JP2003286561A - 鋼板および鋼材の窒化方法 - Google Patents

鋼板および鋼材の窒化方法

Info

Publication number
JP2003286561A
JP2003286561A JP2002090647A JP2002090647A JP2003286561A JP 2003286561 A JP2003286561 A JP 2003286561A JP 2002090647 A JP2002090647 A JP 2002090647A JP 2002090647 A JP2002090647 A JP 2002090647A JP 2003286561 A JP2003286561 A JP 2003286561A
Authority
JP
Japan
Prior art keywords
nitriding
steel
atmosphere
gas
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002090647A
Other languages
English (en)
Inventor
Hidekuni Murakami
英邦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002090647A priority Critical patent/JP2003286561A/ja
Publication of JP2003286561A publication Critical patent/JP2003286561A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

(57)【要約】 【課題】 鋼材質の造り分けおよび機能付与を目的とし
て高温ガス雰囲気中での窒化を適用する際に、窒化効率
が高くすることで生産性を向上させ、かつ窒化後の鋼材
質に関して窒化の不均一に起因する材質の不均一を抑制
する。 【解決手段】 窒化雰囲気をアンモニア0.5〜50
%、窒素20%以上、水素1.0%以上とし、窒化温度
を580〜700℃、露点を−10℃以上とし、窒化中
においてFe窒化物の形成を抑制しフェライト相および
オーステナイト相であるFeとの窒化反応により窒化を
進行させる方法。

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、自動車部材、建築
部材、電気機器部品、容器等として用いられる鋼板や建
築構造材、レール、鋼管など鋼材の製造工程において、
強度、疲労特性、耐磨耗特性、靭性などに関して好まし
い特性を付与する目的で鋼を窒化する方法に関するもの
で、特に高温ガス雰囲気中に鋼板や鋼材を保持すること
により窒化する方法に関するものである。
【0002】
【従来の技術】様々な方面で部材として用いられる鋼に
ついては、目的とした強度または硬度であることが重要
である。この強度は単に材料の変形に対する強さという
だけでなく、疲労特性や耐磨耗性および靭性など様々な
特性と強い相関を持つため、用途により様々な強度を有
する鋼板、鋼材が製造されている。
【0003】この強度の造りわけは通常、成分や熱処理
条件を制御することにより行われるが、熱処理による制
御によっては広い範囲の強度の造り分けが困難であるこ
とや、鋼材の端部などでの熱処理条件の変動に起因する
材質変化が大きく、歩留まりが低下するなどの課題があ
る。一方、成分による造り分けは、近年の連続鋳造技術
の進歩により鋼材内での成分変動が非常に小さく抑えら
れているため、材質の変動が小さく歩留まりが良好で、
また、多様な元素を広い含有量範囲で変化させることに
より強度レベルを大きく変化させることも可能であるこ
とから、実用的には強度造り込みの主要技術となってい
る。
【0004】しかし、通常の鋼製品の製造に際しては、
成分は製鋼工程において溶鋼段階で決定されるため、使
用量が少ない多くの用途に応じ多くの異なる成分の製品
を製造する場合には、半製品の在庫が多くなり生産性が
阻害される場合がある。これらの点から製造工程の下工
程で成分を変化させ強度を造り分けることが好ましい
が、鋼において強化元素として使用されるMn,Si,
P,Nb等を下工程で固体状態の鋼に追加含有させるこ
とは、大量生産プロセスでは困難である。
【0005】固体状態の鋼の成分を大量生産プロセスに
おいて変化させ得る方法としては、浸炭や窒化など、C
やNなどの軽元素をガスや液体を使い鋼中に追加含有さ
せるものがある。このうちNはCのようにFeとの析出
物(Cの場合はFe炭化物で実質的にFe3 C(セメン
タイト))を形成し難く、Feフェライト相中への溶解度
が大きいことから強化能に優れ、特公昭39−2374
号公報、特公平1−42331号公報、特公平1−96
330号公報、特開平3−243757号公報などに窒
化による機能向上技術が開示されている。
【0006】また窒化条件の影響については、窒素中で
の窒化条件について検討が行われ、(社)日本鉄鋼協会
発行「鉄鋼便覧」等に雰囲気中の窒素ガス濃度が高くな
ると鋼板が窒化されやすくなることが開示されている。
しかし、特にアンモニアを含む雰囲気で、かつ600℃
以上の比較的高温で鋼を窒化する場合の窒化条件につい
ては最適な条件が明確でなく、これまでの知見による
と、この温度領域においては窒化効率が低く生産性が悪
いばかりでなく、鋼の表面状態や窒化中の雰囲気や温度
などの変動のため窒化が不均一となり、微小領域で材質
の変動が大きくなってマクロな材質不良の原因になるこ
とがある。
【0007】上記の例に示されているように、浸炭や窒
化など、CやNなどの軽元素を、ガスや液体を使い、鋼
中に追加含有させて材質を作り分ける技術は実用化でき
ていない。
【0008】
【発明が解決しようとする課題】本発明は、鋼の材質の
造り分けにおいて生産性の観点から有利な窒化法を適用
する際に、高い窒化効率で窒化を行う方法を提供するも
のであり、これにより、より生産性の高い材質の造り分
けが可能となる。
【0009】
【課題を解決するための手段】本発明者らは、上記目的
を達成できる方法を提供するべく、鋼成分と窒化条件お
よび窒化後の材質の関係について鋭意検討を行い、以下
の知見を得た。
【0010】その知見とは即ち、雰囲気にアンモニアガ
スを含有させることで、窒化効率が顕著に向上するとい
うものである。アンモニアガスを含有させた高温雰囲気
中で鋼を窒化すると、主としてアンモニアの分解により
Nが鋼中に進入するようになるが、アンモニアの大部分
は窒素ガス、水素ガスとなり雰囲気中に戻り、雰囲気中
には窒素ガスおよび水素ガスが存在するようになる。
【0011】実工程での雰囲気の安定性等を考えると、
窒化を行う雰囲気ガス中には当初から水素および窒素を
存在させておくことが好ましい。この時ベースとなる雰
囲気中の窒素ガスと水素ガスの比率は、窒素ガスを多く
した場合に窒化効率が高い。アンモニアガスを含まず窒
素ガスを含んだ雰囲気中の窒化においても、窒素ガス量
が多いほど窒化効率は向上するが、アンモニアガスを含
む場合の窒化効率は、この場合より桁違いに大きい。
【0012】雰囲気の温度は、高すぎても低すぎても窒
化効率が低下し、最適な温度域が存在するが、この温度
は雰囲気、特に窒素ガスと水素ガスの比率により異な
る。
【0013】雰囲気中のアンモニア量は高いほど窒化効
率が高くなるが、あまり高いと表層にFe窒化物の膜を
形成するようになるため、材質的には必ずしも好ましい
ものとはならない。
【0014】雰囲気の露点も窒化効率に大きな影響を及
ぼし、過度に乾燥した雰囲気においては、温度や窒素ガ
スと水素ガスの比などについて最適な窒化条件の範囲が
狭くなる。
【0015】雰囲気中のアンモニア濃度がそれほど高く
なくても、窒化により鋼中のN濃度が高くなると、窒化
中でも鋼中にFe窒化物が形成されるようになり、材質
的に好ましからざる場合がある。窒化効率と窒化後の材
質を考慮すると、Nを含む鋼がフェライト相とオーステ
ナイト相を主体とした状態で窒化が進行することが好ま
しい。
【0016】本発明は以上の知見をもとに、現状の通常
の鋼の製造工程および設備能力を念頭に、最適な窒化条
件範囲を検討し達成したものである。すなわち本発明の
主旨は、 窒化雰囲気にはアンモニアガス、窒素ガス、水素ガス
を所定量含有させる。 上記の3種のガスのうち窒素ガスの流量を水素ガスよ
り多くする。 Fe窒化物の形成を勘案し、アンモニアガスの濃度を
適当な範囲にとどめる。 窒化中の鋼の表面状態とガス分解を制御するため、雰
囲気中の露点を制御する。 窒化後の鋼の特性を勘案し窒化が進行する過程での鋼
の状態を制御する。 ことにある。
【0017】上記知見に基づく本発明の要旨は、次の構
成からなる。 (1) アンモニアと窒素と水素を含む混合ガス雰囲気
中での熱処理により鋼板もしくは鋼材にNを含有させる
に際し、囲気中に導入されるガス流量の内訳として窒素
ガスを20%以上、水素ガスを1.0%以上とし、窒素
ガス流量/(窒素ガス流量+水素ガス流量)を0.60
以上とすることを特徴とする鋼板および鋼材の窒化方
法。 (2) 窒化時の雰囲気温度を580〜700℃とする
ことを特徴とする前記(1)記載の鋼板および鋼材の窒
化方法。 (3) 雰囲気中に導入されるガス流量の内訳としてア
ンモニアガスの割合を0.5〜50%とすることを特徴
とする前記(1)または(2)記載の鋼板および鋼材の
窒化方法。 (4) 雰囲気ガスの露点を−10℃以上とすることを
特徴とする前記(1)〜(3)のいずれか1項に記載の
鋼板および鋼材の窒化方法。 (5) 窒化がフェライト相を主体とした鋼に対して行
われ、窒化の進行に伴いオーステナイト相が増加するこ
とを特徴とする前記(1)〜(4)のいずれか1項に記
載の鋼板および鋼材の窒化方法。 (6) 窒化する鋼に質量%で0.0050%未満のT
iを含有させることを特徴とする前記(1)〜(5)の
いずれか1項に記載の鋼板および鋼材の窒化方法。
【0018】
【発明の実施の形態】以下に本発明を詳細に説明する。
まず、本発明における鋼成分の限定理由を以下に詳細に
説明する。雰囲気中にアンモニアガス、窒素ガスおよび
水素ガスが存在することは必須の条件である。本発明で
の窒化は、高温でのアンモニア分解に伴い生成するNが
鋼に進入することが主たる機構であり、この分解および
鋼表面との反応を、窒素ガスおよび水素ガスの分解また
は反応により制御するものだからである。本発明の範囲
を、窒化炉中に導入される全ガス流量の内訳で窒素ガス
流量が20%以上、水素ガス流量が1.0%以上とす
る。これ未満では、本発明のように様々な条件を制御す
ることによる窒化効率または材質の利点が失われる。
【0019】窒化雰囲気中の窒素ガスと水素ガスの存在
比も重要な要因である。本発明では窒化炉中に導入され
る各ガス流量で、窒素ガス流量/(窒素ガス流量+水素
ガス流量)を0.60以上とする。これ未満では、本発
明のように様々な条件を制御することによる窒化効率ま
たは材質の利点が失われる。
【0020】窒化時の温度条件は580〜700℃が望
ましい。この温度未満ではアンモニアの分解が遅延し窒
化効率が低下する傾向である。その理由はこの温度未満
では鋼表面でFe窒化物の形成が顕著になり、窒化効率
を低下させるためと考えられる。また、本発明が目的と
する材質に好ましからざる影響を及ぼす傾向にあるから
である。窒化効率の安定性も考慮すれば600℃以上が
好ましい。上限温度は窒化効率の観点から決定した。本
発明のように雰囲気中の窒素ガスと水素ガスの比が窒素
ガスが高くないものでは、そのようなガス濃度条件に限
定すればさらに高温である750℃程度でも比較的良好
な窒化効率を維持できるが、本発明のように窒素ガスの
割合が高い雰囲気中では、高温では急速に窒化効率が低
下する。窒化効率の安定性を考慮すれば、上限温度は更
に680℃とすることが更に好ましい。
【0021】本発明のように650℃近傍の高温域でア
ンモニアガスの分解を主とした窒化において、雰囲気中
の窒素ガスと水素ガスの流量の制御により窒化効率が最
適化され、また窒化後の材質が好ましいものになる機構
は必ずしも明らかではない。鋼表面でのアンモニアガス
の分解によって不可避的に水素ガスが発生するため、窒
化中の鋼表面には少なからぬ量のHが存在することを考
えると、外部からの水素ガスの導入は不要となるとも考
えられるが、実機設備において実際に水素ガス流量を0
にした場合は窒化効率が落ちてしまうことから、実機設
備における現象は単に鋼表面での現象だけによっては説
明できない。
【0022】しかし、アンモニアガスの分解によって生
じたNとHのうち、Nは鋼中に補足されるが、Hは鋼中
にはそれほど残存せず、またアンモニアの分解において
HはNの3倍生じることから、外から新たな窒素ガスや
水素ガスが導入されない状況では、雰囲気中の水素ガス
濃度は増加していくと考えられる。このようにアンモニ
アガスの分解が起きる状況での水素ガスの増加を抑制す
るために、水素ガスの供給量以上の窒素ガス量を供給す
ることは、窒化の安定性からも好ましいことと考えられ
る。
【0023】アンモニアガスの割合について下限は特に
限定しないが、実用的な窒化効率と鋼特性の変化の観点
から0.5%以上が望ましい。しかし、アンモニアガス
濃度が高くなりすぎると窒化中に鋼表面にFe窒化物の
膜が形成されるようになる。この窒化物膜は非常に延性
が低く、僅かな加工で割れる場合があるだけでなく、冷
却時の熱歪によって窒化後には非常に微細なクラックを
有する場合が多く、目的とする特性の点から好ましくな
い。この理由によりアンモニアガス流量の割合を50%
以下とすることが望ましい。窒化物膜の形成は鋼成分や
窒化温度、さらには雰囲気組成にも依存し、窒化効率お
よび材質の安定性も考慮すれば、40%以下が更に好ま
しい。
【0024】また窒化に際しての窒化雰囲気中での保持
時間は目的とする鋼特性、中N量との兼ね合いで決定さ
れ、特に限定されるものではない。わずか数秒の保持で
目的が達せられる場合もあるし、板厚が厚い鋼板や大き
な鋼材の中心部まで高濃度のNを含有させる必要がある
場合には、長時間の保持が必要になる。連続焼鈍の場合
にはせいぜい30分が限度であるが、箱焼鈍などを用い
ることで数時間以上、数日の処理も可能となる。操業性
や生産性などを考慮すると、2秒〜20日が実用的な範
囲である。
【0025】また雰囲気の露点を制御することで、本発
明の効果をより顕著にすることが可能である。理由は明
確ではないが、鋼板表面での水蒸気の分解や酸素の状態
が本発明のような高濃度の窒素ガス、低濃度の水素ガス
を含む雰囲気中でのアンモニアガスの分解、およびその
分解により生じたNの鋼への浸入に影響を及ぼしている
可能性がある。また、水蒸気の分解により水素が供給さ
れることも何らかの原因になっている可能性があるが、
水素の供給源は他にも外部からの水素ガスの導入、アン
モニアガスの分解などが重畳しており、現象は非常に複
雑であると考えられる。
【0026】本発明を特徴付ける一つの要因に、窒化が
起きる状況でのFeの形態を規定することがある。本発
明が目的とする効果は、窒化がフェライト相を主体、ま
たはフエライト相とオーステナイト相の混相であるFe
に対して起きる場合に好ましくなる。その際窒化の進行
に伴い、オーステナイト相が増加するような状態で窒化
されることが、強度、硬度、靭性等の確保に際して望ま
しい。鋼成分や窒化条件によっては、鋼表面および表層
部にFe4 Nを主体とするFe窒化物が形成される場合
があるが、この場合は窒化効率の低下、窒化後の材質劣
化等が起きやすい。
【0027】本発明が適用される鋼板または鋼材の成分
は特に限定するものではないが、鋼の成分により窒化条
件が窒化効率や材質に及ぼす影響の程度は異なる。特に
Tiの含有量が多い鋼材においては本発明による効果が
現れ難くなるので、本発明方法はTi含有量が質量%で
0.0050%未満の鋼に適用することで大きな利点が
得られる。これはTi含有鋼では窒化により微細なTi
窒化物が形成され、材質がこの微細Ti窒化物で大きく
高強度化され、Ti含有量で決定される微細析出物の密
度で決定されるため、ある程度以上の窒化さえ起きれ
ば、材質はもはや窒化の程度や粗大なFe窒化物形成な
どによる不均一の影響が現れなくなるものと考えられ
る。
【0028】窒化のタイミングは鋳片〜焼鈍板のどこで
も可能であるが、窒化では表面から鋼内部へのNの拡散
を利用しているため、板厚は薄いほど高濃度の窒化が容
易となる。通常は最終製品に近い形状に加工された後に
窒化することが有利となる。鋼板の場合は熱間仕上げ圧
延以降の工程で行うことが好ましく、通常の冷延鋼板の
製造においては再結晶焼鈍工程中で焼鈍炉の一部または
全部を本発明雰囲気にすることで窒化を行うことが生産
上は都合がよい。
【0029】工程の前半で高濃度のNを含有させ、その
後の高温処理または適当な温度での保定により材質制御
や組織制御し、さらには窒化層の拡散に都合の良い熱履
歴を付与する工程も可能であるし、焼鈍工程の最高温度
への到達により、再結晶および適当な延性を付与した後
に窒化を行うような工程も可能である。
【0030】本発明の用途はその形状などにより何ら限
定されるものではなく、素材としての鋼板、鋼材への適
用だけでなく、自動車、容器、建築物などに使用されて
いる加工後の部材へも適用可能である。
【0031】
【実施例】窒化挙動への窒化条件の影響は、表1〜3に
示す実施例については、厚さ0.8mmの加工用低Cアル
ミキルド鋼を用い、表4に示す実施例については、厚さ
0.8mmのTi含有量が異なる極低Cアルミキルド鋼を
用い、所定の雰囲気中で窒化し、以下の項目により評価
した。
【0032】窒化効率は窒化前後の化学分析におけるN
含有量で評価した。窒化の均一性として、上記窒化後の
鋼板断面で鋼板表面から中心に向かい、板厚方向に0.
01mmきざみとなるように、マイクロビッカース硬度を
JISに準じた方法で行い、その変動から判断した。
【0033】各板厚位置について5点の測定値を得るよ
うに硬度測定を行い、各同一板厚位置の5点および板厚
位置で、0.01mmだけずれて隣り合う板厚位置の各5
点(最表層および中心層の測定については5点、それ以
外は表面側および中心側の10点)合計、最表層および
中心層については10点、その他の板厚位置については
15点のばらつきにより判断した。このばらつきが大き
いものはマクロな材質に影響を及ぼすような粗大な窒化
物が形成されているか、表層に窒化物膜が形成している
か、何らかの原因で板厚方向へのNの拡散に鋼板表面位
置によるばらつきが生じる可能性が大きいものとして不
合格とした。表示方法は、○:ぱらつき非常に小、△:
ばらつき小、×:ばらつき大、とした。
【0034】窒化が進行する状況を把握するため窒化保
持後、窒化炉から取り出し直ちに水中に焼入れを行い、
断面組織を光学顕微鏡および電子顕微鏡で観察した。組
織中に粗大なFe窒化物が観察されたものは、窒化中か
らそのFe窒化物が存在していたものと判断し、粗大な
Fe窒化物が観察されなかったもの、観察されてもその
量が少なかったものについては実質的にFe窒化物の形
成が抑制され、フェライト相およびオーステナイト相を
主体とした状態で窒化が行われていたものと判断した。
表示方法は、○:窒化中にFe窒化物の形成が抑制さ
れ、フェライト相およびオーステナイト相を主体とした
状態で窒化が進行、 ×:窒化中にFe窒化物が多量に
形成、とした。
【0035】各種条件で窒化を行った結果を表1、2、
3に示す。窒化量はアンモニアガス濃度、窒化時間等で
大きく変動するため、比較的類似した条件で窒化したも
のを各表にまとめて示す。共通の条件は表外に示す。本
発明法は窒化効率が高くN増量が大きく、かつ窒化も均
一に行われている。これに対し、比較例では窒化効率が
低いものや、窒化そのものおよびそれに起因した材質の
不均一が大きくなっている。
【0036】また表4は、窒化効率が低いか、または窒
化の不均一が起きやすい条件で窒化したものである。鋼
のTi含有量が少ない場合は何らかの不具合が生じる
が、Ti含有量が多い場合には、窒化効率が低めでもあ
る程度の高強度化が達成され、また断面組織観察によれ
ば組織的には不均一が生じているが、材質的な不均一は
比較的小さい。
【0037】
【表1】
【0038】
【表2】
【0039】
【表3】
【0040】
【表4】
【0041】
【発明の効果】以上のように本発明は、鋼板もしくは鋼
材の製造工程において、強度、疲労特性、耐磨耗特性、
靭性などに関して好ましい特性を付与する目的で鋼を窒
化することができ、すなわち鋼の材質の造り分けにおい
て生産性の観点から有利な窒化法を適用して、高い窒化
効率で窒化を行うことができ、より生産性の高い材質の
造り分けが可能となる。

Claims (6)

    【特許請求の範囲】
  1. 【請求項1】 アンモニアと窒素と水素を含む混合ガス
    雰囲気中での熱処理により鋼板もしくは鋼材にNを含有
    させるに際し、囲気中に導入されるガス流量の内訳とし
    て窒素ガスを20%以上、水素ガスを1.0%以上と
    し、窒素ガス流量/(窒素ガス流量+水素ガス流量)を
    0.60以上とすることを特徴とする鋼板および鋼材の
    窒化方法。
  2. 【請求項2】 窒化時の雰囲気温度を580〜700℃
    とすることを特徴とする請求項1記載の鋼板および鋼材
    の窒化方法。
  3. 【請求項3】 雰囲気中に導入されるガス流量の内訳と
    してアンモニアガスの割合を0.5〜50%とすること
    を特徴とする請求項1または2記載の鋼板および鋼材の
    窒化方法。
  4. 【請求項4】 雰囲気ガスの露点を−10℃以上とする
    ことを特徴とする請求項1〜3のいずれか1項に記載の
    鋼板および鋼材の窒化方法。
  5. 【請求項5】 窒化がフェライト相を主体とした鋼に対
    して行われ、窒化の進行に伴いオーステナイト相が増加
    することを特徴とする請求項1〜4のいずれか1項に記
    載の鋼板および鋼材の窒化方法。
  6. 【請求項6】 窒化する鋼に質量%で0.0050%未
    満のTiを含有させることを特徴とする請求項1〜5の
    いずれか1項に記載の鋼板および鋼材の窒化方法。
JP2002090647A 2002-03-28 2002-03-28 鋼板および鋼材の窒化方法 Pending JP2003286561A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002090647A JP2003286561A (ja) 2002-03-28 2002-03-28 鋼板および鋼材の窒化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002090647A JP2003286561A (ja) 2002-03-28 2002-03-28 鋼板および鋼材の窒化方法

Publications (1)

Publication Number Publication Date
JP2003286561A true JP2003286561A (ja) 2003-10-10

Family

ID=29235926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002090647A Pending JP2003286561A (ja) 2002-03-28 2002-03-28 鋼板および鋼材の窒化方法

Country Status (1)

Country Link
JP (1) JP2003286561A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009069A (ja) * 2004-06-24 2006-01-12 Nippon Steel Corp 加工後表面被覆膜損傷の少ない高剛性鋼板及びその製造方法
JP2007046088A (ja) * 2005-08-09 2007-02-22 Yuki Koshuha:Kk 浸窒焼入品及びその製造方法
EP2009128A1 (en) * 2007-06-29 2008-12-31 ArcelorMittal France Galvanized or galvannealed silicon steel
US20090324825A1 (en) * 2008-05-30 2009-12-31 Evenson Carl R Method for Depositing an Aluminum Nitride Coating onto Solid Substrates
JP2013108145A (ja) * 2011-11-22 2013-06-06 Jtekt Corp 摺動部材、クラッチプレートおよびそれらの製造方法
CN103774085A (zh) * 2014-01-03 2014-05-07 华南理工大学 一种在低碳合金钢表面制备的高氮奥氏体层及制备方法
JP2016080699A (ja) * 2014-10-17 2016-05-16 ニヴァロックス−ファー ソシエテ アノニム 一体化された電鋳金属部品

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006009069A (ja) * 2004-06-24 2006-01-12 Nippon Steel Corp 加工後表面被覆膜損傷の少ない高剛性鋼板及びその製造方法
JP4564289B2 (ja) * 2004-06-24 2010-10-20 新日本製鐵株式会社 加工後表面被覆膜損傷の少ない高剛性缶用鋼板及びその製造方法
JP2007046088A (ja) * 2005-08-09 2007-02-22 Yuki Koshuha:Kk 浸窒焼入品及びその製造方法
EP2009128A1 (en) * 2007-06-29 2008-12-31 ArcelorMittal France Galvanized or galvannealed silicon steel
WO2009004424A1 (en) * 2007-06-29 2009-01-08 Arcelormittal France Galvanized or galvannealed silicon steel
KR101203021B1 (ko) * 2007-06-29 2012-11-23 신닛테츠스미킨 카부시키카이샤 아연도금 또는 합금화 아연도금 규소강
US9206498B2 (en) 2007-06-29 2015-12-08 Arcelormittal France Galvanized or galvannealed silicon steel
US20090324825A1 (en) * 2008-05-30 2009-12-31 Evenson Carl R Method for Depositing an Aluminum Nitride Coating onto Solid Substrates
JP2013108145A (ja) * 2011-11-22 2013-06-06 Jtekt Corp 摺動部材、クラッチプレートおよびそれらの製造方法
CN103774085A (zh) * 2014-01-03 2014-05-07 华南理工大学 一种在低碳合金钢表面制备的高氮奥氏体层及制备方法
CN103774085B (zh) * 2014-01-03 2016-03-02 华南理工大学 一种在低碳合金钢表面制备的高氮奥氏体层及制备方法
JP2016080699A (ja) * 2014-10-17 2016-05-16 ニヴァロックス−ファー ソシエテ アノニム 一体化された電鋳金属部品

Similar Documents

Publication Publication Date Title
JP6894476B2 (ja) 高強度鋼板を製造する方法およびこの方法により得られる鋼板
EP2184374B1 (en) High-strength hot-dip galvanized steel sheet and process for producing the same
CA2829327C (en) Steel sheet for hot stamped member and method of production of same
US10053749B2 (en) Production method for plated steel sheet using a steel sheet annealing device
JP2009503246A (ja) 光輝表面仕上げおよび優れた機械的特性を有するオーステナイトステンレス鋼ストリップ
US20170226609A1 (en) Method for production of a nitrided packaging steel
KR20150126661A (ko) 질화 처리용 강판 및 그의 제조 방법
CN1318612C (zh) 高氮超低碳钢的制造方法
JP2003286561A (ja) 鋼板および鋼材の窒化方法
WO2019131099A1 (ja) 熱延鋼板およびその製造方法
JPH04173945A (ja) 曲げ加工性の優れた高強度溶融亜鉛めっき鋼板の製造方法
JP2003313637A (ja) 加工性、めっき性および靱性に優れた微細組織を有する高強度鋼板及びその製造方法
US10920309B2 (en) Method for producing a nitrided packaging steel
JP4946617B2 (ja) 軟窒化処理用鋼板およびその製造方法
JP3448454B2 (ja) 表面性状と成形性にすぐれた高強度冷延鋼板とその製造方法
JP4249860B2 (ja) 容器用鋼板の製造方法
JPH11269630A (ja) 表面処理鋼部材
JPH10176249A (ja) フェライト系ステンレス鋼鋼材およびその製造方法
JPH11310829A (ja) 耐デント性ならびに耐面ひずみ性に優れた深絞り用bh冷延鋼板の製造方法
JP5515949B2 (ja) 板厚方向の材質均一性に優れた低炭素鋼材の製造方法
JP3265946B2 (ja) 加工性に優れた高珪素鋼板の製造方法
KR101908805B1 (ko) 방향성 전기강판의 제조 방법
EP1657321A1 (en) Material for shadow mask, process for producing the same, shadow mask from the shadow mask material and picture tube including the shadow mask
KR100321047B1 (ko) 페라이트계 스테인레스 열연강대의 표면경화 소둔열처리방법
JP5515948B2 (ja) 板厚方向の材質均一性に優れた極低炭素鋼材の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061212