRは約8
8.4%に低減した。
As is clear from Table 1, the ESR of the example in which the polymerization heating was performed immediately after the completion of the impregnation was about 87% compared to the comparative example 1 in which the polymerization heating was performed 1 hour after the completion of the impregnation. It was reduced to 4%. Also, the ESR was about 8 as compared with Comparative Example 2 in which polymerization heating was performed 3 hours after the completion of impregnation.
It was reduced to 8.4%.

【0026】[0026]

【発明の効果】以上述べたように、本発明によれば、E
SRをさらに低減させることができる固体電解コンデン
サの製造方法を提供することができる。
As described above, according to the present invention, E
A method for manufacturing a solid electrolytic capacitor that can further reduce SR can be provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 陽極箔と陰極箔とをセパレータを介して
巻回したコンデンサ素子に重合性モノマーと酸化剤とを
含浸し、加熱重合反応によって導電性ポリマーからなる
固体電解質層を形成する固体電解コンデンサの製造方法
において、 前記コンデンサ素子への重合性モノマー及び酸化剤の含
浸終了とほぼ同時に、加熱重合を行うことを特徴とする
固体電解コンデンサの製造方法。
1. A solid electrolysis in which a capacitor element in which an anode foil and a cathode foil are wound via a separator is impregnated with a polymerizable monomer and an oxidizing agent, and a solid electrolyte layer made of a conductive polymer is formed by a heat polymerization reaction. A method for producing a solid electrolytic capacitor, which comprises performing heat polymerization at substantially the same time as the completion of impregnation of the capacitor element with a polymerizable monomer and an oxidizing agent.
【請求項2】 前記重合性モノマーが、チオフェン誘導
体であることを特徴とする請求項1に記載の固体電解コ
ンデンサの製造方法。
2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the polymerizable monomer is a thiophene derivative.
【請求項3】 前記チオフェン誘導体が、3,4−エチ
レンジオキシチオフェンであることを特徴とする請求項
2に記載の固体電解コンデンサの製造方法。
3. The method for producing a solid electrolytic capacitor according to claim 2, wherein the thiophene derivative is 3,4-ethylenedioxythiophene.
JP2002093936A 2002-03-29 2002-03-29 Method for producing solid electrolytic capacitor Pending JP2003297686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002093936A JP2003297686A (en) 2002-03-29 2002-03-29 Method for producing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002093936A JP2003297686A (en) 2002-03-29 2002-03-29 Method for producing solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2003297686A true JP2003297686A (en) 2003-10-17

Family

ID=29386867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002093936A Pending JP2003297686A (en) 2002-03-29 2002-03-29 Method for producing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2003297686A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197312A (en) * 2003-12-26 2005-07-21 Nippon Chemicon Corp Solid electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005197312A (en) * 2003-12-26 2005-07-21 Nippon Chemicon Corp Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
JP2000138133A (en) Solid electrolytic capacitor and its manufacture
JP4774664B2 (en) Manufacturing method of solid electrolytic capacitor
JP5126865B2 (en) Manufacturing method of solid electrolytic capacitor
JP4821818B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP4773031B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003297686A (en) Method for producing solid electrolytic capacitor
JP2003017369A (en) Method for manufacturing solid electrolytic capacitor
JP4720075B2 (en) Manufacturing method of solid electrolytic capacitor
JP4363022B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314774B2 (en) Manufacturing method of solid electrolytic capacitor
JP4720074B2 (en) Manufacturing method of solid electrolytic capacitor
JP4442361B2 (en) Manufacturing method of solid electrolytic capacitor
JP4483504B2 (en) Conductive material and solid electrolytic capacitor using the same
JP4529403B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003297685A (en) Method for producing solid electrolytic capacitor
JP4780894B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2003197478A (en) Solid electrolytic capacitor and manufacturing method therefor
JP5015382B2 (en) Manufacturing method of solid electrolytic capacitor
JP4982027B2 (en) Manufacturing method of solid electrolytic capacitor
JP4608865B2 (en) Manufacturing method of solid electrolytic capacitor
JP4639504B2 (en) Manufacturing method of solid electrolytic capacitor
JP4314938B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005085911A (en) Method for manufacturing solid electrolytic capacitor
JP2004128048A (en) Solid electrolytic capacitor
JP5288427B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Effective date: 20080207

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Written amendment

Effective date: 20080414

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203