JP3018843B2 - Heat treatment furnace - Google Patents
Heat treatment furnaceInfo
- Publication number
- JP3018843B2 JP3018843B2 JP5190353A JP19035393A JP3018843B2 JP 3018843 B2 JP3018843 B2 JP 3018843B2 JP 5190353 A JP5190353 A JP 5190353A JP 19035393 A JP19035393 A JP 19035393A JP 3018843 B2 JP3018843 B2 JP 3018843B2
- Authority
- JP
- Japan
- Prior art keywords
- heat treatment
- insulating material
- heat insulating
- heat
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば抵抗発熱体を有
する抵抗炉等の熱処理炉の改良に関し、詳しくは昇温、
降温を繰り返しても、断熱材に反り、劣化等が生じにく
い断熱壁構造を備えた熱処理炉に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a heat treatment furnace such as a resistance furnace having a resistance heating element.
The present invention relates to a heat treatment furnace provided with a heat insulating wall structure that is less likely to warp, deteriorate, and the like even when the temperature is repeatedly lowered.
【0002】[0002]
【従来の技術】従来、炭素系材料、セラミックス系材料
など各種工業用材料の加熱処理に用いられる熱処理炉と
しては、抵抗炉、誘導炉、アーク炉、プラズマ炉などが
知られており、この中でも抵抗発熱体に電流を通じ、発
生するジュール熱を利用した抵抗炉が広く用いられてい
る。2. Description of the Related Art Conventionally, resistance furnaces, induction furnaces, arc furnaces, plasma furnaces, and the like are known as heat treatment furnaces used for heat treatment of various industrial materials such as carbon materials and ceramic materials. A resistance furnace using Joule heat generated by passing an electric current through a resistance heating element is widely used.
【0003】通常、この抵抗炉型式の熱処理炉は、筒型
または箱型をした炉殻の内壁面に断熱材を張り付けて被
処理物の熱処理室を形成し、該熱処理室内に筒状または
棒状の抵抗発熱体を上下あるいは環状に配設し、熱処理
室内に静置するか、または連続的に通過する被処理物
を、熱処理室内温度が2000〜3000℃付近の高温
下、かつ、減圧雰囲気下の窒素やアルゴンなどの不活性
ガス雰囲気中で抵抗発熱体表面から放射する輻射熱を利
用して加熱を行うものである。抵抗発熱体としては、金
属材料やセラミックス系材料では実用に供し得ない20
00〜3000℃の高温領域でも溶融、分解などを起こ
さずに十分にその機能を発揮し、かつ、比較的安価な材
料である炭素材(主として黒鉛)が一般に用いられてい
る。Normally, this resistance furnace type heat treatment furnace forms a heat treatment chamber for an object to be treated by attaching a heat insulating material to an inner wall surface of a cylindrical or box-shaped furnace shell, and forms a cylindrical or rod-shaped heat treatment chamber in the heat treatment chamber. The resistance heating element is disposed vertically or annularly, and the object to be processed is allowed to stand still in the heat treatment chamber or continuously passed through the heat treatment chamber at a high temperature of about 2000 to 3000 ° C. and under a reduced pressure atmosphere. Heating is performed using radiant heat radiated from the surface of the resistance heating element in an inert gas atmosphere such as nitrogen or argon. As a resistance heating element, a metal material or a ceramic material cannot be put to practical use.
Carbon materials (mainly graphite), which are sufficiently inexpensive even at a high temperature range of 00 to 3000 ° C. without causing melting and decomposition, and are relatively inexpensive materials, are generally used.
【0004】ところで、高温下での一般的な断熱壁構造
としては、図5に示すように、その断熱壁構造3は、熱
処理炉の炉殻2に対し、炉殻側成形断熱材30と熱処理
室側成形断熱材31とがこの順に設けられた主として2
層構造のもので、さらに熱処理室側成形断熱材31の熱
処理側には、これら2層の断熱材30、31を熱処理室
内部の図示しない熱源から放射される強烈な輻射熱から
保護するため、例えば、シート状のc/cコンポジッ
ト、黒鉛板等の材質から成る保護層33が張設されたも
のである。なお、熱処理室側成形断熱材31は、高温加
熱時の膨脹・収縮を許容させると共に炉内雰囲気をシー
ルするため、所定の空隙を介して階段状に分割され、そ
の接合部の空隙には材質が黒鉛から成る成形フェルト3
9が充填されている。そして、これら成形断熱材30、
31、および保護層33は、貫通孔32が設けられて材
質が黒鉛から成る筒状のボス35が炉殻側成形断熱材3
0に埋込まれ、前記ボス35の左端と上記保護材33の
表面に炭素製の座38を介して炭素材あるいはc/cコ
ンポジットから成るボルト36とナット37とで一体化
されている。As a general heat insulating wall structure at a high temperature, as shown in FIG. 5, the heat insulating wall structure 3 has a furnace shell side formed heat insulating material 30 and a heat treatment The room-side formed heat insulating material 31 is mainly provided in this order.
In order to protect these two layers of heat insulating materials 30 and 31 from intense radiant heat radiated from a heat source (not shown) inside the heat treatment chamber, for example, And a protective layer 33 made of a material such as a sheet-like c / c composite or a graphite plate. The heat treatment chamber side molded heat insulating material 31 is divided stepwise through predetermined gaps in order to allow expansion and contraction at the time of high temperature heating and to seal the atmosphere in the furnace. Felt 3 made of graphite
9 are filled. And these molded heat insulating materials 30,
31 and the protective layer 33 are provided with a through-hole 32 and a tubular boss 35 made of graphite and made of a furnace shell side molded heat insulating material 3.
The boss 35 is integrated with a left end of the boss 35 and a surface of the protective member 33 with a bolt 36 and a nut 37 made of a carbon material or a c / c composite through a carbon seat 38.
【0005】なお、熱処理炉の昇降温に伴って断熱材3
が膨脹するため、断熱材3が可動し易いようにボス35
の打込み本数をできる限り少なくし、上記成形断熱材3
0、31の分割数を減らし、接合部が少なくなるように
配慮されていた。[0005] As the temperature of the heat treatment furnace rises and falls, the heat insulating material 3
The boss 35 is expanded so that the heat insulating material 3 can be easily moved.
Of the molded heat insulating material 3
The number of divisions of 0 and 31 was reduced so that the number of joints was reduced.
【0006】このような高温領域、特に2500℃以上
の高温加熱処理に供される従来の熱処理炉としては、例
えば特開昭63−153388号公報に開示されたもの
が提案されている。As a conventional heat treatment furnace to be subjected to such a high-temperature region, particularly a high-temperature heat treatment at 2500 ° C. or higher, the one disclosed in, for example, JP-A-63-153388 has been proposed.
【0007】この熱処理炉は、断熱材の処理室側壁面の
少なくとも一部が、嵩密度0.3g/cm3 以上の黒鉛
系材料で形成され、かつ、黒鉛ヒ−タの外表面積(A
h)と断熱材の処理室側壁面の表面積(Ai)との比A
h/Aiは0.1〜0.4で、嵩密度0.3g/cm3
以上の黒鉛系材料で形成された壁面の表面積(Ar)と
黒鉛ヒ−タの外表面積(Ah)との関係はAr>Ahで
あり、黒鉛系材料は2000℃における輻射率が0.8
以下とすることにより、黒鉛ヒ−タと断熱材の熱劣化に
対する寿命延長を図ろうとするものである。In this heat treatment furnace, at least a part of the side wall surface of the heat insulating material in the processing chamber is formed of a graphite-based material having a bulk density of 0.3 g / cm 3 or more, and an outer surface area (A) of the graphite heater.
h) and the ratio A of the surface area (Ai) of the side wall surface of the processing chamber of the heat insulating material.
h / Ai is 0.1 to 0.4 and bulk density is 0.3 g / cm 3
The relationship between the surface area (Ar) of the wall surface formed of the above graphite-based material and the outer surface area (Ah) of the graphite heater is Ar> Ah, and the emissivity of the graphite-based material at 2000 ° C. is 0.8.
The following is intended to extend the life of the graphite heater and the heat insulating material against thermal degradation.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、上記従
来の熱処理炉は、使用される成形断熱材がいずれもフェ
ルトを基材にフェノール樹脂などのバインダーを介して
積層成形し、抵抗炉などの熱処理炉で加熱処理されて製
造されたもので、その加熱処理温度が高温になると価格
が高騰するため、工業用に用いられる熱処理炉において
は2000〜2400℃処理品が多く使用されているの
が実情である。However, in the above-mentioned conventional heat treatment furnaces, each of the molding heat insulating materials used is formed by laminating a felt as a base material through a binder such as a phenol resin, and the heat treatment furnace such as a resistance furnace. In the case of heat treatment furnaces used for industrial use, products processed at 2000 to 2400 ° C. are used in many cases because the price increases when the heat treatment temperature is high. is there.
【0009】このため、高温、特に上記処理温度より高
い2500℃以上の高温下で昇温、降温を繰り返すと成
形断熱材に進行性の反りが生じ、断熱材の処理室側壁面
に張設した前記黒鉛系材料が破損するという欠点があっ
た。その結果、成形断熱材の接合部に反りによる空隙が
生じ、熱処理室内の温度斑をきたし、被処理物の品質が
悪化することから、断熱材の熱劣化による寿命に到達す
る前に上記反りによって断熱材としての寿命に達すると
いう問題があった。For this reason, when the temperature is repeatedly increased and decreased at a high temperature, particularly at a high temperature of 2500 ° C. or higher, which is higher than the above-mentioned processing temperature, a progressive warp occurs in the molded heat insulating material, and the heat insulating material is stretched on the side wall surface of the processing chamber. There was a disadvantage that the graphite-based material was damaged. As a result, voids due to warping are generated at the joints of the molded heat insulating material, causing temperature unevenness in the heat treatment chamber, and deteriorating the quality of the object to be processed. There is a problem that the life as a heat insulating material is reached.
【0010】また、黒鉛系材料の破損部分は、抵抗発熱
体の表面から放射される輻射熱を反射できなくなるた
め、輻射熱が直接成形断熱材に当たることになるうえ被
処理物を加熱処理する際に発生する熱分解ガスが成形断
熱材に浸透するため、高価な成形断熱材の劣化が促進さ
れるという欠点があった。Further, the broken portion of the graphite-based material cannot reflect the radiant heat radiated from the surface of the resistance heating element, so that the radiant heat directly hits the molded heat insulating material and is generated when the object to be processed is heated. Since the pyrolysis gas is permeated into the formed heat insulating material, there is a disadvantage that the deterioration of the expensive formed heat insulating material is promoted.
【0011】本発明は、このような事情に鑑みてなされ
たもので、熱処理条件が高温、かつ、長時間の苛酷な条
件であっても、熱処理室内部の断熱材に反り、劣化等が
発生せず、十分に長時間の高温処理が可能な断熱壁構造
を有する熱処理炉を提供することを目的とする。The present invention has been made in view of such circumstances, and even when heat treatment conditions are high temperature and severe for a long time, the heat insulating material inside the heat treatment chamber may be warped or deteriorated. An object of the present invention is to provide a heat treatment furnace having a heat insulating wall structure capable of performing a high-temperature treatment for a sufficiently long time without performing the heat treatment.
【0012】[0012]
【課題を解決するための手段】本発明に係る熱処理炉
は、上記目的を達成するため、被処理物を加熱する抵抗
発熱体と、前記被処理物および抵抗発熱体を包囲し、内
面に断熱材が固定された熱処理室とを有し、前記抵抗発
熱体の表面から放射される輻射熱により前記被処理物を
加熱処理する熱処理炉において、 (イ)前記断熱材は、炉殻に固定された炉殻側成形断熱
材と、前記炉殻側成形断熱材に積層され、前記熱処理室
に面する複数個に分割された熱処理室側成形断熱材の少
なくとも二層からなり、 (ロ)前記熱処理室側成形断熱材の表面に、曲げ弾性率
が0.5Ton/mm2以下であって、かつ、厚さが3
mm以下の黒鉛から成る複数に分割された可撓性シート
状保護材を接合して平面状に張設し、 (ハ)前記熱処理室側成形断熱材の接合部には、前記可
撓性シート状保護材を介して、黒鉛からなる当板を、ま
た、前記熱処理室側成形断熱材の周辺部には、黒鉛から
成るL形部材を配設すると共に、前記当板およびL形部
材を固定部材で前記炉殻側成形断熱材の表面に固定した
ことを特徴とする。In order to achieve the above object, a heat treatment furnace according to the present invention has a resistance heating element for heating an object to be processed, a resistance heating element surrounding the object to be processed and the resistance heating element, and a heat insulating inner surface. A heat treatment chamber having a heat treatment chamber in which a material is fixed, wherein the heat treatment furnace heat-treats the object by radiant heat radiated from the surface of the resistance heating element; (a) the heat insulating material is fixed to a furnace shell (B) the heat treatment chamber, comprising at least two layers of a furnace shell-side heat insulation material and a plurality of heat treatment chamber-side formed heat insulation materials laminated on the furnace shell side heat insulation material and divided into a plurality of pieces facing the heat treatment chamber; On the surface of the side molded heat insulating material, the flexural modulus is 0.5 Ton / mm 2 or less and the thickness is 3
by joining a flexible sheet-like protective material that is divided into a plurality consisting mm or less graphite stretched in a planar shape, (c) wherein the junction of the heat treatment chamber side molding insulation, said Allowed
An aforesaid plate made of graphite is provided via a flexible sheet-like protective material, and an L-shaped member made of graphite is provided around the heat-insulating material on the side of the heat treatment chamber. The member is fixed to the surface of the furnace shell side formed heat insulating material by a fixing member.
【0013】この場合、前記炉殻側成形断熱材、熱処理
室側成形断熱材、可撓性シート状保護材、当板およびL
形部材は、黒鉛製で筒状のボス、および黒鉛材またはc
/cコンポジット製のボルトとナットから成る引抜け防
止構造の固定部材で一体に固定されていることが好まし
い。すなわち、ここでいう引抜け防止構造とは、上記断
熱材に差し込まれたボスやボルトが熱処理室側に抜ける
ことがないように、ボルトに螺合したナットが断熱材に
止められる構造や、上記特定の寸法関係をなすものをい
う。[0013] In this case, the furnace shell side formed heat insulating material, the heat treatment room side formed heat insulating material, the flexible sheet-shaped protective material, the plate and the L
The shape member is made of graphite, a cylindrical boss, and graphite material or c.
It is preferable that the fixing member is integrally fixed with a fixing member having a pull-out preventing structure including a bolt and a nut made of a / c composite. That is, the pull-out prevention structure referred to here means a structure in which a nut screwed to the bolt is fixed to the heat insulating material so that the boss or the bolt inserted into the heat insulating material does not come off to the heat treatment chamber side. A material that has a specific dimensional relationship.
【0014】また、前記炉殻側成形断熱材および熱処理
室側成形断熱材は、接合後の形状が矩形状であり、長辺
の長さ(L)と厚み(t)との関係がL≦7tであるこ
とが好ましい。Further, the heat-insulating material on the furnace shell side and the heat-insulating material on the heat treatment chamber side have a rectangular shape after joining, and the relationship between the length (L) and the thickness (t) of the long side is L ≦ L. It is preferably 7t.
【0015】さらに、前記炉殻側成形断熱材および熱処
理室側成形断熱材は、接合後の形状が矩形状であり、長
辺の長さ(L)と厚み(t)との関係がL≦7tである
ことが好ましい。Further, the furnace shell side heat insulating material and the heat treatment room side heat insulating material have a rectangular shape after joining, and the relationship between the length (L) of the long side and the thickness (t) is L ≦ L. It is preferably 7t.
【0016】[0016]
【作用】本発明の熱処理炉は、熱処理室側成形断熱材の
表面に曲げ弾性率0.5Ton/mm2 以下であって、
かつ、厚さ3mm以下の可撓性シート状保護材を張設し
たため、抵抗発熱体からの輻射熱により、たとえ炉殻側
成形断熱材および熱処理室側成形断熱材に反り、うねり
等が生じても、その曲げ弾性率が低いために破損するこ
となく断熱材の反り、うねり等に追随し、常時、輻射熱
を遮ることができる。According to the heat treatment furnace of the present invention, the surface of the heat-insulating material on the heat treatment room side has a flexural modulus of 0.5 Ton / mm 2 or less,
In addition, since a flexible sheet-shaped protective material having a thickness of 3 mm or less is stretched, even if the furnace shell-side formed heat insulating material and the heat treatment room side formed heat insulating material warp or undulate due to radiant heat from the resistance heating element. Since it has a low flexural modulus, it can follow the warpage, undulation, etc. of the heat insulating material without being damaged, and can always block radiant heat.
【0017】また、上記保護材は、2500℃以上の高
温下でも破損や劣化減耗がないため、被処理物から発生
する熱分解ガスの断熱材への浸透・吸着による断熱性能
の低下や、熱処理室側成形断熱材表面の抵抗発熱体から
の輻射熱による劣化が防止される。Further, since the protective material is not damaged or deteriorated even at a high temperature of 2500 ° C. or more, the thermal insulation gas deteriorates due to the permeation and adsorption of the pyrolysis gas generated from the object to the heat insulating material and the heat treatment. The deterioration of the surface of the chamber-side formed heat insulating material due to radiant heat from the resistance heating element is prevented.
【0018】また、炉殻側成形断熱材および熱処理室側
成形断熱材は、その接合部や周辺部が当板、L形部材お
よび固定部材等で固定されるので、見掛け上厚さ方向に
一体となった断熱材となり、したがって剛性が向上し、
結果的に高温にさらされる熱処理室側断熱材の周辺部の
反りが防止される。Further, since the furnace shell-side formed heat insulating material and the heat treatment room side formed heat insulating material are fixed at their joints and peripheral portions with a contact plate, an L-shaped member, a fixing member, and the like, they are apparently integrated in the thickness direction. Heat insulation material, thus improving rigidity,
As a result, warpage of the peripheral portion of the heat treatment chamber side heat insulating material exposed to high temperatures is prevented.
【0019】さらに、炉殻側成形断熱材および熱処理室
側成形断熱材は、接合後の形状が矩形状であり、長辺の
長さ(L)と厚み(t)との関係をL≦7tとしたの
で、一枚当りの面積が小さくすることができ、同一厚み
でも反りによる変形を小さく抑えることができる。Furthermore, the furnace shell side heat insulating material and the heat treatment room side heat insulating material have a rectangular shape after joining, and the relationship between the length (L) of the long side and the thickness (t) is L ≦ 7t. Therefore, the area per sheet can be reduced, and deformation due to warpage can be suppressed even with the same thickness.
【0020】[0020]
【実施例】以下、本発明に係る熱処理炉の一実施例を図
面を参照して具体的に説明する。図1は、本発明に係る
熱処理炉の縦断面図、図2は、図1の炉壁部の拡大断面
図、図3は、その右側面図、図4は、図2の全体右側面
図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a heat treatment furnace according to the present invention will be specifically described below with reference to the drawings. 1 is a longitudinal sectional view of a heat treatment furnace according to the present invention, FIG. 2 is an enlarged sectional view of a furnace wall portion of FIG. 1, FIG. 3 is a right side view thereof, and FIG. It is.
【0021】図1において、1は、内部に熱処理室5が
形成された箱型状の熱処理炉で、炉殻2の内側に炉殻側
成形断熱材30と、熱処理室側成形断熱材31とが固定
され、さらに熱処理室側成形断熱材31の内壁面には、
本発明の特徴である可撓性シート状保護材40が張設さ
れている。熱処理室5には、抵抗発熱体6が紙面と直角
方向に3本ずつ上下2段に配設され、それぞれの両端部
が電極7に固定されると共に炉殻2から絶縁された給電
端子部8で支持されている。各抵抗発熱体6は、図示し
ない外部の給電設備から給電された電流によって発生し
たジュール熱により、支持材9に載置された被処理物4
に輻射熱を放射して加熱処理するものである。また、熱
処理炉1には、被処理物4を窒素ガス、アルゴンガス等
の不活性ガス雰囲気下、かつ、所定の圧力下で加熱処理
ができるように、炉底に不活性ガスGの給気口10が、
炉頂に電磁弁11が付帯した排気口12が設けられ、図
示省略のコントローラで制御されている。なお、13
は、抵抗発熱体6の表面温度を覗き窓14を介して測定
制御するための放射温度計であり、放射温度計13から
の出力信号は、加熱制御器15に伝達され、熱処理室5
内の温度が一定になるように抵抗発熱体の出力制御がさ
れる。16は、被処理物4を熱処理室5に出し入れする
ための扉で、図示省略の装置により開閉することができ
るようになっている。In FIG. 1, reference numeral 1 denotes a box-shaped heat treatment furnace in which a heat treatment chamber 5 is formed, and a furnace shell side formed heat insulating material 30 and a heat treated room side formed heat insulating material 31 are provided inside the furnace shell 2. Is fixed, and further on the inner wall surface of the heat treatment room side formed heat insulating material 31,
A flexible sheet-like protective material 40 which is a feature of the present invention is stretched. In the heat treatment chamber 5, three resistance heating elements 6 are arranged in three rows in a direction perpendicular to the plane of the drawing, and two ends thereof are fixed to the electrodes 7 and both ends are fixed to the electrodes 7 and the power supply terminal sections 8 insulated from the furnace shell 2. Supported by. Each of the resistance heating elements 6 causes the object 4 placed on the support member 9 by Joule heat generated by a current supplied from an external power supply facility (not shown).
To radiate heat to perform heat treatment. Further, in the heat treatment furnace 1, the inert gas G is supplied to the bottom of the furnace so that the object 4 can be heated under an inert gas atmosphere such as nitrogen gas or argon gas under a predetermined pressure. Mouth 10
An exhaust port 12 with an electromagnetic valve 11 is provided at the furnace top, and is controlled by a controller (not shown). Note that 13
Is a radiation thermometer for measuring and controlling the surface temperature of the resistance heating element 6 through the viewing window 14. The output signal from the radiation thermometer 13 is transmitted to the heating controller 15, and the heat treatment chamber 5
The output of the resistance heating element is controlled so that the inside temperature becomes constant. Reference numeral 16 denotes a door for taking the workpiece 4 into and out of the heat treatment chamber 5, and can be opened and closed by a device (not shown).
【0022】ここで、上記炉殻2としては、厚さが3〜
10mmの例えばステンレス鋼、炭素鋼などの鋼板から
成り、その外形は、箱型状、円筒状等の任意の形状に形
成することができる。Here, the furnace shell 2 has a thickness of 3 to 3 mm.
It is made of a steel plate of 10 mm, for example, stainless steel, carbon steel or the like, and its outer shape can be formed in any shape such as a box shape or a cylindrical shape.
【0023】炉殻側成形断熱材30、および熱処理室側
成形断熱材31としては、いずれも材質が黒鉛のものを
用いるのが好ましく、その厚さは、本発明の熱処理室内
温度2500℃以上の領域においては、それぞれ100
〜250mm、100〜200mm程度のものが好まし
い。As the furnace shell-side formed heat insulating material 30 and the heat treatment room-side formed heat insulating material 31, it is preferable to use a material made of graphite, and the thickness thereof is not less than 2500 ° C. in the heat treatment room of the present invention. In the area, each 100
It is preferably about 250 to 250 mm and about 100 to 200 mm.
【0024】可撓性シート状保護材40としては、材
質が異方性を有する黒鉛から成り、かつ、曲げ弾性率
が0.5Ton/mm2 以下で、かつ、その厚さが3m
m以下のシート状物であるのが好ましい。その理由は、
上記の特性は、熱的特性と電気的特性に顕著な異方性
をもち、熱伝導度は面方向では高いが面と垂直な方向、
すなわち厚さ方向では低いという、輻射熱を遮断するう
えで好適な特性であり、上記の特性は、2500℃以
上の高温領域においては、前述したように工業用に用い
られる熱処理炉において2400℃以下の処理をした成
形断熱材がコスト面との兼ね合いから用いられるため、
実際の加熱時においては、成形断熱材30、31として
3〜5mm程度のうねりを避けられないが、可撓性シー
ト状保護材40を覆うことによって、抵抗発熱体からの
強烈な放射熱を遮断しつつも、自らは亀裂、焼損等をす
ることなく、昇温時には成形断熱材30、31のうねり
に応じて湾曲し、降温時には元通りの平らなシートに戻
ろうとする、両断熱材の保護機能を発揮するからであ
る。この保護機能は、上記特定の曲げ弾性率と厚さを越
えると、得ることができない。The flexible sheet-like protective material 40 is made of graphite having anisotropy, has a flexural modulus of 0.5 Ton / mm 2 or less, and has a thickness of 3 m.
m or less. The reason is,
The above properties have remarkable anisotropy in thermal and electrical properties, and thermal conductivity is high in the plane direction, but in the direction perpendicular to the plane,
That is, it is low in the thickness direction, which is a suitable characteristic for blocking radiant heat. The above-mentioned characteristic is, in a high-temperature region of 2500 ° C. or higher, 2400 ° C. or lower in a heat treatment furnace used for industrial use as described above. Because the treated molded insulation is used in view of cost considerations,
At the time of actual heating, undulations of about 3 to 5 mm cannot be avoided as the molded heat insulating materials 30 and 31, but by covering the flexible sheet-like protective material 40, intense radiant heat from the resistance heating element is blocked. In addition, it protects itself without cracking, burning, etc., it curves when the temperature rises according to the undulations of the formed heat insulating materials 30 and 31 and returns to the original flat sheet when the temperature drops. This is because they perform their functions. This protective function cannot be obtained if the specific flexural modulus and thickness are exceeded.
【0025】このような2つの特性を発揮するシート状
保護材としては、例えば、膨脹黒鉛を加圧成形した厚さ
が0.2〜3mm程度のシート状物が挙げられ、その物
理的特性は、曲げ弾性率が0.5Ton/mm2 以下で
嵩密度がほぼ1.0g/cm3前後のもので、組織は緻密
質である。市販のものでは、“カーボフィット”(日立
化成工業株式会社製)、“パーマフォイル”(東洋炭素
株式会社製)、“ニカフィルム”(日本カーボン株式会
社製)、“グラフォイル”(ユニオンカーバイト社製)
等が存在する。この可撓性シート状保護材40は、穴明
け、形状作り等の加工が容易であるうえ、厚さが比較的
薄いものは小さな曲率半径で曲げることができるため、
熱処理室内のコーナ部にも貼付けることができ、従来の
シート状c/cコンポジットや黒鉛板による保護材に比
べ安価であり経済的にも有利である。As a sheet-like protective material exhibiting such two characteristics, for example, a sheet-like material having a thickness of about 0.2 to 3 mm obtained by pressure-expanding expanded graphite can be mentioned. The flexural modulus is 0.5 Ton / mm 2 or less, the bulk density is about 1.0 g / cm 3 , and the structure is dense. Commercially available products include "Carbofit" (manufactured by Hitachi Chemical Co., Ltd.), "Permafoil" (manufactured by Toyo Tanso Co., Ltd.), "Nica Film" (manufactured by Nippon Carbon Co., Ltd.), and "Grafoil" (Union Carbite Co., Ltd.) Made)
Etc. exist. This flexible sheet-like protective material 40 is easy to process such as drilling and shaping, and a relatively thin material can be bent with a small radius of curvature.
It can be affixed to a corner portion in a heat treatment chamber, and is inexpensive and economically advantageous compared to a conventional sheet-like c / c composite or a protective material made of a graphite plate.
【0026】次に、図2を用いて上記熱処理炉の断熱壁
構造を具体的に説明する。Next, the heat insulating wall structure of the heat treatment furnace will be specifically described with reference to FIG.
【0027】まず、炉殻側成形断熱材30を炉殻2に固
定し易くするため、複数に分割し、それぞれの炉殻側成
形断熱材30の炉殻2側に、引抜け防止ナット41装着
のための穴ぐり30aと、ボス35の埋込み用穴30b
を加工する。また、図示していない炉殻側成形断熱材3
0の接合部は、図示した熱処理室側成形断熱材31の接
合部と同様、予め厚さの半分位置でお互いの成形断熱材
が突合わないよう隙間31aを設けて階段状で異なった
接合位置で加工されている。First, in order to easily fix the furnace shell side formed heat insulating material 30 to the furnace shell 2, it is divided into a plurality of parts and each of the furnace shell side formed heat insulating materials 30 is provided with a pull-out preventing nut 41 on the furnace shell 2 side. Hole 30a for embedding, and hole 30b for embedding boss 35
To process. In addition, the furnace shell side formed heat insulating material 3 (not shown)
In the same manner as the joint of the heat treatment chamber-side molded heat insulating material 31 shown in FIG. 2, a joint 31 is provided with a gap 31a so that the formed heat insulating materials do not abut each other at a half-thickness position, and has different stair-like joint positions. It is processed in.
【0028】一方、熱処理室側成形断熱材31は、接合
部を予め厚さの半分位置でお互いの成形断熱材が突合わ
ないよう隙間31aを設けて階段状に加工した上、ボス
35の埋込み用穴30bは、ボス35の外径よりも5〜
15mm内径を大きくし、穴とボス間に若干の隙間を設
けることにより、熱処理炉の昇降温に伴う成形断熱材3
1の膨脹・収縮力が直接ボス35に加わらないようにす
る。On the other hand, the heat-treating-chamber-side molded heat insulating material 31 is processed in a stepwise manner with a gap 31a provided so that the formed heat insulating materials do not abut each other at half the thickness, and the boss 35 is embedded. The hole 30b is 5 to 5 times larger than the outer diameter of the boss 35.
By increasing the inner diameter of 15 mm and providing a slight gap between the hole and the boss, the molded heat insulating material 3 accompanying the rise and fall of the heat treatment furnace 3
The first expansion / contraction force is not directly applied to the boss 35.
【0029】以上の加工を事前に終えた後、炉外で炉殻
側成形断熱材30にボス35の外周面へ黒鉛セメントを
塗布した後、ボス35を穴ぐり30a端面まで埋込み、
ボス35内に炭素材あるいはc/cコンポジットから成
るボルト36を貫通させ、引抜け防止ナット41を螺合
して組付けた上、炉殻2内で組立てる。After the above processing is completed in advance, graphite cement is applied to the outer peripheral surface of the boss 35 on the furnace shell side molded heat insulating material 30 outside the furnace, and then the boss 35 is embedded to the hole 30a end face.
A bolt 36 made of a carbon material or a c / c composite is penetrated into the boss 35, a pull-out prevention nut 41 is screwed into the boss 35, and assembled inside the furnace shell 2.
【0030】次いで、予め複数に分割した熱処理室側成
形断熱材31を予め決めた手順に従って組付けていく。
この分割数は、反り防止・低減の点から炉殻側成形断熱
材30に比べ多い方が好ましく、熱処理室側成形断熱材
31の一辺の長さ(L)と厚さ(t)との関係がL≦7
tであれば、その形状は、正方形、矩形等いずれであっ
てもよい。ここで上記熱処理室側成形断熱材31の一辺
の長さ(L)がその厚さ(t)の7倍を越えると成形断
熱材の反りが大きくなるため好ましくない。Next, the heat treatment room-side formed heat insulating material 31 divided into a plurality of pieces is assembled according to a predetermined procedure.
The number of divisions is preferably larger than that of the furnace shell-side formed heat insulating material 30 from the viewpoint of preventing and reducing warpage, and the relationship between the length (L) of one side of the heat treatment room-side formed heat insulating material 31 and the thickness (t). Is L ≦ 7
If t, the shape may be any of a square, a rectangle, and the like. Here, it is not preferable that the length (L) of one side of the heat-treating-chamber-side formed heat insulating material 31 exceeds seven times the thickness (t) of the formed heat insulating material since the warpage of the formed heat insulating material becomes large.
【0031】このような事前準備が整ったら、炉殻側成
形断熱材30と接する側が凸になっている熱処理室側成
形断熱材31を炉殻側成形断熱材30より突出ているボ
ス35に装着し、接合部の隙間部分には吸収材として材
質が黒鉛から成る成形フェルト39を詰める。After such preparation is completed, the heat-treating-chamber-side heat insulating material 31 having a convex side in contact with the furnace-shell-side heat-insulating material 30 is mounted on the boss 35 protruding from the furnace-shell-side heat-insulating material 30. Then, a molded felt 39 made of graphite is filled as an absorbing material in a gap portion of the joint.
【0032】次いで、炉殻側成形断熱材30と接する側
が凹になっている熱処理室側成形断熱材31をボス35
に装着した上、可撓性シート状保護材40を張設し、さ
らに黒鉛製の当板42を介して炭素材あるいはc/cコ
ンポジットから成るナット37をねじ込んで固定し、一
体化する。Next, the heat-treating-chamber-side formed heat insulating material 31 having a concave side in contact with the furnace-shell-side formed heat insulating material 30 is transferred to the boss 35.
, A flexible sheet-like protective material 40 is stretched, and a nut 37 made of a carbon material or a c / c composite is screwed and fixed through a graphite plate 42 to be integrated.
【0033】以上の手順により、熱処理室内の断熱施工
を完了した全体右側面図が図4であり(炉壁2と内壁面
の可撓性シート状保護材40の図示は省略)、破断線の
左側は、可撓性シート状保護材40を剥がした状態を示
しており、矩形に分割された熱処理室側成形断熱材31
(図においては6分割)が、1分割当り複数の上記固定
部材(図においては1分割当り7箇所)で可撓性シート
状保護材40と共に固定され、隣り合う4枚の熱処理室
側成形断熱材31の四隅の接合部(図においては2箇
所)は、さらに当板42を介して固定されている。ま
た、分割された熱処理室側成形断熱材31の辺同士が隣
り合う部分での固定(図においては4箇所)は、基本的
には上記四隅の接合部の固定方法と同じで、当板42′
の大きさが異なる他は全て同じである。FIG. 4 is an overall right side view in which the heat insulation in the heat treatment chamber has been completed by the above procedure (illustration of the furnace wall 2 and the flexible sheet-like protective material 40 on the inner wall is omitted). The left side shows a state in which the flexible sheet-like protective material 40 has been peeled off, and the heat-treating-room-side formed heat insulating material 31 divided into rectangles.
(6 parts in the figure) are fixed together with the flexible sheet-like protective material 40 by a plurality of the fixing members (7 places in the figure) per division, and four adjacent heat treatment chamber-side formed heat insulations. The joints (two places in the figure) at the four corners of the material 31 are further fixed via a contact plate 42. The fixing at the portions where the sides of the divided heat treatment chamber-side formed heat insulating material 31 are adjacent to each other (four places in the figure) is basically the same as the method of fixing the above-mentioned four corner joints. ′
Are the same except for the size of
【0034】さらに、熱処理室側成形断熱材31の反り
を防止し、見掛け上、厚さ方向に一体となった断熱壁を
形成することにより剛性の向上、および熱変形力の小さ
い炉殻側成形断熱材を形成するため、熱処理室側成形断
熱材31の四隅の周囲には、黒鉛製のL形構成部材4
3、43’を配設し、その四隅には、黒鉛製の板状をし
た継ぎ部材44を固定することにより、前記2つのL形
構成部材43,43’とでL形部材を構成している。こ
のように、L形構成部材により、熱処理室側成形断熱材
31を、可撓性シート状保護材40と共に炉殻側成形断
熱材30に固定する。Further, the heat treatment chamber-side molding heat insulating material 31 is prevented from warping, and apparently has a heat insulating wall formed integrally in the thickness direction to improve rigidity and to form a furnace shell having a small thermal deformation force. To form the heat insulating material, graphite L-shaped component members 4 are formed around the four corners of the heat treatment room side formed heat insulating material 31.
3 and 43 'are disposed, and at each of the four corners, a plate-like splicing member 44 made of graphite is fixed.
The constituent members 43 and 43 'constitute an L-shaped member. This
As shown in the figure, the heat-insulating chamber side molded heat insulating material
31 is fixed to the furnace shell side molded heat insulating material 30 together with the flexible sheet-shaped protective material 40.
【0035】上記した実施例において、図示しない炉殻
側成形断熱材30同士の接合部や、図示した熱処理室側
成形断熱材31同士の接合部は、図示したような厚みが
半分の位置で階段状に加工された態様のものに限定され
るものではなく、その厚みがお互いに異なった状態で階
段状に加工してもよく、また、成形断熱材の厚みが比較
的薄い場合や、熱処理室側成形断熱材31の熱処理室5
側に可撓性シート状保護材40等の保護材を張設した場
合には、お互いの成形断熱材が厚み方向のストレート面
同士で隙間を隔てた接合部であってもよい。なお、図示
したような階段状に加工した場合の接合位置食い違い長
さは、成形断熱材の反りを抑える観点から100mm以
下が好ましく、50mm以下がより好ましい。また、本
実施例において断熱材は、炉殻側成形断熱材30と熱処
理室側成形断熱材31の2層から成る態様のものを示し
たが、少なくとも2層あればよく、3層以上の複層であ
ってもよい。In the above-described embodiment, the joint between the furnace shell-side molded heat insulating materials 30 (not shown) and the joint between the heat treatment chamber-side molded heat insulating materials 31 (not shown) are stair-stepped at half the thickness as shown. The present invention is not limited to the embodiment processed into a shape, and may be processed stepwise in a state where the thickness is different from each other. Heat treatment room 5 for side molded heat insulating material 31
When a protective material such as a flexible sheet-like protective material 40 is stretched on the side, the formed heat insulating materials may be joints separated by a gap between straight surfaces in the thickness direction. In addition, the staggered length at the joining position when processed into a stepped shape as shown is preferably 100 mm or less, and more preferably 50 mm or less, from the viewpoint of suppressing the warpage of the formed heat insulating material. Further, in this embodiment, the heat insulating material is shown as having two layers of the furnace shell side formed heat insulating material 30 and the heat treatment room side formed heat insulating material 31, but at least two layers are sufficient. It may be a layer.
【0036】可撓性シート状保護材40同士の継ぎ位置
は、熱処理室5で発生した有害ガスを素通りさせないた
めに熱処理室成形断熱材31の接合位置と合致させず、
位置をずらすのが好ましい。また、接合部は100〜2
00mm程度の範囲で重ね合わせるのが好ましい。さら
に、可撓性シート状保護材40の張設場所は、図示した
ような熱処理室5側に面する熱処理室側成形断熱材31
への張設態様に限定されるものではなく、炉殻側成形断
熱材30と熱処理室側成形断熱材31との境界面に該可
撓性シート状保護材40をさらに張設してもよい。ま
た、可撓性シート状保護材40の張設は、一枚に限定さ
れるものではなく、勿論複数枚重ね合わせてもよい。The joining position between the flexible sheet-like protective members 40 does not match the joining position of the heat-insulating material 31 formed in the heat treatment chamber in order to prevent the harmful gas generated in the heat treatment chamber 5 from passing through.
It is preferable to shift the position. Also, the joint is 100-2
It is preferable to overlap them in a range of about 00 mm. Further, the place where the flexible sheet-like protective material 40 is stretched is a heat treatment room side formed heat insulating material 31 facing the heat treatment room 5 side as shown in the figure.
The flexible sheet-like protective material 40 may be further stretched on the boundary surface between the furnace shell-side molded heat insulating material 30 and the heat treatment room-side molded heat insulating material 31 without being limited to the mode of stretching the flexible sheet-shaped protective material 40. . Further, the stretching of the flexible sheet-like protective material 40 is not limited to one, and a plurality of flexible sheet-like protective members 40 may of course be overlapped.
【0037】本発明の熱処理炉で処理可能な被処理理物
4としては、特に限定されないが、例えば、燃料電池の
電極基材等に用いられるc/cコンポジットや黒鉛材等
を処理することができる。The material 4 to be treated in the heat treatment furnace of the present invention is not particularly limited. For example, a c / c composite or a graphite material used for an electrode substrate of a fuel cell can be treated. it can.
【0038】上記図1〜図4に示した熱処理炉1の炉殻
サイズが幅2m、高さ1.3m、奥行き2mである矩型
の炉殻に、2000℃で熱処理された厚さ150mmの
炉殻側成形断熱材30と、2400℃処理された厚さ1
00mmの熱処理室側成形断熱材31を矩形状で各々6
分割して断熱材3を構成した。また、可撓性シート状保
護材40には、曲げ弾性率0.5Ton/mm2 以下で
厚さが1.5mm、材質が黒鉛の“カーボフィット”を
用い、上記成形断熱材31に2枚重ねで張設した。引抜
け防止ナット41と当板42は黒鉛製とし、ボルト36
とナット37はc/cコンポジット製として断熱材3を
構成した。The heat treatment furnace 1 shown in FIGS. 1 to 4 has a furnace shell size of 2 m in width, 1.3 m in height, and 2 m in depth. Furnace shell side heat insulating material 30 and thickness 1 treated at 2400 ° C.
A heat-insulating chamber-side heat insulating material 31 having a rectangular shape of
The heat insulating material 3 was configured by being divided. The flexible sheet-like protective material 40 is made of graphite “Carbofit” having a bending elastic modulus of 0.5 Ton / mm 2 or less, a thickness of 1.5 mm, and a material of graphite. Stretched in layers. The pull-out prevention nut 41 and the contact plate 42 are made of graphite, and the bolt 36
The nut 37 is made of a c / c composite to form the heat insulating material 3.
【0039】このような断熱壁構造3から成る熱処理炉
1を不活性ガス雰囲気下で最高熱処理温度2500℃迄
の昇降温を50回繰り返したが、熱処理室側成形断熱材
31、可撓性シート状保護材40に特には異常が認めら
れなかった。The heat treatment furnace 1 having such a heat insulating wall structure 3 was repeatedly heated and lowered up to a maximum heat treatment temperature of 2500 ° C. 50 times in an inert gas atmosphere. No abnormality was particularly observed in the shape protection material 40.
【0040】[0040]
比較例1 図1乃至図4に示した熱処理炉1において、炉殻側成形
断熱材30と熱処理室側成形断熱材31を3分割した他
は上記実施例と同一の断熱材処理品、固定部材、可撓性
シート状保護材40から成る断熱壁構造3とした。熱処
理室を形成する厚さ150mmの炉殻側成形断熱材30
の天井および床の1枚当りのサイズは、縦665mm、
横2000mm、また、厚さ100mmの熱処理室側成
形断熱材31の天井および床の1枚当りのサイズは、縦
615mm、横1700mm、また、炉壁の1枚当りの
サイズは、縦580mm、横800mmのいずれも一辺
の長さ(L)が各々の単層断熱材厚み(t)の7倍を越
えているものを使用した。そして、上記実施例と同一の
熱処理条件で繰り返し運転を行った結果、12バッチ過
ぎから接合部での反りのために固定部材であるc/cコ
ンポジット製のボルト36の一部が破損し、可撓性シー
ト状保護材40のうねりも大きくなり、熱処理室内の温
度斑をきたすようになり、29バッチ目で反りによって
断熱材としての寿命に達した。Comparative Example 1 In the heat treatment furnace 1 shown in FIGS. 1 to 4, the same heat treated material and fixed member as those in the above embodiment except that the furnace shell side formed heat insulating material 30 and the heat treatment room side formed heat insulating material 31 were divided into three parts. And a heat insulating wall structure 3 made of a flexible sheet-like protective material 40. 150 mm thick furnace shell side formed heat insulating material 30 forming a heat treatment chamber
The size of one ceiling and floor is 665 mm long,
The size of one piece of the ceiling and floor of the heat treatment room side formed heat insulating material 31 having a width of 2000 mm and a thickness of 100 mm is 615 mm in height and 1700 mm in width, and the size per piece of furnace wall is 580 mm in height and width. In each case of 800 mm, the length (L) of one side exceeded seven times the thickness (t) of each single-layer heat insulating material. Then, as a result of repeated operation under the same heat treatment conditions as in the above-described embodiment, a part of the fixing member, the c / c composite bolt 36, was damaged due to warpage at the joint after 12 batches. The undulation of the flexible sheet-like protective material 40 also became large, causing temperature unevenness in the heat treatment chamber, and the life as a heat insulating material was reached by warping at the 29th batch.
【0041】比較例2 図1に示した熱処理炉1の断熱壁構造3は、断熱材の分
割接合部と周辺部に当板やL形部材を配設せず、断熱壁
構造3は第5図に示したような従来構造とした。すなわ
ち、熱処理室側成形断熱材31は矩形状に3分割し、保
護層33としてシ−ト状c/cコンポジットで曲げ弾性
率1Ton/mm2 、厚さ1.2mmの“Kシート”
(呉羽化学株式会社製)を張設し、座38は、黒鉛製、
ボルト、ナット36、37は、c/cコンポジット製の
固定部材を用いた他は上記実施例と同一の熱処理条件で
繰り返し運転を行った結果、4バッチ目で上記熱処理室
側成形断熱材31の分割接合部と周辺部が熱処理室側に
反りはじめ、“Kシート”にうねりが認められるように
なった。昇降温の繰り返しにより上記熱処理室側成形断
熱材31の反りがさらに進行し、10バッチ過ぎから
“Kシート”に破損が現われた。23バッチ目で反りに
よって断熱材としての寿命に達し、熱処理の継続が不可
能な状態となった。COMPARATIVE EXAMPLE 2 The heat insulating wall structure 3 of the heat treatment furnace 1 shown in FIG. 1 does not have a contact plate or an L-shaped member at the divided joint portion and the peripheral portion of the heat insulating material. The conventional structure as shown in the figure was adopted. That is, the heat-insulating chamber-side formed heat insulating material 31 is divided into three rectangular shapes, and a "K sheet" having a bending elastic modulus of 1 Ton / mm 2 and a thickness of 1.2 mm is formed as a protective layer 33 by a sheet-like c / c composite.
(Made by Kureha Chemical Co., Ltd.), and the seat 38 is made of graphite.
The bolts and nuts 36 and 37 were repeatedly operated under the same heat treatment conditions as in the above example except that a fixing member made of c / c composite was used. The split joint and the peripheral portion began to warp toward the heat treatment chamber, and undulation was observed in the “K sheet”. The warpage of the heat-treating-chamber-side molded heat insulating material 31 further progressed due to the repetition of the temperature increase and decrease, and the "K sheet" was damaged after 10 batches. In the 23rd batch, the life as a heat insulating material was reached due to the warpage, so that the heat treatment could not be continued.
【0042】[0042]
【発明の効果】以上説明したように、熱処理炉の断熱材
を炉殻側成形断熱材と熱処理室側成形断熱材の少なくと
も二層で構成し、前記熱処理室側成形断熱材の表面に曲
げ弾性率が0.5Ton/mm2 以下で、かつ、厚さ3
mm以下の可撓性シート状保護材を張設し、この断熱材
の四隅の接合部、辺同士が隣り合う部分に、当板および
L形部材を介して固定部材で炉殻側成形断熱材に固定し
たので、2500℃以上の高温下であっても断熱材に反
り、劣化減耗、熱分解ガスの吸着等のトラブルが生じな
い優れた断熱構造の炉壁が容易に得られる。As described above, the heat insulating material of the heat treatment furnace is composed of at least two layers of the heat insulating material on the furnace shell side and the heat insulating material on the heat treatment room side. The rate is 0.5 Ton / mm 2 or less and the thickness is 3
mm or less flexible sheet-like protective material is stretched, and the joint between the four corners of the heat-insulating material and the portion where the sides are adjacent to each other are fixed to the furnace shell side by a fixing member via a plate and an L-shaped member. Therefore, even at a high temperature of 2500 ° C. or more, a furnace wall having an excellent heat insulating structure, which does not warp the heat insulating material and does not cause troubles such as deterioration and wear and adsorption of pyrolysis gas, can be easily obtained.
【0043】また、熱処理条件が高温、かつ、長時間の
苛酷な条件であっても、断熱材の分割数を多くして一枚
当りの面積を小さくした上に上記可撓性シート状保護材
を張設したので、個々の断熱材の反りを軽微なものとす
ることができる。Further, even when the heat treatment conditions are high temperature and severe conditions for a long time, the number of the heat insulating materials is increased to reduce the area per one sheet and the flexible sheet-like protective material. The warp of each heat insulating material can be made small because of the extension.
【0044】したがって、本発明の熱処理炉は、被処理
物の長時間の高温処理を可能ならしめるとともに、断熱
材の交換周期が長くなるという優れた効果を奏すること
ができる。Therefore, the heat treatment furnace of the present invention can provide an excellent effect that a long-time high-temperature treatment of an object to be processed can be performed and a replacement cycle of the heat insulating material is lengthened.
【図1】本発明に係る熱処理炉の一実施例の縦断面図で
ある。FIG. 1 is a longitudinal sectional view of one embodiment of a heat treatment furnace according to the present invention.
【図2】図1の断熱壁の拡大断面図である。FIG. 2 is an enlarged sectional view of the heat insulating wall of FIG.
【図3】図2の断熱壁の右側面図である。FIG. 3 is a right side view of the heat insulating wall of FIG. 2;
【図4】図2の断熱壁の全体右側面図である。FIG. 4 is an overall right side view of the heat insulating wall of FIG. 2;
【図5】従来の熱処理炉の断熱壁構造の部分断面図であ
る。FIG. 5 is a partial sectional view of a heat insulating wall structure of a conventional heat treatment furnace.
1 熱処理炉 30 炉殻側成形断
熱材 2 炉殻 31 熱処理室側成
形断熱材 3 断熱壁構造 32 貫通孔 4 被処理物 33 保護層 5 熱処理室 34 黒鉛板 6 抵抗発熱体 35 ボス 7 電極 36 ボルト 8 給電端子部 37 ナット 9 支持材 38 座 10 給気口 39 成形フェル
ト 11 電磁弁 40 可撓性シー
ト状保護材 12 排気口 41 引抜け防止
ナット 13 放射温度計 42、42’ 当
板 14 覗き窓 43、43’ L
形構成部材 15 加熱制御器 44 継ぎ部材 16 扉 G 不活性ガスREFERENCE SIGNS LIST 1 heat treatment furnace 30 furnace shell side formed heat insulating material 2 furnace shell 31 heat treated room side formed heat insulating material 3 heat insulating wall structure 32 through hole 4 processed object 33 protective layer 5 heat treatment room 34 graphite plate 6 resistance heating element 35 boss 7 electrode 36 bolt Reference Signs List 8 power supply terminal part 37 nut 9 support material 38 seat 10 air supply port 39 molded felt 11 solenoid valve 40 flexible sheet-like protective material 12 exhaust port 41 pull-out prevention nut 13 radiation thermometer 42, 42 'this plate 14 viewing window 43, 43 'L
Shaped component 15 Heating controller 44 Splicing member 16 Door G Inert gas
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F27B 17/00 F27D 1/00 F27D 1/14 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F27B 17/00 F27D 1/00 F27D 1/14
Claims (3)
処理物および抵抗発熱体を包囲し、内面に断熱材が固定
された熱処理室とを有し、前記抵抗発熱体の表面から放
射される輻射熱により前記被処理物を加熱処理する熱処
理炉において、 (イ)前記断熱材は、炉殻に固定された炉殻側成形断熱
材と、前記炉殻側成形断熱材に積層され、前記熱処理室
に面する複数個に分割された熱処理室側成形断熱材の少
なくとも二層からなり、 (ロ)前記熱処理室側成形断熱材の表面に、曲げ弾性率
が0.5Ton/mm2以下であって、かつ、厚さが3
mm以下の黒鉛から成る複数に分割された可撓性シート
状保護材を接合して平面状に張設し、 (ハ)前記熱処理室側成形断熱材の接合部には、前記可
撓性シート状保護材を介して、黒鉛からなる当板を、ま
た、前記熱処理室側成形断熱材の周辺部には、黒鉛から
成るL形部材を配設すると共に、前記当板およびL形部
材を固定部材で前記炉殻側成形断熱材の表面に固定した
ことを特徴とする熱処理炉。1. A resistance heating element for heating an object to be processed, and a heat treatment chamber surrounding the object to be processed and the resistance heating element and having a heat insulating material fixed on an inner surface thereof. In a heat treatment furnace for heat-treating the object by radiated heat, (a) the heat insulating material is laminated on a furnace shell side molded heat insulating material fixed to a furnace shell, and on the furnace shell side formed heat insulating material, It is composed of at least two layers of the heat treatment chamber-side molded heat insulating material divided into a plurality of pieces facing the heat treatment chamber, and (b) the surface of the heat treatment chamber-side molded heat insulator has a flexural modulus of 0.5 Ton / mm 2 or less. And the thickness is 3
by joining a flexible sheet-like protective material that is divided into a plurality consisting mm or less graphite stretched in a planar shape, (c) wherein the junction of the heat treatment chamber side molding insulation, said Allowed
An aforesaid plate made of graphite is provided via a flexible sheet-like protective material, and an L-shaped member made of graphite is provided around the heat-insulating material on the side of the heat treatment chamber. A heat treatment furnace, wherein a member is fixed to a surface of the furnace shell side formed heat insulating material by a fixing member.
熱材、可撓性シート状保護材、当板およびL形部材は、
黒鉛製で筒状のボス、および黒鉛材またはc/cコンポ
ジット製のボルトとナットから成る引抜け防止構造の固
定部材で一体に固定されていることを特徴とする請求項
1に記載の熱処理炉。2. The heat insulating material on the furnace shell side, the heat insulating material on the heat treatment chamber side, the flexible sheet-like protective material, the plate and the L-shaped member,
2. The heat treatment furnace according to claim 1, wherein the boss is made of graphite and is integrally fixed by a fixing member having a pull-out preventing structure comprising a bolt and a nut made of graphite or c / c composite. .
形断熱材は、接合後の形状が矩形状であり、長辺の長さ
(L)と厚み(t)との関係がL≦7tであることを特
徴とする請求項1に記載の熱処理炉。3. The heat insulating material on the furnace shell side or the heat insulating material on the heat treatment chamber side has a rectangular shape after joining, and the relationship between the length (L) and the thickness (t) of the long side is L ≦ L. The heat treatment furnace according to claim 1, wherein the heat treatment furnace is 7t.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5190353A JP3018843B2 (en) | 1993-07-30 | 1993-07-30 | Heat treatment furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5190353A JP3018843B2 (en) | 1993-07-30 | 1993-07-30 | Heat treatment furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0743077A JPH0743077A (en) | 1995-02-10 |
JP3018843B2 true JP3018843B2 (en) | 2000-03-13 |
Family
ID=16256784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5190353A Expired - Fee Related JP3018843B2 (en) | 1993-07-30 | 1993-07-30 | Heat treatment furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3018843B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10257884B2 (en) | 2007-09-13 | 2019-04-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and heating system |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3945728B2 (en) | 1998-03-09 | 2007-07-18 | 大日本印刷株式会社 | Hologram recording film recording method |
JP2002162169A (en) * | 2000-11-24 | 2002-06-07 | Nikko Materials Co Ltd | Furnace provided with heater on inner wall surface |
JP4510393B2 (en) * | 2003-03-17 | 2010-07-21 | 日本碍子株式会社 | Temperature adjustment method |
JP6059939B2 (en) * | 2012-10-02 | 2017-01-11 | 光洋サーモシステム株式会社 | Muffle furnace |
JP6276937B2 (en) * | 2013-07-29 | 2018-02-07 | Dowaサーモテック株式会社 | Reflective insulation and heat treatment furnace |
DE102014202575A1 (en) * | 2014-02-12 | 2015-08-13 | Sirona Dental Systems Gmbh | Sintering furnace for components made of sintered material, in particular dental components |
JP6232121B2 (en) * | 2016-12-08 | 2017-11-15 | 光洋サーモシステム株式会社 | Muffle furnace |
-
1993
- 1993-07-30 JP JP5190353A patent/JP3018843B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10257884B2 (en) | 2007-09-13 | 2019-04-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and heating system |
Also Published As
Publication number | Publication date |
---|---|
JPH0743077A (en) | 1995-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5195419B2 (en) | Heat treatment furnace | |
JP3018843B2 (en) | Heat treatment furnace | |
JPS63153388A (en) | Heat treating furnace | |
DE60204279D1 (en) | Vacuum and gas tight container for thermal insulation of induction heating | |
US5323484A (en) | Heating apparatus with multilayer insulating structure | |
JP4690654B2 (en) | Furnace wall structure of induction heating furnace | |
US3406275A (en) | Furnace having fingers interdigitatedly engaged with its heating elements | |
JPH11251049A (en) | Induction heating apparatus | |
JP2007309540A (en) | Heating plate, combined heating plate and heating furnace comprising the same | |
JPH0510681A (en) | Insulating structure for heating furnace | |
JP2023082488A (en) | Furnace | |
JPS6125596Y2 (en) | ||
JP2995049B1 (en) | Heat shield plate for internal heat type electric furnace | |
JP3843030B2 (en) | High temperature firing furnace | |
JP2002329675A (en) | Heating treatment equipment | |
JP4082584B2 (en) | Induction heating device | |
JP2014009723A (en) | Heat insulating material and heating device including the same | |
JPH01208414A (en) | Vacuum heat treating furnace | |
JPH02192592A (en) | Vacuum heat treatment furnace | |
KR930004357Y1 (en) | Insulation panel of furnace wall | |
CN216115385U (en) | Vacuum furnace heating system | |
JPH10318681A (en) | Heat insulation cover and heat treating furnace | |
JP2006147416A (en) | Heating plate and heat treatment device | |
JP2000171012A (en) | Heater member for heating furnace | |
JP2009068725A (en) | Induction heating device for strip-shaped body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |