JP2003269866A - Induction heating dry distillation furnace - Google Patents

Induction heating dry distillation furnace

Info

Publication number
JP2003269866A
JP2003269866A JP2002075372A JP2002075372A JP2003269866A JP 2003269866 A JP2003269866 A JP 2003269866A JP 2002075372 A JP2002075372 A JP 2002075372A JP 2002075372 A JP2002075372 A JP 2002075372A JP 2003269866 A JP2003269866 A JP 2003269866A
Authority
JP
Japan
Prior art keywords
furnace
dry distillation
induction heating
gap
outer furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002075372A
Other languages
Japanese (ja)
Inventor
Tatsuo Take
達男 武
Masaki Sakuma
政喜 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002075372A priority Critical patent/JP2003269866A/en
Publication of JP2003269866A publication Critical patent/JP2003269866A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Furnace Details (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent a lowering of strength of a furnace body in high temperatures. <P>SOLUTION: The furnace body 1 of this dry distillation furnace for induction heating by a heating coil 2 is formed in double structure comprising an inner furnace made of a nonmagnetic material, and an outer furnace 10 made of a magnetic material. The inner furnace 9 is structurally held by the outer furnace 10 through spacers 12, 13. The inner furnace 9 functions as a heating body, and the outer furnace 10 functions as a structural member for holding the inner furnace 9. As a result, the inner furnace 9 is prevented from crack initiation, distortion, or the like regardless of a lowering of mechanical strength caused by a high temperature, and in the outer furnace 10, an induction current is minimized to reduce heat loss. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、誘導加熱により
炉体を発熱させ、炉内のプラスチック系廃棄物などの被
処理物を乾留処理する誘導加熱式乾留炉に関し、詳しく
はその炉体構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an induction heating type dry distillation furnace which heats a furnace body by induction heating to dry-treat an object to be treated such as plastic waste in the furnace, and more particularly to the structure of the furnace body. .

【0002】[0002]

【従来の技術】図13は、従来のバッチ式の上記乾留炉
の概略構成を示す縦断面図である。図13において、乾
留炉は、立て置きの底付き円筒体からなる中空筒状の炉
体1の外側に、加熱コイル2が配置されて構成されてい
る。炉体1の上面は、円盤状の炉蓋3により閉塞されて
いる。炉体1は、数箇所で支柱4に支持された環状の支
持板5に、上部に一体形成されたフランジ部を介して吊
り下げ支持されている。加熱コイル2に図示しない高周
波電源から電流が通流されると、生じた磁束が炉体1と
鎖交し、主に加熱コイル2と対向する炉体1の側壁に誘
導電流が流れる。この誘導電流による抵抗損で炉体1は
発熱し、炉内に投入された図示しない被処理物、例えば
プラスチック系廃棄物は炉壁からの輻射熱により乾留さ
れる。
2. Description of the Related Art FIG. 13 is a vertical sectional view showing a schematic structure of a conventional batch type dry distillation furnace. In FIG. 13, the carbonization furnace is configured by arranging a heating coil 2 on the outside of a hollow cylindrical furnace body 1 composed of a vertically standing cylindrical body with a bottom. The upper surface of the furnace body 1 is closed by a disk-shaped furnace lid 3. The furnace body 1 is suspended and supported by an annular support plate 5 which is supported by columns 4 at several points, via a flange portion integrally formed on the upper portion. When an electric current is passed through the heating coil 2 from a high frequency power source (not shown), the generated magnetic flux interlinks with the furnace body 1, and an induced current mainly flows in the side wall of the furnace body 1 facing the heating coil 2. The furnace body 1 generates heat due to the resistance loss due to this induced current, and the object to be treated (not shown), such as plastic waste, charged in the furnace is carbonized by radiant heat from the furnace wall.

【0003】図14は、連続式の上記乾留炉(ロータリ
ーキルン)の概略構成を示す縦断面図である。図14に
おいて、乾留炉は、横置きされた円筒体からなる中空筒
状の炉体1の外側に、加熱コイル2が配置されて構成さ
れている。炉体1は、両端で支持ローラ6により回転可
能に支持され、モータ駆動の駆動ローラ7により回転駆
動される。図14の右端から、被処理物供給管8を通し
て投入される図示しない被処理物は、炉体1の回転に伴
い左端に向って送られ、その間に加熱コイル2の通電に
よる炉体1の発熱で乾留される。
FIG. 14 is a vertical sectional view showing a schematic structure of the continuous type dry distillation furnace (rotary kiln). In FIG. 14, the carbonization furnace is configured by arranging a heating coil 2 on the outside of a hollow cylindrical furnace body 1 composed of a horizontally placed cylindrical body. The furnace body 1 is rotatably supported by support rollers 6 at both ends, and is rotationally driven by a motor-driven driving roller 7. From the right end of FIG. 14, the not-shown object to be fed through the object supply pipe 8 is sent toward the left end as the furnace body 1 rotates, during which the heating coil 2 is energized to generate heat in the furnace body 1. Is carbonized.

【0004】[0004]

【発明が解決しようとする課題】このような乾留炉にお
いて、炉体1は誘導加熱により発熱させるために、磁性
金属、一般には鉄材により構成され、例えば乾留温度を
550℃程度とすると、700℃程度に加熱される。と
ころが、鉄材の機械的強度(引張強さや降伏点)は高温
になると急激に低下し、700℃付近では常温の1/3
〜1/4にまで低下する。そのため、上記した乾留炉は
炉体1に変形や歪、亀裂などが生じやすく、特に加熱コ
イル2の端部に近い部分は温度勾配が大きいために応力
が集中し、欠陥が生じる危険が大きかった。
In such a carbonization furnace, the furnace body 1 is made of a magnetic metal, generally an iron material in order to generate heat by induction heating. For example, if the carbonization temperature is about 550 ° C., 700 ° C. Heated to a degree. However, the mechanical strength (tensile strength and yield point) of iron material sharply decreases at high temperatures, and at 700 ° C, it is ⅓ of normal temperature.
It falls to ~ 1/4. Therefore, in the above-mentioned carbonization furnace, the furnace body 1 is likely to be deformed, distorted, cracked, and the like, and particularly in the portion near the end of the heating coil 2, since the temperature gradient is large, stress is concentrated and there is a large risk of causing defects. .

【0005】そこで、この発明の課題は、炉体構造に工
夫を講じ、誘導加熱式乾留炉の安全性の向上を図ること
にある。
Therefore, an object of the present invention is to improve the safety of the induction heating type dry distillation furnace by devising the structure of the furnace body.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、この発明は、中空筒状の炉体をその外側に配置した
加熱コイルにより誘導加熱し、炉内の被処理物を乾留す
る誘導加熱式乾留炉において、前記炉体を磁性材料から
なる内側炉と非磁性材料からなる外側炉とからなる2重
構造とし、主として前記内側炉を誘導加熱するととも
に、この内側炉を前記外側炉で構造的に保持するように
するものである(請求項1)。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is an induction heating method in which a hollow cylindrical furnace body is induction-heated by a heating coil arranged outside the furnace body, and an object to be treated in the furnace is carbonized. In the heating type dry distillation furnace, the furnace body has a double structure composed of an inner furnace made of a magnetic material and an outer furnace made of a non-magnetic material, and mainly the inner furnace is induction-heated, and the inner furnace is operated by the outer furnace. It is to be structurally retained (Claim 1).

【0007】この請求項1は、発熱する内側炉には構造
材としての機能はなるべく持たせず、外側に設けた炉体
を発熱を極力抑えながら構造材として機能させるもので
ある。そのために、内側炉は磁性材料で構成し、外側炉
は非磁性材料で構成する。これにより、各炉体の壁厚を
適切に設定することで、加熱コイルからの磁束はほとん
ど外側炉を通過して内側炉と鎖交し、内側炉を重点的に
発熱させる。炉体の壁厚は、次式で定義される磁束の浸
透深さλから決める。
According to the first aspect of the present invention, the heat-generating inner furnace does not have a function as a structural material as much as possible, and the furnace body provided outside functions as a structural material while suppressing heat generation as much as possible. For that purpose, the inner furnace is made of a magnetic material and the outer furnace is made of a non-magnetic material. Thus, by appropriately setting the wall thickness of each furnace body, most of the magnetic flux from the heating coil passes through the outer furnace and is linked to the inner furnace, so that the inner furnace is mainly heated. The wall thickness of the furnace body is determined from the magnetic flux penetration depth λ defined by the following equation.

【0008】λ=(2×ρ/ωμ)1/2(mm) (ここ
で、ρは材料の抵抗率、ωは電源の角周波数、μは透磁
率)。
Λ = (2 × ρ / ωμ) 1/2 (mm) (where ρ is the resistivity of the material, ω is the angular frequency of the power source, and μ is the magnetic permeability).

【0009】請求項1において、前記磁性材料は鉄材と
し、前記非磁性材料はステンレス材とすることができる
(請求項2)。
In claim 1, the magnetic material may be an iron material, and the non-magnetic material may be a stainless material (claim 2).

【0010】請求項2において、前記内側炉と前記外側
炉との間に隙間を設け、この隙間に絶縁物のスペーサを
挿入するとよい(請求項3)。内外の炉体間に隙間を設
けることにより、内側炉から外側炉への熱移動を小さく
し、外側炉の熱歪を抑えられるとともに、外側炉からの
熱の逃げを少なくすることができる。その場合、炉体間
の隙間には絶縁物のスペーサを挿入し、このスペーサを
介して外側炉により内側炉を構造的に保持する。
In the second aspect, a gap may be provided between the inner furnace and the outer furnace, and a spacer of an insulator may be inserted into this gap (claim 3). By providing a gap between the inner and outer furnace bodies, heat transfer from the inner furnace to the outer furnace can be reduced, thermal strain of the outer furnace can be suppressed, and heat escape from the outer furnace can be reduced. In that case, a spacer of an insulating material is inserted in the gap between the furnace bodies, and the inner furnace is structurally held by the outer furnace through the spacer.

【0011】請求項3において、前記隙間には断熱材を
充填するのがよい(請求項4)。これにより、内側炉か
ら外側炉への熱移動がより小さくなる。また、請求項3
において、前記隙間は真空引きすることができ、これに
より隙間での熱伝導をほとんど零にすることができる
(請求項5)。
In Claim 3, it is preferable that the gap is filled with a heat insulating material (Claim 4). This results in less heat transfer from the inner furnace to the outer furnace. Further, claim 3
In, the gap can be evacuated, so that the heat conduction in the gap can be made almost zero (claim 5).

【0012】請求項1において、前記外側炉の前記加熱
コイルと対向する炉壁に、前記加熱コイルの巻線と直交
する向きにスリットを設けるとよい(請求項6)。これ
により、外側炉に周方向に流れようとする誘導電流をス
リットで遮断し、外側炉の発熱を抑えることができる。
In the first aspect, a slit may be provided in a furnace wall of the outer furnace facing the heating coil in a direction orthogonal to the winding of the heating coil (claim 6). Thereby, the induced current that tends to flow in the outer furnace in the circumferential direction can be blocked by the slit, and the heat generation of the outer furnace can be suppressed.

【0013】請求項5において、前記外側炉の前記加熱
コイルと対向する炉壁に、前記加熱コイルの巻線と直交
する向きにスリットを設けるとともに、前記外側炉の内
側又は外側に、前記スリットを閉塞する絶縁物又は非磁
性材料からなる補助炉を設けるのがよい(請求項7)。
これにより、外側炉にスリットを設けても前記した真空
引きが可能になり、スリットによる外側炉の発熱の抑制
と、真空引きによる熱伝導の抑制を同時に実現すること
ができる。
In claim 5, a slit is provided in a furnace wall of the outer furnace facing the heating coil in a direction orthogonal to a winding of the heating coil, and the slit is provided inside or outside the outer furnace. It is preferable to provide an auxiliary furnace made of an insulating material or a non-magnetic material that closes (claim 7).
With this, even if a slit is provided in the outer furnace, the above-described vacuum evacuation is possible, and it is possible to simultaneously suppress heat generation in the outer furnace by the slit and suppress heat conduction by evacuation.

【0014】請求項1において、前記外側炉は複数の軸
方向に長い支持材を周方向に隙間を介して配列して構成
することができる(請求項8)。これにより、外側炉に
流れようとする誘導電流を支持部材間の隙間で遮断し、
外側炉の発熱を抑制することができる。
In the first aspect of the present invention, the outer furnace can be constructed by arranging a plurality of support members that are long in the axial direction with a gap in the circumferential direction (claim 8). As a result, the induced current that tends to flow to the outer furnace is blocked by the gap between the support members,
The heat generation of the outer furnace can be suppressed.

【0015】請求項2において、前記内側炉を着脱可能
に設置するのがよく、これにより内側炉の保守点検が容
易になる(請求項9)。
In claim 2, it is preferable that the inner furnace is detachably installed, which facilitates maintenance and inspection of the inner furnace (claim 9).

【0016】請求項2において、底付き筒体からなる前
記外側炉は、底壁と側壁との間を絶縁するのがよい(請
求項10)。これにより、外側炉に発生する誘導電流を
底壁と側壁との間で分断し、発熱を抑制することができ
る。
In the second aspect of the present invention, it is preferable that the outer furnace, which is a cylindrical body with a bottom, insulates between a bottom wall and a side wall. Thereby, the induced current generated in the outer furnace can be divided between the bottom wall and the side wall to suppress heat generation.

【0017】[0017]

【発明の実施の形態】図1は、この発明の実施の形態1
を示すバッチ式乾留炉の縦断面図である。図1におい
て、乾留炉は、立て置きの底付き円筒体からなる中空筒
状の炉体1の外側に、加熱コイル2が配置されて構成さ
れている。炉体1の上面は、円盤状の炉蓋3により閉塞
されている。炉体1は、数箇所で支柱4に支持された環
状の支持板5に、上部に一体形成されたフランジ部を介
して吊り下げ支持されている。これらの構造は、図10
の従来例と実質的に同じである。ここで、炉体1は、磁
性材料(例えば鉄)からなる内側炉9と、非磁性材料
(例えばステンレス)からなる外側炉(以下、「外側
炉」という)10とからなる2重構造に構成され、内側
炉9は外側炉10により構造的に保持されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a first embodiment of the present invention.
FIG. 3 is a vertical cross-sectional view of the batch type dry distillation furnace. In FIG. 1, the carbonization furnace is configured by arranging a heating coil 2 on the outside of a hollow cylindrical furnace body 1 composed of a vertically standing cylindrical body with a bottom. The upper surface of the furnace body 1 is closed by a disk-shaped furnace lid 3. The furnace body 1 is suspended and supported by an annular support plate 5 which is supported by columns 4 at several points, via a flange portion integrally formed on the upper portion. These structures are shown in FIG.
This is substantially the same as the conventional example. Here, the furnace body 1 has a double structure including an inner furnace 9 made of a magnetic material (for example, iron) and an outer furnace (hereinafter, referred to as “outer furnace”) 10 made of a non-magnetic material (for example, stainless steel). The inner furnace 9 is structurally held by the outer furnace 10.

【0018】内側炉9と外側炉10とは隙間11を介し
て隔てられ、隙間11には、熱伝導性が小さい絶縁物、
例えば耐熱レンガからなる環状のスペーサ12及び13
が挿入されている。スペーサ12は、例えば上下2箇所
で外側炉10の側壁内側に、例えば図示しないボルトに
より固定されている。スペーサ13は外側炉10の底壁
上に載置され、例えば図示しないボルトにより固定され
ている。ボルトは内側炉9に接触しないように配慮され
る。内側炉9は外側炉10内に着脱可能に挿入され、ス
ペーサ13を介して外側炉10の底壁に支承されるとと
もに、スペーサ12を介して外側炉10の側壁により外
周を拘束されている。内側炉9の上端面は、炉蓋3の下
面から隙間14を介して隔てられている。
The inner furnace 9 and the outer furnace 10 are separated by a gap 11, and the gap 11 is made of an insulator having a small thermal conductivity.
For example, annular spacers 12 and 13 made of heat-resistant brick
Has been inserted. The spacers 12 are fixed to the inside of the side wall of the outer furnace 10 at, for example, two upper and lower locations by, for example, bolts (not shown). The spacer 13 is placed on the bottom wall of the outer furnace 10 and is fixed by, for example, a bolt (not shown). Care is taken that the bolt does not come into contact with the inner furnace 9. The inner furnace 9 is removably inserted into the outer furnace 10, is supported by the bottom wall of the outer furnace 10 via a spacer 13, and is constrained by the side wall of the outer furnace 10 via a spacer 12. The upper end surface of the inner furnace 9 is separated from the lower surface of the furnace lid 3 via a gap 14.

【0019】加熱コイル2に図示しない高周波電源から
電流が通流されると、生じた磁束が炉体1と鎖交する。
ステンレスと鉄の上記した磁束浸透深さλは、電流の周
波数が50Hzの場合、それぞれ約70mmと4mmである。そこ
で、ステンレスからなる外側炉10の壁厚を磁束浸透深
さλより十分小さい10mm程度とし、鉄からなる内側炉9
の炉壁厚を磁束浸透深さλより十分大きい10mm程度とす
れば、加熱コイル2からのほとんどの磁束は外側炉10
を通過して内側炉9と鎖交することになり、誘導電流は
主として内側炉9に流れる。その結果、内側炉9は発熱
するが、外側炉10はほとんど発熱しない。
When an electric current is passed through the heating coil 2 from a high frequency power source (not shown), the generated magnetic flux links with the furnace body 1.
The above-mentioned magnetic flux penetration depth λ of stainless steel and iron is about 70 mm and 4 mm, respectively, when the current frequency is 50 Hz. Therefore, the wall thickness of the outer furnace 10 made of stainless steel is set to about 10 mm, which is sufficiently smaller than the magnetic flux penetration depth λ, and the inner furnace 9 made of iron is
If the thickness of the furnace wall is about 10 mm, which is sufficiently larger than the magnetic flux penetration depth λ, most of the magnetic flux from the heating coil 2 is outside the furnace 10.
And the inner furnace 9 is linked to the inner furnace 9, and the induced current mainly flows in the inner furnace 9. As a result, the inner furnace 9 generates heat, but the outer furnace 10 hardly generates heat.

【0020】その場合、内側炉9を構成する鉄材は高温
により機械的強度が低下するが、内側炉9は外側炉10
に囲まれて保持されているため、構造材としての機能は
多くは要求されず発生する応力も小さい。これに対して
外側炉10は、発熱が少ないため機械的強度の低下が小
さく、構造材として内側炉9を安全に保持する一方、外
部に放散される熱は少ない。
In this case, the mechanical strength of the iron material forming the inner furnace 9 decreases due to the high temperature, but the inner furnace 9 is
Since it is surrounded and held by, the function as a structural material is not often required, and the generated stress is small. On the other hand, since the outer furnace 10 generates less heat, the mechanical strength is less deteriorated, and the inner furnace 9 is safely held as a structural material, while the heat radiated to the outside is less.

【0021】図1において、隙間11のスペーサ12,
13以外の部分には、グラスウールのような断熱材15
充填することができ、それにより断熱性をより高めるこ
とができる。また、図示実施の形態1ではスペーサ1
2,13を部分的に設ける例を示したが、隙間11の全
体にスペーサを挿入することも可能であり、それにより
内側炉9に対する保持力を高めることができる。一方、
内側炉9と炉蓋3との間は隙間14により断熱されてい
るが、図1に2点鎖線で示すように、内側炉10の上端
部に環状の断熱材16を被嵌すれば、断熱性は更によく
なる。炉蓋3の材料はステンレスが適しているが、レン
ガのような無機質材料で構成すれば、断熱性及び漏れ磁
束による発熱の抑制の両面でより有利になる。
In FIG. 1, the spacer 12 in the gap 11,
Insulation materials such as glass wool, except for 13
It can be filled, which makes it possible to improve heat insulation. In the illustrated first embodiment, the spacer 1
Although the example in which 2 and 13 are partially provided is shown, it is also possible to insert a spacer into the entire gap 11, and thereby the holding force for the inner furnace 9 can be increased. on the other hand,
The inner furnace 9 and the furnace lid 3 are thermally insulated by the gap 14. However, as shown by the chain double-dashed line in FIG. The sex becomes even better. Stainless steel is suitable for the material of the furnace lid 3, but if it is made of an inorganic material such as brick, it becomes more advantageous in terms of both heat insulation and suppression of heat generation due to leakage magnetic flux.

【0022】図2は、この発明の実施の形態2を示す炉
体の縦断面図である。この実施の形態2は、図1の隙間
11を真空引きする真空ポンプ17を設け、隙間11を
真空層としたものである。スペーサ12,13には、そ
の前後空間を連通させる通気孔18が設けられ、内側炉
9と炉蓋3との間は断熱材16でシールされている。真
空ポンプ17を運転し、隙間11を真空層とすることに
より、その間の熱伝導率はほとんど零となり、内側炉9
から外側炉10への伝熱は輻射熱だけとなる。また、そ
の場合、断熱材16に小孔をあけるなどして炉内を隙間
11の上部に連通させ、炉稼動中に真空ポンプ17を常
時運転すれば、被処理物から発生する乾留ガスを同時に
排出することができる。図2においても、通気性を有す
る綿状の断熱材であれば、これを隙間11に充填して輻
射熱を遮断することができる。
FIG. 2 is a vertical sectional view of a furnace body showing a second embodiment of the present invention. In the second embodiment, a vacuum pump 17 for vacuuming the gap 11 in FIG. 1 is provided, and the gap 11 is a vacuum layer. The spacers 12 and 13 are provided with ventilation holes 18 that connect the front and rear spaces to each other, and a heat insulating material 16 seals between the inner furnace 9 and the furnace lid 3. By operating the vacuum pump 17 and forming the gap 11 into a vacuum layer, the thermal conductivity between them becomes almost zero, and the inner furnace 9
The radiant heat is the only heat transfer from the outside to the outer furnace 10. Further, in that case, if a small hole is formed in the heat insulating material 16 so that the inside of the furnace is communicated with the upper part of the gap 11 and the vacuum pump 17 is constantly operated during the operation of the furnace, the dry distillation gas generated from the object to be treated is simultaneously discharged. Can be discharged. Also in FIG. 2, if the cotton-like heat insulating material having air permeability is filled in the gap 11, the radiant heat can be blocked.

【0023】図3はこの発明の実施の形態3を示す炉体
の縦断面図、図4は図3における外側炉の斜視図であ
る。この実施の形態3は、図1における外側炉10の加
熱コイル2と対向する炉壁に、スリット19を設けたも
のである。スリット19は、加熱コイル2の巻線と直交
する向き、つまり外側炉10の軸方向に設けられ、外側
炉10の周方向に等ピッチで多数配置されている。この
実施の形態3によれば、外側炉10に生じる周方向の誘
導電流はスリット19で遮断され、外側炉10の発熱が
減少する。
FIG. 3 is a longitudinal sectional view of a furnace body showing a third embodiment of the present invention, and FIG. 4 is a perspective view of the outer furnace in FIG. In the third embodiment, a slit 19 is provided on the furnace wall facing the heating coil 2 of the outer furnace 10 in FIG. The slits 19 are provided in a direction orthogonal to the winding of the heating coil 2, that is, in the axial direction of the outer furnace 10, and are arranged in the circumferential direction of the outer furnace 10 at equal pitches. According to the third embodiment, the circumferential induced current generated in the outer furnace 10 is cut off by the slits 19, and the heat generation of the outer furnace 10 is reduced.

【0024】図5は、この発明の実施の形態4を示す炉
体の縦断面図である。この実施の形態4は、隙間11を
真空層とする実施の形態2(図2)における外側炉10
に、図3と同様のスリット19を設けた場合において、
スリット19を閉塞するために補助炉20を設けたもの
である。補助炉20は外側炉10の内側に密着する底付
き円筒体として、非磁性材、例えばステンレスで構成さ
れ、例えば焼ばめにより外側炉10に気密に嵌合されて
いる。補助炉20の強度は大気圧に耐え得ればよく、か
つ加熱コイル2の磁束を通過させるように壁厚は最小限
とする。図6は図5における補助炉20を外側炉10の
外側に被嵌した実施の形態5を示すものである。図6に
おいては、大気圧による補助炉20の変形が外側炉10
で支えられるので、補助炉20の壁厚を図5におけるも
のより薄くできる利点がある。
FIG. 5 is a vertical sectional view of a furnace body showing a fourth embodiment of the present invention. The fourth embodiment is the outer furnace 10 according to the second embodiment (FIG. 2) in which the gap 11 is a vacuum layer.
In the case where the slit 19 similar to that shown in FIG.
An auxiliary furnace 20 is provided to close the slit 19. The auxiliary furnace 20 is made of a non-magnetic material, such as stainless steel, as a bottomed cylindrical body that adheres to the inside of the outer furnace 10, and is fitted in the outer furnace 10 in an airtight manner by, for example, shrink fitting. The strength of the auxiliary furnace 20 is only required to withstand atmospheric pressure, and the wall thickness is minimized so that the magnetic flux of the heating coil 2 can pass through. FIG. 6 shows a fifth embodiment in which the auxiliary furnace 20 in FIG. 5 is fitted on the outside of the outer furnace 10. In FIG. 6, the deformation of the auxiliary furnace 20 due to the atmospheric pressure is caused by the outer furnace 10.
Since it is supported by, there is an advantage that the wall thickness of the auxiliary furnace 20 can be made thinner than that in FIG.

【0025】図7はこの発明の実施の形態6を示す炉体
の縦断面図、図8はその外側炉の部分斜視図である。こ
の実施の形態6は、外側炉10を複数の軸方向に長い支
持材を周方向に隙間を介して配列して構成したものであ
る。図7及び図8において、外側炉10は、環状で断面
L形の上下一対の枠体21及び23に渡って、平角材か
らなる支持材23が周方向に複数、例えば溶接により結
合され、また下部には炉底材24がやはり溶接により結
合されて構成されている。各部材22〜25は、すべて
非磁性材、例えばステンレスで形成される。このような
構成においても、外側炉10は側壁がスリット19(図
4)を設けるものと等価的に分断されるため、誘導電流
の発生が抑制されて熱損失が減少する。
FIG. 7 is a longitudinal sectional view of a furnace body showing a sixth embodiment of the present invention, and FIG. 8 is a partial perspective view of an outer furnace thereof. In the sixth embodiment, the outer furnace 10 is configured by arranging a plurality of support members that are long in the axial direction with a gap in the circumferential direction. 7 and 8, in the outer furnace 10, a plurality of support members 23 made of flat rectangular members are circumferentially joined by, for example, welding, over a pair of upper and lower frame members 21 and 23 having an L-shaped cross section. The bottom material 24 is also joined to the lower part by welding. Each of the members 22 to 25 is made of a non-magnetic material such as stainless steel. Even in such a configuration, since the side wall of the outer furnace 10 is divided equivalently to that where the slit 19 (FIG. 4) is provided, generation of an induced current is suppressed and heat loss is reduced.

【0026】図9はこの発明の実施の形態7を示す外側
炉の部分斜視図で、この実施の形態7は図8における枠
体22と炉底材24との間に絶縁材25を介挿したもの
である。これにより、外側炉10の側壁が炉底材24か
ら電気的に絶縁され、外側炉10の誘導電流が一層抑え
られる。
FIG. 9 is a partial perspective view of an outer furnace showing a seventh embodiment of the present invention. In the seventh embodiment, an insulating material 25 is inserted between the frame body 22 and the furnace bottom material 24 in FIG. It is a thing. Thereby, the side wall of the outer furnace 10 is electrically insulated from the furnace bottom material 24, and the induced current in the outer furnace 10 is further suppressed.

【0027】図10は、連続式の乾留炉におけるこの発
明の実施の形態8を示すものである。図10において、
図14の従来例と相違するのは、横置きされた円筒体か
らなる中空筒状の炉体1が、磁性材料(例えば鉄)から
なる内側炉(内側炉)9と、非磁性材料(例えばステン
レス)からなる外側炉(外側炉)10とからなる2重構
造に構成され、内側炉9は外側炉10により構造的に保
持されている点で、その他の構成は従来例と実質的に同
じである。内側炉9と外側炉10とは隙間11を介して
隔てられ、隙間11には熱伝導性が小さい絶縁物、例え
ば耐熱レンガからなる環状のスペーサ12が挿入されて
いる。スペーサ12は、例えば前後3箇所で外側炉10
の側壁内側に、例えば図示しないボルトにより固定され
ている。内側炉9は外側炉10内に着脱可能に挿入さ
れ、スペーサ12を介して外側炉10の側壁により外周
を拘束されている。
FIG. 10 shows Embodiment 8 of the present invention in a continuous dry distillation furnace. In FIG.
The difference from the conventional example of FIG. 14 is that the hollow cylindrical furnace body 1 made of a horizontally placed cylindrical body has an inner furnace (inner furnace) 9 made of a magnetic material (for example, iron) and a non-magnetic material (for example, The other structure is substantially the same as that of the conventional example in that it has a double structure including an outer furnace (outer furnace) 10 made of stainless steel, and the inner furnace 9 is structurally held by the outer furnace 10. Is. The inner furnace 9 and the outer furnace 10 are separated by a gap 11, and an annular spacer 12 made of an insulating material having a small thermal conductivity, for example, heat-resistant brick is inserted in the gap 11. The spacers 12 are provided, for example, at the three front and rear locations in the outer furnace 10.
Is fixed to the inner side wall of, for example, by a bolt (not shown). The inner furnace 9 is detachably inserted into the outer furnace 10, and the outer periphery of the inner furnace 9 is restrained by the side wall of the outer furnace 10 via the spacer 12.

【0028】加熱コイル2に図示しない高周波電流が通
流されると、生じた磁束が炉体1と鎖交する。ステンレ
スからなる外側炉10の壁厚は磁束浸透深さより十分小
さく、鉄からなる内側炉9の壁厚は磁束浸透深さより十
分大きく設定され、ほとんどの磁束は外側炉10を通過
して内側炉9と鎖交し、誘導電流は主として内側炉9に
流れる結果、内側炉9は発熱するが外側炉10はほとん
ど発熱しない点はすでに説明したバッチ式乾留炉と同じ
である。内側炉9は例えば550℃程度に加熱され、供給
管8を通して炉内に投入された図示しない被処理物は、
炉壁からの輻射熱により乾留される。内側炉9の機械的
強度が高温により低下しても、内側炉9は外側炉10に
囲まれて保持されているため強度的な問題は生じない。
一方、外側炉10は、発熱が少ないため機械的強度の低
下が小さく、構造材として内側炉9を安全に保持し、か
つ外部に放散する熱が少ない。
When a high-frequency current (not shown) is passed through the heating coil 2, the generated magnetic flux links with the furnace body 1. The wall thickness of the outer furnace 10 made of stainless steel is set sufficiently smaller than the magnetic flux penetration depth, the wall thickness of the inner furnace 9 made of iron is set sufficiently larger than the magnetic flux penetration depth, and most of the magnetic flux passes through the outer furnace 10 and the inner furnace 9 This is the same as the batch-type carbonization furnace described above in that the inner furnace 9 generates heat but the outer furnace 10 hardly generates heat, as a result of the induction current flowing mainly through the inner furnace 9. The inner furnace 9 is heated to, for example, about 550 ° C., and an object to be processed (not shown) introduced into the furnace through the supply pipe 8 is
It is carbonized by radiant heat from the furnace wall. Even if the mechanical strength of the inner furnace 9 is lowered due to high temperature, the inner furnace 9 is surrounded and held by the outer furnace 10, and therefore no problem in strength occurs.
On the other hand, since the outer furnace 10 generates less heat, the mechanical strength is less deteriorated, the inner furnace 9 is safely held as a structural material, and less heat is dissipated to the outside.

【0029】図11は、図10における外側炉10の加
熱コイル2と対向する炉壁に、スリット19を設けた実
施の形態9を示す部分斜視図である。スリット19は、
加熱コイル2の巻線と直交する向き、つまり外側炉10
の軸方向に設けられ、外側炉10の周方向に等ピッチで
多数配置されている。この実施の形態9によれば、バッ
チ式乾留炉と同様に、外側炉10に生じる周方向の誘導
電流がスリット19で遮断され発熱が減少する。
FIG. 11 is a partial perspective view showing Embodiment 9 in which a slit 19 is provided in the furnace wall facing the heating coil 2 of the outer furnace 10 in FIG. The slit 19 is
The direction orthogonal to the winding of the heating coil 2, that is, the outer furnace 10
Are provided in the axial direction of the outer furnace 10 and are arranged in the circumferential direction of the outer furnace 10 at equal pitches. According to the ninth embodiment, as in the batch type dry distillation furnace, the circumferential induced current generated in the outer furnace 10 is interrupted by the slits 19 to reduce heat generation.

【0030】図12は、図10における外側炉10を複
数の軸方向に長い支持材を周方向に隙間を介して配列し
て構成した実施の形態10を示す部分斜視図である。外
側炉10は、軸方向数箇所の環状の枠体21に渡って、
平角材からなる支持材23が周方向に複数、例えば溶接
により結合されて構成されている。各部材22及び24
は非磁性材、例えばステンレスで形成される。このよう
な構成においても、外側炉10は側壁がスリット19
(図11)を設けたものと等価的に分断されるため、誘
導電流の発生が抑制されて発熱が減少する。
FIG. 12 is a partial perspective view showing an embodiment 10 in which the outer furnace 10 in FIG. 10 is constructed by arranging a plurality of support members which are long in the axial direction with a gap in the circumferential direction. The outer furnace 10 extends over several annular frame bodies 21 in the axial direction,
A plurality of support members 23 made of flat rectangular members are connected in the circumferential direction, for example, by welding. Each member 22 and 24
Is formed of a non-magnetic material such as stainless steel. Even in such a configuration, the outer furnace 10 has a slit 19 on the side wall.
(FIG. 11) is equivalently divided, so that generation of induced current is suppressed and heat generation is reduced.

【0031】[0031]

【発明の効果】以上の通り、この発明によれば、誘導加
熱する炉体を非磁性材の内側炉と磁性材の外側炉とから
なる2重構造とし、内側炉は発熱体として機能させ、外
側炉は内側炉を保持する構造材として機能させることに
より、内側炉には高温による機械的強度の低下にも関わ
らず亀裂や歪などを生じさせず、また外側炉は誘導電流
を最小限に抑えて熱損失を減少させることができる。従
って、誘導加熱式乾留炉の安全性及びエネルギ効率の向
上が図られるとともに、安価な材料が使用可能となって
コストが低減される。
As described above, according to the present invention, the furnace body for induction heating has a double structure consisting of an inner furnace of non-magnetic material and an outer furnace of magnetic material, and the inner furnace functions as a heating element. By making the outer furnace function as a structural material to hold the inner furnace, cracks and strains do not occur in the inner furnace despite the decrease in mechanical strength due to high temperature, and the outer furnace minimizes the induced current. It can be suppressed to reduce heat loss. Therefore, the safety and energy efficiency of the induction heating dry distillation furnace can be improved, and an inexpensive material can be used to reduce the cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態1を示すバッチ式乾留炉
の縦断面図である。
FIG. 1 is a vertical sectional view of a batch type dry distillation furnace showing a first embodiment of the present invention.

【図2】この発明の実施の形態2を示すバッチ式乾留炉
の要部縦断面図である。
FIG. 2 is a longitudinal sectional view of a main part of a batch type carbonization furnace showing a second embodiment of the present invention.

【図3】この発明の実施の形態3を示すバッチ式乾留炉
の要部縦断面図である。
FIG. 3 is a longitudinal sectional view of a main part of a batch type dry distillation furnace showing a third embodiment of the present invention.

【図4】図3における外側炉の斜視図である。4 is a perspective view of the outer furnace in FIG.

【図5】この発明の実施の形態4を示すバッチ式乾留炉
の要部縦断面図である。
FIG. 5 is a longitudinal sectional view of a main part of a batch type dry distillation furnace showing a fourth embodiment of the present invention.

【図6】この発明の実施の形態5を示すバッチ式乾留炉
の要部縦断面図である。
FIG. 6 is a longitudinal sectional view of a main part of a batch type dry distillation furnace showing a fifth embodiment of the present invention.

【図7】この発明の実施の形態6を示すバッチ式乾留炉
の要部縦断面図である。
FIG. 7 is a longitudinal sectional view of a main part of a batch type dry distillation furnace showing a sixth embodiment of the present invention.

【図8】図7における外側炉の部分斜視図である。FIG. 8 is a partial perspective view of the outer furnace in FIG.

【図9】この発明の実施の形態7を示す外側炉の部分斜
視図である。
FIG. 9 is a partial perspective view of an outer furnace showing a seventh embodiment of the present invention.

【図10】この発明の実施の形態8を示す連続式乾留炉
の縦断面図である。
FIG. 10 is a vertical sectional view of a continuous dry distillation furnace showing an eighth embodiment of the present invention.

【図11】この発明の実施の形態9を示す連続式乾留炉
の外側炉の部分斜視図である。
FIG. 11 is a partial perspective view of an outer furnace of a continuous dry distillation furnace showing a ninth embodiment of the present invention.

【図12】この発明の実施の形態10を示す連続式乾留
炉の外側炉の部分斜視図である。
FIG. 12 is a partial perspective view of an outer furnace of a continuous dry distillation furnace showing a tenth embodiment of the present invention.

【図13】従来例を示すバッチ式乾留炉の縦断面図であ
る。
FIG. 13 is a vertical sectional view of a batch type carbonization furnace showing a conventional example.

【図14】従来例を示す連続式乾留炉の縦断面図であ
る。
FIG. 14 is a vertical sectional view of a continuous dry distillation furnace showing a conventional example.

【符号の説明】[Explanation of symbols]

1 炉体 2 加熱コイル 3 炉蓋 9 内側炉 10 外側炉 11 隙間 12 スペーサ 13 スペーサ 15 断熱材 16 断熱材 17 真空ポンプ 18 通気孔 19 スリット 20 補助炉 21 枠体 22 枠体 23 支持材 24 炉底材 25 絶縁材 1 furnace body 2 heating coils 3 furnace lid 9 Inner furnace 10 Outer furnace 11 Gap 12 spacers 13 Spacer 15 Insulation 16 Insulation 17 Vacuum pump 18 vents 19 slits 20 auxiliary furnace 21 frame 22 frame 23 Support material 24 Furnace bottom material 25 insulation

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K051 AA00 AA03 AA05 AB03 BA02 BA04 4K063 AA01 AA12 BA13 CA01 CA02 CA05 FA36 FA39    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K051 AA00 AA03 AA05 AB03 BA02                       BA04                 4K063 AA01 AA12 BA13 CA01 CA02                       CA05 FA36 FA39

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】中空筒状の炉体をその外側に配置した加熱
コイルにより誘導加熱し、炉内の被処理物を乾留する誘
導加熱式乾留炉において、 前記炉体を磁性材料からなる内側炉と非磁性材料からな
る外側炉とからなる2重構造とし、主として前記内側炉
を誘導加熱するとともに、この内側炉を前記外側炉で構
造的に保持するようにしたことを特徴とする誘導加熱式
乾留炉。
1. An induction heating type carbonization furnace in which a hollow cylindrical furnace body is induction-heated by a heating coil arranged outside thereof to dry-distill an object to be treated in the furnace, wherein the furnace body is an inner furnace made of a magnetic material. And an outer furnace made of a non-magnetic material, having a double structure, and mainly the inner furnace is induction-heated, and the inner furnace is structurally held by the outer furnace. Carbonization furnace.
【請求項2】前記磁性材料を鉄材とし、前記非磁性材料
をステンレス材としたことを特徴とする請求項1記載の
誘導加熱式乾留炉。
2. The induction heating dry distillation furnace according to claim 1, wherein the magnetic material is an iron material and the non-magnetic material is a stainless material.
【請求項3】前記内側炉と前記外側炉との間に隙間を設
け、この隙間に絶縁物のスペーサを挿入したことを特徴
とする請求項2記載の誘導加熱式乾留炉。
3. The induction heating dry distillation furnace according to claim 2, wherein a gap is provided between the inner furnace and the outer furnace, and an insulating material spacer is inserted into the gap.
【請求項4】前記隙間に断熱材を充填したことを特徴と
する請求項3記載の誘導加熱式乾留炉。
4. The induction heating dry distillation furnace according to claim 3, wherein the gap is filled with a heat insulating material.
【請求項5】前記隙間を真空引きしたことを特徴とする
請求項3記載の誘導加熱式乾留炉。
5. The induction heating dry distillation furnace according to claim 3, wherein the gap is evacuated.
【請求項6】前記外側炉の前記加熱コイルと対向する炉
壁に、前記加熱コイルの巻線と直交する向きにスリット
を設けたことを特徴とする請求項1記載の誘導加熱式乾
留炉。
6. The induction heating dry distillation furnace according to claim 1, wherein the furnace wall of the outer furnace facing the heating coil is provided with a slit in a direction orthogonal to the winding of the heating coil.
【請求項7】前記外側炉の前記加熱コイルと対向する炉
壁に、前記加熱コイルの巻線と直交する向きにスリット
を設けるとともに、前記外側炉の内側又は外側に、前記
スリットを閉塞する絶縁物又は非磁性材料からなる補助
炉を設けたことを特徴とする請求項5記載の誘導加熱式
乾留炉。
7. A furnace wall facing the heating coil of the outer furnace is provided with a slit in a direction orthogonal to the winding of the heating coil, and an insulating material for closing the slit inside or outside the outer furnace. The induction heating dry distillation furnace according to claim 5, further comprising an auxiliary furnace made of a non-magnetic material or a non-magnetic material.
【請求項8】前記外側炉を複数の軸方向に長い支持材を
周方向に隙間を介して配列して構成したことを特徴とす
る請求項1記載の誘導加熱式乾留炉。
8. The induction heating dry distillation furnace according to claim 1, wherein the outer furnace is configured by arranging a plurality of support members that are long in the axial direction with a gap in the circumferential direction.
【請求項9】前記内側炉を着脱可能に設置したたことを
特徴とする請求項2記載の誘導加熱式乾留炉。
9. The induction heating dry distillation furnace according to claim 2, wherein the inner furnace is detachably installed.
【請求項10】底付き筒体からなる前記内側炉の底壁と
側壁との間を絶縁したことを特徴とする請求項2記載の
誘導加熱式乾留炉。
10. The induction heating dry distillation furnace according to claim 2, wherein an insulation is provided between a bottom wall and a side wall of the inner furnace having a bottomed cylinder.
JP2002075372A 2002-03-19 2002-03-19 Induction heating dry distillation furnace Pending JP2003269866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002075372A JP2003269866A (en) 2002-03-19 2002-03-19 Induction heating dry distillation furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002075372A JP2003269866A (en) 2002-03-19 2002-03-19 Induction heating dry distillation furnace

Publications (1)

Publication Number Publication Date
JP2003269866A true JP2003269866A (en) 2003-09-25

Family

ID=29204461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002075372A Pending JP2003269866A (en) 2002-03-19 2002-03-19 Induction heating dry distillation furnace

Country Status (1)

Country Link
JP (1) JP2003269866A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083633A (en) * 2003-09-08 2005-03-31 Fuji Electric Systems Co Ltd Induction heating type pyrolysis furnace
JP2006046764A (en) * 2004-08-03 2006-02-16 Ibiden Co Ltd Kiln
JP2006234292A (en) * 2005-02-25 2006-09-07 Fuji Electric Systems Co Ltd Induction heating type dry distillation furnace
JP2010236822A (en) * 2009-03-31 2010-10-21 Johnan Corp Heating rotary furnace
CN108555526A (en) * 2018-04-28 2018-09-21 南京航空航天大学 A kind of hot-work die crack forming mechanism device and restorative procedure
JP2019027604A (en) * 2017-07-25 2019-02-21 トヨタ自動車株式会社 Double adiabatic wall-structured heating furnace
KR102567698B1 (en) * 2023-02-22 2023-08-18 영진아이엔디(주) Plasma scrubber having insulation structure on the inner surface of the reaction chamber and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005083633A (en) * 2003-09-08 2005-03-31 Fuji Electric Systems Co Ltd Induction heating type pyrolysis furnace
JP2006046764A (en) * 2004-08-03 2006-02-16 Ibiden Co Ltd Kiln
JP2006234292A (en) * 2005-02-25 2006-09-07 Fuji Electric Systems Co Ltd Induction heating type dry distillation furnace
JP4658638B2 (en) * 2005-02-25 2011-03-23 メタウォーター株式会社 Induction heating type distillation furnace
JP2010236822A (en) * 2009-03-31 2010-10-21 Johnan Corp Heating rotary furnace
JP2019027604A (en) * 2017-07-25 2019-02-21 トヨタ自動車株式会社 Double adiabatic wall-structured heating furnace
US10876793B2 (en) 2017-07-25 2020-12-29 Toyota Jidosha Kabushiki Kaisha Heating furnace having double insulating wall structure
CN108555526A (en) * 2018-04-28 2018-09-21 南京航空航天大学 A kind of hot-work die crack forming mechanism device and restorative procedure
KR102567698B1 (en) * 2023-02-22 2023-08-18 영진아이엔디(주) Plasma scrubber having insulation structure on the inner surface of the reaction chamber and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7424045B2 (en) Method and apparatus for heating a workpiece in an inert atmosphere or in vacuum
JP4458079B2 (en) Vacuum carburizing equipment
JP4458107B2 (en) Vacuum carburizing method and vacuum carburizing apparatus
TWI497023B (en) Vertical heat treatment apparatus and method for cooling the apparatus
US20150230293A1 (en) System for insulating an induction vacuum furnace and method of making same
TWI495836B (en) Vertical heat treatment apparatus and assembly of pressure detection system and temperature sensor
JP2003269866A (en) Induction heating dry distillation furnace
US11766718B2 (en) Compound furnace
US9453291B2 (en) Single crystal pulling apparatus and low heat conductive member used for single crystal pulling apparatus
JP3018843B2 (en) Heat treatment furnace
JP3312407B2 (en) Roller hearth vacuum furnace
JPH11251049A (en) Induction heating apparatus
JP2005072468A (en) Heat treatment apparatus of semiconductor wafer
JP4350322B2 (en) Heat treatment equipment
CN209341826U (en) A kind of square high temperature graphitization processing heating furnace
JP2004289012A (en) Induction heating coil unit, semiconductor heat treatment apparatus and heat treatment method
JP2004014892A (en) High-temperature heating apparatus
CN107957198A (en) A kind of snake type graphite heater of vacuum resistance furnace
JP5555860B2 (en) Immersion heater and method of using immersion heater
JP2000268995A (en) Plasma processing device
JP3978657B2 (en) Induction heating type distillation furnace
CN219044956U (en) Local destressing heat treatment device after steel pipe welding
KR20140052272A (en) Heat treatment device for annealing process
KR20120072668A (en) Vacuum heat treatment apparatus
JP4907222B2 (en) Semiconductor wafer heating device