JP2003297419A - Manufacturing method for non-aqueous electrolyte battery - Google Patents

Manufacturing method for non-aqueous electrolyte battery

Info

Publication number
JP2003297419A
JP2003297419A JP2002104413A JP2002104413A JP2003297419A JP 2003297419 A JP2003297419 A JP 2003297419A JP 2002104413 A JP2002104413 A JP 2002104413A JP 2002104413 A JP2002104413 A JP 2002104413A JP 2003297419 A JP2003297419 A JP 2003297419A
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
negative electrode
positive electrode
electrolyte battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002104413A
Other languages
Japanese (ja)
Other versions
JP2003297419A5 (en
Inventor
Hideaki Kojima
秀明 小島
Akira Yamaguchi
晃 山口
Takeshi Segawa
健 瀬川
Mashio Shibuya
真志生 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002104413A priority Critical patent/JP2003297419A/en
Publication of JP2003297419A publication Critical patent/JP2003297419A/en
Publication of JP2003297419A5 publication Critical patent/JP2003297419A5/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery having an excellent discharge capacity. <P>SOLUTION: The method is to manufacture the non-aqueous electrolyte battery equipped with a positive electrode capable of doping and dedoping lithium electrochemically, a negative electrode capable of doping and dedoping lithium electrochemically, and a non-aqueous electrolyte, wherein unsaturated or non-saturated carbonate derivative is added in an amount of 0.05-5 wt.% to the non-aqueous electrolyte, and after the battery is assembled, the first charging run is conducted in the temperature environment ranging between 30°C and 60°C. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウムをドープ
・脱ドープ可能な負極、正極と非水電解質とを備えた非
水電解質電池に関し、詳しくは、放電容量に優れた非水
電解質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte battery having a negative electrode capable of doping and dedoping lithium, a positive electrode and a non-aqueous electrolyte, and more particularly to a non-aqueous electrolyte battery having an excellent discharge capacity.

【0002】[0002]

【従来の技術】近年、カメラ一体型VTR、携帯電話、
ラップトップコンピュータ等のポータブル電子機器が多
く登場し、その小型軽量化が図られている。そしてこれ
らの電子機器のポータブル電源として、電池、特に二次
電池について、エネルギー密度を向上させるための研究
開発が活発に進められている。中でも、リチウムイオン
二次電池は、従来の水系電解液二次電池である鉛電池、
ニッケルカドミウム電池と比較して大きなエネルギー密
度が得られるため、期待が大きい。
2. Description of the Related Art Recently, a VTR with a built-in camera, a mobile phone,
Many portable electronic devices such as laptop computers have appeared, and their size and weight have been reduced. As a portable power source for these electronic devices, research and development for improving the energy density of batteries, especially secondary batteries, have been actively promoted. Among them, the lithium ion secondary battery is a lead battery, which is a conventional aqueous electrolyte secondary battery,
Expectations are high because it can provide higher energy density than nickel-cadmium batteries.

【0003】しかしながら最近のポータブル電子機器は
多くのアプリケーションを内蔵しているために消費電力
も増加してきているため、その電子機器に用いられるポ
ータブル電源に対してより放電容量の大きな電源、特に
高容量二次電池が強く求められている。
However, recent portable electronic devices have a large number of built-in applications and therefore have increased power consumption. Therefore, the portable power source used in the electronic devices has a larger discharge capacity, especially a high capacity. There is a strong demand for secondary batteries.

【0004】この有効な解決手段として、例えばリチウ
ムイオン二次電池では、高放電容量のLiNiO2系正
極活物質の開発・実用化の研究や、炭素材料以外の新規
高容量負極材料の開発・実用化の研究が盛んに行われて
いる。
As an effective solution to this problem, for example, in a lithium ion secondary battery, research and development of a high discharge capacity LiNiO 2 type positive electrode active material, and development and practical use of a new high capacity negative electrode material other than carbon materials Is being actively researched.

【0005】しかしながら、これら新規材料の実用化に
対しては信頼性、保存特性など解決しなければならない
課題があり、実用化のためにはさらに研究開発を進めて
いかなければならない。
However, in order to put these new materials into practical use, there are problems that must be solved, such as reliability and storage characteristics, and further research and development must be carried out in order to put them into practical use.

【0006】そこで、現在使用されている正極、負極材
料を用いたままで、放電容量を向上させる手段として、
例えば、リチウムをドープ・脱ドープ可能な正極と、リ
チウムをドープ・脱ドープ可能な負極と、非水電解液を
備えた非水電解液二次電池において、ビニレンカーボネ
ート又はビニレンカーボネート誘導体を前記非水電解液
に含有させる技術が報告されている(特開2001−1
67797号公報)。
Therefore, as a means for improving the discharge capacity while using the positive electrode and negative electrode materials currently used,
For example, in a non-aqueous electrolyte secondary battery including a positive electrode capable of doping / de-doping lithium, a negative electrode capable of doping / de-doping lithium, and a non-aqueous electrolytic solution, a vinylene carbonate or a vinylene carbonate derivative is added to the non-aqueous electrolyte. A technique for containing the electrolyte in an electrolytic solution has been reported (Japanese Patent Laid-Open No. 2001-1).
No. 67797).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、近年の
ポータブル機器は、使用するアプリケーションが増加し
ており、それに伴い消費電力も増加しており、また、ポ
ータブル機器の使用時間を長くするためにも、更なる高
容量のポータブル電源の開発が強く望まれている。
However, in recent years, portable applications have been increasing in applications to be used, power consumption is also increasing, and in order to prolong the usage time of the portable equipment, It is strongly desired to develop an even higher capacity portable power supply.

【0008】本発明は、このような従来の実情に鑑みて
提案されたものであり、優れた放電容量を有する非水電
解質電池を提供することを目的とする。
The present invention has been proposed in view of such a conventional situation, and an object thereof is to provide a non-aqueous electrolyte battery having an excellent discharge capacity.

【0009】[0009]

【課題を解決するための手段】本発明の非水電解質電池
の製造方法は、リチウムを電気化学的にドープ・脱ドー
プ可能な正極と、リチウムを電気化学的にドープ・脱ド
ープ可能な負極と、非水電解質とを備えた非水電解質電
池の製造方法であって、上記非水電解質中に不飽和カー
ボネート又は不飽和カーボネート誘導体を0.05重量
%以上、5重量%以下の範囲で添加するとともに、電池
を組み立てた後、30℃以上、60℃以下の範囲の温度
環境下で初回充電を行うことを特徴とする。
A method for producing a non-aqueous electrolyte battery according to the present invention comprises a positive electrode capable of electrochemically doping and dedoping lithium and a negative electrode capable of electrochemically doping and dedoping lithium. A method for producing a non-aqueous electrolyte battery including a non-aqueous electrolyte, wherein an unsaturated carbonate or an unsaturated carbonate derivative is added to the non-aqueous electrolyte in a range of 0.05% by weight or more and 5% by weight or less. At the same time, after assembling the battery, the battery is characterized by being initially charged under a temperature environment of 30 ° C. or higher and 60 ° C. or lower.

【0010】上述したような本発明に係る非水電解質電
池の製造方法では、電池を組み立てた後、30℃以上、
60℃以下の範囲の温度環境下で初回充電を行うこと
で、優れた放電容量を有する非水電解質電池が得られ
る。
In the method for manufacturing a non-aqueous electrolyte battery according to the present invention as described above, after assembling the battery, 30 ° C. or higher,
By performing the initial charge under a temperature environment of 60 ° C. or less, a non-aqueous electrolyte battery having an excellent discharge capacity can be obtained.

【0011】[0011]

【発明の実施の形態】以下、本発明を適用した非水電解
質二次電池の実施の形態について、図面を参照しながら
詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of a non-aqueous electrolyte secondary battery to which the present invention is applied will be described in detail with reference to the drawings.

【0012】本実施の形態に係るゲル状電解質電池1の
一構成例を図1乃至図5に示す。このゲル状電解質電池
1は、帯状の正極2と、正極2と対向して配された帯状
の負極3と、正極2及び負極3上に形成されたゲル状電
解質層4と、ゲル状電解質層4が形成された正極2とゲ
ル状電解質層4が形成された負極3との間に配されたセ
パレータ5とを備える。
An example of the structure of the gel electrolyte battery 1 according to this embodiment is shown in FIGS. 1 to 5. This gel electrolyte battery 1 includes a belt-shaped positive electrode 2, a belt-shaped negative electrode 3 arranged to face the positive electrode 2, a gel-shaped electrolyte layer 4 formed on the positive electrode 2 and the negative electrode 3, and a gel-shaped electrolyte layer. The separator 5 is provided between the positive electrode 2 having the electrode 4 formed thereon and the negative electrode 3 having the gel electrolyte layer 4 formed thereon.

【0013】そして、このゲル状電解質電池1は、図4
に示すゲル状電解質層4が形成された正極2と、図5に
示すゲル状電解質層4が形成された負極3とが、セパレ
ータ5を介して積層されるとともに長手方向に巻回され
た、図2及び図3に示す電極巻回体6が、図1及び図2
に示すように絶縁材料からなる外装フィルム7により覆
われて密閉されている。そして、正極2には正極端子8
が、負極3には負極端子9がそれぞれ接続されており、
これらの正極端子8と負極端子9とは、外装フィルム7
の周縁部である封口部に挟み込まれている。また、正極
端子8及び負極端子9が外装フィルム7と接する部分に
は、樹脂フィルム10が配されている。
The gel electrolyte battery 1 shown in FIG.
5, the positive electrode 2 having the gel electrolyte layer 4 formed thereon and the negative electrode 3 having the gel electrolyte layer 4 shown in FIG. 5 are laminated via the separator 5 and wound in the longitudinal direction, The electrode winding body 6 shown in FIG. 2 and FIG.
As shown in (4), it is covered and hermetically sealed by an exterior film 7 made of an insulating material. Further, the positive electrode 2 has a positive electrode terminal 8
However, the negative electrode terminal 9 is connected to the negative electrode 3,
The positive electrode terminal 8 and the negative electrode terminal 9 are the exterior film 7
It is sandwiched by the sealing part which is the peripheral part of the. Further, a resin film 10 is arranged at a portion where the positive electrode terminal 8 and the negative electrode terminal 9 are in contact with the exterior film 7.

【0014】正極2は、図4に示すように、正極活物質
を含有する正極活物質層2aが、正極集電体2bの両面
上に形成されている。この正極集電体2bとしては、例
えばアルミニウム箔等の金属箔が用いられる。
As shown in FIG. 4, the positive electrode 2 has a positive electrode active material layer 2a containing a positive electrode active material formed on both surfaces of a positive electrode current collector 2b. As the positive electrode current collector 2b, for example, a metal foil such as an aluminum foil is used.

【0015】正極活物質は特に限定されないが、十分な
量のLiを含んでいることが好ましく、例えば一般式L
iMxOy(ただしMはCo、Ni、Mn、Fe、A
l、V、Tiの少なくとも1種を表す。)で表されるリ
チウムと遷移金属からなる複合金属酸化物やLiを含ん
だ層間化合物等が好適である。
The positive electrode active material is not particularly limited, but preferably contains a sufficient amount of Li, for example, the general formula L
iMxOy (where M is Co, Ni, Mn, Fe, A
represents at least one of l, V, and Ti. ), A composite metal oxide composed of lithium and a transition metal, an intercalation compound containing Li, and the like are preferable.

【0016】また、負極3は、図5に示すように、負極
活物質を含有する負極活物質層3aが、負極集電体3b
の両面上に形成されている。この負極集電体3bとして
は、例えば銅箔等の金属箔が用いられる。
As shown in FIG. 5, the negative electrode 3 has a negative electrode active material layer 3a containing a negative electrode active material and a negative electrode current collector 3b.
Are formed on both sides of. As the negative electrode current collector 3b, a metal foil such as a copper foil is used.

【0017】負極活物質としては、対リチウム金属2.
0V以下の電位で電気化学的にリチウムをドープ・脱ド
ープする材料であればいずれも使用することができる。
例示するならば難黒鉛化性炭素、人造黒鉛、天然黒鉛、
熱分解炭素類、コークス類(ピッチコークス、ニードル
コークス、石油コークス等)、グラファイト類、ガラス
状炭素類、有機高分子化合物焼成体(フェノール樹脂、
フラン樹脂等を適当な温度で焼成し炭素化したもの)、
炭素繊維、活性炭、カーボンブラック類等の炭素質材料
を使用することができる。またリチウムと合金を形成可
能な金属およびその合金も利用可能である。酸化鉄、酸
化ルテニウム、酸化モリブデン、酸化タングステン、酸
化チタン、酸化スズ等の比較的電位が卑な電位でリチウ
ムをドープ・脱ドープする酸化物やその他窒化物なども
同様に使用可能である。
As the negative electrode active material, a metal for lithium 2.
Any material can be used as long as it is a material capable of electrochemically doping / dedoping lithium at a potential of 0 V or less.
For example, non-graphitizable carbon, artificial graphite, natural graphite,
Pyrolytic carbons, cokes (pitch cokes, needle cokes, petroleum cokes, etc.), graphites, glassy carbons, organic polymer compound fired products (phenolic resin,
Carbonized by burning furan resin at an appropriate temperature),
Carbonaceous materials such as carbon fiber, activated carbon and carbon blacks can be used. Further, a metal capable of forming an alloy with lithium and an alloy thereof can also be used. It is also possible to use oxides such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide that dope / de-dope lithium at a relatively base potential and other nitrides.

【0018】ゲル状電解質層4は、電解質塩が非水溶媒
中に溶解されてなる非水電解液が、マトリクスポリマに
よってゲル状とされてなる。
The gel electrolyte layer 4 is formed by gelling a non-aqueous electrolytic solution obtained by dissolving an electrolyte salt in a non-aqueous solvent with a matrix polymer.

【0019】電解質塩は、この種の電池に用いられるも
のであればいずれも使用可能である。具体的には、例え
ばLiClO4、LiAsF6,LiPF6、LiBF
4、LiB(C6H5)4、CH3SO3Li、CF3
SO3Li、LiCl、LiBr、LiN(CF3SO
2)2等が挙げられる。
Any electrolyte salt can be used as long as it is used in this type of battery. Specifically, for example, LiClO4, LiAsF6, LiPF6, LiBF
4, LiB (C6H5) 4, CH3SO3Li, CF3
SO3Li, LiCl, LiBr, LiN (CF3SO
2) 2 and the like.

【0020】非水溶媒としては、例えばプロピレンカー
ボネート、エチレンカーボネート、γ−ブチロラクト
ン、γ−バレロラクトン、ジエチルカーボネート、ジメ
チルカーボネート、1,2−ジメトキシエタン、1,2
−ジエトキシエタン、テトラヒドロフラン、2−メチル
テトラヒドロフラン、1,3−ジオキソラン、4メチル
1,3ジオキソラン、ジエチルエーテル、スルホラン、
メチルスルホラン、アセトニトリル、プロピオニトリ
ル、酢酸エステル、酪酸エステル、プロピオン酸エステ
ル等の非水溶媒を単独又は混合して用いることができ
る。
Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, γ-butyrolactone, γ-valerolactone, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2.
-Diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4methyl-1,3dioxolane, diethyl ether, sulfolane,
Non-aqueous solvents such as methylsulfolane, acetonitrile, propionitrile, acetic acid ester, butyric acid ester, and propionic acid ester can be used alone or in combination.

【0021】マトリックスポリマとしては上記非水電解
液を吸収してゲル化するものであれば種々の高分子が利
用できる。例えばポリ(ビニリデンフルオロライド)や
ポリ(ビニリデンフルオロライド−co−ヘキサフルオ
ロプロピレン)などのフッ素系高分子、ポリ(エチレン
オキサイド)や同架橋体などのエーテル系高分子、また
ポリ(アクリロニトリル)などを使用できる。特に酸化
還元安定性から、フッ素系高分子を用いることが望まし
い。
As the matrix polymer, various polymers can be used as long as they absorb the above non-aqueous electrolyte and gelate. For example, fluorine-based polymers such as poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene), ether-based polymers such as poly (ethylene oxide) and the same crosslinked products, and poly (acrylonitrile), etc. Can be used. In particular, it is desirable to use a fluoropolymer because of its redox stability.

【0022】また、このゲル状電解質には、上記非水電
解液中に不飽和カーボネートが添加されている。非水電
解液中に不飽和カーボネートを添加することで、ゲル状
電解質電池1の放電容量を向上させることができる。
Further, unsaturated carbonate is added to the non-aqueous electrolyte of the gel electrolyte. By adding unsaturated carbonate to the non-aqueous electrolytic solution, the discharge capacity of the gel electrolyte battery 1 can be improved.

【0023】このような不飽和カーボネートとしては、
ビニレンカーボネート、エチレンカーボネート、ジエチ
ルカーボネート、ジプロピルカーボネートおよびこれら
の誘導体が挙げられるが、ビニレンカーボネートが好適
である。
As such an unsaturated carbonate,
Examples include vinylene carbonate, ethylene carbonate, diethyl carbonate, dipropyl carbonate and derivatives thereof, with vinylene carbonate being preferred.

【0024】また、非水電解液中に含有される不飽和カ
ーボネートの量は、0.05重量%以上、5重量%以下
の範囲であることが好ましい。不飽和カーボネートの量
が0.05重量%より少ない場合には、放電容量を向上
させる効果が十分に得られない。また、不飽和カーボネ
ートの量が5重量%よりも多い場合には、サイクル特性
が低下してしまう。したがって、不飽和カーボネートの
量を、非水電解液の0.05重量%以上、5重量%以下
の範囲とすることでゲル状電解質電池1は、放電容量、
サイクル特性に優れたものとなる。
The amount of unsaturated carbonate contained in the non-aqueous electrolyte is preferably in the range of 0.05% by weight or more and 5% by weight or less. When the amount of unsaturated carbonate is less than 0.05% by weight, the effect of improving the discharge capacity cannot be sufficiently obtained. Further, when the amount of unsaturated carbonate is more than 5% by weight, cycle characteristics are deteriorated. Therefore, by setting the amount of unsaturated carbonate in the range of 0.05% by weight or more and 5% by weight or less of the non-aqueous electrolyte, the gel electrolyte battery 1 has a discharge capacity of
It has excellent cycle characteristics.

【0025】そして、上述したような本実施の形態に係
るゲル状電解質電池1は、つぎのようにして製造され
る。
The gel electrolyte battery 1 according to this embodiment as described above is manufactured as follows.

【0026】まず、正極2としては、正極活物質と結着
剤とを含有する正極合剤を、正極集電体2bとなる例え
ばアルミニウム箔等の金属箔上に均一に塗布、乾燥する
ことにより正極活物質層2aが形成されて正極シートが
作製される。上記正極合剤の結着剤としては、公知の結
着剤を用いることができるほか、上記正極合剤に公知の
添加剤等を添加することができる。次に、正極シートを
帯状に切り出す。そして、正極活物質層2aの非形成部
分に、例えばアルミニウム製のリード線を溶接して正極
端子8とする。このようにして帯状の正極2が得られ
る。
First, as the positive electrode 2, a positive electrode mixture containing a positive electrode active material and a binder is uniformly applied and dried on a metal foil such as an aluminum foil serving as the positive electrode current collector 2b. The positive electrode active material layer 2a is formed and a positive electrode sheet is produced. As the binder of the positive electrode mixture, a known binder can be used, and a known additive or the like can be added to the positive electrode mixture. Next, the positive electrode sheet is cut into strips. Then, a lead wire made of, for example, aluminum is welded to the non-formed portion of the positive electrode active material layer 2a to form the positive electrode terminal 8. In this way, the strip-shaped positive electrode 2 is obtained.

【0027】また、負極3は、負極活物質と結着剤とを
含有する負極合剤を、負極集電体3bとなる例えば銅箔
等の金属箔上に均一に塗布、乾燥することにより負極活
物質層3aが形成されて負極シートが作製される。上記
負極合剤の結着剤としては、公知の結着剤を用いること
ができるほか、上記負極合剤に公知の添加剤等を添加す
ることができる。次に、負極シートを帯状に切り出す。
そして、負極集電体3bの負極活物質層3aの非形成部
分に、例えばニッケル製のリード線を溶接して負極端子
9とする。このようにして帯状の負極3が得られる。
The negative electrode 3 is formed by uniformly applying a negative electrode mixture containing a negative electrode active material and a binder onto a metal foil such as a copper foil, which will be the negative electrode current collector 3b, and drying it. The active material layer 3a is formed and the negative electrode sheet is manufactured. As the binder for the negative electrode mixture, a known binder can be used, and a known additive or the like can be added to the negative electrode mixture. Next, the negative electrode sheet is cut into strips.
Then, a lead wire made of, for example, nickel is welded to a portion of the negative electrode current collector 3b where the negative electrode active material layer 3a is not formed to form the negative electrode terminal 9. In this way, the strip-shaped negative electrode 3 is obtained.

【0028】次に、正極活物質層2a及び負極活物質層
3a上にゲル状電解質層4を形成する。ゲル状電解質層
4を形成するには、まず、非水溶媒に電解質塩を溶解さ
せて非水電解液を作製する。そして、この非水電解液に
マトリクスポリマを添加し、よく攪拌してマトリクスポ
リマを溶解させてゾル状の電解質溶液を得る。このと
き、非水電解液中に、0.05重量%以上、5重量%以
下の範囲で不飽和カーボネートを添加する。次に、この
電解質溶液を正極活物質層2a及び負極活物質層3a上
に所定量塗布する。続いて、室温にて冷却することによ
りマトリクスポリマがゲル化して、正極活物質2a及び
負極活物質層3a上にゲル状電解質層4が形成される。
Next, the gel electrolyte layer 4 is formed on the positive electrode active material layer 2a and the negative electrode active material layer 3a. To form the gel electrolyte layer 4, first, an electrolyte salt is dissolved in a non-aqueous solvent to prepare a non-aqueous electrolytic solution. Then, the matrix polymer is added to this non-aqueous electrolytic solution and well stirred to dissolve the matrix polymer to obtain a sol-like electrolyte solution. At this time, the unsaturated carbonate is added to the non-aqueous electrolyte in the range of 0.05% by weight or more and 5% by weight or less. Next, a predetermined amount of this electrolyte solution is applied on the positive electrode active material layer 2a and the negative electrode active material layer 3a. Then, the matrix polymer is gelated by cooling at room temperature, and the gel electrolyte layer 4 is formed on the positive electrode active material 2a and the negative electrode active material layer 3a.

【0029】そして、以上のようにして作製された帯状
の正極2と負極3とを、ゲル状電解質層4を介して張り
合わせてプレスし、電極積層体とする。さらに、この電
極積層体を長手方向に巻回して電極巻回体6とする。
Then, the strip-shaped positive electrode 2 and negative electrode 3 produced as described above are bonded together via the gel electrolyte layer 4 and pressed to form an electrode laminate. Furthermore, this electrode laminated body is wound in the longitudinal direction to form an electrode wound body 6.

【0030】最後に、この電極巻回体6を、絶縁材料か
らなる外装フィルム7で挟み、正極端子8及び負極端子
9と外装フィルム7とが重なる部分に樹脂フィルム10
を配する。そして、外装フィルム7の外周縁部を封口
し、正極端子8と負極端子9とを外装フィルム7の封口
部に挟み込むとともに電極巻回体6を外装フィルム7中
に密閉する。さらに、外装フィルム7によってパックさ
れた状態で、電極巻回体6に対して熱処理を施す。以上
のようにしてゲル状電解質電池1が完成する。
Finally, the electrode winding body 6 is sandwiched by the exterior film 7 made of an insulating material, and the resin film 10 is provided at the portion where the positive electrode terminal 8 and the negative electrode terminal 9 and the exterior film 7 overlap each other.
Distribute. Then, the outer peripheral edge portion of the exterior film 7 is sealed, the positive electrode terminal 8 and the negative electrode terminal 9 are sandwiched in the sealing portion of the exterior film 7, and the electrode winding body 6 is sealed in the exterior film 7. Further, the electrode winding body 6 is heat-treated while being packed by the exterior film 7. The gel electrolyte battery 1 is completed as described above.

【0031】電極巻回体6を外装フィルム7にパックす
る際、外装フィルム7と正極端子8及び負極端子9との
接触部分に樹脂フィルム10を配することで、外装フィ
ルム7のバリ等によるショートが防止され、また、外装
フィルム7と正極端子8及び負極端子9との接触性が向
上する。
When the electrode winding body 6 is packed in the exterior film 7, by placing the resin film 10 in the contact portion between the exterior film 7 and the positive electrode terminal 8 and the negative electrode terminal 9, the exterior film 7 is shorted due to burrs or the like. And the contact property between the exterior film 7 and the positive electrode terminal 8 and the negative electrode terminal 9 is improved.

【0032】上記樹脂フィルム10の材料としては、正
極端子8及び負極端子9に対して接着性を示すものであ
れば材料は特に限定されないが、ポリエチレン、ポリプ
ロピレン、変性ポリエチレン、変性ポリプロピレン及び
これらの共重合体等、ポリオレフィン樹脂からなるもの
を用いることが好ましい。また、上記樹脂フィルム10
の厚みは、熱融着前の厚みで20μm〜300μmの範
囲であることが好ましい。樹脂フィルム10の厚みが2
0μmより薄くなると取り扱い性が悪くなり、また、3
00μmよりも厚くなると水分が透過しやすくなり、電
池内部の気密性を保持することが困難になる。
The material of the resin film 10 is not particularly limited as long as it has adhesiveness to the positive electrode terminal 8 and the negative electrode terminal 9, but polyethylene, polypropylene, modified polyethylene, modified polypropylene, and a mixture thereof may be used. It is preferable to use a polymer or the like made of a polyolefin resin. In addition, the resin film 10
The thickness before heat fusion is preferably in the range of 20 μm to 300 μm. The thickness of the resin film 10 is 2
When the thickness is less than 0 μm, the handleability becomes poor,
If it is thicker than 00 μm, it becomes easier for water to permeate and it becomes difficult to maintain the airtightness inside the battery.

【0033】そして、以上のようにして作製された電池
に対して初回充電を行う。充電条件としては、例えば上
限電圧は3.8V〜4.4Vが好ましい。3.8Vより
低い電圧では放電容量を向上させる効果が充分に得られ
ず、また4.4Vより高い電圧では負極電極にリチウム
が析出して容量が低下してしまう。充電電流は2C以下
の範囲が好ましい。2Cより高い電流では放電容量を向
上させる効果が充分に得られない。さらに電池組み立て
終了から初回充電開始までの時間が長くなると生産性が
低下するので、5日以内に初回充電を行うことが好まし
い。
Then, the battery thus manufactured is charged for the first time. As the charging condition, for example, the upper limit voltage is preferably 3.8V to 4.4V. When the voltage is lower than 3.8 V, the effect of improving the discharge capacity is not sufficiently obtained, and when the voltage is higher than 4.4 V, lithium is deposited on the negative electrode and the capacity is reduced. The charging current is preferably in the range of 2C or less. At a current higher than 2C, the effect of improving the discharge capacity cannot be sufficiently obtained. Further, if the time from the end of battery assembly to the start of the first charge decreases, the productivity decreases, so it is preferable to perform the first charge within 5 days.

【0034】ここで本発明では、室温以上の温度環境
下、具体的には30℃以上、60℃以下の範囲の温度環
境下で初回充電を行う。上述したように電解質中に不飽
和カーボネートを含有するゲル状電解質電池に対して3
0℃以上、60℃以下の範囲の温度環境下で初回充電を
行うことで、放電容量をさらに向上することができる。
30℃より低い温度では放電容量を向上させる効果が充
分に得られず、また、60℃より高い温度ではサイクル
特性が低下してしまう。したがって30℃以上、60℃
以下の範囲の温度環境下で初回充電を行うことで、ゲル
状電解質電池1は、放電容量、サイクル特性に優れたも
のとなる。
In the present invention, the initial charging is performed under a temperature environment of room temperature or higher, specifically, a temperature environment of 30 ° C. or higher and 60 ° C. or lower. As described above, 3 for gel electrolyte batteries containing unsaturated carbonate in the electrolyte
The discharge capacity can be further improved by performing the initial charge in a temperature environment of 0 ° C. or higher and 60 ° C. or lower.
If the temperature is lower than 30 ° C, the effect of improving the discharge capacity cannot be sufficiently obtained, and if the temperature is higher than 60 ° C, the cycle characteristics are deteriorated. Therefore, 30 ℃ or more, 60 ℃
By performing the initial charge under the temperature environment of the following range, the gel electrolyte battery 1 becomes excellent in discharge capacity and cycle characteristics.

【0035】なお、上述した実施の形態では、帯状の正
極2と帯状の負極3とを積層し、さらに長手方向に巻回
して電極巻回体6とした場合を例に挙げて説明したが、
本発明はこれに限定されるものではなく、矩形状の正極
2と矩形状の負極3とを積層して電極積層体とした場合
や、電極積層体を交互に折り畳んだ場合にも適用可能で
ある。
In the above-described embodiment, the case where the strip-shaped positive electrode 2 and the strip-shaped negative electrode 3 are laminated and further wound in the longitudinal direction to form the electrode winding body 6 has been described as an example.
The present invention is not limited to this, and is applicable to the case where the rectangular positive electrode 2 and the rectangular negative electrode 3 are laminated to form an electrode laminated body, or when the electrode laminated body is alternately folded. is there.

【0036】また、電極の製造方法も上記の例に限定さ
れるものではなく、例えば、電極活物質を単独あるいは
導電性材料さらには結着材と混合して成型等の処理を施
して成型体電極を作成する方法。あるいは、結着材の有
無にかかわらず、電極活物質に熱を加えたまま加圧成型
することにより強度を有した電極を作製することも可能
である。
The method of manufacturing the electrode is not limited to the above example, and for example, the electrode active material may be used alone or in combination with a conductive material or a binder and subjected to a process such as molding to obtain a molded product. How to make electrodes. Alternatively, regardless of the presence or absence of a binder, it is possible to manufacture an electrode having strength by pressure-molding while heating the electrode active material.

【0037】また、上述した実施の形態では、ゲル状電
解質を用いたゲル状電解質電池を例に挙げて説明した
が、本発明はこれに限定されるものではなく、非水電解
液を用いた非水電解液電池についても適用可能である。
Further, in the above-mentioned embodiment, the gel electrolyte battery using the gel electrolyte was described as an example, but the present invention is not limited to this, and a non-aqueous electrolyte solution is used. It is also applicable to non-aqueous electrolyte batteries.

【0038】上述したような本実施の形態に係る電池
は、円筒型、角型、コイン型等、その形状については特
に限定されることはなく、また、薄型、大型等の種々の
大きさにすることができる。また、本発明は、一次電池
についても二次電池についても適用可能である。
The battery according to the present embodiment as described above is not particularly limited in its shape such as a cylindrical type, a prismatic type, a coin type and the like, and can be various sizes such as thin type and large type. can do. Further, the present invention can be applied to both the primary battery and the secondary battery.

【0039】[0039]

【実施例】つぎに、本発明の効果を確認すべく行った実
施例及び比較例について説明する。なお、以下の例で
は、具体的な化合物名や数値等を挙げて説明している
が、本発明はこれらの例に限定されるものではないこと
は言うまでもない。
EXAMPLES Next, Examples and Comparative Examples conducted to confirm the effects of the present invention will be described. In the following examples, specific compound names, numerical values, etc. are described, but it goes without saying that the present invention is not limited to these examples.

【0040】〈サンプル1〉負極はつぎのようにして作
製した。まずフィラーとなる石炭系コークスを100重
量部と、バインダーとなるコールタール系ピッチを30
重量部とを約100℃で混合した後、プレスにて圧縮成
型し、炭素成型体の前駆体を得た。この前駆体を100
0℃以下で熱処理して得た炭素材料成型体に、さらに2
00℃以下で溶融させたバインダーピッチを含浸し、1
000℃以下で熱処理するという、ピッチ含浸/焼成工
程を数回繰り返した。その後、この炭素成型体を不活性
雰囲気で2800℃にて熱処理し、黒鉛化成型体を得た
後、粉砕分級して試料粉末を作製した。
<Sample 1> A negative electrode was prepared as follows. First, 100 parts by weight of coal-based coke serving as a filler and 30 parts of coal tar-based pitch serving as a binder.
After mixing with 1 part by weight at about 100 ° C., compression molding was performed with a press to obtain a precursor of a carbon molded body. 100 parts of this precursor
The carbon material molded body obtained by heat treatment at 0 ° C. or lower is further added with 2
Impregnate the binder pitch melted below 00 ° C and
The pitch impregnation / firing process of heat treatment at 000 ° C. or lower was repeated several times. Then, this carbon molded body was heat-treated at 2800 ° C. in an inert atmosphere to obtain a graphitized molded body, which was then pulverized and classified to prepare a sample powder.

【0041】なお、このとき得られた黒鉛材料について
X線回折測定を行った結果、(002)面の面間隔が
0.337nm、(002)面のC軸結晶子厚みが5
0.0nm、ピクノメータ法による真密度が2.23、
BET法による比表面積が1.6m2/g、レーザ回折
法による粒度分布は平均粒径が33.0μm、累積10
%粒径が13.3μm、累積50%粒径が30.6μ
m、累積90%粒径が55.7μm、黒鉛粒子の破壊強
度の平均値が7.1kgf/mm2であり、嵩密度が
0.98g/cm3であった。
The graphite material obtained at this time was subjected to X-ray diffraction measurement, and as a result, the (002) plane spacing was 0.337 nm, and the (002) plane C-axis crystallite thickness was 5.
0.0nm, true density by pycnometer method is 2.23,
Specific surface area according to BET method is 1.6 m 2 / g, particle size distribution according to laser diffraction method is 33.0 μm, and cumulative 10
% Particle size 13.3μm, cumulative 50% particle size 30.6μ
m, the cumulative 90% particle size was 55.7 μm, the average breaking strength of the graphite particles was 7.1 kgf / mm 2, and the bulk density was 0.98 g / cm 3.

【0042】上記混合試料粉末を90重量部と、結着材
としてポリフッ化ビニリデン(PVDF)を10重量部
とを混合して負極合剤を調製し、溶剤となるN−メチル
ピロリドンに分散させてスラリー(ペースト状)にし
た。負極集電体として厚さ10μmの帯状の銅箔を用
い、負極合剤スラリーをこの集電体の両面に塗布、乾燥
させた後、一定圧力で圧縮成型して800mm×120
mmの大きさに切り出して帯状負極を作製した。負極リ
ード線は、直径50μmの銅線又はニッケル線を75μ
m間隔で編んだ金属網を裁断して作製した。この負極リ
ード線を負極集電体未塗布部にスポット溶接することに
より、外部接続用の端子とした。
90 parts by weight of the mixed sample powder and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed to prepare a negative electrode mixture, which was dispersed in N-methylpyrrolidone as a solvent. It was made into a slurry (paste form). A strip-shaped copper foil having a thickness of 10 μm was used as the negative electrode current collector, and the negative electrode mixture slurry was applied to both surfaces of the current collector, dried, and then compression molded at a constant pressure to form 800 mm × 120 mm.
A strip negative electrode was produced by cutting out into a size of mm. The negative electrode lead wire is a copper wire or nickel wire with a diameter of 50 μm of 75 μm.
It was produced by cutting a metal mesh knitted at m intervals. This negative electrode lead wire was spot-welded to the negative electrode current collector-uncoated portion to form a terminal for external connection.

【0043】また、正極はつぎのようにして作製した。
まず、正極活物質を合成した。炭酸リチウムを0.5モ
ルと炭酸コバルトを1モルとを混合し、この混合物を、
空気中、温度880℃で5時間焼成した。得られた材料
についてX線回折測定を行った結果、JCPDSファイ
ルに登録されたLi2CoO2のピークと良く一致して
いた。
The positive electrode was prepared as follows.
First, a positive electrode active material was synthesized. 0.5 mol of lithium carbonate and 1 mol of cobalt carbonate are mixed, and the mixture is
Firing was performed in air at a temperature of 880 ° C. for 5 hours. As a result of X-ray diffraction measurement of the obtained material, it was in good agreement with the peak of Li2CoO2 registered in the JCPDS file.

【0044】このLi2CoO2を粉砕し、平均粒径が
8μmの粉末とした。そして、このLi2CoO2粉末
を95重量部と炭酸リチウム粉末を5重量部を混合し、
この混合物を91重量部と、導電剤として鱗片状黒鉛を
6重量部と、結着剤としてポリフッ化ビニリデンを3重
量部とを混合して正極合剤を調製し、N−メチルピロリ
ドンに分散させてスラリー(ペースト状)にした。
This Li2CoO2 was crushed to obtain a powder having an average particle size of 8 μm. Then, 95 parts by weight of this Li2CoO2 powder and 5 parts by weight of lithium carbonate powder are mixed,
91 parts by weight of this mixture, 6 parts by weight of scaly graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture, which was dispersed in N-methylpyrrolidone. Into a slurry (paste).

【0045】正極集電体として厚さ20μmの帯状のア
ルミニウム箔を用い、上記正極合剤スラリーをこの集電
体の両面に均一に塗布、乾燥させた後、一定圧力で圧縮
成型して640mm×118mmの大きさに切り出して
帯状正極を作製した。正極リード線は、直径50μmの
アルミニウム線を75μm間隔で編んだ金属網を裁断し
て作製した。この正極リード線を負極集電体未塗布部に
スポット溶接することにより、外部接続用の端子とし
た。
A band-shaped aluminum foil having a thickness of 20 μm was used as a positive electrode current collector, and the positive electrode mixture slurry was uniformly applied to both surfaces of the current collector, dried, and then compression molded at a constant pressure to obtain 640 mm ×. A strip-shaped positive electrode was produced by cutting out to a size of 118 mm. The positive electrode lead wire was produced by cutting a metal net in which aluminum wires having a diameter of 50 μm were woven at intervals of 75 μm. The positive electrode lead wire was spot-welded to the negative electrode current collector-uncoated portion to form a terminal for external connection.

【0046】電解質には、PVdF系ゲル状電解質を用
いた。まず、フッ化ビニリデンに、ヘキサフルオロプロ
ピレンが7重量%の割合で共重合された、その分子量が
重量平均分子量で70万である高分子(A)と31万で
ある高分子(B)とを、A:B=9:1の重量比で混合
したマトリックス高分子と、非水電解液とポリマーの溶
剤であるジメチルカーボネート(DMC)とをそれぞれ
重量比1:4:8の割合で混合したものを、70℃にて
攪拌し溶解させ、ゾル状の電解質とした。非水電解液
は、非水溶媒として、エチレンカーボネート(EC)
と、プロピレンカーボネート(PC)と、ビニレンカー
ボネート(VC)とを後掲する表1に示す割合で混合し
(サンプル1の場合、50:50:0)、電解質塩とし
て六フッ化燐酸リチウム(LiPF6)を用い、0.8
mol/kgの濃度で溶解して調製した。
As the electrolyte, a PVdF type gel electrolyte was used. First, a polymer (A) having a weight average molecular weight of 700,000 and a polymer (B) having a molecular weight of 700,000 in which hexafluoropropylene is copolymerized with vinylidene fluoride in a proportion of 7% by weight. , A: B = 9: 1 in a weight ratio, a non-aqueous electrolyte and dimethyl carbonate (DMC), which is a solvent for the polymer, are mixed in a weight ratio of 1: 4: 8, respectively. Was stirred and dissolved at 70 ° C. to obtain a sol-like electrolyte. The non-aqueous electrolyte is ethylene carbonate (EC) as a non-aqueous solvent.
Propylene carbonate (PC) and vinylene carbonate (VC) were mixed at a ratio shown in Table 1 below (in the case of sample 1, 50: 50: 0), and lithium hexafluorophosphate (LiPF6) was used as an electrolyte salt. ), 0.8
It was prepared by dissolving at a concentration of mol / kg.

【0047】そして、このゾル状の電解質を正極及び負
極の面上に、バーコーターを用いて塗布し、70℃の恒
温槽で溶剤を揮発させてゲル状電解質を形成させた。そ
して、この正極と負極とを積層し、平たく巻回して電池
素子を作製し、これをラミネートフィルムに減圧封入す
ることによりゲル状電解質電池を作製した。
Then, the sol electrolyte was applied onto the surfaces of the positive electrode and the negative electrode using a bar coater, and the solvent was volatilized in a constant temperature bath at 70 ° C. to form a gel electrolyte. Then, the positive electrode and the negative electrode were laminated and wound flat to prepare a battery element, which was vacuum-encapsulated in a laminate film to prepare a gel electrolyte battery.

【0048】以上のようにして作製されたサンプル電池
について、初回充放電効率を評価した。まず、電池に対
して、表1に示す所定温度で(サンプル1の場合、20
℃)、上限電圧4.2V、電流0.2C、10時間の条
件で定電流定電圧充電を行った。次に23℃恒温槽中
で、0.2Cの定電流放電を終止電圧3.0Vまで行っ
た。初回充放電効率(%)は、得られた初回放電容量と
初回充電容量との比を次式により求めることで評価し
た。
The initial charge / discharge efficiency of the sample battery manufactured as described above was evaluated. First, with respect to the battery, at a predetermined temperature shown in Table 1 (in the case of Sample 1, 20
C.), the upper limit voltage of 4.2 V, the current of 0.2 C, and the constant current and constant voltage charging under the conditions of 10 hours. Next, 0.2 C constant current discharge was performed to a final voltage of 3.0 V in a 23 ° C. constant temperature bath. The initial charge / discharge efficiency (%) was evaluated by obtaining the ratio of the obtained initial discharge capacity and initial charge capacity by the following formula.

【0049】初回充放電効率(%)=(初回放電容量)
/(初回充電容量)×100 この値が低すぎる場合には、投入された活物質の無駄が
大きいことになる。なお、1Cとは、電池の定格容量を
1時間で放電させる電流値のことである。
Initial charge / discharge efficiency (%) = (initial discharge capacity)
/ (Initial charge capacity) × 100 When this value is too low, the waste of the charged active material is large. In addition, 1 C is a current value for discharging the rated capacity of the battery in 1 hour.

【0050】〈サンプル2〜サンプル35〉ゾル状電解
質の非水溶媒、及び電池組立後の充電時の雰囲気温度
を、後掲す後掲する表1に示すように変えたこと以外は
サンプル1と同様にしてゲル状電解質電池を作製した。
<Sample 2 to Sample 35> Sample 1 except that the non-aqueous solvent of the sol electrolyte and the ambient temperature during charging after battery assembly were changed as shown in Table 1 below. Similarly, a gel electrolyte battery was produced.

【0051】さらに、サンプル電池について、サイクル
特性を次のように評価した。各電池に対して、23℃雰
囲気中で、上限電圧4.2V、電流1C、3時間の条件
で定電流定電圧充電を行った後、1Cの定電流放電を終
止電圧3.0Vまで行ない、それを多数繰り返した。こ
のサイクル毎に得られた放電容量の経時変化を測定し、
3サイクル目の放電容量と200サイクル目の放電容量
の比率を次式により求めることで200サイクル目の放
電容量維持率(%)を求めた。
Further, the cycle characteristics of the sample battery were evaluated as follows. Each battery was subjected to constant-current constant-voltage charging under the conditions of an upper limit voltage of 4.2 V, a current of 1 C, and 3 hours in an atmosphere of 23 ° C., and then a constant-current discharge of 1 C was performed until a final voltage of 3.0 V. Repeated many times. Measure the change with time of the discharge capacity obtained for each cycle,
The discharge capacity retention ratio (%) at the 200th cycle was calculated by calculating the ratio of the discharge capacity at the 3rd cycle and the discharge capacity at the 200th cycle by the following equation.

【0052】放電容量維持率(%)=(200サイクル
目の放電容量)/(3サイクル目の放電容量)×100 各サンプル電池について、初回充放電効率及び放電容量
維持率の評価結果を、ゾル状電解質の非水溶媒、及び電
池組立後の充電時の雰囲気温度と併せて表1に示す。
Discharge capacity retention rate (%) = (200th cycle discharge capacity) / (3rd cycle discharge capacity) × 100 For each sample battery, the evaluation results of the initial charge / discharge efficiency and the discharge capacity retention rate were calculated as sol. Table 1 shows the non-aqueous solvent of the solid electrolyte and the ambient temperature at the time of charging after the battery is assembled.

【0053】[0053]

【表1】 [Table 1]

【0054】表1において、まず、充電時温度が同じで
VC濃度を変えたサンプル1〜7、サンプル8〜14、
サンプル15〜21、サンプル22〜28、サンプル2
9〜35でそれぞれ比較すると、電解液中にVCを添加
したサンプルでは、VCを添加しないサンプルに比べて
充放電効率及び放電容量が向上していることがわかる。
しかし、VCの添加量が0.03重量%のサンプルで
は、充放電効率及び放電容量を向上させる効果が充分に
は得られておらず、また、VCの添加量が6重量%のサ
ンプルでは、充放電効率及び放電容量に加え、サイクル
特性が低下してしまっている。一方、VCの添加量を
0.05重量%以上、5重量%以下の範囲としたサンプ
ルでは、良好な充放電効率、放電容量及びサイクル特性
が得られている。
In Table 1, first, samples 1 to 7 and samples 8 to 14 having the same charging temperature but different VC concentrations were used.
Samples 15-21, Samples 22-28, Sample 2
9 to 35, it can be seen that the sample in which VC is added to the electrolytic solution has improved charge / discharge efficiency and discharge capacity as compared with the sample in which VC is not added.
However, the effect of improving the charge / discharge efficiency and discharge capacity was not sufficiently obtained in the sample in which the amount of VC added was 0.03% by weight, and the sample in which the amount of VC added was 6% by weight, In addition to charge / discharge efficiency and discharge capacity, cycle characteristics have deteriorated. On the other hand, in the sample in which the amount of VC added is in the range of 0.05% by weight or more and 5% by weight or less, good charge / discharge efficiency, discharge capacity and cycle characteristics are obtained.

【0055】つぎに、VCの添加量が同じで充電時温度
を変えたサンプル1,8,15,22,29、サンプル
2,9,16,23,30、サンプル3,10,17,
24,31、サンプル4,11,18,25,32、サ
ンプル5,12,19,26,33、サンプル6,1
3,20,27,34、サンプル7,14,21,2
8,35でそれぞれ比較すると、VCを添加していない
サンプル及びVCの添加量が0.03重量%であるサン
プルでは、初回充電時の雰囲気温度を変化させても放電
容量の向上は見られないのに対して、VCの添加量が
0.05重量%以上、5重量%以下の範囲であるサンプ
ルでは充電時の雰囲気温度を室温より高くすることで放
電用容量が向上していることがわかる。
Next, Samples 1, 8, 15, 22, 29, Samples 2, 9, 16, 23, 30, Samples 3, 10, 17, with the same VC addition amount and different charging temperatures were used.
24, 31, Samples 4, 11, 18, 25, 32, Samples 5, 12, 19, 26, 33, Samples 6, 1
3,20,27,34, Samples 7,14,21,2
Comparing 8 and 35, respectively, in the sample in which VC is not added and the sample in which the amount of VC added is 0.03% by weight, the discharge capacity is not improved even if the ambient temperature at the time of initial charging is changed. On the other hand, in the samples in which the amount of VC added is in the range of 0.05% by weight or more and 5% by weight or less, the discharge capacity is improved by increasing the ambient temperature during charging above room temperature. .

【0056】これは、VCを添加することで初回充電時
にVCが負極上で皮膜を生成して初回充放電効率及び放
電容量が向上すると考えられているが、室温より高い温
度で充電することで、初回充電時に生成する負極上の皮
膜がより効果的に生成したと思われる。
It is considered that by adding VC, VC forms a film on the negative electrode at the time of initial charge and the initial charge and discharge efficiency and discharge capacity are improved, but by charging at a temperature higher than room temperature. It seems that the film on the negative electrode formed during the first charge was more effectively formed.

【0057】しかしながら、VCの添加量を6重量%と
したサンプルでは、放電容量向上の効果は見られるが、
サイクル特性が低下してしまった。
However, in the sample in which the amount of VC added is 6% by weight, the effect of improving the discharge capacity can be seen,
The cycle characteristics have deteriorated.

【0058】また、温度依存性について見てみると、初
回充電時の雰囲気温度が30℃以上になると放電容量の
向上が確認されるが、60℃を超えると放電容量の向上
の割合が低下し、さらにサイクル特性も20℃で充電し
た電池に比べて低下してしまった。
Further, looking at the temperature dependence, it is confirmed that the discharge capacity is improved when the ambient temperature at the time of the first charge is 30 ° C. or higher, but when it exceeds 60 ° C., the improvement rate of the discharge capacity is decreased. Furthermore, the cycle characteristics also deteriorated compared to the battery charged at 20 ° C.

【0059】以上の結果より、VCの添加量と初回充電
時の雰囲気温度には最適値が存在し、VCの添加量とし
ては0.05重量%以上、5重量%以下の範囲が好まし
く、初回充電時の雰囲気温度としては30℃以上、60
℃以下の範囲が好ましいことが確認された。本発明で
は、VCの添加量及び初回充電時の雰囲気温度を規定す
ることで、これらの相乗効果により、充放電効率、放電
容量及びサイクル特性を飛躍的に向上させることができ
る。
From the above results, there is an optimum value for the amount of VC added and the ambient temperature at the time of initial charging, and the amount of VC added is preferably in the range of 0.05% by weight or more and 5% by weight or less. The ambient temperature during charging is 30 ° C or higher, 60
It was confirmed that the range of ℃ or less is preferable. In the present invention, by defining the added amount of VC and the ambient temperature at the time of initial charging, the synergistic effect of these can dramatically improve the charge / discharge efficiency, discharge capacity and cycle characteristics.

【0060】つぎに示す実験では、ECとPCの比率を
変更して同様の実験を行った。
In the next experiment, the same experiment was conducted by changing the ratio of EC and PC.

【0061】〈サンプル36〜サンプル45〉ゾル状電
解質の非水溶媒、及び電池組立後の充電時の雰囲気温度
を、後掲する表2に示すように変えたこと以外はサンプ
ル1と同様にしてゲル状電解質電池を作製した。
<Sample 36 to Sample 45> In the same manner as in Sample 1, except that the nonaqueous solvent of the sol electrolyte and the ambient temperature at the time of charging after battery assembly were changed as shown in Table 2 below. A gel electrolyte battery was produced.

【0062】以上のようにして作製された各サンプル電
池について、初回充放電効率及び放電容量維持率を上述
した方法と同様にして評価した。その結果を、ゾル状電
解質の非水溶媒、及び電池組立後の充電時の雰囲気温度
と併せて表2に示す。
The initial charge / discharge efficiency and discharge capacity retention rate of each of the sample batteries manufactured as described above were evaluated in the same manner as in the above-mentioned method. The results are shown in Table 2 together with the non-aqueous solvent of the sol electrolyte and the ambient temperature at the time of charging after battery assembly.

【0063】[0063]

【表2】 [Table 2]

【0064】表2から明らかなように、ECとPCの比
率を変更した場合においても、初回充電時の雰囲気温度
が30℃以上になると放電容量の向上が確認されるが、
60℃を超えると放電容量の向上の割合が低下し、さら
にサイクル特性も20℃で充電した電池に比べて低下し
てしまった。つまり、ECとVCの比率によらず初回充
電時の雰囲気温度には最適値が存在し、30℃以上、6
0℃以下の範囲が好ましいことが確認された。
As is clear from Table 2, even when the ratio of EC and PC was changed, the improvement of the discharge capacity was confirmed when the atmospheric temperature at the time of the first charge was 30 ° C. or higher.
When the temperature exceeds 60 ° C, the rate of improvement in discharge capacity decreases, and the cycle characteristics also deteriorate as compared with the battery charged at 20 ° C. In other words, there is an optimum value for the ambient temperature at the time of the first charge regardless of the ratio of EC and VC, and is 30 ° C or higher, 6
It was confirmed that the range of 0 ° C. or lower is preferable.

【0065】次に示す実験では、充電条件を変更して同
様の実験を行った。
In the next experiment, the same experiment was conducted by changing the charging condition.

【0066】<サンプル46〜サンプル57>サンプル
1と同様に作成したサンプル電池を、後掲する表3に示
す充電条件で初回充電を行ない、初回充放電効率及び放
電容量維持率を上述した方法と同様にして評価した。そ
の結果をゾル状電解質の非水溶媒、電池組立後の充電時
の雰囲気温度、及び充電条件と合わせて表3に示す。
<Sample 46 to Sample 57> A sample battery prepared in the same manner as in Sample 1 was initially charged under the charging conditions shown in Table 3 below, and the initial charge / discharge efficiency and discharge capacity retention ratio were the same as those described above. It evaluated similarly. The results are shown in Table 3 together with the non-aqueous solvent of the sol-like electrolyte, the ambient temperature at the time of charging after battery assembly, and the charging conditions.

【0067】[0067]

【表3】 [Table 3]

【0068】表3から明らかなように、初回充電時の上
限電圧が3.8V以上になると放電容量の向上が確認さ
れるが、4.4Vを超えるとサイクル特性が低下してし
まった。つまり初回充電時の上限電圧には最適値が存在
し、3.8V以上、4.4V以下の範囲が好ましいこと
が確認された。
As is clear from Table 3, when the upper limit voltage during the first charge is 3.8 V or higher, the discharge capacity is confirmed to be improved, but when it exceeds 4.4 V, the cycle characteristics are deteriorated. That is, it was confirmed that the upper limit voltage at the time of initial charging has an optimum value, and a range of 3.8 V or more and 4.4 V or less is preferable.

【0069】さらに表3から明らかなように初回充電時
の電流値が2Cを超えると放電容量が低下しさらにサイ
クル特性も低下する。つまり初回充電時の電流値には最
適値が存在し、2C以下の範囲が好ましい。
Further, as is clear from Table 3, when the current value at the time of initial charging exceeds 2C, the discharge capacity is lowered and the cycle characteristics are also lowered. That is, there is an optimum value for the current value at the time of initial charging, and a range of 2C or less is preferable.

【0070】なお、本実施例ではゲル状電解質電池を用
いて評価を行ったが、本発明はこの実施例に限定される
ものではなく、非水電解液電池においても、同様の効果
を得ることができる。
In this example, the gel electrolyte battery was used for the evaluation, but the present invention is not limited to this example, and the same effect can be obtained in the non-aqueous electrolyte battery. You can

【0071】[0071]

【本発明の効果】本発明では、非水電解質中に不飽和カ
ーボネートを0.05重量%以上、5重量%以下の範囲
で添加し、さらに、電池組み立て後の初回充電における
雰囲気温度を30℃以上、60℃以下の範囲とすること
で、放電容量、サイクル特性に優れた非水電解質電池を
実現することができる。
EFFECTS OF THE INVENTION In the present invention, unsaturated carbonate is added to the non-aqueous electrolyte in the range of 0.05% by weight or more and 5% by weight or less, and the ambient temperature in the initial charge after battery assembly is 30 ° C. As described above, by setting the temperature in the range of 60 ° C. or less, a non-aqueous electrolyte battery having excellent discharge capacity and cycle characteristics can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のゲル状電解質電池の一構成例を示す斜
視図である。
FIG. 1 is a perspective view showing a configuration example of a gel electrolyte battery of the present invention.

【図2】外装フィルム中に電池素子が収容される状態を
示す斜視図である。
FIG. 2 is a perspective view showing a state in which a battery element is housed in an exterior film.

【図3】図2中、A−B線における断面図である。FIG. 3 is a cross-sectional view taken along the line AB in FIG.

【図4】正極の構成を示す斜視図である。FIG. 4 is a perspective view showing a configuration of a positive electrode.

【図5】負極の構成を示す斜視図である。FIG. 5 is a perspective view showing a configuration of a negative electrode.

【符号の説明】[Explanation of symbols]

1 ゲル状電解質電池、 2 正極、 3 負極、 4
ゲル状電解質層、5 セパレータ、 6 電極巻回
体、 7 外装フィルム、 8 正極リード、9 負極
リード、 10 樹脂フィルム
1 gel electrolyte battery, 2 positive electrode, 3 negative electrode, 4
Gel electrolyte layer, 5 separator, 6 electrode winding body, 7 exterior film, 8 positive electrode lead, 9 negative electrode lead, 10 resin film

フロントページの続き (72)発明者 瀬川 健 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 (72)発明者 渋谷 真志生 東京都品川区北品川6丁目7番35号 ソニ ー株式会社内 Fターム(参考) 5H029 AJ03 AK03 AL06 AL12 AM03 AM05 AM07 AM16 BJ02 BJ14 CJ07 CJ16 HJ02 HJ14 HJ18Continued front page    (72) Inventor Ken Segawa             6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Soni             -Inside the corporation (72) Inventor Masashi Shibuya             6-735 Kita-Shinagawa, Shinagawa-ku, Tokyo Soni             -Inside the corporation F term (reference) 5H029 AJ03 AK03 AL06 AL12 AM03                       AM05 AM07 AM16 BJ02 BJ14                       CJ07 CJ16 HJ02 HJ14 HJ18

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムを電気化学的にドープ・脱ドー
プ可能な正極と、リチウムを電気化学的にドープ・脱ド
ープ可能な負極と、非水電解質とを備えた非水電解質電
池の製造方法であって、 上記非水電解質中に不飽和カーボネート又は不飽和カー
ボネート誘導体を0.05重量%以上、5重量%以下の
範囲で添加するとともに、 電池を組み立てた後、30℃以上、60℃以下の範囲の
温度環境下で初回充電を行うことを特徴とする非水電解
質電池の製造方法。
1. A method for producing a non-aqueous electrolyte battery comprising a positive electrode capable of electrochemically doping / dedoping lithium, a negative electrode capable of electrochemically doping / dedoping lithium, and a non-aqueous electrolyte. The unsaturated carbonate or the unsaturated carbonate derivative is added to the above non-aqueous electrolyte in the range of 0.05 wt% or more and 5 wt% or less, and after assembling the battery, A method for manufacturing a non-aqueous electrolyte battery, which comprises performing initial charging under a temperature environment in a range.
【請求項2】 上記初回充電時の上限電圧が、3.8V
以上、4.4V以下の範囲であることを特徴とする請求
項1記載の非水電解質電池の製造方法。
2. The upper limit voltage during the first charge is 3.8 V.
The method for producing a non-aqueous electrolyte battery according to claim 1, wherein the voltage is in the range of 4.4 V or less.
【請求項3】 上記不飽和カーボネートが、ビニレンカ
ーボネートであることを特徴とする請求項1記載の非水
電解質電池の製造方法。
3. The method for producing a non-aqueous electrolyte battery according to claim 1, wherein the unsaturated carbonate is vinylene carbonate.
【請求項4】 上記正極活物質は、リチウムと遷移金属
との複合酸化物であり、 上記負極活物質は、リチウムと合金を形成可能な金属及
びその合金、又は炭素質材料であることを特徴とする請
求項1記載の非水電解質電池の製造方法。
4. The positive electrode active material is a composite oxide of lithium and a transition metal, and the negative electrode active material is a metal capable of forming an alloy with lithium and an alloy thereof, or a carbonaceous material. The method for producing a non-aqueous electrolyte battery according to claim 1.
【請求項5】 上記正極及び負極は、帯状の電極集電体
上に電極活物質層が形成されてなり、 当該正極と負極とはセパレータを介して積層され、長手
方向に多数回巻回されて電極素子とされることを特徴と
する請求項1記載の非水電解質電池の製造方法。
5. The positive electrode and the negative electrode are formed by forming an electrode active material layer on a strip-shaped electrode current collector, and the positive electrode and the negative electrode are laminated with a separator interposed therebetween and are wound many times in the longitudinal direction. The method for producing a non-aqueous electrolyte battery according to claim 1, wherein the method is used as an electrode element.
【請求項6】 上記非水電解質が、非水溶媒中に電解質
塩が溶解されてなる非水電解液がマトリクスポリマによ
ってゲル状とされてなるゲル状電解質であることを特徴
とする請求項1記載の非水電解質電池の製造方法。
6. The non-aqueous electrolyte is a gel electrolyte in which a non-aqueous electrolyte solution obtained by dissolving an electrolyte salt in a non-aqueous solvent is gelled by a matrix polymer. A method for producing the non-aqueous electrolyte battery described.
JP2002104413A 2002-04-05 2002-04-05 Manufacturing method for non-aqueous electrolyte battery Pending JP2003297419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002104413A JP2003297419A (en) 2002-04-05 2002-04-05 Manufacturing method for non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002104413A JP2003297419A (en) 2002-04-05 2002-04-05 Manufacturing method for non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2003297419A true JP2003297419A (en) 2003-10-17
JP2003297419A5 JP2003297419A5 (en) 2005-09-02

Family

ID=29389683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002104413A Pending JP2003297419A (en) 2002-04-05 2002-04-05 Manufacturing method for non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2003297419A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276612A (en) * 2004-03-24 2005-10-06 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery, its manufacturing method, battery using it, and manufacturing method of battery
JP2005294028A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Lithium secondary battery
JP2007048560A (en) * 2005-08-09 2007-02-22 Sony Corp Battery
US9685661B2 (en) 2011-05-11 2017-06-20 Sony Corporation Secondary battery, electronic device, electric power tool, electrical vehicle, and electric power storage system
JP2019160391A (en) * 2018-03-07 2019-09-19 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276612A (en) * 2004-03-24 2005-10-06 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery, its manufacturing method, battery using it, and manufacturing method of battery
JP2005294028A (en) * 2004-03-31 2005-10-20 Mitsubishi Heavy Ind Ltd Lithium secondary battery
JP2007048560A (en) * 2005-08-09 2007-02-22 Sony Corp Battery
US9685661B2 (en) 2011-05-11 2017-06-20 Sony Corporation Secondary battery, electronic device, electric power tool, electrical vehicle, and electric power storage system
US10403928B2 (en) 2011-05-11 2019-09-03 Murata Manufacturing Co., Ltd. Secondary battery, electronic device, electric power tool, electrical vehicle, and electric power storage system
JP2019160391A (en) * 2018-03-07 2019-09-19 トヨタ自動車株式会社 Method for manufacturing lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4608735B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2004227818A (en) Nonaqueous electrolyte battery
JP2001023687A (en) Nonaqueous electrolyte battery
JP2006260904A (en) Winding type battery and its manufacturing method
CN109478641A (en) Negative electrode active material and cathode comprising it
KR101666796B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
JP4910228B2 (en) Nonaqueous electrolyte secondary battery
KR101723993B1 (en) Negative electrode for rechargeable lithium battery, method for preparing the same, and rechargeable lithium battery including the same
JP3564756B2 (en) Non-aqueous electrolyte secondary battery
JP2004031131A (en) Nonaqueous electrolyte liquid secondary battery
JP2004319186A (en) Nonaqueous electrolyte battery
JP2001283861A (en) Battery electrode and nonaqueous electrolyte battery
JP2002279956A (en) Nonaqueous electrolyte battery
JP2004014300A (en) Nonaqueous electrolyte battery and its manufacturing method
JP2007172947A (en) Nonaqueous electrolyte secondary battery
KR100740548B1 (en) Gel polymer electrolyte composition for lithium polymer battery and lithium polymer battery using the same
JP4186463B2 (en) Nonaqueous electrolyte secondary battery
JP4166295B2 (en) Non-aqueous electrolyte battery
JP2003045433A (en) Nonaqueous secondary battery
JP2003297419A (en) Manufacturing method for non-aqueous electrolyte battery
JP4085481B2 (en) battery
JP2003346786A (en) Non-aqueous electrolyte battery and its manufacturing method
JP2002075444A (en) Nonaqueous electrolyte cell
JP2002216768A (en) Nonaqueous secondary battery
JP2001085009A (en) Positive electrode active material and its manufacture

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050309

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060410

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080827

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20081003